
M A N N I N G

Paul P. Daniels
Luis Atencio
FOREWORD BY Ben Lesh

SAMPLE CHAPTER

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412


RxJS in Action
by Paul P. Daniels

Luis Atencio

Chapter 1

    Copyright 2017 Manning Publications

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412


v

brief contents
PART 1 UNDERSTANDING STREAMS 1

1 ■ Thinking reactively 3
2 ■ Reacting with RxJS 28
3 ■ Core operators 61
4 ■ It’s about time you used RxJS 85

PART 2 OBSERVABLES IN PRACTICE 119
5 ■ Applied reactive streams 121
6 ■ Coordinating business processes 151
7 ■ Error handling with RxJS 182

PART 3 MASTERING RXJS 209
8 ■ Heating up observables 211
9 ■ Toward testable, reactive programs 245

10 ■ RxJS in the wild 271

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412


3

Thinking reactively

Right now, somewhere in the world, someone just created a tweet, a stock price just
dropped, and, most certainly, a mouse just moved. These tiny pinpricks of data light
up the internet and pass ubiquitously through semiconductors scattered across the
planet. A deluge of data propagates from any connected device. What does this have
to do with you? As you push your code to production, this fire hose of events is
pointed squarely at your JavaScript application, which needs to be prepared to han-
dle it effectively. This creates two important challenges: scalability and latency. 

 As more and more data is received, the amount of memory that your applica-
tion consumes or requires will grow linearly or, in worst cases, exponentially; this is

This chapter covers
 Comparing asynchronous JavaScript with 

callback- and Promise-based solutions

 Using streams to model static, dynamic, and 
time-bound data 

 Using observable streams to handle unbounded 
data in a functional manner

 Thinking reactively to deal with the composition of 
asynchronous data flows 

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412


4 CHAPTER 1 Thinking reactively

the classic problem of scalability, and trying to process it all at once will certainly cause
the user interface (UI) to become unresponsive. Buttons may no longer appear to
work, fancy animations will lag, and the browser may even flag the page to terminate,
which is an unacceptable notion for modern web users.

 This problem is not new, though in recent years there has been exponential
growth in the sheer scale of the number of events and data that JavaScript applications
are required to process. This quantity of data is too big to be held readily available and
stored in memory for use. Instead, we must create ways to fetch it from remote loca-
tions asynchronously, resulting in another big challenge of interconnected software
systems: latency, which can be difficult to express in code.

 Although modern system architectures have improved dramatically to include
faster network devices and highly concurrent processing, the libraries and methods
for dealing with the added complexity of remote data haven’t made the same strides.
For example, when it comes to fetching data from a server or running any deferred
computation, most of us still rely on the use of callbacks, a pattern that quickly breaks
down when business rules evolve and change or the problem we’re trying to solve
involves data that lives not in one but in several different remote locations.

 The solution lies not only in which library to use but which paradigm best suits
these types of problems. In this book, you’ll first learn about the fundamental princi-
ples of two emerging paradigms: functional programming (FP) and reactive program-
ming (RP). This exhilarating composition is what gives rise to functional reactive
programming (FRP), encoded in a library called RxJS (or rx.js), which is the best pre-
scription to deal with asynchronous and event-based data sources effectively. 

 Our prescriptive roadmap has multiple parts. First, you’ll learn about the princi-
ples that lead to thinking reactively as well as the current solutions, their drawbacks,
and how RxJS improves on them. With this new-found mindset, you’ll dive into RxJS
specifics and learn about the core operators that will allow you to express complex
data flows of bounded or unbounded data in a succinct and elegant manner. You’ll
learn why RxJS is ideal for applications of any size that are event driven in nature. So,
along the way, you’ll find real-world examples that demonstrate using this library to
combine multiple pieces of remote data, autocompleting input fields, drag and drop,
processing user input, creating responsive UIs, parallel processing, and many others.
These examples are intended to be narrow in scope as you work through the most
important features of RxJS. Finally, all these new techniques will come together to end
your journey with a full-scale web application using a hybrid React/Rx architecture. 

 The goal of this chapter is to give a broad view of the topics you’ll be learning
about in this book. We’ll focus on looking at the limitations of the current solutions
and point you to the chapters that show how RxJS addresses them. Furthermore,
you’ll learn how to shift your mindset to think in terms of streams, also known as func-
tional sequences of events, which RxJS implements under the hood through the use of
familiar patterns such as iterator and observer. Finally, we’ll explore the advantages of
RxJS to write asynchronous code, minus the entanglement caused by using callbacks,

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412


5Synchronous vs. asynchronous computing

which also scales to any amount of data. Understanding the differences between these
two worlds is crucial, so let’s begin there.

1.1 Synchronous vs. asynchronous computing
In simple terms, the main factor that separates the runtime of synchronous and asyn-
chronous code is latency, also known as wait time. Coding explicitly for time is difficult
to wrap your head around; it’s much easier to reason about solutions when you’re able
to see the execution occur synchronously in the same order as you’re writing it: “Do
this; then immediately do that.” 

 But the world of computing doesn’t grant such luxuries. In this world of highly
networked computing, the time it takes to send a message and receive a response rep-
resents critical time in which an application can be doing other things, such as
responding to user inputs, crunching numbers, or updating the UI. It’s more like “Do
this (wait for an indeterminate period of time); then do that.” The traditional
approach of having applications sit idle waiting for a database query to return, a net-
work to respond, or a user action to complete is not acceptable, so you need to take
advantage of asynchronous execution so that the application is always responsive. The
main issue here is whether it’s acceptable to block the user on long-running processes. 

1.1.1 Issues with blocking code

Synchronous execution occurs when each block of code must wait for the previous
block to complete before running. Without a doubt, this is by far the easiest way to
implement code because you put the burden on your users to wait for their processes
to complete. Many systems still work this way today, such as ATMs, point of sale sys-
tems, and other dumb terminals. Writing code this way is much easier to grasp, main-
tain, and debug; unfortunately, because of JavaScript’s single-threaded nature, any
long-running tasks such as waiting for an AJAX call to return or a database operation
to complete shouldn’t be done synchronously. Doing so creates an awful experience
for your users because it causes the entire application to sit idle waiting for the data to
be loaded and wasting precious computing cycles that could easily be executing other
code. This will block further progress on any other tasks that you might want to exe-
cute, which in turn leads to artificially long load times, as shown in figure 1.1.

