
with examples in Nancy

Christian Horsdal Gammelgaard

SAMPLE CHAPTER

M A N N I N G

www.itbook.store/books/9781617293375

https://itbook.store/books/9781617293375

Microservices in .NET Core

by Christian Horsdal Gammelgaard

Chapter 3

Copyright 2017 Manning Publications

www.itbook.store/books/9781617293375

https://itbook.store/books/9781617293375

brief contents

PART 1 GETTING STARTED WITH MICROSERVICES1

1 ■ Microservices at a glance 3

2 ■ A basic shopping cart microservice 30

PART 2 BUILDING MICROSERVICES...55

3 ■ Identifying and scoping microservices 57

4 ■ Microservice collaboration 79

5 ■ Data ownership and data storage 109

6 ■ Designing for robustness 134

7 ■ Writing tests for microservices 155

PART 3 HANDLING CROSS-CUTTING CONCERNS: BUILDING

A REUSABLE MICROSERVICE PLATFORM183

8 ■ Introducing OWIN: writing and testing OWIN

middleware 185

9 ■ Cross-cutting concerns: monitoring and logging 199

v

www.itbook.store/books/9781617293375

https://itbook.store/books/9781617293375

vi BRIEF CONTENTS

10 ■	 Securing microservice-to-microservice

communication 223

11 ■	 Building a reusable microservice platform 248

PART 4 BUILDING APPLICATIONS ...271

12 ■	 Creating applications over microservices 273

www.itbook.store/books/9781617293375

https://itbook.store/books/9781617293375

Part 2

Building microservices

In this part of the book, you’ll learn how to design and code a microservice.
The assorted diverse topics all go into designing and coding good, maintainable,
reliable microservices:

 Chapter 3 explains how to slice and dice a system into a cohesive set of
microservices.

 Chapter 4 shows you how microservices can collaborate to provide func
tionality for end users. You’ll also be introduced to three categories of col
laboration and when to use each of them.

 Chapter 5 explores where the data goes in a microservice system and
which microservices should take responsibility for which data.

 Chapter 6 teaches you some simple techniques to make a microservice sys
tem more robust than it would otherwise be. Using these techniques, you
can create a system that keeps running in the face of network failures and
individual microservice crashes.

 Chapter 7 turns to testing. You’ll learn how to create an effective auto
mated test suite for a microservice system, all the way from broad system-
level tests to narrowly focused unit tests.

By the end of part 2, you’ll know how to design microservices and how to use
.NET Core and Nancy to code them.

www.itbook.store/books/9781617293375

https://itbook.store/books/9781617293375

www.itbook.store/books/9781617293375

https://itbook.store/books/9781617293375

 scoping microservices
Identifying and

This chapter covers
 Scoping microservices for business capability

 Scoping microservices to support technical capabilities

 Managing when scoping microservices is difficult

 Carving out new microservices from existing ones

To succeed with microservices, it’s important to be good at scoping each microser
vice appropriately. If your microservices are too big, the turnaround on creating new
features and implementing bug fixes becomes too long. If they’re too small, the cou
pling between microservices tends to grow. If they’re the right size but have the
wrong boundaries, coupling also tends to grow, and higher coupling leads to longer
turnaround. In other words, if you aren’t able to scope your microservices correctly,
you’ll lose much of the benefit microservices offer. In this chapter, I’ll teach you how
to find a good scope for each microservice so they stay loosely coupled.

 The primary driver in identifying and scoping microservices is business capabil
ities; the secondary driver is supporting technical capabilities. Following these two

57

www.itbook.store/books/9781617293375

https://itbook.store/books/9781617293375

58	 CHAPTER 3 Identifying and scoping microservices

drivers leads to microservices that align nicely with the list of microservice characteris
tics from chapter 1:

 A microservice is responsible for a single capability.
 A microservice is individually deployable.
 A microservice consists of one or more processes.
 A microservice owns its own data store.
 A small team can maintain a handful of microservices.
 A microservice is replaceable.

Of these characteristics, the first two and last two can only be realized if the microser
vice’s scope is good. There are also implementation-level concerns that come into
play, but getting the scope wrong will prevent the service from adhering to those four
characteristics.

3.1	 The primary driver for scoping microservices:
business capabilities
Each microservice should implement exactly one capability. For example, a Shopping
Cart microservice should keep track of the items in the user’s shopping cart. The pri
mary way to identify capabilities for microservices is to analyze the business problem
and determine the business capabilities. Each business capability should be imple
mented by a separate microservice.

3.1.1	 What is a business capability?

A business capability is something an organization does that contributes to business
goals. For instance, handling a shopping cart on an e-commerce website is a business
capability that contributes to the broader business goal of allowing users to purchase
items. A given business will have a number of business capabilities that together make
the overall business function.

 When mapping a business capability to a microservice, the microservice models
the business capability. In some cases, the microservice implements the entire busi
ness capability and automates it completely. In other cases, the microservice imple
ments only part of the business capability and thus only partly automates it. In both
cases, the scope of the microservice is the business capability.

Business capabilities and bounded contexts
Domain-driven design is an approach to designing software systems that’s based on
modeling the business domain. An important step is identifying the language used by
domain experts to talk about the domain. It turns out that the language used by
domain experts isn’t consistent in all cases.

www.itbook.store/books/9781617293375

https://itbook.store/books/9781617293375

59 The primary driver for scoping microservices: business capabilities

(continued)
In different parts of a domain, different things are in focus, so a given word like cus
tomer may have different focuses in different parts of the domain. For instance, for
a company selling photocopiers, a customer in the sales department may be a com
pany that buys a number of photocopiers and may be primarily represented by a pro
curement officer. In the customer service department, a customer may be an end
user having trouble with a photocopier. When modeling the domain of the photocopier
company, the word customer means different things in different parts of the model.

