
SAMPLE CHAPTER

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

React Quickly

by Azat Mardan

Chapter 12

Copyright 2017 Manning Publications

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

brief contents

PART 1 REACT FOUNDATION ...1

1 ■ Meeting React 3

2 ■ Baby steps with React 27

3 ■ Introduction to JSX 41

4 ■ Making React interactive with states 69

5 ■ React component lifecycle events 90

6 ■ Handling events in React 111

7 ■ Working with forms in React 140

8 ■ Scaling React components 164

9 ■ Project: Menu component 186

10 ■ Project: Tooltip component 201

11 ■ Project: Timer component 210

PART 2 REACT ARCHITECTURE ..225

12 ■ The Webpack build tool 227

13 ■ React routing 246

14 ■ Working with data using Redux 274

vii

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

viii	 BRIEF CONTENTS

15 ■	 Working with data using GraphQL 305

16 ■	 Unit testing React with Jest 325

17 ■	 React on Node and Universal JavaScript 345

18 ■	 Project: Building a bookstore with React Router 384

19 ■	 Project: Checking passwords with Jest 406

20 ■	 Project: Implementing autocomplete with Jest, Express,

and MongoDB 425

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

Part 2

React architecture

Welcome to part 2. Now that you know the most important concepts, fea­
tures, and patterns of React, you’re ready to embark on your own React journey.
Part 1 prepared you to build simple UI elements; and the bottom line is, if you’re
building web UIs, core React is sufficient. But to build full-blown, front-end apps,
React developers rely on open source modules written by the React community.
Most of these modules are hosted on GitHub and npm, so they’re within easy
reach—you can grab them and go.

 These chapters cover the most-popular, most-used, mature libraries that,
together with core React, form the React stack (or React and friends, as some devel­
opers jokingly call this ensemble). To get started, in chapters 12–17, you’ll learn
about using Webpack for asset pipelines, React Router for URL routing, Redux
and GraphQL for data flow, Jest for testing, and Express and Node for Universal
React. Then, as in part 1, chapters 18–20 present real-world projects.

 This may seem like a lot, but my experience with reading and writing books
has shown me that baby steps and textbook examples don’t provide good value
for readers and don’t show how things work in real life. So, in this part of the
book, you’ll both learn about and work with the React stack. Interesting, com­
plex projects await you. When you’ve finished, you’ll be knowledgeable about
data flow, skilled in setting up the monstrosity called Webpack, and able to talk
like a know-it-all at local meetups.

 Read on.

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

Watch this chapter’s introduction video by
scanning this QR code with your phone or going
to http://reactquickly.co/videos/ch12.

 The Webpack build tool

This chapter covers
 Adding Webpack to a project

 Modularizing your code

 Running Webpack and testing the build

 Performing hot module replacement

Before we go any further with the React stack (a.k.a. React and friends), let’s look
at a tool that’s essential to most modern web development: a build tool (or bun­
dler). You’ll use this tool in subsequent chapters to bundle your many code files
into the minimum number of files needed to run your applications and prepare
them for easy deployment. The build tool you’ll be using is Webpack
(https://webpack.js.org).

 If you’ve not come across a build tool before, or if you’ve used another one such
as Grunt, Gulp, or Bower, this chapter is for you. You’ll learn how to set up Web-
pack, configure it, and get it running against a project.

 This chapter also covers hot module replacement (HMR), a feature of Webpack
that enables you to hot-swap updated modules for those running on a live server.
First, though, we’ll look at what Webpack can do for you.

227

www.itbook.store/books/9781617293344

https://webpack.js.org
http://reactquickly.co/videos/ch12
https://itbook.store/books/9781617293344

228	 CHAPTER 12 The Webpack build tool

NOTE Code generators such as create-react-app (https://github.com/
facebookincubator/create-react-app) create boilerplate/scaffolding code and
help you start projects quickly. create-react-app also uses Webpack and
Babel, along with other modules. But this book primarily teaches fundamen­
tals, so you won’t use a code generator; instead, you’ll do the setup yourself to
make sure you understand each part. If you’re interested, you can learn how
to use a code generator for yourself—it just takes a few commands.

NOTE The source code for the examples in this chapter is at www.manning
.com/books/react-quickly and https://github.com/azat-co/react-quickly/
tree/master/ch12 (in the ch12 folder of the GitHub repository https://
github.com/azat-co/react-quickly). You can also find some demos at http://
reactquickly.co/demos.

12.1 What does Webpack do?
Have you ever wondered why (in web development) everyone and their mother are
talking about Webpack? Webpack’s core focus is optimizing the JavaScript you write so
that it’s contained in as few files as possible for a client to request. This reduces the
strain on the servers for popular sites and also reduces the client’s page-load time. Of
course, it’s not as simple as that. JavaScript is often written in modules that are easy to
reuse. But they often depend on other modules that may depend on other modules,
and so on; and keeping track of what needs to be loaded when so that all the depen­
dencies resolve quickly can be a headache.