 In this case, the program makes a blocking call to process 1, which means it must
wait for it to return control to the caller, so that it can proceed with process 2. This
might work well for kiosks and dumb terminals, but browser UIs should never be
implemented this way. Not only would it create a terrible user experience (UX), but
also browsers may deem your scripts unresponsive after a certain period of inactivity
and terminate them. Here’s an example of making an HTTP call that will cause your
application to block, waiting on the server to respond:

let items = blockingHttpCall('/data');
items.forEach(item => {
  // process each item
});

Loading server-side data synchronously halts 
program execution. The nature of the data 
isn’t important right now; it’s some generic 
sample data pertaining to your application.

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412


6 CHAPTER 1 Thinking reactively

A better approach would be to invoke the HTTP call and perform other actions while
you’re waiting on the response. Long-running tasks aren’t the only problem; as we
said earlier, mouse movement generates a rapid succession of very quick, fine-grained
events. Waiting to process each of these synchronously will cause the entire applica-
tion to become unresponsive, whether it’s long wait times or handling hundreds of
smaller waits quickly. So what can you do to handle these types of events in a non-
blocking manner? Luckily, JavaScript provides callback functions.

1.1.2 Non-blocking code with callback functions

Using functions as callbacks has been a staple of JavaScript development for years.
They’re used in everything from mouse clicks and key presses to handling remote
HTTP requests or file I/O. JavaScript, being a single-threaded language, requires such
a construct in order to maintain any level of usability. Callback functions were created
to tackle the problem of blocking for long-running operations to complete by allow-
ing you to provide a handler function that the JavaScript runtime will invoke once the
data is ready for use. In the meantime, your application can continue carrying out any
other task, as shown in figure 1.2. 

Program

Process 1

Process 2

Invoke block call

Blocked! Must wait for
process 1 to complete.

Program execution

Figure 1.1 A program that invokes two processes synchronously. A process in this case 
can be as simple as a function call, an I/O process, or a network transaction. When 
process 1 runs, it blocks anything else from running. 

App

Callback

Make HTTP request

Input

Inversion
of control

Output

Figure 1.2 Callback functions in JavaScript create an inversion of control 
where functions call the application back, instead of the other way around.

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412


7Synchronous vs. asynchronous computing

 Unlike the previous code that makes a blocking HTTP call that you must wait for,
using callbacks with asynchronous (AJAX) requests creates an inversion of control that
permits your application to continue executing the next lines of code. Inversion of
control in this sense refers to the way in which certain parts of your code receive the
flow of control back from the runtime system. In this case, the runtime calls you (or
returns control to you) via the function handler when the data is ready to be pro-
cessed; hence, the term callback. Look at this alternative:

ajax('/data',
  items  => {
     items.forEach(item => {
        // process each item
     });
});
beginUiRendering();

Callback functions allow you to invoke code asynchronously, so that the application
can return control to you later. This allows the program to continue with any other
task in the meantime. In this code sample, the HTTP function runs in the background
and immediately returns control to the caller to begin rendering the UI; it handles the
contents of the items only after it has completely loaded. This behavior is ideal because
it frees up the application to make progress on other tasks such as loading the rest of a
web page, as in this case. As you’ll see throughout this book, asynchronous code is a
good design for I/O-bound work like fetching data from the web or a database. The
reason this works is that I/O processes are typically much slower than any other type of
instruction, so we allow them to run in the background because they’re not depen-
dent on processor cycles to complete.

SYNTAX CHECK In the code sample in section 1.1.2, the second parameter of
ajax() is the callback function. In that code, as in many parts of the book, we
use the ECMAScript 6 lambda expression syntax,1 which offers a terser and
more succinct way of invoking functions. Also called arrow functions, lambda
expressions behave somewhat similarly to an anonymous function call, which
you’re probably familiar with. The subtle difference has to do with what the
keyword this refers to. On rare occasions, when the value of this is import-
ant, we’ll call it out in the text and switch to using an anonymous function
expression.

1.1.3 Understanding time and space

Certainly, asynchronous functions allow us to stay responsive, but they come at a price.
Where synchronous programs allow us to reason directly about the state of the appli-
cation, asynchronous code forces us to reason about its future state. What does this
mean? State can be understood simply as a snapshot of all the information stored into

1 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions.

No explicit return value
Declaration of callback function

All processing is carried out within the callback body 
after the data has been fetched from the server.

This function begins immediately after AJAX is called.

www.itbook.store/books/9781617293412

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://itbook.store/books/9781617293412


8 CHAPTER 1 Thinking reactively

variables at any point in time. This information is created and manipulated via
sequences of statements. Synchronous code can be thought of as an ordered, step-by-
step execution of statements, as shown in figure 1.3.

 In this model, it’s easy to determine at any point what the states of the variables are
and what will occur next, which is why it’s easy to write and debug. But when tasks
have different wait times or complete at different times, it’s difficult to guarantee how
they’ll behave together. Functions that terminate at unpredictable times are typically
harder to deal with without the proper methods and practices. When this happens,
the mental model of our application needs to shift to compensate for this additional
dimension. Compare figure 1.3 to the model in figure 1.4, which grows not only verti-
cally but also horizontally.

As of now, if steps 1, 2, and 3 were independent tasks, then executing them in any
order wouldn’t be a problem. But if these were functions that shared any global state,
then their behavior would be determined by the order in which they were called or by
the global state of the system. These conditions we refer to as side effects, which you’ll
learn more about in chapter 2; they involve situations where you need to read or mod-
ify an external resource like a database, the DOM, the console, and others. Functions
with side effects can perform unreliably when run in any arbitrary order. In functional
and reactive programming, you’ll learn to minimize them by using pure functions, and
you’ll learn in this book that this is extremely advantageous when dealing with asyn-
chronous code. 

Step 1 Step 2

Program execution

Step 3
Figure 1.3 Synchronous code is a 
step-by-step sequential execution of 
statements where each step 
depends on the previous one to run.

