
SAMPLE CHAPTER

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

React Quickly

by Azat Mardan

Chapter 9

Copyright 2017 Manning Publications

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

brief contents

PART 1 REACT FOUNDATION ...1

1 ■ Meeting React 3

2 ■ Baby steps with React 27

3 ■ Introduction to JSX 41

4 ■ Making React interactive with states 69

5 ■ React component lifecycle events 90

6 ■ Handling events in React 111

7 ■ Working with forms in React 140

8 ■ Scaling React components 164

9 ■ Project: Menu component 186

10 ■ Project: Tooltip component 201

11 ■ Project: Timer component 210

PART 2 REACT ARCHITECTURE ..225

12 ■ The Webpack build tool 227

13 ■ React routing 246

14 ■ Working with data using Redux 274

vii

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

viii	 BRIEF CONTENTS

15 ■	 Working with data using GraphQL 305

16 ■	 Unit testing React with Jest 325

17 ■	 React on Node and Universal JavaScript 345

18 ■	 Project: Building a bookstore with React Router 384

19 ■	 Project: Checking passwords with Jest 406

20 ■	 Project: Implementing autocomplete with Jest, Express,

and MongoDB 425

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

Project:
 Menu component

Watch this chapter’s introduction video by
scanning this QR code with your phone or going
to http://reactquickly.co/videos/ch09.

This chapter covers
 Understanding the project structure and scaffolding

 Building the Menu component without JSX

 Building the Menu component in JSX

The next three chapters will walk you through several projects, gradually building
on the concepts you’ve learned in chapters 1–8. These projects will also reinforce
the material by repeating some of the techniques and ideas that are most impor­
tant in React. The first project is minimal, but don’t skip it.

 Imagine that you’re working on a unified visual framework that will be used in
all of your company’s apps. Having the same look and feel in various apps is impor­
tant. Think about how Twitter Bootstrap for many Twitter apps and Google’s Mate­
rial UI1 are used across many properties that belong to Google: AdWords, Analytics,
Search, Drive, Docs, and so on.

Twitter Bootstrap: http://getbootstrap.com. React components that implement Twitter Bootstrap:
https://react-bootstrap.github.io. Google Material Design: https://material.io. React Components that
implement Material Design: www.material-ui.com.

186

1

www.itbook.store/books/9781617293344

http://getbootstrap.com
https://react-bootstrap.github.io
https://material.io
http://www.material-ui.com
http://reactquickly.co/videos/ch09
https://itbook.store/books/9781617293344

187 Project structure and scaffolding

 Your first task is to implement a
menu like the one shown in figure 9.1.
It will be used in the layout’s header
across many pages in various applica­
tions. The menu items need to change
based on the user role and what part of
the application is currently being
viewed. For example, admins and man­
agers should see a Manage Users menu
option. At the same time, this layout
will be used in a customer-relationship app that needs its own unique set of menu
options. You get the idea. The menu needs to be generated dynamically, meaning
you’ll have some React code that generates menu options.

 For simplicity, the menu items will just be <a> tags. You’ll create two custom React
components, Menu and Link, in a way that’s similar to the way you created the Hello-
World component in chapter 1—or how you create any component, for that matter.

 This project will show you how to render programmatically nested elements. Man­
ually hardcoding menu items isn’t a great idea; what happens when you need to
change an item? It’s not dynamic! You’ll use the map() function to do this.

NOTE To follow along with the project, you’ll need to download the unminified
version of React (so that you can take advantage of the helpful warnings it
returns if something goes wrong). You can also download and install Node.js and
npm. They aren’t strictly necessary for this project, but they’re useful for compil­
ing JSX later in this chapter. Appendix A covers the installation of both tools.

NOTE The source code for the examples in this chapter is at www.manning
.com/books/react-quickly and https://github.com/azat-co/react-quickly/
tree/master/ch09 (in the ch09 folder of the GitHub repository https://
github.com/azat-co/react-quickly). You can also find some demos at http://
reactquickly.co/demos.

