
SAMPLE CHAPTER

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

React Quickly

by Azat Mardan

Chapter 2

Copyright 2017 Manning Publications

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

brief contents

PART 1 REACT FOUNDATION ...1

1 ■ Meeting React 3

2 ■ Baby steps with React 27

3 ■ Introduction to JSX 41

4 ■ Making React interactive with states 69

5 ■ React component lifecycle events 90

6 ■ Handling events in React 111

7 ■ Working with forms in React 140

8 ■ Scaling React components 164

9 ■ Project: Menu component 186

10 ■ Project: Tooltip component 201

11 ■ Project: Timer component 210

PART 2 REACT ARCHITECTURE ..225

12 ■ The Webpack build tool 227

13 ■ React routing 246

14 ■ Working with data using Redux 274

vii

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

viii	 BRIEF CONTENTS

15 ■	 Working with data using GraphQL 305

16 ■	 Unit testing React with Jest 325

17 ■	 React on Node and Universal JavaScript 345

18 ■	 Project: Building a bookstore with React Router 384

19 ■	 Project: Checking passwords with Jest 406

20 ■	 Project: Implementing autocomplete with Jest, Express,

and MongoDB 425

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

Watch this chapter’s introduction video by
scanning this QR code with your phone or going
to http://reactquickly.co/videos/ch02.

Baby steps with React

This chapter covers
 Nesting elements

 Creating a component class

 Working with properties

This chapter will teach you how to take baby steps with React and lays the foundation
for the following chapters. It’s crucial for understanding React concepts such as ele
ments and components. In a nutshell, elements are instances of components (also called
component classes). What are their use cases, and why do you use them? Read on!

NOTE The source code for the examples in this chapter is at www.manning
.com/books/react-quickly and https://github.com/azat-co/react-quickly/
tree/master/ch02 (in the ch02 folder of the GitHub repository
https://github.com/azat-co/react-quickly). You can also find some demos
at http://reactquickly.co/demos.

2.1 Nesting elements
In the last chapter, you learned how to create a React element. As a reminder, the
method you use is React.createElement(). For example, you can create a link ele
ment like this:

27

www.itbook.store/books/9781617293344

http://www.manning.com/books/react-quickly
http://www.manning.com/books/react-quickly
https://github.com/azat-co/react-quickly/tree/master/ch02
https://github.com/azat-co/react-quickly/tree/master/ch02
https://github.com/azat-co/react-quickly
http://reactquickly.co/demos
http://reactquickly.co/videos/ch02
https://itbook.store/books/9781617293344

28 CHAPTER 2 Baby steps with React

let linkReactElement = React.createElement('a',

{href: 'http://webapplog.com'},

'Webapplog.com'

)

The problem is that most UIs have more than one element (such as a link inside a
menu). For example, in figure 2.1, there are buttons in the section, video thumbnails,
and a YouTube player.

 The solution to creating more-complex structures in a hierarchical manner is nest
ing elements. In the previous chapter, you implemented your first React code by creat
ing an h1 React element and rendering it in the DOM with ReactDOM.render():

let h1 = React.createElement('h1', null, 'Hello world!')

ReactDOM.render(

h1,

document.getElementById('content')

)

It’s important to note that ReactDOM.render() takes only one element as an argu
ment, which is h1 in the example (the view is shown in figure 2.2).

Figure 2.1 The React Quickly website has many nested UI elements.

www.itbook.store/books/9781617293344

http:Webapplog.com
http:http://webapplog.com
https://itbook.store/books/9781617293344

29 Nesting elements

Figure 2.2 Rendering a single heading element

As I mentioned at the beginning of this section, the problem
arises when you need to render two same-level elements (for
example, two h1 elements). In this case, you can wrap the ele
ments in a visually neutral element, as shown in figure 2.3.
The <div> container is usually a good choice, as is .

 You can pass an unlimited number of parameters to
createElement(). All the parameters after the second one
become child elements. Those child elements (h1, in this
case) are siblings—that is, they’re on the same level relative
to each other, as you can see in figure 2.4, which shows Dev-
Tools open in Chrome.

