
SAMPLE CHAPTER

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

React Quickly

by Azat Mardan

Chapter 1

Copyright 2017 Manning Publications

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

brief contents

PART 1 REACT FOUNDATION ...1

1 ■ Meeting React 3

2 ■ Baby steps with React 27

3 ■ Introduction to JSX 41

4 ■ Making React interactive with states 69

5 ■ React component lifecycle events 90

6 ■ Handling events in React 111

7 ■ Working with forms in React 140

8 ■ Scaling React components 164

9 ■ Project: Menu component 186

10 ■ Project: Tooltip component 201

11 ■ Project: Timer component 210

PART 2 REACT ARCHITECTURE ..225

12 ■ The Webpack build tool 227

13 ■ React routing 246

14 ■ Working with data using Redux 274

vii

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

viii	 BRIEF CONTENTS

15 ■	 Working with data using GraphQL 305

16 ■	 Unit testing React with Jest 325

17 ■	 React on Node and Universal JavaScript 345

18 ■	 Project: Building a bookstore with React Router 384

19 ■	 Project: Checking passwords with Jest 406

20 ■	 Project: Implementing autocomplete with Jest, Express,

and MongoDB 425

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

Part 1

React foundation

Hello! My name is Azat Mardan, and I’m going to take you on a journey
into the wonderful world of React. It will make your front-end development
more enjoyable and your code easier to write and maintain, and your users will
be delighted at the speed of your web apps. React is a game changer in web
development: the React community has pioneered many approaches, terms, and
design patterns, and other libraries have followed the path forged by React.

I’ve taught this material more than 20 times in my live-online and in-person
workshops to hundreds of software engineers from very different backgrounds
and varied levels of seniority. Thus, this material has been battle tested on my
students: you’re getting the distilled, most effective version of my React founda­
tion course in a written format. These chapters are critical to get you on familiar
terms with React.

 Chapters 1–11 are the result of almost two years of work by several people, but
they read as a fast sequence of topics that build on each other. The best way to con­
sume these chapters is to start with chapter 1 and proceed in order. Each chapter
includes a video message from me; chapters 1–8 have a quiz at the end; and chap­
ters 9–11, which are projects, contain homework for self-guided development.

 All in all, this part of the book builds a solid foundation of React concepts,
patterns, and features. Can you go to a foreign country and understand the lan­
guage without studying? No—and that’s why you must learn the React “lan­
guage” before you attempt to build complex apps. Thus, it’s paramount that you
study these basic React concepts—that you learn the React language—which is
exactly what you’ll do in the next 11 chapters.

 Let’s get started with React—and learn to speak fluent React-ese.

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

Meeting React

Watch this chapter’s introductory
video by scanning this QR code
with your phone or going to
http://reactquickly.co/videos/ch01.

This chapter covers
 Understanding what React is

 Solving problems with React

 Fitting React into your web applications

 Writing your first React app: Hello World

When I began working on web development in early 2000, all I needed was some
HTML and a server-side language like Perl or PHP. Ah, the good old days of putting
in alert() boxes just to debug your front-end code. It’s a fact that as the internet has
evolved, the complexity of building websites has increased dramatically. Websites
have become web applications with complex user interfaces, business logic, and data
layers that require changes and updates over time—and often in real time.

 Many JavaScript template libraries have been written to try to solve the prob­
lems of dealing with complex user interfaces (UIs). But they still require developers
to adhere to the old separation of concerns—which splits style (CSS), data and
structure (HTML), and dynamic interactions (JavaScript)—and they don’t meet
modern-day needs. (Remember the term DHTML?)

3

www.itbook.store/books/9781617293344

http://reactquickly.co/videos/ch01
https://itbook.store/books/9781617293344

4 CHAPTER 1 Meeting React

 In contrast, React offers a new approach that streamlines front-end development.
React is a powerful UI library that offers an alternative that many big firms such as
Facebook, Netflix, and Airbnb have adopted and see as the way forward. Instead of
defining a one-off template for your UIs, React allows you to create reusable UI com­
ponents in JavaScript that you can use again and again in your sites.

 Do you need a captcha control or date picker? Then use React to define a
<Captcha /> or <DatePicker /> component that you can add to your form: a simple
drop-in component with all the functionality and logic to communicate with the back
end. Do you need an autocomplete box that asynchronously queries a database once
the user has typed four or more letters? Define an <Autocomplete charNum="4"/>
component to make that asynchronous query. You can choose whether it has a text
box UI or has no UI and instead uses another custom form element—perhaps
<Autocomplete textbox="..." />.

 This approach isn’t new. Creating composable UIs has been around for a long time,
but React is the first to use pure JavaScript without templates to make this possible.
And this approach has proven easier to maintain, reuse, and extend.

 React is a great library for UIs, and it should be part of your front-end web toolkit;
but it isn’t a complete solution for all front-end web development. In this chapter,
we’ll look at the pros and cons of using React in your applications and how you might
fit it into your existing web-development stack.

 Part 1 of the book focuses on React’s primary concepts and features, and part 2
looks at working with libraries related to React to build more-complex front-end apps
(a.k.a. React stack or React and friends). Each part demonstrates both greenfield and
brownfield development1 with React and the most popular libraries, so you can get an
idea of how to approach working with it in real-world scenarios.

Chapter videos and source code
We all learn differently. Some people prefer text and others video, and others learn
best via in-person instruction. Each chapter of this book includes a short video that
explains the chapter’s gist in less than 5 minutes. Watching them is totally optional.
They’ll give you a summary if you prefer a video format or need a refresher. After
watching each video, you can decide whether you need to read the chapter or can
skip to the next one.

The source code for the examples in this chapter is at www.manning.com/books/react­
quickly and at https://github.com/azat-co/react-quickly/tree/master/ch01 (in the
ch01 folder of the GitHub repository https://github.com/azat-co/react-quickly). You
can also find some demos at http://reactquickly.co/demos.

Brownfield is a project with legacy code and existing systems, while greenfield is a project without any legacy code
or systems; see https://en.wikipedia.org/wiki/Brownfield_(software_development).

1

www.itbook.store/books/9781617293344

https://en.wikipedia.org/wiki/Brownfield_(software_development)
https://github.com/azat-co/react-quickly/tree/master/ch01
https://github.com/azat-co/react-quickly
http://reactquickly.co/demos
http://www.manning.com/books/react-quickly
http://www.manning.com/books/react-quickly
https://itbook.store/books/9781617293344

2

5 The problem that React solves

1.1 What is React?
To introduce React.js properly, I first need to define it. So, what is React? It’s a UI com­
ponent library. The UI components are created with React using JavaScript, not a spe­
cial template language. This approach is called creating composable UIs, and it’s
fundamental to React’s philosophy.

 React UI components are highly self-contained, concern-specific blocks of function­
ality. For example, there could be components for date-picker, captcha, address, and
ZIP code elements. Such components have both a visual representation and dynamic
logic. Some components can even talk to the server on their own: for example, an auto-
complete component might fetch the autocompletion list from the server.