9.1 Project structure and scaffolding
Let’s start with an overview of the project structure. It’s flat, to keep it simple:

/menu

index.html
 Main HTML file
package.json

react-dom.js

react.js

script.js
 Main script

Keep in mind that this is what you’ll have by the end of this walk-through. You should begin
with an empty folder. So, let’s create a new folder and start implementing the project:

$ mkdir menu

$ cd menu

Figure 9.1 The menu you’re going to build

www.itbook.store/books/9781617293344

http://reactquickly.co/demos
http://reactquickly.co/demos
http://www.manning.com/books/react-quickly
http://www.manning.com/books/react-quickly
https://github.com/azat-co/react-quickly/tree/master/ch09
https://github.com/azat-co/react-quickly/tree/master/ch09
https://github.com/azat-co/react-quickly
https://github.com/azat-co/react-quickly
http:script.js
http:react.js
http:react-dom.js
https://itbook.store/books/9781617293344

188 CHAPTER 9 Project: Menu component

Download react.js and react-dom.js version 15, and drop them into the folder.
 Next is the HTML file:

<!DOCTYPE html>

<html>

<head>

<script src="react.js"></script>

<script src="react-dom.js"></script>

</head>

The HTML for this project is very basic. It includes the react.js and react-dom.js files,
which, for simplicity, are in the same folder as the HTML file. Of course, later you’ll
want to have your *.js files in some other folder, like js or src.

 The body has just two elements. One element is a <div> container with the ID
menu; this is where the menu will be rendered. The second element is a <script> tag
with your React application code:

<body>

<div id="menu"></div>

<script src="script.js"></script>

</body>

</html>

You’re finished with the scaffolding. This is the foundation on which you’ll build the
menu—first, without JSX.

9.2 Building the menu without JSX
script.js is your main application file. It contains ReactDOM.render() as well as two
components (ch09/menu/script.js).

Listing 9.1 Basic skeleton of the Menu script

class Menu extends React.Component {...}

class Link extends React.Component {...}

ReactDOM.render(

React.createElement(

Menu,

null

),

document.getElementById('menu')

)

Defines Menu

Defines Link, which
is used by Menu

Don’t pass any
props to Menu.

Of course, it’s possible to make Menu dependent on an external list of menu items,
provided in a property such as menuOptions that’s defined elsewhere:

const menuOptions = [...]

//...

ReactDOM.render(

React.createElement(

www.itbook.store/books/9781617293344

http:ch09/menu/script.js
http:script.js
http:react-dom.js
http:react.js
http:react-dom.js
http:react.js
https://itbook.store/books/9781617293344

189 Building the menu without JSX

Menu,

{menus: menuOptions}

),

document.getElementById('menu')

)

These two approaches are both valid, and you’ll need to choose one depending on
your answer to this question: do you want Menu to be just about structure and styling or
also about getting information? We’ll continue with the latter approach in this chap­
ter and make Menu self-sustained.

9.2.1 The Menu component

Now to create the Menu component. Let’s step through the code. To create it, you
extend React.Component():

class Menu extends React.Component {...}

The Menu component will render the individual menu items, which are link tags.
Before you can render them, you need to define the menu items. They’re hardcoded
in the menus array as follows (you could get them from a data model, store, or server
in a more complex scenario):

render() {

let menus = ['Home',
 Mock data store

'About',

'Services',

'Portfolio',

'Contact us']

//...

Next, you’ll return the menu Link elements (four of them). Recall that return can
have only one element. For this reason, you wrap <div> around the four links. This is
the start of the wrapper <div> element with no attributes:

return React.createElement('div',

null,

//... we will render links later

It’s worth mentioning that {} can output not just a variable or an expression, but an
array as well. This comes in handy when you have a list of items. Basically, to render
every element of an array, you can pass that array to {}. Although JSX and React can
output arrays, they don’t output objects. So, the objects must be converted to an array.