A bounded context in domain-driven design is a part of a larger domain within which
words mean the same things. Bounded contexts are related to but different from busi
ness capabilities. A bounded context defines an area of a domain within which the
language is consistent. Business capabilities, on the other hand, are about what the
business needs to get done. Within one bounded context, the business may need to
get several things done. Each of these things is likely a business capability.

3.1.2 Identifying business capabilities

A good understanding of the domain will enable you to understand how the business
functions. Understanding how the business functions means you can identify the busi
ness capabilities that make up the business and the processes involved in delivering the
capabilities. In other words, the way to identify business capabilities is to learn about the
business’s domain. You can gain this type of knowledge by talking with the people who
know the business domain best: business analysts, the end users of your software, and so
on—all the people directly involved in the day-to-day work that drives the business.

 A business’s organization usually reflects its domain. Different parts of the domain
are handled by different groups of people, and each group is responsible for delivering
certain business capabilities; so, this organization can give you hints about how the
microservices should be scoped. For one thing, a microservice’s responsibility should
probably lie within the purview of only one group. If it crosses the boundary between
two groups, it’s probably too widely scoped and will be difficult to keep cohesive, lead
ing to low maintainability. These observations are in line with what is known as Con
way’s Law:1

Any organization that designs a system (defined broadly) will produce a design whose
structure is a copy of the organization’s communication structure.

Sometimes you may uncover parts of the domain where the organization and the
domain are at odds. In such situations, there are two approaches you can take, both of
which respect Conway’s Law. You can accept that the system can’t fully reflect the
domain, and implement a few microservices that aren’t well aligned with the domain
but are well aligned with the organization; or you can change the organization to
reflect the domain. Both approaches can be problematic. The first risks building

1 Melvin Conway, “How Do Committees Invent?” Datamation Magazine (April 1968).

www.itbook.store/books/9781617293375

https://itbook.store/books/9781617293375

client client

client client

client client

60 CHAPTER 3 Identifying and scoping microservices

microservices that are poorly scoped and that might become highly coupled. The sec
ond involves moving people and responsibilities between groups. Those kinds of
changes can be difficult. Your choice should be a pragmatic one, based on an assess
ment of which approach will be least troublesome.

 To get a better understanding of what business capabilities are, it’s time to look at
an example.

3.1.3 Example: point-of-sale system

The example we’ll explore in this chapter is a point-of-sale system, illustrated in fig
ure 3.1. I’ll briefly introduce the domain, and then we’ll look at how to identify busi
ness capabilities within it. Finally, we’ll consider in more detail the scope of one of
the microservices in the system.

 This point-of-sale system is used in all the stores of a large chain. Cashiers at the
stores interact with the system through a thin GUI client—it could be a tablet applica
tion, a web application, or a purpose-built till (or register, if you prefer). The GUI cli
ent is just a thin layer in front of the backend. The backend is where all the business
logic (the business capabilities) is implemented, and it will be our focus.

Point-of-sales system backend

iPad Web Till
iPad Web Till

iPad Web Till

Price catalog
Coupons

Sales records Special offers

Invoices

iPad
client

Web
client Till

GUI clients used in stores

Figure 3.1 A point-of-sale system for a large chain of stores, consisting of a backend that
implements all the business capabilities in the system and thin GUI clients used by cashiers
in the stores. Microservices in the backend implement the business capabilities.

www.itbook.store/books/9781617293375

https://itbook.store/books/9781617293375

61 The primary driver for scoping microservices: business capabilities

The system offers cashiers a variety of functions:

 Scan products and add them to the invoice
 Prepare an invoice
 Charge a credit card via a card reader attached to the client
 Register a cash payment
 Accept coupons
 Print a receipt
 Send an electronic receipt to the customer
 Search in the product catalog
 Scan one or more products to show prices and special offers related to the

products

These functions are things the system does for the cashier, but they don’t directly
match the business capabilities that drive the point-of-sale system.

IDENTIFYING BUSINESS CAPABILITIES IN THE POINT-OF-SALE DOMAIN

To identify the business capabilities that drive the point-of-sale system, you need to
look beyond the list of functions. You must determine what needs to go on behind the
scenes to support the functionality.

 Starting with the “Search in the product catalog” function, an obvious business
capability is maintaining a product catalog. This is the first candidate for a business
capability that could be the scope of a microservice. Such a Product Catalog microser
vice would be responsible for providing access to the current product catalog. The
product catalog needs to be updated every so often, but the chain of stores uses
another system to handle that functionality. The Product Catalog microservice would
need to reflect the changes made in that other system, so the scope of the Product
Catalog microservice would include receiving updates to the product catalog.

 The next business capability you might identify is applying special offers to
invoices. Special offers give the customer a discounted price when they buy a bundle
of products. A bundle may consist of a certain number of the same product at a
discounted price (for example, three for the price of two) or may be a combination
of different products (say, buy A and get 10% off B). In either case, the invoice
the cashier gets from the point-of-sale GUI client must take any applicable special
offers into account automatically. This business capability is the second candidate to
be the scope for a microservice. A Special Offers microservice would be responsible
for deciding when a special offer applies and what the discount for the customer
should be.