ReactDOM.render()

div

h1 h1

Figure 2.3 Structuring a
React render by using a
wrapper <div> container
to render sibling headings

Figure 2.4 React DevTools
shows a <div> wrapper for
nested sibling h1 elements.

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

30 CHAPTER 2 Baby steps with React

React Developer Tools
In addition to the Elements tab, which is included by default in Chrome DevTools, you
can install an extension (or plug-in) called React Developer Tools. It’s the last tab in
figure 2.4. React Developer Tools is available for Firefox as well. It lets you inspect
the results of React rendering closely, including the component’s hierarchy, name,
properties, states, and more.

Here’s the GitHub repository: https://github.com/facebook/react-devtools. You can
also find React Developer Tools for Chrome at http://mng.bz/V276 and for Firefox at
http://mng.bz/59V9.

Knowing this, let’s use createElement() to create the <div> element with two <h1>
child elements (ch02/hello-world-nested/index.html).

Listing 2.1 Creating a <div> element with two <h1> children

let h1 = React.createElement('h1', null, 'Hello world!')

ReactDOM.render(

React.createElement('div', null, h1, h1),

document.getElementById('content')

)
If the third and subsequent parameters

aren’t text, they specify the child
elements of the element being created.

If the third parameter
of createElement() is a
string, it specifies the
text value of the
element being created.

The HTML code can stay the same as in the Hello World example from chapter 1, as
long as you include the necessary React and ReactDOM libraries and have the content
node (ch02/hello-world-nested/index.html).

Listing 2.2 HTML for the nested elements example without the React code

<!DOCTYPE html>

<html>

<head>

<script src="js/react.js"></script>

<script src="js/react-dom.js"></script>

</head>

<body>

<div id="content"></div>

<script type="text/javascript">

...

</script>

</body>

</html>

So far, you’ve only provided string values as the first parameter of createElement().
But the first parameter can have two types of input:

www.itbook.store/books/9781617293344

https://github.com/facebook/react-devtools
http://mng.bz/V276
http://mng.bz/59V9
https://itbook.store/books/9781617293344

31 Creating component classes

 Standard HTML tag as a string; for example, 'h1', 'div', or 'p' (without the
angle brackets). The name is lowercase.

 React component classes as an object; for example, HelloWorld. The name is
capitalized.

The first approach renders standard HTML elements. React goes through its list of stan
dard HTML elements and, when and if it finds a match, uses it as a type for the React ele
ment. For example, when you pass 'p', React will find a match because p is a paragraph
tag name. This will produce <p> in the DOM when/if you render this React element.

 Now let’s look at the second type of input: creating and providing custom compo
nent classes.

2.2 Creating component classes
After nesting elements with React, you’ll stumble across the next problem: soon, there
are a lot of elements. You need to use the component-based architecture described in
chapter 1, which lets you reuse code by separating the functionality into loosely cou
pled parts. Meet component classes, or just components, as they’re often called for brevity
(not to be confused with web components).

 Think of standard HTML tags as building blocks. You can use them to compose
your own React component classes, which you can use to create custom elements
(instances of classes). By using custom elements, you can encapsulate and abstract
logic in portable classes (composable reusable components). This abstraction allows
teams to reuse UIs in large, complex applications as well as in different projects.
Examples include autocomplete components, toolboxes,
menus, and so on.

 Creating the 'Hello world!' element with an HTML

tag in the createElement() method was straightforward:

(createElement('h1', null, 'Hello World!'). But what

if you need to separate Hello World into its own class, as

shown in figure 2.5? Let’s say you need to reuse Hello

World in 10 different projects! (You probably wouldn’t

use it that many times, but a good autocomplete compo
nent will definitely be reused.)

 Interestingly, you create a React component class by

extending the React.Component class with class CHILD

extends PARENT ES6 syntax. Let’s create a custom Hello-

World component class using class HelloWorld extends

React.Component.