User interfaces
In a broad sense, a user interface2 is everything that facilitates communication
between computers and humans. Think of a punch card or a mouse: they’re both UIs.
When it comes to software, engineers talk about graphical user interfaces (GUIs),
which were pioneered for early personal computers such as Macs and PCs. A GUI con­
sists of menus, text, icons, pictures, borders, and other elements. Web elements are
a narrow subset of the GUI: they reside in browsers, but there are also elements for
desktop applications in Windows, OS X, and other operating systems.

Every time I mention a UI in this book, I mean a web GUI.

Component-based architecture (CBA)—not to be confused with web components,
which are just one of the most recent implementations of CBA—existed before React.
Such architectures generally tend to be easier to reuse, maintain, and extend than
monolithic UIs. What React brings to the table is the use of pure JavaScript (without
templates) and a new way to look at composing components.

1.2 The problem that React solves
What problem does React solve? Looking at the last few years of web development,
note the problems in building and managing complex web UIs for front-end applica­
tions: React was born primarily to address those. Think of large web apps like Face-
book: one of the most painful tasks when developing such applications is managing
how the views change in response to data changes.

 Let’s refer to the official React website for more hints about the problem React
addresses: “We built React to solve one problem: building large applications with data
that changes over time.”3 Interesting! We can also look at the history of React for
more information. A discussion on the React Podcast4 mentions that the creator of

2	 https://en.wikipedia.org/wiki/User_interface.
3	 React official website, “Why React?” March 24, 2016, http://bit.ly/2mdCJKM.
4	 React Podcast, “8. React, GraphQL, Immutable & Bow-Ties with Special Guest Lee Byron,” December 31, 2015,

http://mng.bz/W1X6.

www.itbook.store/books/9781617293344

http://bit.ly/2mdCJKM
http://mng.bz/W1X6
https://en.wikipedia.org/wiki/User_interface
http:React.js
https://itbook.store/books/9781617293344

6 CHAPTER 1 Meeting React

React—Jordan Walke—was solving a problem at Facebook: having multiple data
sources update an autocomplete field. The data came asynchronously from a back
end. It was becoming more and more complicated to determine where to insert new
rows in order to reuse DOM elements. Walke decided to generate the field representa­
tion (DOM elements) anew each time. This solution was elegant in its simplicity: UIs as
functions. Call them with data, and you get rendered views predictably.

 Later, it turned out that generating elements in memory is extremely fast and that
the actual bottleneck is rendering in the DOM. But the React team came up with an algo­
rithm that avoids unnecessary DOM pain. This made React very fast (and cheap in terms
of performance). React’s splendid performance and developer-friendly, component-
based architecture are a winning combination. These and other benefits of React are
described in the next section.

 React solved Facebook’s original problem, and many large firms agreed with this
approach. React adoption is solid, and its popularity is growing every month. React
emerged from Facebook5 and is now used not only by Facebook but also by Instagram,
PayPal, Uber, Sberbank, Asana,6 Khan Academy,7 HipChat,8 Flipboard,9 and Atom,10

to name just a few.11 Most of these applications originally used something else (typi­
cally, template engines with Angular or Backbone) but switched to React and are
extremely happy about it.

1.3 Benefits of using React
Every new library or framework claims to be better than its predecessors in some
respect. In the beginning, we had jQuery, and it was leaps and bounds better for writ­
ing cross-browser code in native JavaScript. If you remember, a single AJAX call taking
many lines of code had to account for Internet Explorer and WebKit-like browsers.
With jQuery, this takes only a single call: $.ajax(), for example. Back in the day,
jQuery was called a framework—but not anymore! Now a framework is something big­
ger and more powerful.

 Similarly with Backbone and then Angular, each new generation of JavaScript
frameworks has brought something new to the table. React isn’t unique in this. What
is new is that React challenges some of the core concepts used by most popular front-
end frameworks: for example, the idea that you need to have templates.

 The following list highlights some of the benefits of React versus other libraries
and frameworks:

5	 “Introduction to React.js,” July 8, 2013, http://mng.bz/86XF.
6	 Malcolm Handley and Phips Peter, “Why Asana Is Switching to TypeScript,” Asana Blog, November 14, 2014,

http://mng.bz/zXKo.
7	 Joel Burget, “Backbone to React,” http://mng.bz/WGEQ.
8	 Rich Manalang, “Rebuilding HipChat with React.js,” Atlassian Developers, February 10, 2015,

http://mng.bz/r0w6.
9	 Michael Johnston, “60 FPS on the Mobile Web,” Flipboard, February 10, 2015, http://mng.bz/N5F0.
10 Nathan Sobo, “Moving Atom to React,” Atom, July 2, 2014, http://mng.bz/K94N.
11 See also the JavaScript usage stats at http://libscore.com/#React.

www.itbook.store/books/9781617293344

http://mng.bz/86XF
http://mng.bz/zXKo
http://mng.bz/WGEQ
http://mng.bz/r0w6
http://mng.bz/N5F0
http://mng.bz/K94N
http://libscore.com/#React
http:React.js
http:React.js
https://itbook.store/books/9781617293344

7 Benefits of using React

 Simpler apps—React has a CBA with pure JavaScript; a declarative style; and pow­
erful, developer-friendly DOM abstractions (and not just DOM, but also iOS,
Android, and so on).

 Fast UIs—React provides outstanding performance thanks to its virtual DOM
and smart-reconciliation algorithm, which, as a side benefit, lets you perform
testing without spinning up (starting) a headless browser.

 Less code to write—React’s great community and vast ecosystem of components
provide developers with a variety of libraries and components. This is important
when you’re considering what framework to use for development.

Many features make React simpler to work with than most other front-end frame­
works. Let’s unpack these items one by one, starting with its simplicity.

1.3.1 Simplicity

The concept of simplicity in computer science is highly valued by developers and
users. It doesn’t equate to ease of use. Something simple can be hard to implement,
but in the end it will be more elegant and efficient. And often, an easy thing will end
up being complex. Simplicity is closely related to the KISS principle (keep it simple,
stupid).12 The gist is that simpler systems work better.

 React’s approach allows for simpler solutions via a dramatically better web-
development experience for software engineers. When I began working with React,
it was a considerable shift in a positive direction that reminded me of switching from
using plain, no-framework JavaScript to jQuery.

 In React, this simplicity is achieved with the following features:

 Declarative over imperative style—React embraces declarative style over imperative
by updating views automatically.

 Component-based architecture using pure JavaScript—React doesn’t use domain-
specific languages (DSLs) for its components, just pure JavaScript. And there’s
no separation when working on the same functionality.

 Powerful abstractions—React has a simplified way of interacting with the DOM,
allowing you to normalize event handling and other interfaces that work simi­
larly across browsers.

Let’s cover these one by one.

DECLARATIVE OVER IMPERATIVE STYLE

First, React embraces declarative style over imperative. Declarative style means devel­
opers write how it should be, not what to do, step-by-step (imperative). But why is
declarative style a better choice? The benefit is that declarative style reduces complex­
ity and makes your code easier to read and understand.