 Looking over the list of functionality again, notice that the system should allow
cashiers to “Scan one or more products to show prices and special offers related to the
products.” This indicates that there’s more to the Special Offers business capability
than just applying special offers to invoices: it also includes the ability to look up spe
cial offers based on products.

www.itbook.store/books/9781617293375

https://itbook.store/books/9781617293375

62 CHAPTER 3 Identifying and scoping microservices

 If you continued the hunt for business capabilities in the point-of-sale system, you
might end up with this list:

 Product Catalog
 Price Catalog
 Price Calculation
 Special Offers
 Coupons
 Sales Records
 Invoice
 Payment

Figure 3.2 shows a map from functionalities to business capabilities. The map is a logi
cal one, in the sense that it shows which business capabilities are needed to implement
each function, but it doesn’t indicate any direct technical dependencies. For instance,
the arrow from Prepare Invoice to Coupons doesn’t indicate a direct call from some
Prepare Invoice code in a client to a Coupons microservice. Rather, the arrow indi
cates that in order to prepare an invoice, coupons need to be taken into account, so
the Prepare Invoice function depends on the Coupons business capability.

 I find creating this kind of map to be enlightening, because it forces me to think
explicitly about how each function is attained and also what each business capability

Price catalog

Product catalog

Coupons

Price calculation

Sales records

Special offers

Invoice

Payment

Scan goods and add to invoice

Search in product catalog

Prepare invoice

Scan goods to show price

Register cash payment

Charge credit card

Print receipt

Send electronic receipt

Accept coupons

Figure 3.2 The functions on the left depend on the business capabilities on the right. Each arrow
indicates a dependency between a function and a capability.

www.itbook.store/books/9781617293375

https://itbook.store/books/9781617293375

63 The primary driver for scoping microservices: business capabilities

must do. Finding the business capabilities in real domains can be hard work and often
requires a good deal of iterating. The list of business capabilities isn’t a static list made
at the start of development; rather, it’s an emergent list that grows and changes over
time as your understanding of the domain and the business grows and deepens.

 Now that we’ve gone through the first iteration of identifying business capabilities,
let’s take a closer look at one of these capabilities and how it defines the scope of a
microservice.

THE SPECIAL OFFERS MICROSERVICE

The Special Offers microservice is based on the Special Offers business capability. To
narrow the scope of this microservice, we’ll dive deeper into this business capability
and identify the processes involved, illustrated in figure 3.3. Each process delivers part
of the business capability.

Find special
offers that apply to
a list of products

Apply special
offers to invoice

Recommend
special offers based on

a list of products

Track usage
of special offers

Find special
offers that a product

is part of

The Special Offers business capability

Prepare invoice

Figure 3.3 The Special Offers business capability includes a number of different processes.

The Special Offers business capability is broken down into five processes. Four of
these are oriented toward the point-of-sale GUI clients. The fifth—tracking the use of
special offers—is oriented toward the business itself, which has an interest in which
special offers customers are taking advantage of.

 Implementing the business capability as a microservice means you need to do the
following:

 Expose the four client-oriented processes as API endpoints that other microser
vices can call.

 Implement the usage-tracking process through an event feed. The business-
intelligence parts of the point-of-sale system can subscribe to these events and
use them to track which special offers are used by customers.

The components of the Special Offers microservice are shown in figure 3.4.

www.itbook.store/books/9781617293375

https://itbook.store/books/9781617293375

64 CHAPTER 3 Identifying and scoping microservices

Special Offers microservice

EventStore
Special Offers
domain model

HTTP API: accessible from
other microservices

HTTP API module

Event feed module: used for tracking

• GetApplicableSpecialOffers (list of products)
• ApplySpecialOffers (invoice, special offers)
• GetPotentialOffers (product)
• GetRecommendedSpecialOffers
 (list of products)

SpecialOffersStore

Special
Offers store

Figure 3.4 The processes in the Special Offers business capability are reflected in the implementation of the Special
Offers microservice. The processes are exposed to other microservices through the microservice’s HTTP API.

The components of the Special Offers microservice are similar to the components of
the Shopping Cart microservice in chapter 2, which is shown again in figure 3.5. This
is no coincidence. These are the components microservices typically consist of: an
HTTP API that exposes the business capability implemented by the microservice, an
event feed, a domain model implementing the business logic involved in the business
capability, a data store component, and a database.

Shopping Cart microservice

EventStore
Shopping Cart
domain model

HTTP API: accessible from
other microservices

HTTP API module

Event feed module

• Endpoint to get a shopping cart
• Endpoint to add items to a shopping cart
• Endpoint to delete an item from a shopping cart

ShoppingCartStore

ProductCatalogClient

Shopping
Cart store

Figure 3.5 The components of the Shopping Cart microservice from chapter 2 are similar to the components of
the Special Offers microservice.

www.itbook.store/books/9781617293375

https://itbook.store/books/9781617293375

65 The secondary driver for scoping microservices: supporting technical capabilities

3.2	 The secondary driver for scoping microservices:
supporting technical capabilities
The secondary way to identify scopes for microservices is to look at supporting techni
cal capabilities. A supporting technical capability is something that doesn’t directly con
tribute to a business goal but supports other microservices, such as integrating with
another system or scheduling an event to happen some time in the future.

3.2.1	 What is a technical capability?

Supporting technical capabilities are a secondary driver in scoping microservices
because they don’t directly contribute to the system’s business goals. They exist to sim
plify and support the other microservices that implement business capabilities.

 Remember, one characteristic of a good microservice is that it’s replaceable; but if
a microservice that implements a business capability also implements a complex tech
nical capability, it may grow too large and too complex to be replaceable. In such
cases, you should consider implementing the technical capability in a separate micros
ervice that supports the original one. Before discussing how and when to identify sup
porting technical capabilities, a couple of examples would probably be helpful.