 The one mandatory thing you must implement for

this new class is the render() method. This method must

ReactDOM.render()

div

HelloWorld

h1 h1

Figure 2.5 Rendering a
return a single React element, createElement(), which is <div> element created from
created from another custom component class or an	 a custom component class

instead of rendering it directlyHTML tag. Both can have nested elements.

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

32 CHAPTER 2 Baby steps with React

 Listing 2.3 (ch02/hello-world-class/js/script.js) shows how you can refactor the
nested Hello World example (listing 2.1) into an app with a custom React component
class, HelloWorld. The benefit is that with a custom class, you can reuse this UI better.
The mandatory render() method of the HelloWorld component returns the same
<div> element from the previous example. Once you’ve created the custom HelloWorld
class, you can pass it as an object (not as a string) to ReactDOM.render().

Listing 2.3 Creating and rendering a React component class

Creates a
render()

method as an
expression

(function
returning a

single element)

Attaches
 the React

element to
the real DOM
element with
ID “content”

let h1 = React.createElement('h1', null, 'Hello world!')
class HelloWorld extends React.Component {

render() {
return React.createElement('div', null, h1, h1)

}
}
ReactDOM.render(

React.createElement(HelloWorld, null),
document.getElementById('content')

)

Defines a React component
class with the capitalized name

Implements a return
statement with a single

React element so the
React class can invoke

render() and receive
the <div> element

with two h1 elementsUses the HelloWorld class to create an
element by passing the object, instead
of a string, as the first argument

By convention, the names of variables containing React components are capitalized.
This isn’t required in regular JS (you can use the lowercase variable name
helloWorld); but because it’s necessary in JSX, you apply this convention here. (In
JSX, React uses uppercase and lowercase to differentiate a custom component like
<HelloWorld/> from a regular HTML element such as <h1/>. But in regular JS, it’s
differentiated by passing either a variable such as HelloWorld or a string such as 'h1'.
It’s a good idea to start using capitalization convention for custom components now.)
More about JSX in chapter 3.

ES6+/ES2015+ and React
The component class example defines render() using ES6 style, in which you omit
the colon and the word function. It’s exactly the same as defining an attribute (a.k.a.
key or object property) with a value that’s a function: that is, typing render:function().
My personal preference, and my recommendation to you, is to use the ES6 method style
because it’s shorter (the less you type, the fewer mistakes you make).

Historically, React had its own method to create a component class: React
.createClass(). There are slight differences between using the ES6 class to extend
React.Component and using React.createClass(). Typically, you’d use either
class (recommended) or createClass(), but not both. Moreover, in React 15.5.4,
createClass() is deprecated (that is, no longer supported).

www.itbook.store/books/9781617293344

http:ch02/hello-world-class/js/script.js
https://itbook.store/books/9781617293344

1

33 Creating component classes

(continued)
Although you may still see the React.createClass() method used by some teams,
the general tendency in the React world is to move toward a common standard: using
the ES6 class approach. This book is forward thinking and uses the most popular
tools and approaches, so it focuses on ES6. You can find ES5 examples for some of
this book’s projects in the GitHub repository, prefixed with -es5; they were for an early
version of the book.

As of August 2016, most modern browsers support these ES6 (and almost all other)
features natively (without extra tools),1 so I assume you’re familiar with it. If you’re not,
or if you need a refresher or more information on ES6+/ES2015+ and its primary fea
tures as they relate to React, see appendix E or a comprehensive book such as Exploring
ES6 by Dr. Axel Rauschmayer (free online version: http://exploringjs.com/es6).

Analogous to ReactDOM.render(), the render() method in createClass() can only
return a single element. If you need to return multiple same-level elements, wrap them in
a <div> container or another unobtrusive element such as . You can run the
code in your browser; the result is shown in figure 2.6.

Figure 2.6 Rendering an
element created from a custom
HelloWorld component class

You may think you didn’t gain much with the refactoring; but what if you need to
print more Hello World statements? You can do so by reusing the HelloWorld compo
nent multiple times and wrapping them in a <div> container:

...