 Consider this short JavaScript example, which illustrates the difference between
declarative and imperative programming. Let’s say you need to create an array (arr2)

12 https://en.wikipedia.org/wiki/KISS_principle.

www.itbook.store/books/9781617293344

https://en.wikipedia.org/wiki/KISS_principle
http:stupid).12
https://itbook.store/books/9781617293344

8 CHAPTER 1 Meeting React

whose elements are the result of doubling the elements of another array (arr). You
can use a for loop to iterate over an array and tell the system to multiply by 2 and cre­
ate a new element (arr2[i]=):

var arr = [1, 2, 3, 4, 5],

arr2 = []

for (var i=0; i<arr.length; i++) {

arr2[i] = arr[i]*2

}

console.log('a', arr2)

The result of this snippet, where each element is multiplied by 2, is printed on the
console as follows:

a [2, 4, 6, 8, 10]

This illustrates imperative programming, and it works—until it doesn’t work, due to
the complexity of the code. It becomes too difficult to understand what the end result
is supposed to be when you have too many imperative statements. Fortunately, you can
rewrite the same logic in declarative style with map():

var arr = [1, 2, 3, 4, 5],

arr2 = arr.map(function(v, i){ return v*2 })

console.log('b', arr2)

The output is b [2, 4, 6, 8, 10]; the variable arr2 is the same as in the previous
example. Which code snippet is easier to read and understand? In my humble opin­
ion, the declarative example.

 Look at the following imperative code for getting a nested value of an object. The
expression needs to return a value based on a string such as account or account.number
in such a manner that these statements print true:

var profile = {account: '47574416'}

var profileDeep = {account: { number: 47574416 }}

console.log(getNestedValueImperatively(profile, 'account') === '47574416')

console.log(getNestedValueImperatively(profileDeep, 'account.number')

➥ === 47574416)

This imperative style literally tells the system what to do to get the results you need:

var getNestedValueImperatively = function getNestedValueImperatively

➥ (object, propertyName) {
var currentObject = object
var propertyNamesList = propertyName.split('.')
var maxNestedLevel = propertyNamesList.length
var currentNestedLevel

for (currentNestedLevel = 0; currentNestedLevel < maxNestedLevel;

➥ currentNestedLevel++) {

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

9 Benefits of using React

if (!currentObject || typeof currentObject === 'undefined')

 ➥ return undefined
currentObject = currentObject[propertyNamesList[currentNestedLevel]]

}

return currentObject

}

Contrast this with declarative style (focused on the result), which reduces the number
of local variables and thus simplifies the logic:

var getValue = function getValue(object, propertyName) {

return typeof object === 'undefined' ? undefined : object[propertyName]

}

var getNestedValueDeclaratively = function getNestedValueDeclaratively(object,

➥ propertyName) {
return propertyName.split('.').reduce(getValue, object)

}

console.log(getNestedValueDeclaratively({bar: 'baz'}, 'bar') === 'baz')

console.log(getNestedValueDeclaratively({bar: { baz: 1 }}, 'bar.baz')=== 1)

Most programmers have been trained to code imperatively, but usually the declarative
code is simpler. In this example, having fewer variables and statements makes the
declarative code easier to grasp at first glance.

 That was just some JavaScript code. What about React? It takes the same declara­
tive approach when you compose UIs. First, React developers describe UI elements in
a declarative style. Then, when there are changes to views generated by those UI ele­
ments, React takes care of the updates. Yay!

 The convenience of React’s declarative style fully shines when you need to make
changes to the view. Those are called changes of the internal state. When the state
changes, React updates the view accordingly.

NOTE I cover how states work in chapter 4.

Under the hood, React uses a virtual DOM to find differences (the delta) between
what’s already in the browser and the new view. This process is called DOM diffing or
reconciliation of state and view (bringing them back to similarity). This means developers
don’t need to worry about explicitly changing the view; all they need to do is update
the state, and the view will be updated automatically as needed.

 Conversely, with jQuery, you’d need to implement updates imperatively. By manip­
ulating the DOM, developers can programmatically modify the web page or parts of
the web page (a more likely scenario) without rerendering the entire page. DOM
manipulation is what you do when you invoke jQuery methods.

 Some frameworks, such as Angular, can perform automatic view updates. In Angu­
lar, it’s called two-way data binding, which basically means views and models have two-
way communication/syncing of data between them.

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

10 CHAPTER 1 Meeting React

 The jQuery and Angular approaches aren’t great, for two reasons. Think about
them as two extremes. At one extreme, the library (jQuery) isn’t doing anything, and
a developer (you!) needs to implement all the updates manually. At the other
extreme, the framework (Angular) is doing everything.

 The jQuery approach is prone to mistakes and takes more work to implement. Also,
this approach of directly manipulating the regular DOM works fine with simple UIs, but
it’s limiting when you’re dealing with a lot of elements in the DOM tree. This is the case
because it’s harder to see the results of imperative functions than declarative statements.

 The Angular approach is difficult to reason about because with its two-way bind­
ing, things can spiral out of control quickly. You insert more and more logic, and all of
a sudden, different views are updating models, and those models update other views.

 Yes, the Angular approach is somewhat more readable than imperative jQuery
(and requires less manual coding!), but there’s another issue. Angular relies on tem­
plates and a DSL that uses ng directives (for example, ng-if). I discuss its drawbacks in
the next section.

COMPONENT-BASED ARCHITECTURE USING PURE JAVASCRIPT

Component-based architecture13 existed before React came on the scene. Separation
of concerns, loose coupling, and code reuse are at the heart of this approach because
it provides many benefits; software engineers, including web developers, love CBA. A
building block of CBA in React is the component class. As with other CBAs, it has many
benefits, with code reuse being the main one (you can write less code!).

 What was lacking before React was a pure JavaScript implementation of this archi­
tecture. When you’re working with Angular, Backbone, Ember, or most of the other
MVC-like front-end frameworks, you have one file for JavaScript and another for the
template. (Angular uses the term directives for components.) There are a few issues
with having two languages (and two or more files) for a single component.

 The HTML and JavaScript separation worked well when you had to render HTML
on the server, and JavaScript was only used to make your text blink. Now, single page
applications (SPAs) handle complex user input and perform rendering on the
browser. This means HTML and JavaScript are closely coupled functionally. For devel­
opers, it makes more sense if they don’t need to separate between HTML and
JavaScript when working on a piece of a project (component).

 Consider this Angular code, which displays different links based on the value of
userSession:

<a ng-if="user.session" href="/logout">Logout

<a ng-if="!user.session" href="/login">Login

You can read it, but you may have doubts about what ng-if takes: a Boolean or a
string. And will it hide the element or not render it at all? In the Angular case, you
can’t be sure whether the element will be hidden on true or false, unless you’re famil­
iar with how this particular ng-if directive works.