 Let’s say you have a utility module myUtil, and you use it in many React compo­
nents—accounts.jsx, transactions.jsx, and so on. Without a tool like Webpack, you’d
have to manually keep track of the fact that each time you use one of those compo­
nents, you need to include myUtil as a dependency. Additionally, you might be load­
ing myUtil unnecessarily for a second or third time, because another component that
depends on myUtil has already loaded it. Of course, this is a simplified example; real
projects have dozens or even hundreds of dependencies that are used in other depen­
dencies. Webpack can help.

 Webpack knows how to deal with all three types of JavaScript module—CommonJS
(www.commonjs.org), AMD (https://github.com/amdjs/amdjs-api/wiki/AMD), and
ES6 (http://mng.bz/VjyO)—so you don’t need to worry if you’re working with a
hodgepodge of module types. Webpack will analyze the dependencies for all the
JavaScript in your project and do the following:

 Ensure that all dependencies are loaded in the correct order
 Ensure that all dependencies are loaded only once
 Ensure that your JavaScript is bundled into as few files as possible (called static

assets)

www.itbook.store/books/9781617293344

https://github.com/facebookincubator/create-react-app
https://github.com/facebookincubator/create-react-app
http://www.manning.com/books/react-quickly
http://www.manning.com/books/react-quickly
https://github.com/azat-co/react-quickly/tree/master/ch12
https://github.com/azat-co/react-quickly/tree/master/ch12
https://github.com/azat-co/react-quickly
https://github.com/azat-co/react-quickly
http://reactquickly.co/demos
http://reactquickly.co/demos
http://mng.bz/VjyO
http://www.commonjs.org
https://github.com/amdjs/amdjs-api/wiki/AMD
https://itbook.store/books/9781617293344

229 Adding Webpack to a project

Webpack also supports code splitting and asset hashing, which let you identify blocks of
code that are required only under certain circumstances. These blocks are split out to
be loaded on demand rather than bundled in with everything else. You must opt in to
use these features and further optimize your JavaScript and its deployment.

NOTE Code splitting and asset hashing are outside the scope of this book.
Check out the Webpack website for more information: https://webpack
.github.io/docs/code-splitting.html.

Webpack isn’t just about JavaScript, though. It supports the preprocessing of other
static files through the use of loaders. For example, you can do the following before
any bundling takes place:

 Precompile your JSX, Jade, or CoffeeScript files into plain JavaScript
 Precompile ES6+ code into ES5 for browsers that don’t yet support ES6

 Precompile Sass and Compass files into CSS

 Optimize sprites into a single PNG or JPG file or inline data assets

Many loaders are available for all sorts of file types. In addition, plug-ins that modify
Webpack’s behavior are catalogued on the Webpack homepage. If you can’t find what
you’re looking for, there’s documentation about how to write your own plug-in.

 For the rest of this book, you’ll be using Webpack to do the following:

 Manage and bundle dependencies from npm modules, so you don’t have to
manually download files from the internet, and include them with <script>
tags in HTML

 Transpile JSX into regular JavaScript while providing source maps for easier
debugging

 Manage styles
 Perform hot module reloading
 Build a development web server

As you’ll see, you can configure the order in which Webpack loads, precompiles, and
bundles your files using its webpack.config.js file. But first, let’s look at how to install
Webpack and get it working with a project.

12.2 Adding Webpack to a project
To illustrate how you can get starting working with Webpack, let’s slightly modify the
project from chapter 7 shown in figure 12.1. It has email and comment input fields,
two style sheets, and one Content component.

www.itbook.store/books/9781617293344

https://webpack.github.io/docs/code-splitting.html
https://webpack.github.io/docs/code-splitting.html
http:webpack.config.js
https://itbook.store/books/9781617293344

230 CHAPTER 12 The Webpack build tool

Figure 12.1 Original email project before using Webpack

Here’s the new project structure. I’ve pointed out where it differs from the project in
chapter 7:

/email-webpack

/css

All the
scripts

bootstrap.css
main.css

/js
bundle.js

Doesn’t contain react.js
or react-dom.js files

bundle.map.js
/jsx

Mapping of line
numbers for DevTools

ReactDOM.render app.jsx

statement content.jsx

Babel configs and
other project info

/node_modules
index.html
package.json
webpack.config.js
webpack.dev-cli.config.js

Dependencies to compile
(Webpack, Babel, and so on)

Webpack configs
webpack.dev.config.js

Contrast that with the non-Webpack setup from chapter 7:

/email

/css

bootstrap.css

Compiled script with/js
 the main component
content.js

react.js

react-dom.js

script.js

/jsx

ReactDOM.render()content.jsx
 statement is in JSX

script.jsx

index.html

www.itbook.store/books/9781617293344

http:script.js
http:react-dom.js
http:react.js
http:content.js
https://itbook.store/books/9781617293344

231 Adding Webpack to a project

NOTE Do you have Node.js and npm? This is the best time to install them—
you’ll need them, in order to proceed. Appendix A covers installation.