 Knowing that you can output an array, you can proceed to generate an array of
React elements. The map() function is a good method to use because it returns an
array. You can implement map() so that each element is the result of the expression
React.createElement(Link, {label: v}) wrapped in <div>. In this expression, v is a
value of the menus array item (Home, About, Services, and so on), and i is its index
number (0, 1, 2, 3, and so on):

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

190 CHAPTER 9 Project: Menu component

menus.map((v, i) => {

return React.createElement('div',

{key: i},

React.createElement(Link, {label: v})

)

}

)

)

}})

Did you notice that the key property is set to the index i? This is needed so React can
access each <div> element in a list more quickly. If you don’t set key, you’ll see the fol­
lowing warning (at least, in React 15, 0.14 and 0.13):

Warning: Each child in an array or iterator should have a unique "key" prop.

Check the render method of `Menu`. See https://fb.me/react-warning-keys for

more information.

in div (created by Menu)

in Menu

Again, kudos to React for good error and warning messages.
 So each element of a list must have a unique value for a key attribute. They don’t

have to be unique across the entire app and other components, just within this list.
Interestingly, since React v15, you won’t see the key attributes in HTML (and that’s a
good thing—let’s not pollute HTML). But React DevTools shows the keys, as you can
see in figure 9.2.

Figure 9.2 React DevTools show you the keys of the list elements.

www.itbook.store/books/9781617293344

https://fb.me/react-warning-keys
https://itbook.store/books/9781617293344

191 Building the menu without JSX

The Array.map() function
The mapping function from the Array class is used frequently in React components
to represent lists of data. This is because when you create UIs, you do so from data
represented as an array. The UI is also an array, but with slightly different elements
(React elements!).

map() is invoked on an array, and it returns new array elements that are transformed
from the original array by the function. At a minimum, when working with map(), you
need to pass this function:

[1, 2, 3].map(value => <p>value</p>)

➥ // <p>1</p><p>2</p><p>3</p>

You can use two more arguments in addition to the value of the item (value)—index
and list:

[1, 2, 3].map((value, index, list) => {

return <p id={index}>{list[index]}</p>

}) // <p id="0">1</p><p id="1">2</p><p id="2">3</p>

The <div> has a key attribute, which is important. It allows React to optimize render­
ing of lists by converting them to hashes, and access time for hashes is better than that
for lists or arrays. Basically, you create numerous Link components in an array, and
each of them takes the property label with a value from the menus array.

 Here’s the full code for Menu (ch09/menu/script.js); it’s simple and straightforward.

Listing 9.2 Menu component that uses map() to render links

class Menu extends React.Component {

render() {

let menus = ['Home',

'About',

'Services',

'Portfolio',

'Contact us']

return React.createElement('div',

null,

menus.map((v, i) => {

return React.createElement('div',

{key: i},

React.createElement(Link, {label: v})

)

})

)

}}

Now let’s move on to the Link implementation.

www.itbook.store/books/9781617293344

http:ch09/menu/script.js
https://itbook.store/books/9781617293344

192 CHAPTER 9 Project: Menu component

9.2.2 The Link component

The call to map() creates a Link component for each item in the menus array. Let’s
look at the code for Link and see what happens when each Link component is
rendered.

 In the Link component’s render code, you write an expression to create a URL.
That URL will be used in the href attribute of the <a> tag. The this.props.label
value is passed to Link from Menu when Link is created. In the render() function of
the Menu component, Link elements are created in the map’s closure/iterator func­
tion using React.createElement(Link, {label: v}).

 The label property is used to construct the URL slug (must be lowercase and
should not include spaces):

class Link extends React.Component {

render() {

const url='/'

+ this.props.label

.toLowerCase()

.trim()

.replace(' ', '-')

The methods toLowerCase(), trim(), and replace() are standard JavaScript string
functions. They perform conversion to lowercase, trim white space at edges, and
replace white spaces with dashes, respectively.