ReactDOM.render(

React.createElement(

'div',

null,

React.createElement(HelloWorld),

React.createElement(HelloWorld),

ECMAScript 6 Compatibility Table, https://kangax.github.io/compat-table/es6. 1

www.itbook.store/books/9781617293344

https://kangax.github.io/compat-table/es6
http://exploringjs.com/es6
https://itbook.store/books/9781617293344

34	 CHAPTER 2 Baby steps with React

React.createElement(HelloWorld)

),

document.getElementById('content')

)

This is the power of component reusability! It leads to faster development and fewer
bugs. Components also have lifecycle events, states, DOM events, and other features
that let you make them interactive and self-contained; these are covered in the follow
ing chapters.

 Right now, the HelloWorld elements will all be the same. Is there a way to custom
ize them? What if you could set element attributes and modify their content and/or
behavior? Meet properties.

2.3 Working with properties
Properties are a cornerstone of the declarative style that React uses. Think of properties
as unchangeable values within an element. They allow elements to have different vari
ations if used in a view, such as changing a link URL by passing a new value for a property:

React.createElement('a', {href: 'http://node.university'})

One thing to remember is that properties are immutable within their components. A par
ent assigns properties to its children upon their creation. The child element isn’t sup
posed to modify its properties. (A child is an element nested inside another element;
for example, <h1/> is a child of <HelloWorld/>.) For instance, you can pass a property
PROPERTY_NAME with the value VALUE, like this:

<TAG_NAME PROPERTY_NAME=VALUE/>

Properties closely resemble HTML attributes. This is one of their purposes, but they
also have another: you can use the properties of an element in your code as you wish.
Properties can be used as follows:

 To render standard HTML attributes of an element: href, title, style, class,
and so on

 In the JavaScript code of a React component class via this.props values; for
example, this.props.PROPERTY_NAME (replacing PROPERTY_NAME with your
arbitrary name)

Under the hood, React will match the property name (PROPERTY_NAME) with the list of
standard attributes. If there’s a match, the property will be rendered as an attribute of
an element (the first scenario). The value of this attribute is also accessible in
this.props.PROPERTY_NAME in the component class code.

 If there’s no match with any of the standard HTML attribute names (the second
scenario), then the property name isn’t a standard attribute. It won’t be rendered as
an attribute of an element. But the value will still be accessible in the this.props
object; for example, this.props.PROPERTY_NAME. It can be used in your code or
rendered explicitly in the render() method. This way, you can pass different data to

www.itbook.store/books/9781617293344

http://node.university
https://itbook.store/books/9781617293344

2345

35 Working with properties

Object.freeze() and Object.isFrozen()
Internally, React uses Object.freeze()2 from the ES5 standard to make the
this.props object immutable. To check whether an object is frozen, you can use the
Object.isFrozen() method.3 For example, you can determine whether this state
ment will return true:

class HelloWorld extends React.Component {

render() {

console.log(Object.isFrozen(this.props))

return React.createElement('div', null, h1, h1)

}

}

If you’re interested in more details, I encourage you to read the React changelog4 and
search on React’s GitHub repository.5

different instances of the same class. This allows you to reuse components, because
you can programmatically change how elements are rendered by providing differ
ent properties.

 You can even take this feature of properties a step further and completely modify
the rendered elements based on the value of a property. For example, if
this.props.heading is true, you render “Hello” as a heading. If it’s false, you render
“Hello” as a normal paragraph:

render() {

if (this.props.heading) return <h1>Hello</h1>

else return <p>Hello</p>

}

In other words, you can use the same component—but provided with different prop
erties, the elements rendered by the component can be different. Properties can be
rendered by render(), used in components’ code, or used as HTML attributes.