This section walks you through the following steps:

1 Installing webpack

2 Installing dependencies and saving them to package.json

3 Configuring Webpack’s webpack.config.js

4 Configuring the dev server and hot module replacement

Let’s get started.

12.2.1 Installing Webpack and its dependencies

To use Webpack, you’ll need a few additional dependencies, as noted in package.json:

 Webpack—The bundler tool (npm name: webpack); use v2.4.1
 Loaders—Style, CSS, hot module replacement (HMR), and Babel/JSX preproces­

sors (npm names: style-loader, css-loader, react-hot-loader and babel-
loader, babel-core, and babel-preset-react); use the versions specified in
package.json

 The webpack-dev-server—An Express development server that lets you use HMR
(npm name: webpack-dev-server); use v2.4.2

You can install each module manually, but I recommend copying the package.json file
shown in listing 12.1 (ch12/email-webpack/package.json) from the GitHub reposi­
tory to your project root (see the project structure shown in section 12.2). Then, run
npm i or npm install from the project root (where you have package.json) to install
the dependencies. This will ensure that you don’t forget any of the 10 modules (a syn­
onym for package in Node). It also ensures that your versions are close to the ones I
used. Using wildly different versions is a fantastic way to break the app!

Listing 12.1 Setting up the dev environment

{

"name": "email-webpack",

"version": "1.0.0",

"description": "",

"main": "index.js",

"scripts": {

"build": "./node_modules/.bin/webpack -w"

Saves the Webpack
build script as an npm
script for convenience

"wds-cli": "./node_modules/.bin/webpack-dev-server --inline --hot

➥ --module-bind 'css=style-loader!css-loader'

➥ --module-bind 'jsx=react-hot-loader!babel-loader'

➥ --config webpack.dev-cli.config.js",

"wds": "./node_modules/.bin/webpack-dev-server --config

➥ webpack.dev.config.js"
},
"author": "Azat Mardan",
"license": "MIT",

www.itbook.store/books/9781617293344

http:webpack.dev.config.js
http:webpack.dev-cli.config.js
http:index.js
http:webpack.config.js
https://itbook.store/books/9781617293344

232 CHAPTER 12 The Webpack build tool

Installs the
React HMR

loader

Installs
 Webpack locally
(recommended)

"babel": {

"presets": [

"react"

]

},

"devDependencies": {

"babel-core": "6.13.2",

"babel-loader": "6.4.1",

"babel-preset-react": "6.5.0",

"css-loader": "0.23.1",

"react": "15.5.4",

"react-dom": "15.5.4",

"react-hot-loader": "1.3.1",

"style-loader": "0.13.1",

"webpack": "2.4.1",

"webpack-dev-server": "2.4.2"

},

}

Tells Babel what presets to
use (React for JSX in this
case; ES6+ is optional)

Installs the Babel
loader to process JSX

Installs the CSS loader to require
CSS from JavaScript, and then
installs the Style loader to inject
CSS into a web page

Installs webpack-dev-server
locally (recommended)

The babel property in package.json should be familiar to you from part 1 of this
book, so I won’t spend time repeating myself. As a reminder, you need this property to
configure Babel to convert JSX to JS. If you need to support browsers that can’t work
with ES6, you can add the es2015 preset to presets:

"babel": {

"presets": [

"react",

"es2015"

]

},

Also add babel-preset-es2015 to devDependencies:

"devDependencies": {

"babel-preset-es2015": "6.18.0",

...

}

In addition to new dependencies, there are new npm scripts. The commands in
scripts in package.json are optional but highly recommended, because using npm
scripts for launching and building is a best practice when working with React and
Node. Of course, you can run all the builds manually without using npm scripts, but
why type extra characters?

 You can either run Webpack with npm run build or run it directly with
./node_modules/.bin/webpack -w. The -w flag means watch—that is, continue to
monitor for any source code changes, and rebuild bundles if there are any. In other
words, Webpack will keep running to automatically make changes. Of course, you
must have all the necessary modules installed with npm i.

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

233 Adding Webpack to a project

 The webpack -w command looks for webpack.config.js by default. You can’t run
Webpack with this configuration file. Let’s create it next.

NOTE The wds and wds-cli npm scripts in package.json are explained in sec­
tion 12.5.

12.2.2 Configuring Webpack

Webpack needs to know what to process (the source code) and how to do it (with the
loaders). That’s why there’s webpack.config.js in the root of the project structure. In a
nutshell, in this project, you’re using Webpack to do the following:

 Transform your JSX files into JS files: babel-loader, babel-core, and babel­
preset-react

 Load CSS via require and resolve url and imports in the process with css­
loader (https://github.com/webpack/css-loader)

 Add CSS by injecting the <style> element with style-loader

(https://github.com/webpack/style-loader)
 Bundle all the resulting JS files into one file called bundle.js
 Provide the proper source code–line mapping in DevTools via source maps

Webpack needs its own configuration file: email-webpack/webpack.config.js.