Step 1

Step 2

Step 3

Program execution

Completes

Completes

Completes

Figure 1.4 In asynchronous execution, steps that are invoked in sequence need 
not terminate all at the same time. So there’s absolutely no guarantee that you 
can rely on the data from step 1 to be available in step 2, for example.

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412


9Synchronous vs. asynchronous computing

 So, assuming that our functions were side effect free, we still have another important
issue—time. Steps 1, 2, and 3 might complete instantly or might not complete depend-
ing on the nature of the work. The main issue is how we can guarantee that these steps
run in the correct order. As you’ve probably done many times before, the proper way
to achieve this is by composing these functions together, so that the output of one
becomes the input to the next, and therefore a chain of steps is created. The traditional
approach that ensures the proper sequence of steps takes place is to nest a sequence of
callbacks, and the model of the application’s runtime resembles figure 1.5.

Undoubtedly, this nested control flow is much harder to reason about than the syn-
chronous, straight-line model of figure 1.4. In figure 1.5, step 1 runs first, which then
calls step 2 as soon as it completes; then step 3 executes, and so on for the rest of the
steps. This suggests the presence of a temporal dependency or time coupling between
these steps, which means that one can begin as soon as the previous finishes—it’s a
chain of commands. In this scenario, the callback functions are used to respond to the
asynchronous request that happened before them and begin processing its data. This
happens typically when making sequential AJAX requests, but it can also happen when
mixing in any other event-based system, whether it be key presses, mouse movements,
database reads and writes, and others; all these systems rely on callbacks.

1.1.4 Are callbacks out of the picture?

The short answer is no. Using a paradigm to tackle event-based or asynchronous code
isn’t necessary when you’re dealing with simple interactions with users or external ser-
vices. If you’re writing a simple script that issues a single remote HTTP request, RxJS is
a bit of overkill, and callbacks remain the perfect solution. On the other hand, a
library that mixes functional and reactive paradigms really begins to shine when
implementing state machines of moderate-to-advanced complexity such as dynamic
UIs or service orchestration. Some examples of this can be the need to orchestrate the
execution of several business processes that consume several microservices, data
mashups, or perhaps the implementation of features of a rich UI made up of several
widgets on the page that interact with each other.

Step 1

Step 2

Calls step 2

Step 3

Program execution

Calls step 3
Figure 1.5 In order to guarantee the 
proper order of steps and 
asynchronous invocation takes place, 
we use callback functions to transfer 
control of the application once a long-
running operation terminates.

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412


10 CHAPTER 1 Thinking reactively

 Consider the task of loading data from the client originating from different
remote server-side endpoints. To coordinate among them, you’d need several nested
AJAX requests where each step wraps the processing of the data residing within each
callback body in the logic of invoking the next step, as you saw previously in figure 1.5.
Following is a possible solution for this, which requires the use of three composed call-
back functions to load datasets that potentially live in the same host or different hosts,
together with its related meta-information and files:

ajax('<host1>/items',
   items => {
      for (let item of items) {
      ajax(`<host2>/items/${item.getId()}/info`,
         dataInfo => {   
         ajax(`<host3>/files/${dataInfo.files}`,
             processFiles);   
       });
    }
});
beginUiRendering();

Now although you might think this code looks trivial, if continuing this pattern, we’ll
begin to sink into horizontally nested calls—our model starts to grow horizontally. This
trend is informally known in the JavaScript world as callback hell, a design that you’ll
want to avoid at all costs if you want to create maintainable and easy-to-reason-about pro-
grams. It isn’t simply aesthetics—making sure that separate asynchronous operations are
synchronized is hard enough without also having difficult-to-read code. There’s another
hidden problem with this code. Can you guess what it is? It occurs when you mix a syn-
chronous artifact like a for..of imperative block invoking asynchronous functions.
Loops aren’t aware that there’s latency in those calls, so they’ll always march ahead no
matter what, which can cause some really unpredictable and hard-to-diagnose bugs. In
these situations, you can improve matters by creating closures around your asynchro-
nous functions, managed by using forEach() instead of the loop: 

ajax('<host1>/items', 
   items => {
      items.forEach(item => {
         ajax(`<host2>/items/${item.getId()}/info`,
         dataInfo => {   
         ajax(`<host3>/files/${dataInfo.files}`,
         processFiles);   
       });
     }); 
});

This is why in RxJS—and FP in general, for that matter—all loops are virtually elimi-
nated! Instead, in chapters 4 and 5 you’ll learn about operators that allow you to
spawn sequences of asynchronous requests taking advantage of pure functions to keep
all of the information properly scoped. Another good use of callbacks is to implement
APIs based on Node.js event emitters. Let’s jump into this next. 

Loads all items you want to display

For each item, loads 
additional meta-information

For each meta record, 
loads associated files

The forEach() method of arrays will 
properly scope each item object 
into the nested HTTP call.

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412


11Synchronous vs. asynchronous computing

1.1.5 Event emitters

Event emitters are popular mechanisms for asynchronous event-based architectures.
The DOM, for instance, is probably one of the most widely known event emitters. On a
server like Node.js, certain kinds of objects periodically produce events that cause
functions to be called. In Node.js, the EventEmitter class is used to implement APIs
for things like WebSocket I/O or file reading/writing so that if you’re iterating
through directories and you find a file of interest, an object can emit an event refer-
encing this file for you to execute any additional code. 

 Let’s implement a simple object to show this API a bit. Consider a simple calculator
object that can emit events like add and subtract, which you can hook any custom
logic into; see figure 1.6.

Here’s some code for the calculator add and subtract events:

const EventEmitter = require('events');

class Calculator extends EventEmitter {}

const calc = new Calculator();

calc.addListener('add', (a, b) => {
  calc.emit('result’,  a + b); 
});
calc.addListener('subtract', (a, b) => {
  calc.emit('result', a - b);

Add
emit(2, 3)

5

−1

Calculator Client

Adder function

When an emitter fires the
event, it executes the logic
associated to that event.