3.2.2	 Examples of supporting technical capabilities

To give you a feel for what I mean by supporting technical capabilities, let’s consider
two examples: an integration with another system, and the ability to send notifications
to customers.

INTEGRATING WITH AN EXTERNAL PRODUCT CATALOG SYSTEM

In the example point-of-sale system, you identified the product catalog as a business
capability. I also mentioned that product information is maintained in another sys
tem, external to the microservice-based point-of-sale system. That other system is an
Enterprise Resource Planning (ERP) system. This implies that the Product Catalog
microservice must integrate with the ERP system, as illustrated in figure 3.6. The inte
gration can be handled in a separate microservice.

Product data is pulled
from the ERP system.

SOAP request:

Other
microservices

Get all products in
“shirts” category

SOAP response:
XML array of

“shirt” products

Query product
catalog Product Catalog

microservice
Enterprise resource

planning (ERP) system

Figure 3.6 Product data flows from the ERP system to the Product Catalog microservice. The protocol used
to get product information from the ERP system is defined by the ERP system. It could expose a SOAP web
service for fetching the information, or it might export product information to a proprietary file format.

www.itbook.store/books/9781617293375

https://itbook.store/books/9781617293375

66	 CHAPTER 3 Identifying and scoping microservices

Let’s assume that you aren’t in a position to make changes to the ERP system, so the
integration must be implemented using whatever interface the ERP system has. It
might use a SOAP web service to fetch product information, or it might export all the
product information to a proprietary file format. In either case, the integration must
happen on the ERP system’s terms. Depending on the interface the ERP system
exposes, this may be a smaller or larger task. In any case, it’s a task primarily con
cerned with the technicalities of integrating with some other system, and it has the
potential to be at least somewhat complex. The purpose of this integration is to sup
port the Product Catalog microservice.

 You’ll take the integration out of the Product Catalog microservice and implement
it in a separate ERP Integration microservice that’s responsible solely for that one inte
gration, as illustrated in figure 3.7. You’ll do this for two reasons:

 By moving the technical complexities of the integration to a separate microser
vice, you keep the scope of the Product Catalog microservice narrow and
focused.

 By using a separate microservice to deal with how the ERP data is formatted and
organized, you keep the ERP system’s view of what a product is separate from
the point-of-sale system. Remember that in different parts of a large domain,
there are different views of what terms mean. It’s unlikely that the Product Cat
alog microservice and the ERP system agree on how the product entity is mod
eled. A translation between the two views is needed and is best done by the new
microservice. In domain-driven-design terms, the new microservice acts as an
anti-corruption layer.

NOTE The anti-corruption layer is a concept borrowed from domain-driven
design. It can be used when two systems interact; it protects the domain
model in one system from being polluted with language or concepts from the
model in the other system.

Product data flows to the

Product Catalog microservice

Product data is pulled in a format that’s easy for the
from the ERP system.Product Catalog microservice

SOAP request:
Get all products in
“shirts” category

SOAP response:
XML array of

“shirt” products

Product
data

Query
product
catalog

to consume.

Product Catalog
microservice

ERP Integration
microservice

Enterprise resource
planning (ERP) system

Other
microservices

Figure 3.7 The ERP Integration microservice supports the Product Catalog microservice by handling the
integration with the ERP system. It translates between the way the ERP system exposes product data and
the way the Product Catalog microservice consumes it.

www.itbook.store/books/9781617293375

https://itbook.store/books/9781617293375

67 The secondary driver for scoping microservices: supporting technical capabilities

An added benefit of placing the integration in a separate microservice is that it’s a
good place to address any reliability issues related to integration. If the ERP system is
unreliable, the place to handle that is in the ERP Integration microservice. If the ERP
system is slow, the ERP Integration microservice can deal with that. Over time, you can
tweak the policies used in the ERP Integration microservice to address any reliability
issues with the ERP system without touching the Product Catalog microservice at all.
This integration with the ERP system is an example of a supporting technical capabil
ity, and the ERP Integration microservice is an example of a microservice implement
ing that capability.

SENDING NOTIFICATIONS TO CUSTOMERS

Now let’s consider extending the point-of-sale system with the ability to send notifica
tions about new special offers to registered customers via email, SMS, or push notifica
tion to a mobile app. You can put this capability into one or more separate
microservices.

 At the moment, the point-of-sale system doesn’t know who the customers are. To
drive better customer engagement and customer loyalty, the company decides to start
a small loyalty program where customers can sign up to be notified about special
offers. The customer loyalty program is a new business capability and will be the
responsibility of a new Loyalty Program microservice. Figure 3.8 shows this microser
vice, which is responsible for notifying registered customers every time a new special
offer is available.

Notify registered customers
about special offers

Subscribe to events

Special Offers
microservice

Loyalty Program
microservice

Figure 3.8 The Loyalty Program microservice subscribes to events from the Special
Offers microservice and notifies registered customers when new offers are available.

As part of the registration process, customers can choose to be notified by email, SMS,
or, if they have the company’s mobile app, push notification. This introduces some
complexity in the Loyalty Program microservice in that it must not only choose which
type of notification to use but also deal with how each one works. As a first step, you’ll
introduce a supporting technical microservice for each notification type. This is
shown in figure 3.9.