Listing 12.2 Webpack configuration file

Defines the file to start

Defines a
path for the

bundled files

module.exports = {
entry: './jsx/app.jsx',
output: {

path: __dirname + '/js/',

bundling (typically, the main
file that loads other files)

Specifies that
you need proper

mapping of
compiled source
code lines to the
JSX source code

lines. This is
useful for

debugging and
appears in
DevTools.

filename: 'bundle.js'
 Defines a filename for
},
 the bundled file you’ll
devtool: '#sourcemap',
 be using in index.html
module: {

loaders: [

{ test: /\.css$/, loader: 'style-loader!css-loader' },

{

Specifies the loader totest: /\.jsx?$/,

import, and then injects

exclude: /(node_modules)/,
 CSS into the web page
loaders: ['babel-loader']
 from JavaScript

}

] Specifies the loader that will

} perform the JSX transformation

(and ES6+ if needed)
}

The devtool property is useful during development because it provides source maps
that show you the line numbers in source—not compiled—code. You’re now ready to
run Webpack for this project and also bootstrap any Webpack-based projects in the
future.

www.itbook.store/books/9781617293344

https://github.com/webpack/css-loader
https://github.com/webpack/style-loader
http:bundle.js
http:email-webpack/webpack.config.js
http:bundle.js
http:webpack.config.js
http:webpack.config.js
https://itbook.store/books/9781617293344

234 CHAPTER 12 The Webpack build tool

Configuration files
If you wish, you can have more than one configuration file. These files can come in
handy for development, production, testing, and other builds. In the example’s proj­
ect structure, I created these files:

webpack.dev-cli.config.js

webpack.dev.config.js

Naming doesn’t matter as long as you and your teammates can understand the
meaning of each file. The name is passed to Webpack with --config. You’ll learn
more about these configuration files in section 12.4.

Webpack has a lot of features, and we’ve only covered the basics; but they’re enough
to compile JSX, provide source maps, inject and import CSS, and bundle JavaScript.
When you need more Webpack functionality, you can consult the documentation or a
book like SurviveJS by Juho Vepsäläinen (https://survivejs.com).

 Now you’re ready to use some of Webpack’s power in JSX.

12.3 Modularizing your code
As you’ll recall, in chapter 7, the email app used global objects and <script>. That’s
fine for this book or a small app. But in large apps, using globals is frowned on
because you may run into trouble with name collisions or managing multiple
<script> tags with duplicate inclusions. You can let Webpack do all the dependency
management by using CommonJS syntax. Webpack will include only needed
dependencies and package them into a single bundle.js file (based on the configs in
webpack.config.js).

 Organizing your code by modularizing it is a best practice not only for React but
also for software engineering in general. You can use Browserify, SystemJS, or another
bundler/module loader and still use CommonJS/Node.js syntax (require and
module.exports). Thus, the code in this section is transferable to other systems, once
you refactor it away from primitive globals.

 As of this writing, import (http://mng.bz/VjyO) is supported by only one
browser—Edge—and isn’t supported by Node.js. ES6 modules with import syntax will
need more work in the Webpack setup. It isn’t an exact replacement for CommonJS
require/module.exports syntax, because those commands work differently. For this
reason, the following listing (ch12/email-webpack/app.jsx) refactors app.jsx to use
require() and module.exports instead of global objects and HTML <script>. Due to
the use of style-loader, you can require CSS files as well. And because of the Babel
loader, you can require JSX files.

www.itbook.store/books/9781617293344

http://mng.bz/VjyO
https://survivejs.com
http:CommonJS/Node.js
http:webpack.config.js
http:bundle.js
http:webpack.dev.config.js
http:webpack.dev-cli.config.js
https://itbook.store/books/9781617293344

235 Modularizing your code

Listing 12.3 Refactoring app.jsx

Imports CSS, which, thanks to the
style and css loaders, will be imported
and injected into the web page

require('../css/main.css')

Imports React for <> syntax:
React.createElement()const React = require('react')

const ReactDOM = require ('react-dom')

const Content = require('./content.jsx')
 Imports Content

ReactDOM.render(

<Content />,

document.getElementById('content')

)

In contrast, ch07/email/jsx/script.jsx looks like this:

ReactDOM.render(

<Content />,

document.getElementById('content')

)

The old file is smaller, but this is one of the rare cases in which less isn’t more. It relies
on the global Content, ReactDOM, and React objects, which, as I just explained, is a
bad practice.