Calculator publishes
a set of events

emit(2, 3)
Minus functionSubtract

Figure 1.6 Node emitter object representing a simple calculator, which exposes two events: add 
and subtract

Loads the events module

Creates a custom emitter

Handles the add event

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412


12 CHAPTER 1 Thinking reactively

});

calc.addListener('result', (result) => {
 console.log('Result: ' + result);
});

calc.emit('add', 2, 3);      //-> Prints 'Result: 5'
calc.emit('subtract', 2, 3); //-> Prints 'Result: 1'

Subscribing to an event emitter is done through the addListener() method, which
allows you to provide the callback that will be called when an event of interest is fired.
Unfortunately, event emitters have all of the same problems associated with using call-
backs to handle emitted data coming from multiple composed resources. Overall,
composing nested asynchronous flow is difficult.

 The JavaScript community as a whole has made strides in the right direction to
solve these types of issues. With the help of patterns emerging from FP, an alternative
available to you with ES6 is to use Promises.

1.2 Better callbacks with Promises
All hope is not lost; we promise you that. Promises are not part of the RxJS solution,
but they work together perfectly well. JavaScript ES6 introduced Promises to represent
any asynchronous computation that’s expected to complete in the future. With Prom-
ises, you can chain together a set of actions with future values to form a continuation.2

A continuation is just a fancy term for writing callbacks and has a lot to do with the
principle of Inversion of Control we referenced earlier. A continuation (a callback)
allows the function to decide what it should do next, instead of indiscriminately wait-
ing for a return value. They’re used heavily when iterating over arrays, tree structures,
try/catch blocks, and, of course, asynchronous programming. So, the code you saw
earlier— 

ajax('<host1>/items',    
   items => {
       for (let item of items) {
          ajax(`<host2>/items/${item.getId()}/info`, 
          dataInfo => {   
          ajax(`<host3>/files/${dataInfo.files}`,
          processFiles);   
       });
    }
});

—is known to be continuation-passing style (CPS), because none of the functions are
explicitly waiting for a return value. But as we mentioned, abusing this makes code
hard to reason about. What you can do is to make continuations first-class citizens and
actually define a concrete interpretation of what it means to “continue.” So, we intro-
duce the notion of then: “Do X, then do Y,” to create code that reads like this: 

2 http://www.2ality.com/2012/06/continuation-passing-style.html.

www.itbook.store/books/9781617293412

http://www.2ality.com/2012/06/continuation-passing-style.html
https://itbook.store/books/9781617293412


13Better callbacks with Promises

Fetch all items, then
   For-each item fetch all files, then
      Process each file

This is where Promises come in. A Promise is a data type that wraps an asynchronous
or long-running operation, a future value, with the ability for you to subscribe to its
result or its error. A Promise is considered to be fulfilled when its underlying opera-
tion completes, at which point subscribers will receive the computed result. Because
we can’t alter the value of a Promise once it’s been executed, it’s actually an
immutable type, which is a functional quality we seek in our programs. Different
Promise implementations exist based on the Promises/A+ protocol (see https://
promisesaplus.com/), and it’s designed to provide some level of error handling and
continuations via the then() methods. Here’s how you can tackle the same example if
you assume that ajax() returns Promises:

ajax('<host1>/items')
  .then(items => 
    items.forEach(item => 
      ajax(`<host2>/data/${item.getId()}/info`)
       .then(dataInfo => 
         ajax(`<host3>/data/files/${dataInfo.files}`)
       )
       .then(processFiles);
    )
  );

This looks similar to the previous statement! Being a more recent addition to the lan-
guage with ES6 and inspired in FP design, Promises are more versatile and idiomatic
than callbacks. Applying these functions declaratively—meaning your code expresses
the what and not the how of what you’re trying to accomplish—into then blocks allows
you to express side effects in a pure manner. We can refactor this to be more declara-
tive by pulling out each function independently

let getItems = () => ajax('<host1>/items');
let getInfo  = item => ajax(`<host2>/data/${item.getId()}/info`);
let getFiles = dataInfo => ajax(`<host3>/data/files/${dataInfo.files}`);

and then use Promises to stitch together our asynchronous flow. We use the Promise
.all() function to map an array of separate Promises into a single one containing an
array of results:

getItems()
  .then(items => items.map(getInfo))
  .then(promises => Promise.all(promises))
  .then(infos => infos.map(getFiles))
  .then(promises => Promise.all(promises))
  .then(processFiles);

The use of then() explicitly implies that there’s time involved among these calls,
which is a really good thing. If any step fails, we can also have matching catch()
blocks to handle errors and potentially continue the chain of command if necessary,
as shown in figure 1.7.

The key term “then” suggests 
time and sequence.

www.itbook.store/books/9781617293412

https://promisesaplus.com/
https://promisesaplus.com/
https://promisesaplus.com/
https://itbook.store/books/9781617293412


14 CHAPTER 1 Thinking reactively

Of course, Promises also have shortcomings, or else we wouldn’t be talking about Rx.
The drawback of using Promises is that they’re unable to handle data sources that pro-
duce more than one value, like mouse movements or sequences of bytes in a file
stream. Also, they lack the ability to retry from failure—all present in RxJS. The most
important downside, moreover, is that because Promises are immutable, they can’t be
cancelled. So, for instance, if you use a Promise to wrap the value of a remote HTTP
call, there’s no hook or mechanism for you to cancel that work. This is unfortunate
because HTTP calls, based on the XmlHttpRequest object, can be aborted,3 but this
feature isn’t honored through the Promise interface. These limitations reduce their
usefulness and force developers to write some of the cancellation logic themselves or
seek other libraries.

 Collectively, Promises and event emitters solve what are essentially the same prob-
lems in slightly different ways. They have different use cases (Promises for single-value
returns like HTTP requests and event emitters for multiple-value returns like mouse
click handlers), mostly because of their own implementation constraints, not because
the use cases are so different. The result is that in many scenarios a developer must
use both in order to accomplish their goal, which can often lead to disjointed and
confusing code.

 The problems of readability; hard-to-reason-about code; and the downsides of cur-
rent technology that we’ve discussed so far aren’t the only reasons that we, as develop-
ers, need to worry about asynchronous code. In this next section, we’ll outline more
concretely why we need to switch to a different paradigm altogether to tackle these
issues head on.

1.3 The need for a different paradigm
For many years now, we’ve learned to use many JavaScript async libraries; everyone has
their own preference, whether it be JQuery, Async.js, Q.js, or others, yet they all fall
short one way or another. We believe that it’s not a matter of just choosing a library,

3  https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/abort.