 This is better. The Loyalty Program microservice doesn’t have to implement all
the details of dealing with each type of notification, which keeps the microservice’s

www.itbook.store/books/9781617293375

https://itbook.store/books/9781617293375

68 CHAPTER 3 Identifying and scoping microservices

Subscribe to events

Send SMS
to customer

Request to
send SMS

Send email
to customer

Request to
send email

Send push
notification to

customer

Request
to send push
notification

Special Offers
microservice

Loyalty Program
microservice

Email Notification
microservice

SMS Notification
microservice

Push Notification
microservice

Figure 3.9 To avoid bogging down the Loyalty Program microservice in technical details for handling each type
of notification, you’ll introduce three supporting technical microservices, one for each type of notification.

scope narrow and focused. The situation isn’t perfect, though: the microservice still
has to decide which of the supporting technical microservices to call for each regis
tered customer.

 This leads you to introducing one more microservice, which acts as a front for the
three microservices handling the three types of notifications. This new Notifications
microservice is depicted in figure 3.10 and is responsible for choosing which type of
notification to use each time a customer needs to be notified. This isn’t really a busi
ness capability, although it’s less technical than dealing with sending SMSs. I consider
the Notifications microservice a supporting technical microservice rather than one
implementing a business capability.

 This example of a supporting technical capability differs from the previous exam
ple of the ERP integration in that other microservices may also need to send notifica
tions to specific customers. For instance, one of the functionalities of the point-of
sales system is to send the customer an electronic receipt. The microservice in charge

Send SMS
to customer

Request to
send SMS

Request
to send

notification

Send email
to customerRequest to

send email

Send push
notification to

Request
to send push
notification

Notifications
microservice

Email Notification
microservice

SMS Notification
microservice

Push Notification
microservice

Subscribe to events

Special Offers
microservice

Loyalty Program
microservice

customer

Figure 3.10 To remove more complexity from the Loyalty Program microservice, you’ll introduce a Notifications
microservice that’s responsible for choosing a type of notification based on customer preferences. Introducing this
microservice has the added benefit of making notifications easier to use from other microservices.

www.itbook.store/books/9781617293375

https://itbook.store/books/9781617293375

69 What to do when the correct scope isn’t clear

of that business capability can also take advantage of the Notifications microservice.
Part of the motivation for moving this supporting technical capability to separate
microservices is that you can reuse the implementation.

3.2.3 Identifying technical capabilities

When you introduce supporting technical microservices, your goal is to simplify the
microservices that implement business capabilities. Sometimes—such as with sending
notifications—you identify a technical capability that several microservices need, and
you turn that into a microservice of its own, so other microservices can share the
implementation. Other times—as with the ERP integration—you identify a technical
capability that unduly complicates a microservice and turn that capability into a
microservice of its own. In both cases, the microservices implementing business capa
bilities are left with one less technical concern to take care of.

 When deciding to implement a technical capability in a separate microservice, be
careful that you don’t violate the microservice characteristic of being individually
deployable. It makes sense to implement a technical capability in a separate microser
vice only if that microservice can be deployed and redeployed independently of any
other microservices. Likewise, deploying the microservices that are supported by the
microservice providing the technical capability must not force you to redeploy the
microservice implementing the technical capability.

 Identifying business capabilities and microservices based on business capabilities is
a strategic exercise, but identifying technical supporting capabilities that could be
implemented by separate microservices is an opportunistic exercise. The question of
whether a supporting technical capability should be implemented in its own microser
vice is about what will be easiest in the long run. You should ask these questions:

 If the supporting technical capability stays in a microservice scoped to a busi
ness capability, is there a risk that the microservice will no longer be replaceable
with reasonable effort?

 Is the supporting technical capability implemented in several microservices
scoped to business capabilities?

 Will a microservice implementing the supporting capability be individually
deployable?

 Will all microservices scoped to business capabilities still be individually deployable
if the supporting technical capability is implemented in a separate microservice?

If your answer is “Yes” to the last two questions and to at least one of the others, you
have a good candidate for a microservice scope.

3.3 What to do when the correct scope isn’t clear
At this point, you may be thinking that scoping microservices correctly is difficult: you
need to get the business capabilities just right, which requires a deep understanding of
the business domain, and you also have to judge the complexity of supporting technical

www.itbook.store/books/9781617293375

https://itbook.store/books/9781617293375

70	 CHAPTER 3 Identifying and scoping microservices

capabilities correctly. And you’re right: it is difficult, and you will find yourself in situa
tions where the right scoping for your microservices isn’t clear.

 This lack of clarity can have several causes, including the following:

 Insufficient understanding of the business domain—Analyzing a business domain
and building up a deep knowledge of that domain is difficult and time consum
ing. You’ll sometimes need to make decisions about the scope of microservices
before you’ve been able to develop sufficient understanding of the business to
be certain you’re making the correct decisions.

 Confusion in the business domain—It’s not only the development side that can be
unclear about the business domain. Sometimes the business side is also unclear
about how the business domain should be approached. Maybe the business is
moving into new markets and must learn a new domain along the way. Other
times, the existing business market is changing because of what competitors are
doing or what the business itself is doing. Either way, on both the business side
and the development side, the business domain is ever-changing, and your
understanding of it is emergent.

 Incomplete knowledge of the details of a technical capability—You may not have access
to all the information about what it takes to implement a technical capability. For
instance, you may need to integrate with a badly documented system, in which
case you’ll only know how to implement the integration once you’re finished.

 Inability to estimate the complexity of a technical capability—If you haven’t previously
implemented a similar technical capability, it can be difficult to estimate how
complex the implementation of that capability will be.

None of these problems means you’ve failed. They’re all situations that occur time
and again. The trick is to know how to move forward in spite of the lack of clarity. In
this section, I’ll discuss what to do when you’re in doubt.