 In content.jsx, you can use require() in a similar way. The code for construc­
tor(), submit(), and render() doesn’t change:

Imports Reactconst React = require('react')

const ReactDOM = require('react-dom')

Imports ReactDOM
class Content extends React.Component {

constructor(props) {

// ...

}

submit(event) {

// ...

}

render() {

// ...

}

}

Exports Contentmodule.exports = Content

The index.html file needs to point to the bundle that Webpack creates for you: the
js/bundle.js file. Its name is specified in webpack.config.js, and now you need to add
it. It will be created after you run npm run build. Here’s the new index.html code:

www.itbook.store/books/9781617293344

http:webpack.config.js
http:js/bundle.js
https://itbook.store/books/9781617293344

236 CHAPTER 12 The Webpack build tool

<!DOCTYPE html>

<html>

<head>

<link href="css/bootstrap.css" type="text/css" rel="stylesheet"/>

</head>

<body>

<div id="content" class="container"></div>

<script src="js/bundle.js"></script>

</body>

</html>

Note that you also remove the reference to the stylesheet main.css from index.html.
Webpack will inject a <style> element with a reference to main.css into index.html
for you, because of require('main.css') in app.jsx. You can use require() for boot­
strap.css as well.

 That’s the last step in refactoring your project.

12.4 Running Webpack and testing the build
This is the moment of truth. Run $ npm run build, and compare your output with the
following:

> email-webpack@1.0.0 build

➥ /Users/azat/Documents/Code/react-quickly/ch12/email-webpack

> webpack -w

Hash: 2ffe09fff88a4467788a

Version: webpack 1.12.9

Time: 2545ms

Asset Size Chunks Chunk Names

bundle.js 752 kB 0 [emitted] main

bundle.js.map 879 kB 0 [emitted] main

+ 177 hidden modules

If there are no errors and you can see newly created bundle.js and bundle.js.map files
in the js folder, bingo! Now spin up your favorite web server (perhaps node-static or
http-server), and check the web app. You’ll see that it’s logging emails and comments
in the console.

 As you can see, incorporating Webpack into a project is straightforward and yields
great results.

177 hidden modules—or, the Webpack bundle under the hood
There are 177 modules in ch12/email-webpack/js/bundle.js! You can open the file
and search for webpack_require(1), webpack_require(2), and so on, through
webpack_require(176), which is the Content component. The followed compiled
code from app.jsx imports Content (lines 49–53 in bundle.js):

www.itbook.store/books/9781617293344

http:bundle.js
http:ch12/email-webpack/js/bundle.js
http:bundle.js
http:bundle.js
mailto:email-webpack@1.0.0
https://itbook.store/books/9781617293344

237 Running Webpack and testing the build

(continued)

const React = __webpack_require__(5);

const ReactDOM = __webpack_require__(38);

const Content = __webpack_require__(176);

ReactDOM.render(React.createElement(Content, null),

➥ document.getElementById('content'));

At a bare minimum, you’re ready to use Webpack for the rest of this book. But I
strongly recommend that you set up one more thing: hot module replacement
(HMR), which can speed up development dramatically. Before we proceed with React
development, let’s look at this great Webpack feature.

ESLint and Flow
I want to mention two other useful development tools. Obviously, they’re optional, but
they’re a pretty big deal.

ESLint (http://eslint.org, npm name eslint) can take predefined rules or sets of
rules and make sure your code (JS or JSX) adheres to the same standards. For exam­
ple, how many spaces is an indent—four or two? Or, what if you accidentally put a
semicolon in your code? (Semicolons are optional in JavaScript, and I prefer not to
use them.) ESLint will even give you a warning about unused variables. It can prevent
bugs from sneaking into your code! (Not all of them, of course.)

Check out “Getting Started with ESLint” (http://eslint.org/docs/user-guide/getting­
started). You’ll also need eslint-plugin-react (https://github.com/yannickcr/
eslint-plugin-react). Make sure you add the React rules to .eslintrc.json (the full code
is in the ch12/email-webpack-eslint-flow folder):

"rules": {

"react/jsx-uses-react": "error",

"react/jsx-uses-vars": "error",

}

Here’s an example of some warnings from running ESLint React on ch12/email-web­
pack-lint-flow/jsx/content.jsx:

/Users/azat/Documents/Code/react-quickly/ch12/

➥ email-webpack-lint-flow/jsx/content.jsx
9:10 error 'event' is defined but never used no-unused-vars

12:5
12:17
13:5
13:17

error
error
error
error

Unexpected console statement
Do not use findDOMNode
Unexpected console statement
Do not use findDOMNode

no-console
react/no-find-dom-node
no-console
react/no-find-dom-node

www.itbook.store/books/9781617293344

http://eslint.org
http://eslint.org/docs/user-guide/getting-started
http://eslint.org/docs/user-guide/getting-started
https://github.com/yannickcr/eslint-plugin-react
https://github.com/yannickcr/eslint-plugin-react
https://itbook.store/books/9781617293344