 To demonstrate the properties of components, let’s slightly modify HelloWorld
with props. The goal is to reuse the HelloWorld component such that each instance of
this class renders different text and different HTML attributes. You’ll enhance the
HelloWorld headings (<h1> tag) with three properties (see figure 2.7):

 id—Matches the standard attribute id and is automatically rendered by React
 frameworkName—Doesn’t match any standard attributes for <h1>, but is explic

itly printed in the text of headings
 title—Matches the standard attribute title and is automatically rendered by

React

2 Mozilla Developer Network, Object.freeze(), http://mng.bz/p6Nr.

3 Mozilla Developer Network, Object.isFrozen(), http://mng.bz/0P75.

4 GitHub, 2016-04-07-react-v15, http://mng.bz/j6c3.

5 GitHub, “freeze” search results, http://mng.bz/2l0Z.

www.itbook.store/books/9781617293344

http://mng.bz/p6Nr
http://mng.bz/0P75
http://mng.bz/j6c3
http://mng.bz/2l0Z
https://itbook.store/books/9781617293344

36 CHAPTER 2 Baby steps with React

HelloWorld

id title

frameworkName

HelloWorld

div

id title

frameworkName

HelloWorld

id title

frameworkName

h1

div

id title

h1

id title

h1

id title

Render

Figure 2.7 The component class HelloWorld renders properties
that are standard HTML attributes, but not frameworkName.

If a property’s name matches a standard HTML attribute, it will be rendered as an attri
bute of the <h1> element, as shown in figure 2.7. So the two properties id and title
will be rendered as <h1> attributes, but not frameworkName. You may even get a warn
ing about the unknown frameworkName property (because it’s not in the HTML speci
fication). How nice!

 Let’s zoom in on the <div> element implementation (figure 2.8). Obviously, it
needs to render three child elements of the HelloWorld class, but the text and attri
butes of the resulting headings (<h1/>) must be different. For example, you pass id,
frameworkName, and title. They’ll be part of the HelloWorld class.

 Before you implement <h1/>, you need to pass the properties to HelloWorld. How
do you do this? By passing these properties in an object literal in the second argument
to createElement() when you create HelloWorld elements in the <div> container:

ReactDOM.render(

React.createElement(

'div',

null,

React.createElement(HelloWorld, {

id: 'ember',

frameworkName: 'Ember.js',

title: 'A framework for creating ambitious web applications.'}),

React.createElement(HelloWorld, {

id: 'backbone',

frameworkName: 'Backbone.js',

title: 'Backbone.js gives structure to web applications...'}),

React.createElement(HelloWorld, {

id: 'angular',

frameworkName: 'Angular.js',

title: 'Superheroic JavaScript MVW Framework'})

),

document.getElementById('content')

)

www.itbook.store/books/9781617293344

http:Angular.js
http:Backbone.js
http:Backbone.js
http:Ember.js
https://itbook.store/books/9781617293344

37 Working with properties

HelloWorld

id title

frameworkName

HelloWorld

id title

frameworkNameame fraraam

HelloWorld

div (React element)

id title

frameworkName

HelloWorld (React element)

div (React element)

id

id

title

h1 (React element)

title

h1

div (DOM element)

id title

h1

id title

h1

id title

Render

frameworkName

frameworkName

'Hello' + this.props.frameworkName+ 'world!!!' 'He!!'

Figure 2.8 The HelloWorld class is used three times to generate three h1 elements that have different
attributes and innerHTML.

Now let’s look at the HelloWorld component implementation. The way React works is
that the second parameter to createElement() (for example, {id: 'ember'...}) is
an object whose properties are accessible via the this.props object inside the compo
nent’s render() method. Therefore, you can access the value of frameworkName as
shown in the following listing.

Listing 2.4 Using the frameworkName property in the render() method

class HelloWorld extends React.Component {
render() { Concatenates (combines) three strings:

“Hello”, “this.props.frameworkName”,return React.createElement(

and “world!!!” 'h1',

null,

'Hello ' + this.props.frameworkName + ' world!!!'

)

}

}

The keys of the this.props object are exactly the same as the keys of the object
passed to createElement() as the second parameter. That is, this.props has id,

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

38 CHAPTER 2 Baby steps with React

frameworkName, and title keys. The number of key/value pairs you can pass in the
second argument to React.createElement() is unlimited.

 In addition, you may have already guessed that it’s possible to pass all the proper
ties of HelloWorld to its child <h1/>. This can be extremely useful when you don’t
know what properties are passed to a component; for example, in HelloWorld, you
want to leave the style attribute value up to a developer instantiating HelloWorld.
Therefore, you don’t limit what attributes to render in <h1/>.