13 http://mng.bz/a65r.

www.itbook.store/books/9781617293344

http://mng.bz/a65r
https://itbook.store/books/9781617293344

14

11 Benefits of using React

 Compare the previous snippet with the following React code, which uses JavaScript
if/else to implement conditional rendering. It’s absolutely clear what the value of
user.session must be and what element (logout or login) is rendered if the value is
true. Why? Because it’s just JavaScript:

if (user.session) return React.createElement('a', {href: '/logout'}, 'Logout')

else return React.createElement('a', {href: '/login'}, 'Login')

Templates are useful when you need to iterate over an array of data and print a prop­
erty. We work with lists of data all the time! Let’s look at a for loop in Angular. As
mentioned earlier, in Angular, you need to use a DSL with directives. The directive for
a for loop is ng-repeat:

<div ng-repeat="account in accounts">

{{account.name}}

</div>

One of the problems with templates is that developers often have to learn yet another
language. In React, you use pure JavaScript, which means you don’t need to learn a
new language! Here’s an example of composing a UI for a list of account names with
pure JavaScript:

Regular JavaScript method that takes
an iterator expression as a parameter14

accounts.map(function(account) {

return React.createElement('div', null, account.name)
 Iterator expression that

})
 returns a <div> with
the account name

Imagine a situation where you’re making some changes to the list of accounts. You
need to display the account number and other fields. How do you know what fields
the account has in addition to name?

 You need to open the corresponding JavaScript file that calls and uses this tem­
plate, and then you have to find accounts to see its properties. So the second problem
with templates is that the logic about the data and the description of how that data
should be rendered are separated.

 It’s much better to have the JavaScript and the markup in one place so you don’t
have to switch between file and languages. This is exactly how React works; and you’ll
see how React renders elements shortly in a Hello World example.

NOTE Separation of concerns generally is a good pattern. In a nutshell, it
means separation of different functions such as the data service, the view
layer, and so on. When you’re working with template markup and corre­
sponding JavaScript code, you’re working on one functionality. That’s why hav­
ing two files (.js and .html) isn’t a separation of concerns.

14 http://mng.bz/555J.

www.itbook.store/books/9781617293344

http://mng.bz/555J
https://itbook.store/books/9781617293344

12 CHAPTER 1 Meeting React

Now, if you want to explicitly set the method by which to keep track of items (for
example, to ensure there are no duplicates) in the rendered list, you can use Angu­
lar’s track by feature:

<div ng-repeat="account in accounts track by account._id">

{{account.name}}

</div>

If you want to track by an index of the array, there’s $index:

<div ng-repeat="account in accounts track by $index">

{{account.name}}

</div>

But what concerns me and many other developers is, what is this magic $index? In
React, you use an argument from map() for the value of the key attribute:

Uses an array element value
(account) and its index
provided by Array.map()

accounts.map(function(account, index) {

return React.createElement('div', {key: index}, account.name)

})

Returns a React element <div/> with
an attribute key with the value index

and inner text set to account.name

It’s worth noting that map() isn’t exclusive to React. You can use it with other frame­
works because it’s part of the language. But the declarative nature of map() makes it
and React a perfect pair.

 I’m not picking on Angular—it’s a great framework. But the bottom line is that if a
framework uses a DSL, you need to learn its magic variables and methods. In React,
you can use pure JavaScript.

 If you use React, you can carry your knowledge to the next project even if it’s not
in React. On the other hand, if you use an X template engine (or a Y framework with
a built-in DSL template engine), you’re locked into that system and have to describe
yourself as an X/Y developer. Your knowledge isn’t transferable to projects that don’t
use X/Y. To summarize, the pure JavaScript component-based architecture is about
using discrete, well-encapsulated, reusable components that ensure better separation
of concerns based on functionality without the need for DSLs, templates, or directives.

 Working with many developer teams, I’ve observed another factor related to sim­
plicity. React has a better, shallower, more gradual learning curve compared to MVC
frameworks (well, React isn’t an MVC, so I’ll stop comparing them) and template
engines that have special syntax—for example, Angular directives or Jade/Pug. The
reason is that instead of using the power of JavaScript, most template engines build
abstractions with their own DSL, in a way reinventing things like an if condition or a
for loop.

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

13 Benefits of using React

POWERFUL ABSTRACTIONS

React has a powerful abstraction of the document model. In other words, it hides the
underlying interfaces and provides normalized/synthesized methods and properties.
For example, when you create an onClick event in React, the event handler will receive
not a native browser-specific event object, but a synthetic event object that’s a wrapper
around native event objects. You can expect the same behavior from synthetic events
regardless of the browser in which you run the code. React also has a set of synthetic
events for touch events, which are great for building web apps for mobile devices.

 Another example of React’s DOM abstraction is that you can render React ele­
ments on the server. This can be handy for better search engine optimization (SEO)
and/or improving performance.

 There are more options when it comes to rendering React components than just
DOM or HTML strings for the server back end. We’ll cover them in section 1.5.1. And,
speaking of the DOM, one of the most sought-after benefits of React is its splendid per­
formance.

1.3.2 Speed and testability

In addition to the necessary DOM updates, your framework may perform unnecessary
updates, which makes the performance of complex UIs even worse. This becomes
especially noticeable and painful for users when you have a lot of dynamic UI ele­
ments on your web page.

 On the other hand, React’s virtual DOM exists only in the JavaScript memory. Every
time there’s a data change, React first compares the differences using its virtual DOM;
only when the library knows there has been a change in the rendering will it update
the actual DOM. Figure 1.1 shows a high-level overview of how React’s virtual DOM
works when there are data changes.

React virtual DOM Real DOM

2. State changes
 (setState)

3. Smart diffing
 algorithm
 (reconciliation)

Virtual DOM:
“Dirty” components

affected by state changes

ReactElement

ReactNode

ReactComponent

DOMNode

1. Render

Real DOM

DOMNode

4. Rerender
 only affected
 elements

Figure 1.1 Once a component has been rendered, if its state changes, it’s compared to the
in-memory virtual DOM and rerendered if necessary.

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

14	 CHAPTER 1 Meeting React

Ultimately, React updates only those parts that are absolutely necessary so that the
internal state (virtual DOM) and the view (real DOM) are the same. For example, if
there’s a <p> element and you augment the text via the state of the component, only
the text will be updated (that is, innerHTML), not the element itself. This results in
increased performance compared to rerendering entire sets of elements or, even
more so, entire pages (server-side rendering).

NOTE If you like to geek out on algorithms and Big Os, these two articles do a
great job of explaining how the React team managed to turn an O(n3) prob­
lem into an O(n) one: “Reconciliation,” on the React website
(http://mng.bz/PQ9X) and “React’s Diff Algorithm” by Christopher
Chedeau (http://mng.bz/68L4).

The added benefit of the virtual DOM is that you can do unit testing without headless
browsers like PhantomJS (http://phantomjs.org). There’s a Jasmine (http://
jasmine.github.io) layer called Jest (https://facebook.github.io/jest) that lets you test
React components right on the command line!

1.3.3 Ecosystem and community

Last, but not least, React is supported by the developers of a juggernaut web applica­
tion called Facebook, as well as by their peers at Instagram. As with Angular and some
other libraries, having a big company behind the technology provides a sound testing
ground (it’s deployed to millions of browsers), reassurance about the future, and an
increase in contribution velocity.