Promise
(HTTP request)

Rejected

Fulfilled

.then(handleResponse)

.catch(error)

Figure 1.7 Promises create a flow of calls chained by then methods. If the 
Promise is fulfilled, the chain of functions continues; otherwise, the error is delegated 
to the Promise catch block.

www.itbook.store/books/9781617293412

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/abort
https://itbook.store/books/9781617293412


15The need for a different paradigm

but choosing the right paradigm for the job. By combining functional and reactive
programming paradigms, RxJS will help you address the following issues:

 Familiar control flow structures (like for and while loops) with asynchronous
functions don’t work well together because they’re not async aware; that is,
they’re oblivious of wait time or latency between iterations.

 Error-handling strategies become easily convoluted when you begin nesting
try/catch blocks within each callback. In chapter 7, we’ll approach error han-
dling from a functional perspective. Also, if you want to implement some level
of retry logic at every step, this will be incredibly difficult even with the help of
other libraries.

 Business logic is tightly coupled within the nested callback structure you need
to support. It’s plain to see that the more nested your code is, the harder it is to
reason about. Functions that are deeply nested become entangled with other
variables and functions, which is problematic in terms of readability and com-
plexity. It would be ideal to be able to create reusable and modular components
in order to have loosely coupled business logic that can be maintained and unit
tested independently. We’ll cover unit testing with RxJS in chapter 9.

 You want to avoid excessive use of closures, but functions in JavaScript create a
closure around the scope in which they’re declared. Nesting them means that
you need to be concerned about not just the state of the variables passed in as
arguments but also the state of all external variables surrounding each function
declaration, causing side effects to occur. In the next chapter, you’ll learn how
detrimental side effects can be and how FP addresses this problem. Side effects
increase the cognitive load of the state of your application, making it virtually
impossible to keep track of what’s going on in your programs. Throw a few
loops and conditional if-else statements into the mix, and you’ll regret the
day a bug occurs that impacts this functionality.

 It’s difficult to detect when events or long-running operations go rogue and
need to be cancelled. Consider the case of a remote HTTP request that’s taking
too long to process. Is the script unresponsive or is the server just slow? It would
be ideal to have an easy mechanism to cancel events cleanly after some prede-
termined amount of time. Implementing your own cancellation mechanism
can be very challenging and error prone even with the help of third-party
libraries.

 One good quality of responsive design is to always throttle a user’s interaction
with any UI components, so that the system isn’t unnecessarily overloaded. In
chapter 4, you’ll learn how to use throttling and debouncing to your advantage.
Manual solutions for achieving this are typically very hard to get right and
involve functions that access data outside their local scope, which breaks the sta-
bility of your entire program.

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412


16 CHAPTER 1 Thinking reactively

 It’s rare to be concerned about memory management in JavaScript applica-
tions, especially client-side code. After all, the browser takes care of most of
these low-level details. But as UIs become larger and richer, we can begin to see
that lingering event listeners may cause memory leaks and cause the size of the
browser process to grow. It’s true that this was more prevalent in older browsers;
nevertheless, the complexity of today’s JavaScript applications is no match for
the applications of years past.

This long list of problems can certainly overwhelm even the brightest developers. The
truth of the matter is that the very paradigms that help us tackle these problems are
hard to express in code, which is why a tool like RxJS is necessary to redefine our
approach. 

 You learned that Promises certainly move the needle in the right direction (and
RxJS integrates with Promises seamlessly if you feel the need to do so). But what you
really need is a solution that abstracts out the notion of latency away from your code
while allowing you to model your solutions using a linear sequence of steps through
which data can flow over time, as shown in figure 1.8.

 In essence, you need to combine the ability to decouple functionality like event
emitters with the fluent design pattern of Promises, all into a single abstraction. More-
over, you need to work with both synchronous and asynchronous code, handle errors,
discourage side effects, and scale out from one to a deluge of events. This is certainly a
long laundry list of things to take care of. 

 As you think about this, ask yourself these questions: How can you write code as a
linear sequence of steps that acts only after some event has occurred in the future?
How do you combine it with other code that might have its own set of constraints?
Your desire for synchronicity isn’t just about convenience; it’s what you’re used to.
Unfortunately, most of the common language constructs that you use in synchronous
code aren’t well suited for asynchronous execution. This lack of language support for
things like async try/catch, async loops, and async conditionals means that develop-
ers must often roll their own. It’s not surprising that in the past few years, other peo-
ple have asked the same questions and come together with the community at large to
address these challenges, emerging as what’s known as the Reactive Extensions—we
have arrived!

Step 1 Step 2

Program execution

Step 3

Events

Latency Latency

Figure 1.8 RxJS can treat 
asynchronous data flows with 
a programming model that 
resembles a simple chain of 
sequential steps.

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412


17The Reactive Extensions for JavaScript

1.4 The Reactive Extensions for JavaScript
Reactive Extensions for JavaScript (RxJS) is an elegant replacement for callback or
Promise-based libraries, using a single programming model that treats any ubiquitous
source of events—whether it be reading a file, making an HTTP call, clicking a button,
or moving the mouse—in the exact same manner. For example, instead of handling
each mouse event independently with a callback, with RxJS you handle all of them
combined. 

 As you’ll learn in chapter 9, RxJS is also inherently robust and easy to test with a
vibrant community to support it. The power of RxJS derives from being built on top of
the pillars of functional and reactive programming, as well as a few popular design
patterns such as observer and iterator that have been used successfully for years. Cer-
tainly, RxJS didn’t invent these patterns, but it found ways to use them within the
context of FP. We’ll discuss FP and its role in RxJS further in the next chapter; in order
to take full advantage of this framework, the key takeaway from this section is that you
must learn to think in terms of streams.

1.4.1 Thinking in streams: data flows and propagation

Whether you deal with thousands of key presses, movement events, touch gestures,
remote HTTP calls, or single integers, RxJS treats all of these data sources in exactly
the same way, which we’ll refer to as data streams from now on.

STREAMS Traditionally, the term stream was used in programming languages
as an abstract object related to I/O operations such as reading a file, reading a
socket, or requesting data from an HTTP server. For instance, Node.js imple-
ments readable, writable, and duplex streams for doing just this. In the RP
world, we expand the definition of a stream to mean any data source that can
be consumed.