Listing 2.5 Passing all the properties from HelloWorld to <h1>

class HelloWorld extends React.Component {

render() {

return React.createElement(
 Passes all the

properties to the child'h1',

heading elementthis.props,

'Hello ' + this.props.frameworkName + ' world!!!'

)

}

}

Then, you render three HelloWorld elements into the <div> with the ID content, as
shown in the following listing (ch02/hello-js-world/js/script.js) and figure 2.9.

Listing 2.6 Using properties passed during element creation

class HelloWorld extends React.Component {
 Any properties passed into
render() {
 HelloWorld when createElement Outputs the return React.createElement(
 is called are passed into thisframeworkName 'h1',
 <h1> element.property as text this.props,

in <h1>
'Hello ' + this.props.frameworkName + ' world!!!'

frameworkName
 isn’t a standard

HTML attribute for
<h1>, so it won’t be

rendered unless you
do something with it.

)
}

}
ReactDOM.render(

React.createElement(id and title correspond to
'div', standard HTML attributes
null, for <h1> and are rendered
React.createElement(HelloWorld, { as those attributes.

id: 'ember', 3((CO5-3))

frameworkName: 'Ember.js',

title: 'A framework for creating ambitious web applications.'}),

React.createElement(HelloWorld, {

id: 'backbone',

frameworkName: 'Backbone.js',

title: 'Backbone.js gives structure to web applications...'}),

React.createElement(HelloWorld, {

id: 'angular',

frameworkName: 'Angular.js',

title: 'Superheroic JavaScript MVW Framework'})

),

document.getElementById('content')

)

www.itbook.store/books/9781617293344

http:Angular.js
http:Backbone.js
http:Backbone.js
http:Ember.js
http:ch02/hello-js-world/js/script.js
https://itbook.store/books/9781617293344

Quiz	 39

Figure 2.9 Result of reusing HelloWorld with different properties to render three different headings

As usual, you can run this code via a local HTTP web server. The result of reusing the
HelloWorld component class is three different headings (see figure 2.9).

 You used this.props to render different text for the headings. You used proper
ties to render different titles and IDs. Thus, you effectively reused most of the code,
which makes you the master of React HelloWorld component classes!

 We’ve covered several permutations of Hello World. Yes, I know, it’s still the bor
ing, good-old Hello World. But by starting small, we’re building a solid foundation for
future, more-advanced topics. Believe me, you can achieve a lot of great things with
component classes.

 It’s very important to know how React works in regular JavaScript events if you
(like many React engineers) plan to use JSX. This is because in the end, browsers
will still run regular JS, and you’ll need to understand the results of the JSX-to-JS
transpilation from time to time. Going forward, we’ll be using JSX, which is covered
in the next chapter.

2.4 Quiz
1	 A React component class can be created with which of the following?

createComponent(), createElement(), class NAME extends React.Component,
class NAME extends React.Class

2 The only mandatory attribute or method of a React component is which of the
following? function, return, name, render, class

3 To access the url property of a component, you use which of the following?
this.properties.url, this.data.url, this.props.url, url

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

40	 CHAPTER 2 Baby steps with React

4	 React properties are immutable in a context of a current component. True or
false?

5	 React component classes allows developers to create reusable UIs. True or false?

2.5 Summary
 You can nest React elements using third, fourth, and so on arguments in create-

Element().
 Create elements from custom component classes.
 Modify the resulting elements using properties.
 You can pass properties to child element(s).
 To use a component-based architecture (one of the features of React), you cre

ate components.

2.6 Quiz answers

1	 class NAME extends React.Component, because there’s no React.Class and others
will fail due to ReferenceError (not defined).

2	 render() because it’s the only required method; also, because function, return,
render, and class are not valid, and name is optional.

3	 this.props.url because only this.props gives the properties object.

4	 True. It’s impossible to change a property.

5	 True. Developers use new components to create reusable UIs.

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