 The URL expression produces the following URLs:

 /home for Home
 /about for About
 /services for Services
 /portfolio for Portfolio
 /contact-us for Contact us

Now you can implement Link’s UI: the render() return value. In the render func­
tion’s return of the Link component, you pass this.props.label as a third argument
to createElement(). It becomes part of the <a> tag content (link text). Link could
render this element:

//...

return React.createElement(

'a',

{href: url},

this.props.label

)

}

}

But it’s better to separate each link with a line-break element (
). And because the
component must return only one element, you’d have to wrap the anchor element

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

193 Building the menu without JSX

(<a>) and line break (
) in a div container (<div>). Therefore, you start the
return in the Link component’s render() with div, without attributes:

//...

return React.createElement('div',

null,

//...

Each argument after the second to createElement() (for example, the third, fourth,
and fifth) will be used as content (children). To create the link element, you pass it as
the second argument. And to create a break element after each link, you pass the line-
break element
 as the fourth argument:

//...

return React.createElement('div',

null,

React.createElement(

'a',

{href: url},

this.props.label

),

React.createElement('br')

)

}

})

Here’s the code for the full Link component for your reference (ch09/menu/
script.js). The url function can be created as a class method or as a method outside of
the component.

Listing 9.3 Link component

class Link extends React.Component {

render() {

const url='/'

+ this.props.label

.toLowerCase()

.trim()

.replace(' ', '-')

return React.createElement('div',

null,

React.createElement(

'a',

{href: url},

this.props.label

),

React.createElement('br')

)

}

}

Defines a function that
creates URL fragments
out of the menu names

Passes the URL fragment
to set the href attribute

Adds a line-break element
to separate menu items

www.itbook.store/books/9781617293344

http:script.js
https://itbook.store/books/9781617293344

194 CHAPTER 9 Project: Menu component

Let’s get this menu running.

9.2.3 Getting it running

To view the page, shown in figure 9.3, open it as a file in Chrome, Firefox, Safari, or
(maybe) Internet Explorer. That’s it. No compilation is needed for this project.

Figure 9.3 React menu showing rendering of nested components

Using a local web server
When you open the example page, the protocol in the address bar will be file://….
This isn’t ideal but will do for this project. For real development, you’ll need a web
server; with a web server, the protocol is http://… or https://…, as in figure 9.3.

Yes, even for a simple web page like this one, I prefer to use a local web server. It
makes the running code more closely resemble how it would be in production. Plus,
you can use AJAX/XHR, which you can’t use if you’re opening an HTML file in a browser.

The easiest way to run a local web server is to use node-static
(www.npmjs.com/package/node-static) or a similar Node.js tool like http-server
(www.npmjs.com/package/http-server). This is true even for Windows, although I
stopped using that OS many years ago. If you’re hell-bent on not using Node.js, then
alternatives include IIS, Apache HTTP Server, NGINX, MAMP, LAMP, and other varia­
tions of web servers. Needless to say, Node.js tools are highly recommended for their
minimalist, lightweight approach.

www.itbook.store/books/9781617293344

http://www.npmjs.com/package/node-static
http://www.npmjs.com/package/http-server
https://itbook.store/books/9781617293344

195 Building the menu in JSX

(continued)
To install node-static, use npm:

$ npm install -g node-static@0.7.6

Once it’s installed, run this command from your project’s root folder (or from a parent
folder) to make the file available on http://localhost:8080. This isn’t an external
link—run the following command before clicking the link:

$ static

If you run static in react-quickly/ch09/menu, then the URL will be http://
localhost:8080. Conversely, if you run static from react-quickly, then the URL needs
to be http://localhost:8080/ch09/menu.

To stop the server on macOS or Unix/Linux (POSIX systems), press Ctrl-C. As for Win­
dows, I don’t know!