238 CHAPTER 12 The Webpack build tool

(continued)
Next, Flow (https://flowtype.org, npm name flow-bin) is a static type-checking tool
you can use to add a special comment (// @flow) to your scripts and types. Yes!
Types in JavaScript! Rejoice, if you’re a software engineer with a preference for
strongly typed languages like Java, Python, and C. Once you’ve added the comment,
you can run a Flow check to see whether there are any issues. Again, this tool can
prevent some pesky bugs:

// @flow

var bookName: string = 13

console.log(bookName) // number. This type is incompatible with string

Flow has extensive documentation: see “Getting started with Flow” (https://flowtype
.org/docs/getting-started.html) and “Flow for React” (https://flowtype.org/docs/
react.html).

You can configure Atom or any other modern code editor to work with ESLint and Flow
to catch problems on the fly.

The Atom code editor supports Flow, which shows issues in the bottom pane and marks on the
code line during development.

You can find the email project code with ESLint v3.8.1 and Flow v0.33.0 in the
ch12/email-webpack-eslint-flow folder.

www.itbook.store/books/9781617293344

https://flowtype.org
https://flowtype.org/docs/getting-started.html
https://flowtype.org/docs/getting-started.html
https://flowtype.org/docs/react.html
https://flowtype.org/docs/react.html
https://itbook.store/books/9781617293344

239 Hot module replacement

12.5 Hot module replacement
Hot module replacement (HMR) is one of the coolest features of Webpack and React.
It lets you write code and test it more quickly by updating the browser with changes
while preserving the app’s state.

 Say you’re working on a complex single-page web application, and getting to the
current page you’re working on takes 12 clicks. If you upload new code to the site,
then to get it running, you have to click Reload/Refresh in your browser and repeat
those 12 clicks. If you’re using HMR, on the other hand, there are no page reloads,
and your changes are reflected on the page.

HMR’s primary benefit is that you can iterate (write, test, write, test, and so on)
more quickly, because your app will save state when you make changes. Some develop­
ers consider HMR so groundbreaking that if React didn’t have any other features, they
would still use it just for HMR!

 For the nitty-gritty details of how the HMR process works, see the documentation at
http://mng.bz/L9d5. This section covers the practical application of this technology
as it pertains to the example email form.

 The process of hot-updating code requires multiple steps, shown in a simplified
form in figure 12.2. Webpack HMR and the dev server use WebSockets to monitor
update notifications from the server. If there are any, the front end gets chunks
(JavaScript code) and an update manifest (JSON), which are basically the delta of the
changes. The front-end app preserves its state (such as data in an input field or a
screen position), but the UI and code change. Magic.

 To see HMR in an example, you’ll use a new configuration file and webpack-dev-server
(WDS). It’s possible to use HMR with your own server, built with Express/Node; WDS is

6. Developer changes source code

Webpack
dev server

1. App source code to
 Webpack dev server

2. Compiled code for app

7. Updated source
 code to server

3. WebSockets monitors server for updates

8. Update: chunks (JS) and update manifest
 (JSON); state changes preserved

4. App running
 (in browser)

5. Developer works in
 app (state changes)

Source
code

Figure 12.2 Webpack listens for code changes and sends update notifications along with updates to the running
app in the browser.

www.itbook.store/books/9781617293344

http://mng.bz/L9d5
https://itbook.store/books/9781617293344

240 CHAPTER 12 The Webpack build tool

optional, but it’s provided by Webpack as a separate webpack-dev-server module, so I’ll
cover it here.

 Once everything is configured, you’ll enter an email in the form and make a few
changes in the code. Thanks to HMR, you’ll see that the entered email remains on the
form and your changes are propagated to the web app.

12.5.1 Configuring HMR

First, duplicate webpack.config.js by creating a copy named webpack.dev.config.js:

$ cp webpack.config.js webpack.dev.config.js

Next, open the newly created webpack.dev.config.js file. You need to add a few things
such as new entry points, a public path, and the HMR plug-in, and set the dev-server
flag to true. The following listing shows the final file (ch12/email-webpack/
webpack.dev.config.js).