Reactive programming entails a mental shift in the way you reason about your pro-
gram’s behavior, especially if you come from an imperative background. We’ll illus-
trate this shift in mindset with a simple exercise:

let a = 20;
let b = 22;
let c = a + b; //-> 42

a = 100;
c = ?

You can easily predict the value of c in this case: 42. The fact that we changed a didn’t
have any influence on the value of c. In other words, there’s no propagation of change.
This is the most important concept to understand in reactive programming. Now we’ll
show you a pseudo JavaScript implementation of this:

A$ = [20];
B$ = [22];

Creates a stream initialized with the value 20
Creates a stream initialized 
with the value 22

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412


18 CHAPTER 1 Thinking reactively

C$ = A$.concat(B$).reduce(adder); //-> [42]

A$.push(100);
C$ = ?

First, we’ll explain some of the notation we use here. Streams are containers or wrap-
pers of data very similar to arrays, so we used the array literal notation [] to symbolize
this. Also, it’s common to use the $ suffix to qualify variables that point to streams. In
the RxJS community, this is known as Finnish Notation, attributed to Andre Staltz,
who is one of the main contributors of RxJS and Finnish.

 We created two streams, A$ and B$, with one numerical value inside each. Because
they’re not primitive objects in JavaScript or have a plus (+) overloaded operator, we
need to symbolize addition by concatenating both streams and applying an operator
method like reduce with an adder function (this should be somewhat familiar to you if
you’ve worked with these array methods). This is represented by C$.

ARRAY EXTRAS JavaScript ES5 introduced new array methods, known as the
array extras, which enable some level of native support for FP. These include
map, reduce, filter, some, every, and others.

What happens to C$ if the value 100 is pushed onto A$? In an imperative program,
nothing will actually happen except that A$ will have an extra value. But in the world
of streams, where there’s change propagation, if A$ receives a new value (a new
event), this state is pushed through any streams that it’s a part of. In this case, C$ gets
the value 122. Confused yet? Reactive programming is oriented around data flows and propa-
gation. In this case, you can think of C$ as an always-on variable that reacts to any
change and causes actions to ripple through it when any constituent part changes.
Now let’s see how RxJS implements this concept.

1.4.2 Introducing the RxJS project

RxJS is the result of many efforts to manage the myriad of problems that manifest in
asynchronous programming, outlined earlier. It’s an open source framework ported
by Matthew Podwysocki from Rx.Net (Reactive Extensions for .Net), itself open source
and created by Microsoft. RxJS has now evolved as a community-driven project owned
by Ben Lesh from Netflix, sanctioned by Microsoft as RxJS 5. This latest version is a
complete overhaul of the previous version with a brand-new architecture, a laser focus
on performance, and drastic simplification of the API surface. It offers several distinct
advantages over other JavaScript solutions, because it provides idiomatic abstractions
to treat asynchronous data similar to how you would treat any source of synchronous
data, like a simple array. You can obtain installation details in appendix A.

 If you were to visit the main website for the Reactive Extensions project (http://
reactivex.io/), you’d find it defined as “an API for asynchronous programming with
observable streams.” By the end of this chapter, you’ll be able to parse out exactly what
this means. We’ll demystify this concept and put you on the right path to tackle the
problems presented in this book. 

Concatenates both streams 
and applies an adder function 
to get a new container with 42

Pushes a new value into A$

www.itbook.store/books/9781617293412

http://reactivex.io/
http://reactivex.io/
http://reactivex.io/
https://itbook.store/books/9781617293412


19The Reactive Extensions for JavaScript

 Let’s see what thinking in streams looks like more concretely in RxJS. In figure 1.9,
we show a simple breakdown of a stream (or pipeline) approach to handling data. A
pipeline is a series of logic blocks that will be executed, in order, when data becomes
available.4 On the left side of figure 1.9 are the data sources, which produce various
forms of data to be consumed by an application. And on the right are the data con-
sumers, the entities that subscribe to (or listen for) these events and will do something
with data they receive, such as present it on a chart or save it to a file. In the middle is
the data pipeline. During this middle step, data that’s coming from any of the data
sources that are being observed is filtered and processed in different ways so that it
can be more easily consumed by the consumers.

You can subscribe to streams and implement functions within the pipeline that will be
called (therefore react) when an event occurs (it’s this pipeline component where the
principles of FP will come into play, as you’ll learn about in chapter 2). 

DEFINITION A stream is nothing more than a sequence of events over time.

A popular example that you can relate to would be an Excel spreadsheet. You can eas-
ily bind functions onto cells that subscribe to the values of other cells and respond in
real time as soon as any of the bounded cells change. A stream is an abstract concept
that works exactly like this, so we’ll slowly wind up to it and break it down starting with
some popular constructs you’re familiar with.

1.4.3 Everything is a stream

The concept of a stream can be applied to any data point that holds a value; this
ranges from a single integer to bytes of data received from a remote HTTP call. RxJS
provides lightweight data types to subscribe to and manage streams as a whole that can
be passed around as first-class objects and combined with other streams. Learning
how to manipulate and use streams is one of the central topics of this book. At this

4 You can relate this to the popular pipes and filter design pattern. 

Web

Mouse clicks

Keyboard input

HTTP requests
Pipeline

Subscribes

Consumer

Streams are transformed

Figure 1.9 A generic data-processing pipeline deals with a constant stream of asynchronous data, 
moving it from a producer (for example, a user clicking the mouse) to a consumer (code that reacts 
to the click). The pipeline will process data before it’s passed to the consumer for consumption.