No thrills here, but the page should display five links (or more, if you add items to the
menus array), as shown earlier in figure 9.1. This is much better than copying and past­
ing five <a> elements and then ending up with multiple places to modify the labels
and URLs. And the project can be even better with JSX.

9.3 Building the menu in JSX
This project is more extensive, containing node_modules, package.json, and JSX:

Babel dev dependency for/menu-jsx
 JSX-to-JS transpilation
/node_modules

index.html

package.json

react-dom.js

react.js

script.js

script.jsx
 Main JSX script

As you can see, there’s a node_modules folder for developer dependencies such as
Babel, which is used for JSX-to-JS transpilation.

NOTE Although it’s possible to install react and react-dom as npm modules
instead of having them as files, doing so leads to additional complexity if you
decide to deploy. Right now, to deploy this app, you can just copy the files in
the project folder without node_modules. If you install React and ReactDOM
with npm, then you have to include that folder as well, use a bundler, or copy
the JS files from dist into root (where you already have them). So, for this
example, we’ll use the files in root. I cover bundlers in part 2 of this book, but
for now let’s keep things simple.

www.itbook.store/books/9781617293344

http:script.js
http:react.js
http:react-dom.js
http://localhost:8080/ch09/menu
http://localhost:8080
mailto:node-static@0.7.6
https://itbook.store/books/9781617293344

196 CHAPTER 9 Project: Menu component

Create a new folder:

$ mkdir menu-jsx

$ cd menu-jsx

Then, create the package.json file in it using npm init -y. Add the following code to
package.json to install and configure Babel (ch09/menu-jsx/package.json).

Listing 9.4 package.json for Menu in JSX

{

"name": "menu-jsx",

"version": "1.0.0",
 Defines a build script
"description": "",
 with the watch flag
"main": "script.js",

"scripts": {

"build": "./node_modules/.bin/babel script.jsx -o script.js -w"

},

"author": "Azat Mardan",

"license": "MIT",

Configures Babel to"babel": {
 transpile React’s JSX
"presets": ["react"]

},

"devDependencies": {
 Includes the Babel CLI as
"babel-cli": "6.9.0",
 well as a React/JSX preset
"babel-preset-react": "6.5.0"

}

}

Install the developer dependencies packages with npm i or npm install. Your setup
should be ready now.

 Let’s look at script.jsx. At a higher level, it has these parts:

class Menu extends React.Component {

render() {

//...

}

}

class Link extends React.Component {

render() {

//...

}

}

ReactDOM.render(<Menu />, document.getElementById('menu'))

Looks familiar, right? It’s the same structure as in Menu without JSX. The primary
change in this high-level listing is replacing createElement() for the Menu compo­
nent in ReactDOM.render() with this line:

ReactDOM.render(<Menu />, document.getElementById('menu'))

www.itbook.store/books/9781617293344

http:script.js
http:script.js
https://itbook.store/books/9781617293344

197 Building the menu in JSX

Next, you’ll refactor the components.

9.3.1 Refactoring the Menu component

The beginning of Menu is the same:

class Menu extends React.Component {

render() {

let menus = ['Home',

'About',

'Services',

'Portfolio',

'Contact us']

return //...

}

}

In the refactoring example for the Menu component, you need to output the value v as
a label’s attribute value (that is, label={v}). In other words, you assign the value v as a
property for label. So the line to create the Link element changes from

React.createElement(Link, {label: v})

to this JSX code:

<Link label={v}/>

The label property of the second argument ({label: v}) becomes the attribute
label={v}. The attribute’s value v is declared with {} to make it dynamic (versus a
hardcoded value).

NOTE When you use curly braces to assign property values, you don’t need
double quotes ("").

React also needs the key={i} attribute to access the list more efficiently. Therefore,
the final Menu component is restructured as this JSX code (ch09/menu-jsx/script.jsx).