 The React community is incredible. Most of the time, developers don’t even have
to implement much of the code. Look at these community resources:

 List of React components: https://github.com/brillout/awesome-react­
components and http://devarchy.com/react-components

 Set of React components that implement the Google Material Design specifica­
tion (https://design.google.com): http://react-toolbox.com

 Material Design React components: www.material-ui.com
 Collection of React components for Office and Office 360 experiences (http://

dev.office.com/fabric#/components) using the Office Design Language:
https://github.com/OfficeDev/office-ui-fabric-react

 Opinionated catalog of open source JS (mostly React) packages:
https://js.coach

 Catalog of React components: https://react.rocks
 Khan Academy React components: https://khan.github.io/react-components
 Registry of React components: www.reactjsx.com

My personal anecdotal experience with open source taught me that the marketing of
open source projects is as important to its wide adoption and success as the code itself.
By that, I mean that if a project has a poor website, lacks documentation and examples,

www.itbook.store/books/9781617293344

http://mng.bz/PQ9X
http://mng.bz/68L4
http://phantomjs.org
https://facebook.github.io/jest
http://jasmine.github.io
http://jasmine.github.io
https://github.com/brillout/awesome-react-components
https://github.com/brillout/awesome-react-components
http://devarchy.com/react-components
https://design.google.com
http://react-toolbox.com
http://www.material-ui.com
http://dev.office.com/fabric#/components
http://dev.office.com/fabric#/components
https://github.com/OfficeDev/office-ui-fabric-react
https://js.coach
https://react.rocks
https://khan.github.io/react-components
http://www.reactjsx.com
https://itbook.store/books/9781617293344

15 How React can fit into your web applications

and has an ugly logo, most developers won’t take it seriously—especially now, when
there are so many JavaScript libraries. Developers are picky, and they won’t use an ugly
duckling library.

 My teacher used to say, “Don’t judge a book by its cover.” This might sound contro­
versial; but, sadly, most people, including software engineers, are prone to biases such
as good branding. Luckily, React has a great engineering reputation backing it. And,
speaking of book covers, I hope you didn’t buy this book just for its cover!

1.4 Disadvantages of React
Of course, almost everything has its drawbacks. This is true with React, but the full list
of cons depends on whom you ask. Some of the differences, like declarative versus
imperative, are highly subjective. So, they can be both pros and cons. Here’s my list of
React disadvantages (as with any such list, it may be biased because it’s based on opin­
ions I’ve heard from other developers):

 React isn’t a full-blown, Swiss Army knife–type of framework. Developers need
to pair it with a library like Redux or React Router to achieve functionality com­
parable to Angular or Ember. This can also be an advantage if you need a mini­
malistic UI library to integrate with your existing stack.

 React isn’t as mature as other frameworks. React’s core API is still changing,
albeit very little after the 0.14 release; the best practices for React (as well as the
ecosystem of components, plug-ins, and add-ons) are still developing.

 React uses a somewhat new approach to web development, and JSX and Flux
(often used with React as the data library) can be intimidating to beginners.
There’s a lack of best practices, good books, courses, and resources available for
mastering React.

 React only has a one-way binding. Although one-way binding is better for com­
plex apps and removes a lot of complexity, some developers (especially Angular
developers) who got used to a two-way binding will find themselves writing a bit
more code. I’ll explain how React’s one-way binding works compared to Angu­
lar’s two-way binding in chapter 14, which covers working with data.

 React isn’t reactive (as in reactive programming and architecture, which are more
event-driven, resilient, and responsive) out of the box. Developers need to use
other tools such as Reactive Extensions (RxJS, https://github.com/Reactive­
Extensions/RxJS) to compose asynchronous data streams with Observables.

To continue with this introduction to React, let’s look at how it fits into a web application.

1.5 How React can fit into your web applications
In a way, the React library by itself, without React Router or a data library, is less com­
parable to frameworks (like Backbone, Ember, and Angular) and more comparable to
libraries for working with UIs, like template engines (Handlebars, Blaze) and DOM-
manipulation libraries (jQuery, Zepto). In fact, many teams have swapped traditional

www.itbook.store/books/9781617293344

https://github.com/Reactive-Extensions/RxJS
https://github.com/Reactive-Extensions/RxJS
https://itbook.store/books/9781617293344

16	 CHAPTER 1 Meeting React

template engines like Underscore in Backbone or Blaze in Meteor for React, with
great success. For example, PayPal switched from Dust to Angular, as did many other
companies listed earlier in this chapter.

 You can use React for just part of your UI. For example, let’s say you have a load-
application form on a web page built with jQuery. You can gradually begin to convert
this front-end app to React by first converting the city and state fields to populate
automatically based on the ZIP code. The rest of the form can keep using jQuery.
Then, if you want to proceed, you can convert the rest of the form elements from
jQuery to React, until your entire page is built on React. Taking a similar approach,
many teams successfully integrated React with Backbone, Angular, or other existing
front-end frameworks.

 React is back-end agnostic for the purposes of front-end development. In other words,
you don’t have to rely on a Node.js back end or MERN (MongoDB, Express.js, React.js,
and Node.js) to use React. It’s fine to use React with any other back-end technology like
Java, Ruby, Go, or Python. React is a UI library, after all. You can integrate it with any back
end and any front-end data library (Backbone, Angular, Meteor, and so on).

 To summarize how React fits into a web app, it’s most often used in these scenarios:

 As a UI library in React-related stack SPAs, such as React+React and
Router+Redux

 As a UI library (V in MVC) in non-fully React-related stack SPAs, such as
React+Backbone

 As a drop-in UI component in any front-end stack, such as a React autocomplete
input component in a jQuery+server-side rendering stack

 As a server-side template library in a purely thick-server (traditional) web app or
in a hybrid or isomorphic/universal web app, such as an Express server that
uses express-react-views

 As a UI library in mobile apps, such as a React Native iOS app
 As a UI description library for different rendering targets (discussed in the next

section)

React works nicely with other front-end technologies, but it’s mostly used as part of
single-page architecture because SPA seems to be the most advantageous and popular
approach to building web apps. I cover how React fits into an SPA in section 1.5.2.

 In some extreme scenarios, you can even use React only on the server as a template
engine of sorts. For example, there’s an express-react-views library
(https://github.com/reactjs/express-react-views). It renders the view server-side from
React components. This server-side rendering is possible because React lets you use
different rendering targets.

1.5.1 React libraries and rendering targets

In versions 0.14 and higher, the React team split the library into two packages: React
Core (react package on npm) and ReactDOM (react-dom package on npm). By

www.itbook.store/books/9781617293344

https://github.com/reactjs/express-react-views
http:React.js
http:Express.js
https://itbook.store/books/9781617293344

17 How React can fit into your web applications

doing so, the maintainers of React made it clear that React is on a path to become not
just a library for the web, but a universal (sometimes called isomorphic because it can
be used in different environments) library for describing UIs.

 For example, in version 0.13, React had a React.render() method to mount an
element to a web page’s DOM node. In versions 0.14 and higher, you need to include
react-dom and call ReactDOM.render() instead of React.render().