Listing 12.4 webpack-dev-server and HMR configuration

const webpack = require('webpack')
 Imports the
webpack module

module.exports = {

entry: [

'webpack-dev-server/client/?http://localhost:8080',
 Includes WDS
'./jsx/app.jsx'

Includes the main app],

output: {

publicPath: 'js/',
 Sets the path for WDS to
path: __dirname + '/js/',
 make bundle.js available
filename: 'bundle.js'
 (it won’t write to disk)

},

devtool: '#sourcemap',

module: {

loaders: [

{ test: /\.css$/, loader: 'style-loader!css-loader' },

{

test: /\.jsx?$/,

exclude: /(node_modules)/,

loaders: ['react-hot-loader', 'babel-loader']
 Includes react-hot-loader

}
 to automatically enable
]
 HMR on all JSX files

},
 Sets WDS to
devServer: {
 HMR mode
hot: true

Includes the},

HMR plug-in plugins: [new webpack.HotModuleReplacementPlugin()]

}

You need to tell WDS to use this new configuration file by providing the --config
option:

www.itbook.store/books/9781617293344

http:bundle.js
http:bundle.js
http:webpack.dev.config.js
http:webpack.dev.config.js
http:webpack.dev.config.js
http:webpack.config.js
http:webpack.dev.config.js
http:webpack.config.js
https://itbook.store/books/9781617293344

241 Hot module replacement

./node_modules/.bin/webpack-dev-server --config webpack.dev.config.js

Save this in package.json for convenience, if you don’t have it there already. As you’ll
recall, react-hot-loader is in the dependencies. This module enables HMR for all
JSX files (which are in turn converted to JS).

 I prefer to enable HMR for all files with react-hot-loader. But if you want to have
HMR only for certain modules, not all of them, don’t use react-hot-loader; instead,
opt in manually by adding the module.hot.accept() statement to the JSX/JS modules
you want to cherry-pick for HMR. This module.hot magic comes from Webpack. It’s
recommended that you check whether module.hot is available:

if(module.hot) {

module.hot.accept()

}

That’s a lot of configurations! But there’s another way to use and configure Webpack:
you can use command-line options and pack some configs in the commands.

 If you prefer to use the command line, be my guest. Your config file will be smaller,
but the commands will be bigger. For example, this webpack.dev-cli.config.js file has
fewer configs:

module.exports = {

entry: './jsx/app.jsx',

output: {

publicPath: 'js/',

path: __dirname + '/js/',

filename: 'bundle.js'

},

devtool: '#sourcemap',

module: {

loaders: [

{

test: /\.jsx?$/,

exclude: /(node_modules)/,

loaders: []

}

]

}

}

But it uses more CLI options:

./node_modules/.bin/webpack-dev-server --inline --hot

➥ --module-bind 'css=style-loader!css-loader'
➥ --module-bind 'jsx=react-hot-loader!babel-loader'
➥ --config webpack.dev-cli.config.js

www.itbook.store/books/9781617293344

http:webpack.dev-cli.config.js
http:bundle.js
http:webpack.dev-cli.config.js
http:webpack.dev.config.js
https://itbook.store/books/9781617293344

242 CHAPTER 12 The Webpack build tool

Several things are happening here. First, --inline and --hot include the entries
enabling WDS and HMR mode. Then, you pass your loaders with --module-bind using
the following syntax:

fileExtension=loader1!loader2!...

Make sure react-hot is before babel; otherwise, you’ll get an error.
 When it comes to using the CLI or a full config file, the choice is yours. I find the

CLI approach better for simpler builds. To avoid crying later when you discover that
you mistyped this monstrosity of a command, you should save the command as an
npm script in package.json. And no, batch/shell scripts/Make scripts aren’t cool any­
more. Use npm scripts, like all the cool kids do! (Disclaimer: This is a joke. I’m not
advocating fashion-driven development.)

npm scripts
npm scripts offer certain advantages, and they’re commonly used in Node and React
projects. They’ve become a de facto standard, and you’ll generally find them when
you first learn about a project. When I start working on a new project or library, the
npm scripts are the first place I look, after readme.md—and sometimes instead of
readme.md, which may be out of date.

npm scripts offer a flexible way to save essential scripts for testing, building, seeding
with data, and running in development or other environments. In other words, any
work that’s performed via the CLI and related to the app but that isn’t the app itself
can be saved to npm scripts. They function as documentation, as well, to show
others how building and testing work. You can call other npm scripts from npm
scripts, thus simplifying your project further. The following example includes different
versions of builds:

"scripts": {

"test": "echo \"Error: no test specified\" && exit 1",

"build": "./node_modules/.bin/babel -w",

"build:method": " npm run build -- method/jsx/script.jsx -o

➥ method/js/script.js",

"build:hello-js-world-jsx": "npm run build -­

➥ hello-js-world-jsx/jsx/script.jsx -o
➥ hello-js-world-jsx/js/script.js",

"build:hello-world-jsx": "npm run build -­

➥ hello-world-jsx/jsx/script.jsx -o
➥ hello-world-jsx/js/script.js",

"build:hello-world-class-jsx": "npm run build -­

➥ hello-world-class-jsx/jsx/script.jsx -o
➥ hello-world-class-jsx/js/script.js"

},

www.itbook.store/books/9781617293344

http:hello-world-class-jsx/js/script.js
http:hello-world-jsx/js/script.js
http:hello-js-world-jsx/js/script.js
http:method/js/script.js
http:readme.md
https://itbook.store/books/9781617293344

243 Hot module replacement

(continued)
npm scripts also support pre and post hooks, which makes them even more versa­
tile. In general, a hook is a pattern in which some code is triggered when another
event happens. For example, you can create a learn-react task along with two
tasks that have pre and post hooks: prelearn-react and postlearn-react. As
you may guess, the pre hook will be executed before learn-react, and the post
hook will be executed after learn-react. For example, these bash scripts

"scripts": {

"prelearn-react": "echo \"Purchasing React Quickly\"",

"learn-react": "echo \"Reading React Quickly\" ",

"postlearn-react": "echo \"Creating my own React app\""

},

print the following output, based on the pre / post order:

...