Listing 9.5 Menu with JSX

class Menu extends React.Component {

render() {

let menus = ['Home',

'About',

'Services',

'Portfolio',

'Contact us']

return <div>

{menus.map((v, i) => {

return <div key={i}><Link label={v}/></div>

})}

</div>

}}

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

198 CHAPTER 9 Project: Menu component

Do you see the increase in readability? I do!
 In Menu’s render(), if you prefer to start the <div> on a new line, you can do so by

putting () around it. For example, this code is identical to listing 9.5, but <div> starts
on a new line, which may be more visually appealing:

//...

return (

<div>

{menus.map((v, i) => {

return <div key={i}><Link label={v}/></div>

})}

</div>

)

}})

9.3.2 Refactoring the Link component

The <a> and
 tags in the Link component also need to be refactored from this

//...

return React.createElement('div',

null,

React.createElement(

'a',

{href: url},

this.props.label),

React.createElement('br')

)

//...

to this JSX code:

//...

return <div>

{this.props.label}

</div>

//...

The entire JSX version of the Link component should look something like this
(ch09/menu-jsx/script.jsx).

Listing 9.6 JSX version of Link

class Link extends React.Component {

render() {

const url='/'

+ this.props.label

.toLowerCase()

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

199 Building the menu in JSX

.trim()

.replace(' ', '-')

return <div>

{this.props.label}

</div>

}

}

Phew. You’re finished! Let’s run the JSX project.

9.3.3 Running the JSX project

Open your Terminal, iTerm, or Command Prompt app. In the project’s folder
(ch09/menu-jsx or whatever you named it when you downloaded the source code),
install dependencies with npm i (short for npm install) following the entries in
package.json.

 Then, run the npm build script with npm run build. The npm script will launch the
Babel command with a watch flag (-w), which will keep Webpack running so it can
watch for any file changes and recompile code from JSX to JS if there are changes to
the JSX source code.

 Needless to say, watch mode is a time-saver because it eliminates the need to
recompile each time there’s a change to the source code. Hot module replacement is
even better for development (so good that it could easily be the only reason to use
React); I’ll cover it in chapter 12.

 The actual command in the build script is as follows (but who wants to type it? It’s
too long!):

./node_modules/.bin/babel script.jsx -o script.js -w

If you need a refresher on the Babel CLI, refer to chapter 3. You’ll find all the details
there.

 On my computer, I got this message from the Babel CLI (on yours, the path will
differ):

> menu-jsx@1.0.0 build /Users/azat/Documents/Code/react-quickly/ch09/menu-jsx

> babel script.jsx -o script.js -w

You’re good to go. With script.js generated, you can use static (node-static on
npm: npm i -g node-static) to serve the files over HTTP on localhost. The applica­
tion should look and work exactly like its regular JavaScript brethren, as shown in fig­
ure 9.4.

www.itbook.store/books/9781617293344

http:script.js
http:script.js
mailto:menu-jsx@1.0.0
http:script.js
https://itbook.store/books/9781617293344

200	 CHAPTER 9 Project: Menu component

Figure 9.4 The menu created with JSX

9.4 Homework
For bonus points, do the following:

 Load menu from menus.json via the Fetch API. See chapter 5 for inspiration
about how to load data.

 Create an npm script that will grab react.js from the react npm package
installed in node_modules and copy it into the project folder to be used by
index.html. This will replace the need to manually download react.js for future
versions; instead, you can use npm i react and then run your script.

Submit your code in a new folder under ch09 as a pull request to this book’s GitHub
repository: https://github.com/azat-co/react-quickly.

9.5 Summary
 key is your friend. Set this attribute when you’re generating lists.
 map() is an elegant way to create a new array based on the original array. Its iter­

ator arguments are value, index, and list.
 For JSX to work, at a bare minimum, you need the Babel CLI and React presets.

www.itbook.store/books/9781617293344

https://github.com/azat-co/react-quickly
http:react.js
http:react.js
https://itbook.store/books/9781617293344

www.itbook.store/books/9781617293344

https://itbook.store/books/9781617293344