3.3.1 Starting a bit bigger

When in doubt about the scope of a microservice, it’s best to err on the side of making
the microservice’s scope bigger than it would be ideally. This may sound weird—I’ve
talked a lot about creating small, narrowly focused microservices and about the bene
fits that come from keeping microservices small. And it’s true that significant benefits
can be gained from keeping microservices small and narrowly focused. But you must
also look at what happens if you err on the side of too narrow a scope.

 Consider the Special Offers microservice discussed earlier in this chapter. It imple
ments the Special Offers business capability in a point-of-sale system and includes five
different business processes, as illustrated in figure 3.3 and reproduced on the left
side of figure 3.11. If you were uncertain about the boundaries of the Special Offers
business capability and chose to err on the side of too small a scope, you might split
the business capability as shown on the right side of figure 3.11.

www.itbook.store/books/9781617293375

https://itbook.store/books/9781617293375

71 What to do when the correct scope isn’t clear

The Special Offers business capability

Find special
offers that apply to
a list of products

Apply special
offers to invoice

Recommend
special offers based on

a list of products

Track usage
of special offers

Find special
offers that a product

is part of

The Special Offers business capability
wrongly split over two microservices

Apply special
offers to invoice

Recommend
special offers based on

a list of products
Track usage

of special offers

Find special
offers that apply to
a list of products

Find special
offers that a product

is part of

Unclear factoring of responsibility: two processes
with related functionality that need the same data
and the same search logic

Figure 3.11 If you make the scope of a microservice too small, you’ll find that a single business
capability becomes split over several highly coupled parts.

If you base the scope of your microservices on only part of the Special Offers business
capability, you’ll incur some significant costs:

 Data and data-model duplication between the two microservices—Both parts of the
implementation need to store all the special offers in their data stores.

 Unclear factoring of responsibility—One part of the divided business capability can
answer whether a given product is part of any special offers, whereas the other
part can recommend special offers to customers based on past purchases.
These two functions are closely related, and you’ll quickly get into a situation
where it’s unclear in which microservice a piece of code belongs.

www.itbook.store/books/9781617293375

https://itbook.store/books/9781617293375

72	 CHAPTER 3 Identifying and scoping microservices

 Obstacles to refactoring the code for the business capability—This can occur because
the code is spread across the code bases for the two microservices. Such cross-
code base refactorings are difficult because it’s hard to get a complete picture
of the consequences of the refactoring and because tooling support is poor.

 Difficulty deploying the two microservices independently—After refactoring or imple
menting a feature that involves both microservices, the two microservices may
need to be deployed at the same time or in a particular order. Either way, cou
pling between versions of the two microservices violates the characteristic of
microservices being individually deployable. This makes testing, deployment,
and production monitoring more complicated.

These costs are incurred from the time the microservices are first created until you’ve
gained enough experience and knowledge to more correctly identify the business capa
bility and a better scope for a microservice (the entire Special Offers business capability,
in this case). Added to those costs is the fact that difficulty refactoring and implementing
changes to the business capability will result in you doing less of both, so it will take you
longer to learn about the business capability. In the meantime, you pay the cost of the
duplicated data and data model and the cost of the lack of individual deployability.

 We’ve established that preferring to err on the side of too narrow a scope easily
leads to scoping microservices in a way that creates costly coupling between the
microservices. To see if this is better or worse than erring on the side of too big a
scope, we need to look at the costs of that approach.

 If you err on the side of bigger scopes, you might decide on a scope for the Special
Offers microservice that also includes handling coupons. The scope of this bigger
Special Offers microservice is shown in figure 3.12.

Apply special
offers to invoice

Recommend
special offers based on

a list of products

Track usage
of special offers

Issue coupon
code

Apply coupon
to invoice

Check if coupon
code is valid

The Special Offers and Coupons business capabilities
both included in the Special Offers microservice

Find special
offers that apply to
a list of products

Find special
offers that a product

is part of

No data and no logic are
shared across this line.

Figure 3.12 If you choose to err on the side of bigger scopes, you might decide to include the handling of
coupons in the Special Offers business capability.

www.itbook.store/books/9781617293375

https://itbook.store/books/9781617293375

73 What to do when the correct scope isn’t clear

There are costs associated with including too much in the scope of a microservice:

 The code base becomes bigger and more complex, which can lead to changes
being more expensive.

 The microservice is harder to replace.

These costs are real, but they aren’t overwhelming when the scope of the microservice
is still fairly small. Beware, though, because these costs grow quickly with the size of
each microservice’s scope and become overwhelming when the scope is so big that it
approaches a monolithic architecture.

 Nevertheless, refactoring within one code base is much easier than refactoring
across two code bases. This gives you a better chance to experiment and to learn
about the business capability through experiments. If you take advantage of this
opportunity, you can arrive at a good understanding of both the Special Offers busi
ness capability and the Coupons business capability more quickly than if you scoped
your microservices too narrowly.

 This argument holds true when your microservices are a bit too big, but it falls
apart if they’re much too big, so don’t get lazy and lump several business capabilities
together in one microservice. You’ll quickly have a large, hard-to-manage code base
with many of the drawbacks of a full-on monolith.

 All in all, microservices that are slightly bigger than they should ideally be are both
less costly and allow for more agility than if they’re slightly smaller than they should
ideally be. Thus, the rule of thumb is to err on the side of slightly bigger scopes.

 Once you accept that you’ll sometimes—if not often—be in doubt about the best
scope for a microservice and that in such cases you should lean toward a slightly bigger
scope, you can also accept that you’ll sometimes—if not often—have microservices in
your system that are somewhat larger than they should ideally be. This means you should
expect to have to carve new microservices out of existing ones from time to time.