Purchasing React Quickly

...

Reading React Quickly

...

Creating my own React app

With pre and post hooks, npm can easily replace some build steps performed by
Webpack, Gulp, or Grunt.

See the documentation at https://docs.npmjs.com/misc/scripts and Keith Cirkel’s
article “How to Use npm as a Build Tool” (www.keithcirkel.co.uk/how-to-use-npm-as­
a-build-tool) for more npm tips, including parameters and arguments. Any functionality
that’s missing with npm scripts can be implemented from scratch as a Node script.
The advantage is that you’ll have fewer dependencies on plug-ins for your project.

12.5.2 Hot module replacement in action

Go ahead and start WDS with npm run wds or npm run wds-cli. Then, go to
http://localhost:8080 and open the DevTools console. You’ll see messages from HMR
and WDS, as follows:

[HMR] Waiting for update signal from WDS...

[WDS] Hot Module Replacement enabled.

Enter some text in the email or comment field, and then change content.jsx. You can
modify something in render()—for example, change the form text from Email to
Your Email:

Your Email: <input ref="emailAddress" className="form-control" type="text"

➥ placeholder="hi@azat.co"/>

www.itbook.store/books/9781617293344

https://docs.npmjs.com/misc/scripts
www.keithcirkel.co.uk/how-to-use-npm-as-a-build-tool
www.keithcirkel.co.uk/how-to-use-npm-as-a-build-tool
mailto:placeholder="hi@azat.co
http://localhost:8080
https://itbook.store/books/9781617293344

244 CHAPTER 12 The Webpack build tool

You’ll see some logging:

[WDS] App updated. Recompiling...

...

[HMR] App is up to date.

Then your changes will appear on the web page, as shown in figure 12.3, along with the
text you entered previously. Great—you no longer need to waste time entering test data
or navigating deep inside nested UIs! You can spend more time doing important things
instead of typing and clicking around the front-end app. Development is faster with HMR!

NOTE HMR isn’t bulletproof. It won’t update or fail in some situations. WDS
will reload the page (live reload) when that happens. This behavior is con­
trolled by webpack/hot/dev-server; another option is to reload manually
using webpack/hot/only-dev-server.

Webpack is a nice tool to use with React to streamline and enhance your bundling. It’s
great not only for optimizing code, images, styles, and other assets when you deploy,
but also for development, thanks to WDS and HMR.

Figure 12.3 HMR updated the view from “Email” to “Your Email” without erasing
the data in the fields, as shown in the log.

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

Quiz answers	 245

12.6 Quiz
1	 What is the command to run the dev npm script ("dev": "./node_modules/

.bin/webpack-dev-server --config webpack.dev.config.js”)? npm dev, npm
run dev, NODE_ENV=dev npm run, or npm run development

2 HMR is just a React term for live reloading. True or false?

3 WDS will write compiled files to disk, just like the webpack command. True or

false?
4 webpack.config.js must be a valid JSON file, just like package.json. True or false?
5 What loaders do you need to use in order to import and then inject CSS into a

web page using Webpack?

12.7 Summary
 To make hot module replacement work, you need webpack-dev-server and

react-hot-loader in your config or module.hot.accept() in files.
 You can use require() to load CSS with style-loader and css-loader.
 The --inline --hot options with CLI commands launch WDS in hot inline

mode.
 devtool: '#sourcemap' enables proper line numbers for compiled code.
 publicPath is a WDS setting that tells WDS where to put the bundle.

12.8 Quiz answers

1	 npm run dev. Only start and test npm scripts can be run without run. All other
scripts follow npm run NAME syntax.

2	 False. HMR can replace live reloading and fall back to it when HMR fails; but HMR
is more advanced and offers more benefits, such as updating only parts of your
app and preserving the app’s state.

3	 False. WDS only serves files without writing them to disk.
4	 False. webpack.config.js is a default Webpack configuration file. It must be a

Node.js/JavaScript file with the CommonJS/Node.js module exporting the object
literal for configurations (the object can have double quotes, akin to JSON).

5	 The style loader imports, and the CSS loader injects.

www.itbook.store/books/9781617293344

http:CommonJS/Node.js
http:webpack.config.js
http:webpack.config.js
http:webpack.dev.config.js
https://itbook.store/books/9781617293344

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