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412


20 CHAPTER 1 Thinking reactively

point, we haven’t talked about any specific RxJS objects; for now, we’ll assume that an
abstract data type, a container called Stream, exists. You can create one from a single
value as such:

Stream(42);

At this point, this stream remains dormant and nothing has actually happened, until
there’s a subscriber (or observer) that listens for it. This is very different from Promises,
which execute their operations as soon as they’re created. Instead, streams are lazy data
types, which means that they execute only after a subscriber is attached. In this case, the
value 42, which was lifted into the stream context, navigates or propagates out to at least
one subscriber. After it receives the value, the stream is completed:

Stream(42).subscribe( 
   val => {
      console.log(val); //-> prints 42
   }
);

Furthermore, you can extend this example to a sequence of numbers

Stream(1, 2, 3, 4, 5).subscribe ( 
   val => { 
      console.log(val);
   }
);
//-> 1
     2 
     3 
     4
     5

Using a simple function that 
will be called with each event 
in the stream

Observer pattern
Behind RxJS is a fine-tuned observer design pattern. It involves an object (the sub-
ject), which maintains a list of subscribers (each an observer) that are notified of any
state changes. This pattern has had many applications, especially as an integral part
of the model-view-controller (MVC) architecture where the view layer is constantly lis-
tening for model changes. But the rudimentary observer pattern has its drawbacks
because of memory leaks related to improper disposal of observers. You can learn
more about this in the famous book Design Patterns: Elements of Reusable Object-
Oriented Software, known casually as the Gang of Four book.

RxJS draws inspiration from this pattern for its publish-subscribe methodology tar-
geted at asynchronous programs but adds a few extra features out of the box, like
signals that indicate when a stream has completed, lazy initialization, cancellation,
resource management, and disposal. Later on, we’ll talk about the components of
an RxJS stream.

a.  Gamma, Helm, Johnson, and Vlissides (Addison-Wesley, 1977, Oxford University Press).

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412


21The Reactive Extensions for JavaScript

or even arrays:

Stream([1, 2, 3, 4, 5])
  .filter(num => (num % 2) === 0)
  .map(num => num * num)
  .subscribe( 
      val => { 
        console.log(val); 
      }
);
//-> 4
     16    

In this example, the set of operations that occurs between the creation of the pro-
ducer of the stream (in this case, the array) and the consumer (the function that logs
to the console) is what we’ll refer to as the pipeline (we’ll expand on these concepts
shortly). The pipeline is what we’ll study thoroughly in this book and is what allows
you to transform a given input into the desired output. In essence, it’s where your
business logic will be executed, as outlined in figure 1.10.

Up until now, we’ve created streams from static data sources: numbers (or strings),
sequences, and arrays. But the power of RxJS extends beyond that with the ability to
treat dynamic data sources in exactly the same way, as if time didn’t factor into the
equation.

1.4.4 Abstracting the notion of time from your programs

Indeed, time is of the essence. The hardest part of asynchronous code is dealing with
latency and wait time. You saw earlier how callbacks and Promises can be used to cope
with these concerns, each with their own limitations. RxJS brings this notion of contin-
uous sequences of events over time as a first-class citizen of the language—finally, a
true event subsystem for JavaScript. In essence, this means that RxJS abstracts over time
under the same programming model regardless of source, so that you can transform your data
as if your code was completely linear and synchronous. This is brilliant because you
now can process a sequence of mouse events just as easily as processing an array of
numbers.

 Looking at figure 1.11, you can see that streams are analogous to a real-
world monthly magazine subscription. Your subscription to the magazine is actually a

Streams also support the Array.map() and 
Array.filter() functions introduced in ES5 
to process the contents within the array.

Pipeline

Consumerfilter map
[1, 2, 3, 4, 5] [4, 16]

Producer

Figure 1.10 A simple producer (an array of numbers) that emits events linearly. These events are submitted 
through the pipeline and transformed. The final data is then sent to all subscribers to be consumed.

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412


22 CHAPTER 1 Thinking reactively

collection of magazines that are separated by time; that is, there are 12 magazines
annually, but you receive only one every month. Upon receiving a magazine, you usu-
ally perform an action on it (read it or throw it away). There are additional cases that
you can also consider, such as the time between magazine deliveries being zero,
whereby you would receive all the magazines at once, or there might be no magazines
(and someone would be getting an angry email). In all these cases, because you per-
form the action only upon receiving the magazine, you can think of this process as
reactive (because you’re reacting to receiving a magazine). A non-reactive version of
this would be going to a newspaper stall at the airport. Here, you can also find maga-
zines, but now you won’t receive additional magazines, only the ones that you buy at
the stall. In practice, this would mean that you receive updates only when you happen
to be near a magazine stand rather than every time a new magazine becomes available.

Rx allows you to take this magazine subscription metaphor and apply it to a wide
range of use cases: loading files from disk or over a network, processing user input, or
handling real-time services like RSS and Twitter feeds. Following the same examples as
before, with RxJS you can consume a stream of time-based asynchronous sequences of
events, just as you did with normal synchronous data:

Stream(loadMagazines('/subscriptions/magazines'))
  .filter(magazine => magazine.month === 'July')
  .subscribe( 
      magazine => { 
        console.log(magazine.title); 
        //-> prints Dr. Dobbs "Composing Reactive Animations"    
      }
);

ConsumerRxJS

, ,

No latency
One programming model to handle
sequences of events separated in time,
as well as data stored in memory

TimeTime

Figure 1.11 Not only does RxJS handle sequential events, but using the same programming 
model, it can just as easily work with asynchronous events (bound by time). This means that the 
same level of reasoning applied to linear programs can also be applied to non-linear programs with 
latency and wait times.

Using the well-known 
Array.filter() operator, 
this time with magazine 
subscriptions, to retrieve 
only the July edition

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412


23The Reactive Extensions for JavaScript

These types of services produce data in real time at irregular intervals, and the data
produced forms the foundation of an event stream. In the case of a service like Twit-
ter, you can think of the Twitter API as a producer of tweets, of which some will be
interesting and some not so much. In general, in most cases you’re interested in creat-
ing logic that processes the content of the tweet rather than diving into the intricacies
of network communication. As we mentioned earlier, this logic is made up of several
components, which we’ll look at in more detail. 

1.4.5 Components of an Rx stream

The RxJS stream is made up of several basic components, each with specific tasks and
lifetimes with respect to the overall stream. You saw some examples of these earlier,
and now we’ll introduce them more formally:

 Producers
 Consumers
 Data pipeline
 Time

PRODUCERS

Producers are the sources of your data. A stream must always have a producer of data,
which will be the starting point for any logic that you’ll perform in RxJS. In practice, a
producer is created from something that generates events independently (anything
from a single value, an array, mouse clicks, to a stream of bytes read from a file). The
observer pattern defines producers as the subject; in RxJS, we call them observables, as in
something that’s able to be observed.