3.3.2 Carving out new microservices from existing microservices

When you realize that one of your microservices is too big, you’ll need to look at how
to carve a new microservice out of it. First you need to identify a good scope for both
the existing microservice and the new microservice. To do this, you can use the drivers
described earlier in this chapter.

 Once you’ve identified the scopes, you must look at the code to see if the way it’s
organized aligns with the new scopes. If not, you should begin refactoring toward that
alignment. Figure 3.13 illustrates on a high level the refactorings needed to prepare
to carve out a new microservice from an existing one. First, everything that will even
tually go into the new microservice is moved to its own class library. Then, all commu
nication between code that will stay in the existing microservice and code that will be
moved to the new microservice is refactored to go through an interface. This inter
face will become part of the public HTTP interface of the two microservices once
they’re split apart.

www.itbook.store/books/9781617293375

https://itbook.store/books/9781617293375

74 CHAPTER 3 Identifying and scoping microservices

Step 0: Special Offers microservice
including Coupons capability

Step 1: Special Offers microservice
still includes Coupons capability, but
Coupons capability is refactored into
a separate project.

Step 2: Special Offers microservice
still includes Coupons capability, but
Coupons capability is refactored and
all communication is going through
a public API.

Public API

Figure 3.13 Preparing to carve out a new microservice by refactoring: first move everything belonging
to the new microservice into its own project, and then make all communication go through a public API
similar to the one the new microservice will end up having.

When you’ve reached step 2 in figure 3.13, the new microservice can be split out from
the old one with a manageable effort. Create a new microservice, move the code that
needs to be carved out of the existing microservice over to the new microservice, and
change the communication between the two parts to go over HTTP.

www.itbook.store/books/9781617293375

https://itbook.store/books/9781617293375

75 Well-scoped microservices adhere to the microservice characteristics

3.3.3	 Planning to carve out new microservices later

Because you consciously err on the side of making your microservices a bit too big
when you’re in doubt about the scope of a microservice, you have a chance to foresee
which microservices will have to be divided at some point. If you know a microservice
is likely to be split later, it would be nice if you could plan for that split in a way that
will save you one or two of the refactoring steps shown in figure 3.13. It turns out you
can often make that kind of plan.

 Often you’ll be unsure whether a particular function is a separate business capabil
ity, so you’ll follow the rule of thumb and include it in a larger business capability,
implemented within a microservice scoped to that larger business capability. But you
can remain conscious of the fact that this area might be a separate business capability.

 Think about the definition of the Special Offers business capability that includes
processes for dealing with coupons. You may well have been in doubt about whether
handling coupons was a business capability on its own, so the Special Offers business
capability was modeled as including all the processes shown in figure 3.12.

 When you first implement a Special Offers microservice scoped to the understand
ing of the Special Offers business capability illustrated in figure 3.12, you don’t know
whether the coupons functionality will eventually be moved to a Coupons microser
vice. You do know, however, that the coupons functionality isn’t as closely related to
the rest of the microservice as some of the other areas. It’s therefore a good idea to
put a clear boundary around the coupons code in the form a well-defined public API
and to put the coupons code in a separate class library. This is sound software design,
and it will also pay off if one day you end up carving out the coupons code to create a
new Coupons microservice.

3.4	 Well-scoped microservices adhere to the microservice
characteristics
I’ve talked about scoping microservices by identifying business capabilities first and
supporting technical capabilities second. In this section, I’ll discuss how this approach
to scoping aligns with these four characteristics of microservices mentioned at the
beginning of this chapter:

 A microservice is responsible for a single capability.
 A microservice is individually deployable.
 A small team can maintain a handful of microservices.
 A microservice is replaceable.

NOTE It’s important to note that the relationship between the drivers for
scoping microservices and the characteristics of microservices goes both ways.
The primary and secondary drivers lead toward adhering to the characteris
tics, but the characteristics also tell you whether you’ve scoped your microser
vices well or need to push the drivers further to find better scopes for your
microservices.

www.itbook.store/books/9781617293375

https://itbook.store/books/9781617293375

76	 CHAPTER 3 Identifying and scoping microservices

3.4.1	 Primarily scoping to business capabilities leads to good microservices

The primary driver for scoping microservices is identifying business capabilities. Let’s
see how that makes for microservices that adhere to the microservice characteristics.

RESPONSIBLE FOR A SINGLE CAPABILITY

A microservice scoped to a single business capability by definition adheres to the first
microservice characteristic: it’s responsible for a single capability. As you saw in the
examples of identifying supporting technical capabilities, you have to be careful: it’s
easy to let too much responsibility slip into a microservice scoped to a business capa
bility. You have to be diligent in making sure that what a microservice implements is
just one business capability and not a mix of two or more. You also have to be careful
about putting supporting technical capabilities in their own microservices. As long as
you’re diligent, microservices scoped to a single business capability adhere to the first
characteristic of microservices.

INDIVIDUALLY DEPLOYABLE

Business capabilities are those that can be performed by largely independent groups
within an organization, so the business capabilities themselves must be largely inde
pendent. As a result, microservices scoped to business capabilities are largely inde
pendent. This doesn’t mean there’s no interaction between such microservices—
there can be a lot of interaction, both through direct calls between services and
through events. The point is that the interaction happens through well-defined pub
lic interfaces that can be kept backward compatible. If implemented well, the interac
tion is such that other microservices continue to work even if one has a short outage.
This means well-implemented microservices scoped to business capabilities are indi
vidually deployable.