 Having multiple packages created by the community to support various rendering
targets made this approach of separating writing components and rendering logical.
Some of these modules are as follows:

 Renderer for the blessed (https://github.com/chjj/blessed) terminal inter­
face: http://github.com/Yomguithereal/react-blessed

 Renderer for the ART library (https://github.com/sebmarkbage/art):
https://github.com/reactjs/react-art

 Renderer for <canvas>: https://github.com/Flipboard/react-canvas
 Renderer for the 3D library using three.js (http://threejs.org): https://

github.com/Izzimach/react-three
 Renderer for virtual reality and interactive 360 experiences: https://facebook

.github.io/react-vr

In addition to the support of these libraries, the separation of React Core from React-
DOM makes it easier to share code between React and React Native libraries (used for
native mobile iOS and Android development). In essence, when using React for web
development, you’ll need to include at least React Core and ReactDOM.

 Moreover, there are additional React utility libraries in React and npm. (Before
React v15.5, some of them were part of React as React add-ons.15 These utility libraries
allow you to enhance functionality, work with immutable data (https://
github.com/kolodny/immutability-helper), and perform testing.

 Finally, React is almost always used with JSX—a tiny language that lets developers
write React UIs more eloquently. You can transpile JSX into regular JavaScript by using
Babel or a similar tool.

 As you can see, there’s a lot of modularity—the functionality of React-related
things is split into different packages. This gives you power and choice, which is a
good thing. No monolith or opinionated library dictates to you the only possible way
to implement things. More on this in section 1.5.3.

 If you’re a web developer reading this book, you probably use SPA architecture.
Either you already have a web app built using this and want to reengineer it with React
(brownfield), or you’re starting a new project from scratch (greenfield). Next, we’ll
zoom in on React’s place in SPAs as the most popular approach to building web apps.

15	 See the version 15.5 change log with the list of add-ons and npm libraries: https://
facebook.github.io/react/blog/2017/04/07/react-v15.5.0.html. See also the page on add-ons:
https://facebook.github.io/react/docs/addons.html.

www.itbook.store/books/9781617293344

https://github.com/sebmarkbage/art
https://github.com/chjj/blessed
http://github.com/Yomguithereal/react-blessed
https://github.com/reactjs/react-art
https://github.com/Flipboard/react-canvas
http://threejs.org
https://github.com/Izzimach/react-three
https://github.com/Izzimach/react-three
https://facebook.github.io/react-vr
https://facebook.github.io/react-vr
https://github.com/kolodny/immutability-helper
https://github.com/kolodny/immutability-helper
https://facebook.github.io/react/blog/2017/04/07/react-v15.5.0.html
https://facebook.github.io/react/blog/2017/04/07/react-v15.5.0.html
https://facebook.github.io/react/docs/addons.html
http:add-ons.15
http:three.js
https://itbook.store/books/9781617293344

18	 CHAPTER 1 Meeting React

1.5.2 Single-page applications and React

Another name for SPA architecture is thick client, because the browser, being a client,
holds more logic and performs functions such as rendering of the HTML, validation, UI
changes, and so on. Figure 1.2 is basic: it shows a bird’s-eye view of a typical SPA archi­
tecture with a user, a browser, and a server. The figure depicts a user making a request,
and input actions like clicking a button, drag-and-drop, mouse hovering, and so on:

1 The user types a URL in the browser to open a new page.

2 The browser sends a URL request to the server.

3 The server responds with static assets such as HTML, CSS, and JavaScript. In

most cases, the HTML is bare-bones—that is, it has only a skeleton of the web
page. Usually there’s a “Loading ...” message and/or rotating spinner GIF.

4 The static assets include the JavaScript code for the SPA. When loaded, this
code makes additional requests for data (AJAX/XHR requests).

5 The data comes back in JSON, XML, or any other format.
6 Once the SPA receives the data, it can render missing HTML (the User Interface

block in the figure). In other words, UI rendering happens on the browser by
means of the SPA hydrating templates with data.16

7 Once the browser rendering is finished, the SPA replaces the “Loading …” mes­
sage, and the user can work with the page.

8	 The user sees a beautiful web page. The user may interact with the page (Inputs
in the figure), triggering new requests from the SPA to the server, and the cycle
of steps 2–6 continues. At this stage, browser routing may happen if the SPA
implements it, meaning navigation to a new URL will trigger not a new page
reload from the server, but rather an SPA rerender in the browser.

Browser	 Server

1. Inputs URL

7. Completed
 website UI

4. Loads JS

SPA code

2. URL request

3. Response
 (assets)

5. Data requests/
 responses

8. Inputs/UI
 updates

Data

Static assetsStatic assets

App logic

Data service

6. Renders
User

interface

User

Figure 1.2 A typical SPA architecture

16 “What does it mean to hydrate an object?” Stack Overflow, http://mng.bz/uP25.

www.itbook.store/books/9781617293344

http://mng.bz/uP25
https://itbook.store/books/9781617293344

19 How React can fit into your web applications

To summarize, in the SPA approach, most rendering for UIs happens on the browser.
Only data travels to and from the browser. Contrast that with a thick-server approach,
where all the rendering happens on the server. (Here I mean rendering as in generat­
ing HTML from templates or UI code, not as in rendering that HTML in the browser,
which is sometimes called painting or drawing the DOM.)

 Note that the MVC-like architecture is the most popular approach, but it isn’t the only
one. React doesn’t require you to use an MVC-like architecture; but, for the sake of
simplicity, let’s assume that your SPA is using an MVC-like architecture. You can see its
possible distinct parts in figure 1.3. A navigator or routing library acts as a controller of
sorts in the MVC paradigm; it dictates what data to fetch and what template to use. The
navigator/controller makes a request to get data and then hydrates/populates the
templates (views) with this data to render the UI in the form of the HTML. The UI sends
actions back to the SPA code: clicks, mouse hovers, keystrokes, and so on.

SPA code

User interface
(HTML)

Data requests
and server
responsesUser inputs

UI updates Renders

Navigator (controller)

Data (model)

Templates (view)

ActionsUser

Figure 1.3 Inside a single-page application

In an SPA architecture, data is interpreted and processed in the browser (browser ren­
dering) and is used by the SPA to render additional HTML or to change existing HTML.
This makes for nice interactive web applications that rival desktop apps. Angular.js,
Backbone.js, and Ember.js are examples of front-end frameworks for building SPAs.

NOTE Different frameworks implement navigators, data, and templates dif­
ferently, so figure 1.3 isn’t applicable to all frameworks. Rather, it illustrates
the most widespread separation of concerns in a typical SPA.

React’s place in the SPA diagram in figure 1.3 is in the Templates block. React is a view
layer, so you can use it to render HTML by providing it with data. Of course, React does
much more than a typical template engine. The difference between React and other
template engines like Underscore, Handlebars, and Mustache is in the way you develop
UIs, update them, and manage their states. We’ll talk about states in chapter 4 in more
detail. For now, think of states as data that can change and that’s related to the UI.

1.5.3 The React stack

React isn’t a full-blown, front-end JavaScript framework. React is minimalistic. It
doesn’t enforce a particular way of doing things like data modeling, styling, or routing

www.itbook.store/books/9781617293344

http:Ember.js
http:Backbone.js
http:Angular.js
https://itbook.store/books/9781617293344

20	 CHAPTER 1 Meeting React

(it’s non-opinionated). Because of that, developers need to pair React with a routing
and/or modeling library.

 For example, a project that already uses Backbone.js and the Underscore.js tem­
plate engine can switch to Underscore for React and keep existing data models and
routing from Backbone. (Underscore also has utilities, not just template methods. You
can use these Underscore utilities with React as a solution for a clear declarative style.)
Other times, developers opt to use the React stack, which consists of data and routing
libraries created to be used specifically with React:

 Data-model libraries and back ends—RefluxJS (https://github.com/reflux/refluxjs),
Redux (http://redux.js.org), Meteor (https://www.meteor.com), and Flux
(https://github.com/facebook/flux)

 Routing library—React Router (https://github.com/reactjs/react-router)
 Collection of React components to consume the Twitter Bootstrap library—React-

Bootstrap (https://react-bootstrap.github.io)

The ecosystem of libraries for React is growing every day. Also, React’s ability to describe
composable components (self-contained chunks of the UI) is helpful in reusing code.
There are many components packaged as npm modules. Just to illustrate the point that
having small composable components is good for code reuse, here are some popular
React components:

 Datepicker component: https://github.com/Hacker0x01/react-datepicker
 Set of tools to handle form rendering and validation: https://github.com/

prometheusresearch/react-forms
 WAI-ARIA-compliant autocomplete (combo box) component: https://

github.com/reactjs/react-autocomplete

Then there’s JSX, which is probably the most frequent argument for not using React.
If you’re familiar with Angular, then you’ve already had to write a lot of JavaScript in
your template code. This is because in modern web development, plain HTML is too
static and is hardly any use by itself. My advice: give React the benefit of the doubt,
and give JSX a fair run.

JSX is a little syntax for writing React objects in JavaScript using <> as in
XML/HTML. React pairs nicely with JSX because developers can better implement and
read the code. Think of JSX as a mini-language that’s compiled into native JavaScript.
So, JSX isn’t run on the browser but is used as the source code for compilation. Here’s
a compact snippet written in JSX:

if (user.session)

return Logout

else

return Login

Even if you load a JSX file in your browser with the runtime transformer library that
compiles JSX into native JavaScript on the run, you still don’t run the JSX; you run

www.itbook.store/books/9781617293344

http://redux.js.org
https://github.com/reflux/refluxjs
https://www.meteor.com
https://github.com/facebook/flux
https://github.com/reactjs/react-router
https://react-bootstrap.github.io
https://github.com/Hacker0x01/react-datepicker
https://github.com/prometheusresearch/react-forms
https://github.com/prometheusresearch/react-forms
https://github.com/reactjs/react-autocomplete
https://github.com/reactjs/react-autocomplete
http:Underscore.js
http:Backbone.js
https://itbook.store/books/9781617293344

21 Your first React code: Hello World

JavaScript instead. In this sense, JSX is akin to CoffeeScript. You compile these lan­
guages into native JavaScript to get better syntax and features than that provided by
regular JavaScript.

 I know that to some of you, it looks bizarre to have XML interspersed with
JavaScript code. It took me a while to adjust, because I was expecting an avalanche of
syntax error messages. And yes, using JSX is optional. For these two reasons, I’m not
covering JSX until chapter 3; but trust me, it’s powerful once you get a handle on it.

 By now, you have an understanding of what React is, its stack, and its place in the
higher-level SPA. It’s time to get your hands dirty and write your first React code.

1.6 Your first React code: Hello World
Let’s explore your first React code—the quintessential example used for learning pro­
gramming languages—the Hello World application. (If we don’t do this, the gods of
programming might punish us!) You won’t be using JSX yet, just plain JavaScript. The
project will print a “Hello world!!!” heading (<h1>) on a web page. Figure 1.4 shows
how it will look when you’re finished (unless you’re not quite that enthusiastic and
prefer a single exclamation point).

Figure 1.4 Hello World

Learning React first without JSX
Although most React developers write in JSX, browsers will only run standard
JavaScript. That’s why it’s beneficial to be able to understand React code in pure
JavaScript. Another reason we’re starting with plain JS is to show that JSX is optional,
albeit the de facto standard language for React. Finally, preprocessing JSX requires
some tooling.

I want to get you started with React as soon as possible without spending too much
time on setup in this chapter. You’ll perform all the necessary setup for JSX in chapter 3.

The folder structure of the project is simple. It consists of two JavaScript files in the js
folder and one HTML file, index.html:

/hello-world

/js

react.js

react-dom.js

index.html

www.itbook.store/books/9781617293344

http:react-dom.js
http:react.js
https://itbook.store/books/9781617293344

22	 CHAPTER 1 Meeting React

The two files in the js folder are for the React library version 15.5.4:17 react-dom.js (web
browser DOM renderer) and react.js (React Core package). First, you need to download
the aforementioned React Core and ReactDOM libraries. There are many ways to do it.
I recommend using the files provided in the source code for this book, which you can
find at www.manning.com/books/react-quickly and https://github.com/azat-co/
react-quickly/tree/master/ch01/hello-world. This is the most reliable and easiest
approach, because it doesn’t require a dependency on any other service or tool. You
can find more ways to download React in appendix A.

WARNING Prior to version 0.14, these two libraries were bundled together.
For example, for version 0.13.3, all you needed was react.js. This book uses
React and React DOM version 15.5.4 (the latest as of this writing) unless
noted otherwise. For most of the projects in part 1, you’ll need two files:
react.js and react-com.js. In chapter 8, you’ll need prop-types
(www.npmjs.com/package/prop-types), which was part of React until ver­
sion 15.5.4 but is now a separate module.

After you place the React files in the js folder, create the index.html file in the hello-
world project folder. This HTML file will be the entry point of the Hello World applica­
tion (meaning you’ll need to open it in the browser).

 The code for index.html is simple and starts with the inclusion of the libraries in
<head>. In the <body> element, you create a <div> container with the ID content and
a <script> element (that’s where the app’s code will go later), as shown in the follow­
ing listing.