REPLACEABLE AND MAINTAINABLE BY A SMALL TEAM

A business capability is something a small group in an organization can handle. This
limits its scope and thus also limits the scope of microservices scoped to business capa
bilities. Again, if you’re diligent about making sure a microservice handles only one
business capability and that supporting technical capabilities are implemented in
their own microservices, the microservices’ scope will be small enough that a small
team can maintain at least a handful of microservices and a microservice can be
replaced fairly quickly if need be.

3.4.2	 Secondarily scoping to supporting technical capabilities leads to
good microservices

The secondary driver for scoping microservices is identifying supporting technical
capabilities. Let’s see how that makes for microservices that adhere to the microser
vice characteristics.

www.itbook.store/books/9781617293375

https://itbook.store/books/9781617293375

Summary	 77

RESPONSIBLE FOR A SINGLE CAPABILITY

Just as with microservices scoped to business capabilities, scoping a microservice to a
single supporting technical capability by definition means it adheres to the first char
acteristic of microservices: it’s responsible for a single capability.

INDIVIDUALLY DEPLOYABLE

Before you decide to implement a technical capability as a separate supporting techni
cal capability in a separate microservice, you need to ask whether that new microser
vice will be individually deployable. If the answer is “No,” you shouldn’t implement it
in a separate microservice. Again, by definition, a microservice scoped to a supporting
technical capability adheres to the second microservice characteristic.

REPLACEABLE AND MAINTAINABLE BY A SMALL TEAM

Microservices scoped to a supporting technical capability tend to be narrowly and
clearly scoped. On the other hand, part of the point of implementing such capabilities
in separate microservices is that they can be complex. In other words, microservices
scoped to a supporting technical capability tend to be small, which points toward adher
ing to the microservice characteristics of replaceability and maintainability; but the
code inside them may be complex, which makes them harder to maintain and replace.

 This is an area where there’s a certain back and forth between using supporting
technical capabilities to scope microservices on one hand, and the characteristics of
microservices on the other. If a supporting technical microservice is becoming so
complex that it will be hard to replace, this is a sign that you should probably look
closely at the capability and try to find a way to break it down further. As in the exam
ple about notification (see section 3.2.2), it’s fine to have one supporting technical
microservice use others behind the scenes.

3.5 Summary
 The primary driver in scoping microservices is identifying business capabilities.

Business capabilities are the things an organization does that contribute to ful
filling business goals.

 You can use techniques from domain-driven design to identify business capabil
ities. Domain-driven design is a powerful tool for gaining better and deeper
understanding of a domain. That kind of understanding enables you to identify
business capabilities.

 The secondary driver in scoping microservices is identifying supporting techni
cal capabilities. A supporting technical capability is a technical function needed
by one or more microservices scoped to business capabilities.

 Supporting technical capabilities should be moved to their own microservices
only if they’re sufficiently complex to be a problem in the microservices they
would otherwise be part of, and if they can be individually deployed.

www.itbook.store/books/9781617293375

https://itbook.store/books/9781617293375

78	 CHAPTER 3 Identifying and scoping microservices

 Identifying supporting technical capabilities is an opportunistic form of design.
You should only pull a supporting technical capability into a separate microser
vice if it will be an overall simplification.

 When you’re in doubt about the scope of a microservice, lean toward making
the scope slightly bigger rather than slightly smaller.

 Because scoping microservices well is difficult, you’ll probably be in doubt some
times. You’re also likely to get some of the scopes wrong in your first iteration.

 You must expect to have to carve new microservices out of existing ones from
time to time.

 You can use your doubt about scope to organize the code in your microservices
so that they lend themselves to carving out new microservices at a later stage.

www.itbook.store/books/9781617293375

https://itbook.store/books/9781617293375

MICROSOFT.NET/MICROSERVICES

Microservices in .NET Core

Christian Horsdal Gammelgaard

M
icroservice applications are built by connecting single-
capability, autonomous components that communicate
via APIs. These systems can be challenging to develop

because they demand clearly defined interfaces and reliable
infrastructure. Fortunately for .NET developers, OWIN (the
Open Web Interface for .NET), and the Nancy web frame
work help minimize plumbing code and simplify the task of
building microservice-based applications.

Microservices in .NET Core provides a complete guide to build
ing microservice applications. After a crystal-clear introduc
tion to the microservices architectural style, the book will
teach you practical development skills in that style, using
OWIN and Nancy. You’ll design and build individual services
in C# and learn how to compose them into a simple but
functional application back end. Along the way, you’ll
address production and operations concerns like monitoring,
logging, and security.

What’s Inside
● Design robust and ops-friendly services
● Build HTTP APIs with Nancy
● Expose events via feeds with Nancy
● Use OWIN middleware for plumbing

This book is written for C# developers. No previous experi
ence with microservices required.

Christian Horsdal Gammelgaard is a Nancy committer and a
Microsoft MVP.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/microservices-in-net-core

M A N N I N G $49.99 / Can $57.99 [INCLUDING eBOOK]

SEE INSERT

“A definite must-read for

anyone who works in

C#/.NET regularly.”
 —Nick McGinness, Direct Supply

“Elegant and convincing.

Developers will rethink their

application architecture.”
 —James McGinn

Bull Valley Software

“Brings together two

modern technologies

and delves deeply

into the code.”
 —Andy Kirsch

Concur Technologies

“An extremely approachable
book that tackles a

complex topic.” —Shahid Iqbal
Head For Cloud

www.itbook.store/books/9781617293375

www.manning.com/books/microservices-in-net-core
https://itbook.store/books/9781617293375