Listing 1.1 Loading React libraries and code (index.html)

<!DOCTYPE html> Imports the
<html> React library

<head>
Imports the<script src="js/react.js"></script>)

ReactDOM library <script src="js/react-dom.js"></script>

</head>

<body>

<div id="content"></div>
 Defines an empty <div>
<script type="text/javascript">
 element to mount the

...
 React UI
</script>

Starts the React code for</body>

the Hello World view </html>

Why not render the React element directly in the <body> element? Because doing so
can lead to conflict with other libraries and browser extensions that manipulate the

17	 v15.5.4 is the latest as of this writing. Typically, major releases like 14, 15, and 16 incorporate significant dif­
ferences, whereas minor releases like 15.5.3 and 15.5.4 have fewer breaking changes and conflicts. The code
for this book was tested for v15.5.4. The code may work with future versions, but I can’t guarantee that it will
work because no one knows what will be in the future versions—not even the core contributors.

www.itbook.store/books/9781617293344

https://github.com/azat-co/react-quickly/tree/master/ch01/hello-world
https://github.com/azat-co/react-quickly/tree/master/ch01/hello-world
https://www.manning.com/books/react-quickly
http://www.npmjs.com/package/prop-types
http:react-com.js
http:react.js
http:react.js
http:react.js
http:react-dom.js
https://itbook.store/books/9781617293344

23 Your first React code: Hello World

document body. In fact, if you try attaching an element directly to the body, you’ll get
this warning:

Rendering components directly into document.body is discouraged...

This is another good thing about React: it has great warning and error messages!

NOTE React warning and error messages aren’t part of the production build,
in order to reduce noise, increase security, and minimize the distribution size.
The production build is the minified file from the React Core library: for
example, react.min.js. The development version with the warnings and error
messages is the unminified version: for example, react.js.

By including the libraries in the HTML file, you get access to the React and ReactDOM
global objects: window.React and window.ReactDOM. You’ll need two methods from
those objects: one to create an element (React) and another to render it in the <div>
container (ReactDOM), as shown in listing 1.2.

 To create a React element, all you need to do is call React.createElement(element­
Name, data, child) with three arguments that have the following meanings:

 elementName—HTML as a string (for example, 'h1') or a custom component
class as an object (for example, HelloWorld; see section 2.2)

 data—Data in the form of attributes and properties (we’ll cover properties
later); for example, null or {name: 'Azat'}

 child—Child element or inner HTML/text content; for example, Hello world!

Listing 1.2 Creating and rendering an h1 element (index.html)

var h1 = React.createElement('h1', null, 'Hello world!') Creates and saves in a
ReactDOM.render(variable a React element

h1,
document.getElementById('content')

of h1 type

)

Renders the h1 element in the real
DOM element with ID "content"

This listing gets a React element of the h1 type and stores the reference to this
object into the h1 variable. The h1 variable isn’t an actual DOM node; rather, it’s an
instantiation of the React h1 component (element). You can name it any way you
want: helloWorldHeading, for example. In other words, React provides an abstrac­
tion over the DOM.

NOTE The h1 variable name is arbitrary. You can name this variable anything
you want (such as bananza), as long as you use the same variable in React­
DOM.render().

www.itbook.store/books/9781617293344

http:react.js
http:react.min.js
https://itbook.store/books/9781617293344

24 CHAPTER 1 Meeting React

Once the element is created and stored in h1, you render it to the DOM node/element
with ID content using the ReactDOM.render() method shown in listing 1.2. If you pre­
fer, you can move the h1 variable to the render call. The result is the same, except you
don’t use an extra variable:

ReactDOM.render(

React.createElement('h1', null, 'Hello world!'),

document.getElementById('content')

)

Now, open the index.html file served by a static HTTP web server in your favorite
browser. I recommend using an up-to-date version of Chrome, Safari, or Firefox. You
should see the “Hello world!” message on the web page, as shown in figure 1.5.

 This figure shows the Elements tab in Chrome DevTools with the <h1> element
selected. You can observe the data-reactroot attribute; it indicates that this element
was rendered by ReactDOM.

 One quick note: you can abstract the React code (listing 1.2) into a separate file
instead of creating elements and rendering them with ReactDOM.render() all in the
index.html file (listing 1.1). For example, you can create script.js and copy and paste
the h1 element and ReactDOM.render() call into that file. Then, in index.html, you
need to include script.js after the <div> with ID content, like this:

<div id="content"></div>

<script src="script.js"></script>

Figure 1.5 Inspecting the Hello World app as rendered by React

www.itbook.store/books/9781617293344

http:script.js
http:script.js
https://itbook.store/books/9781617293344

Summary	 25

Local dev web server
It’s better to use a local web server instead of opening an index.html file in the browser
directly, because with a web server, your JavaScript apps will be able to make AJAX/XHR
requests. You can tell whether it’s a server or a file by looking at the URL in the address
bar. If the address starts with file, then it’s a file; and if the address starts with http,
then it’s a server. You’ll need this feature for future projects. Typically, a local HTTP
web server listens to incoming requests on 127.0.0.1 or localhost.

You can get any open source web server, such as Apache, MAMP, or (my favorites
because they’re written in Node.js) node-static (https://github.com/cloud­
head/node-static) or http-server (www.npmjs.com/package/http-server). To install
node-static or http-server, you must have Node.js and npm installed. If you don’t have
them, you can find installation instructions for Node and npm in appendix A or by
going to http://nodejs.org.

Assuming you have Node.js and npm on your machine, run npm i -g node-static or
npm i -g http-server in your terminal or command prompt. Then, navigate to the
folder with the source code, and run static or http-server. In my case, I’m launching
static from the react-quickly folder, so I need to put the path to Hello World in my
browser URL bar: http://localhost:8080/ch01/hello-world/ (see figure 1.5).

Congratulations! You’ve just implemented your first React code!

1.7 Quiz
1	 The declarative style of programming doesn’t allow for mutation of stored val­

ues. It’s “this is what I want” versus the imperative style’s “this is how to do it.”
True or false?

2	 React components are rendered into the DOM with which of the following meth­
ods? (Beware, it’s a tricky question!) ReactDOM.renderComponent, React.render,
ReactDOM.append, or ReactDOM.render

3 You have to use Node.js on the server to be able to use React in your SPA. True
or false?

4 You must include react-com.js in order to render React elements on a web page.
True or false?

5 The problem React solves is that of updating views based on data changes. True
or false?

1.8 Summary
 React is declarative; it’s only a view or UI layer.
 React uses components that you bring into existence with ReactDOM.render().
 React component classes are created with class and its mandatory render()

method.
 React components are reusable and take immutable properties that are accessi­

ble via this.props.NAME.

www.itbook.store/books/9781617293344

https://github.com/cloudhead/node-static
https://github.com/cloudhead/node-static
http://www.npmjs.com/package/http-server
http://nodejs.org
http:react-com.js
http://localhost:8080/ch01/hello-world
https://itbook.store/books/9781617293344

26	 CHAPTER 1 Meeting React

 You use pure JavaScript to develop and compose UIs in React.
 You don’t need to use JSX (an XML-like syntax for React objects); JSX is optional

when developing with React!
 To summarize the definition of React: React for the web consists of the React

Core and ReactDOM libraries. React Core is a library geared toward building
and sharing composable UI components using JavaScript and (optionally) JSX
in an isomorphic/universal manner. On the other hand, to work with React in
the browser, you can use the ReactDOM library, which has methods for DOM
rendering as well as for server-side rendering.

1.9 Quiz answers

1 True. Declarative is a “what I want” style, and imperative is a “this is how to do it” style.

2 ReactDOM.render.

3 False. You can use any back-end technology.

4 True. You need the ReactDOM library.

5 True. This is the primary problem that React solves.

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