 Observables are in charge of pushing notifications, so we refer to this behavior as
fire-and-forget, which means that we’ll never expect the producer to be involved in
the processing of events, only the emission of them.

TC-39 OBSERVABLE SPEC The use of observables has proven to be so success-
ful from the previous version of the library (RxJS 4) that a proposal has been
made to include it in the next major release of JavaScript.5 Fortunately, RxJS
5 follows this proposal closely to remain completely compatible. 

CONSUMERS

To balance the producer half of the equation, you must also have a consumer to
accept events from the producer and process them in some specific way. When the
consumer begins listening to the producer for events to consume, you now have a
stream, and it’s at this point that the stream begins to push events; we’ll refer to a con-
sumer as an observer.

 Streams travel only from the producer to the consumer, not the other way around.
In other words, a user typing on the keyboard produces events that flow down to be
consumed by some other process. This means that part of understanding of how to

5 https://github.com/tc39/proposal-observable.

www.itbook.store/books/9781617293412

https://github.com/tc39/proposal-observable
https://itbook.store/books/9781617293412


24 CHAPTER 1 Thinking reactively

think in streams will mean understanding how to think about parts of an application
as upstream or downstream to determine the direction in which the data will flow.
With respect to RxJS, a stream will always flow from an upstream observable to a down-
stream observer, and both components are loosely coupled, which increases the mod-
ularity of your application, as shown in figure 1.12.

 For instance, a keyboard event handler would be upstream because it would only
produce events, not consume them, whereas code that should perform logic based on
key presses would be downstream. At a fundamental level, a stream will only ever
require the producer and the consumer. Once the latter is able to begin receiving
events from the former, you have effectively created a stream. Now what can you do
with this data? All of that happens within the data pipeline.

DATA PIPELINE

One advantage of RxJS is that you can manipulate or edit the data as it passes from the
producer to the consumer. This is where the list of methods (known as observable
operators) comes into play. Manipulating data en route means that you can adapt the
output of the producer to match the expectations of the consumer. Doing so pro-
motes a separation of concerns6 between the two entities, and it’s a big win for the modu-
larity of your code. This design principle is typically extremely hard to accomplish in
large-scale JavaScript applications, but RxJS facilitates this model of design. 

TIME

The implicit factor behind all of this is time. For everything RxJS there’s always an
underlying concept of time, which you can use to manipulate streams. The time factor
permeates all the components we’ve discussed so far. It’s an important and abstract
concept to grasp, so we’ll look at it in detail in later chapters. For now, you need only
understand that time need not always run at normal speed, and you can build streams
that run slower or faster depending on your requirements. Luckily, this won’t be an
issue if you decide to use RxJS. Figure 1.13 provides a visualization of the parts of the
RxJS stream.

6 Separations of concerns in this case refers to the use of functions with single responsibility.

Subscribes

Direction of data flow

Observable Observer
Figure 1.12 Events always 
move from observables to 
observers and never the other 
way around.

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412


25The Reactive Extensions for JavaScript

 

If you pay close attention to the structure of a stream, you’ll notice that this closely
resembles the pattern used in Promises. What started out as a nested callback “pyra-
mid of doom”

ajax('<host1>/items', 
      items => {
         items.forEach(item => {
            ajax(`<host2>/items/${item.getId()}/info`,
            dataInfo => {   
            ajax(`<host3>/files/${dataInfo.files}`,
            processFiles);   
          });
        }); 
});

was drastically improved using Promises: 

ajax('<host1>/items')
    .then(items => 
      items.map(item => ajax(`<host2>/data/${item.getId()}/info`)
    )
    .then(promises => Promise.all(promise))
    .then(
      dataInfo => ajax(`<host3>/data/files/${dataInfo.files}`)
    )
    .then(promises => Promise.all(promises))
    .then(processFiles);

And now, streams extend this behavior with powerful operators that break this down
even further:

Stream(ajax('<host1>/items')
  .streamMap(item =>
        Stream(ajax(`<host2>/data/${item.getId()}/info`)))
  .streamMap(dataInfo =>
        Stream(ajax(`<host3>/data/files/${dataInfo.files}`)))
  .subscribe(processFiles);

Remember that the Stream object here is merely an abstract artifact designed to show
you how the paradigm works. In this book, you’ll learn to use the actual objects that
implement these abstract concepts to design your applications using a functional and
reactive model. But RxJS doesn’t obligate you to use only a single paradigm; it’s often
the combination of paradigms that creates the most flexible and maintainable
designs.

Time

Producer

Pipeline

Consumer

Stream.timerInSeconds()
    .interval()
    .map(x => x.value)
    .filter(x => x % 2 === 0)
    .take(10)
    .subscribe(val=> console.log(val));

Figure 1.13 Sample code 
highlighting the different 
components of a stream

Streams can 
also compose 
other streams.

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412


26 CHAPTER 1 Thinking reactively

1.5 Reactive and other programming paradigms
Every new paradigm that you’ll encounter during your programming career will
require you to modify your thinking to accommodate the primitives of the language.
For example, object-oriented programming (OOP) puts state within objects, which are
the central units of abstraction, and the intricacy of the paradigm comes from the
interactions that arise when they interact with one another. In a similar fashion, FP
places behavior at the center of all things, with functions as the main unit of work.
Reactive programming, on the other hand, requires you to see data as a constantly
flowing stream of change as opposed to monolithic data types or collections holding all
of an application’s state. 

 Now you’re probably wondering, am I allowed to choose only one? Or can I com-
bine them into the same code base? The beauty behind all this is that you can use all
of them together. Many prominent figures in our industry have attested to this. In
other words, RxJS doesn’t force on you a certain style of development or design pat-
tern to use—it is unopinionated. Thankfully, it also works orthogonally to most librar-
ies. As you’ll see later on, it’s a simple matter in most cases to adapt an existing event
stream such as a DOM event handler into an observable. The library provides many
operators for such operations baked directly into it. It will even support unusual
design patterns such as those you’ll see when you use a library like React or Redux
(which you’ll see in the last chapter).

 In practice, you can use OOP to model your domain and use a powerful combina-
tion of reactive and FP (a combination known as functional reactive programming) to
drive your behavior and events. When it comes to managing events, you’ll soon begin
to see an important theme in code involving Rx. Unlike in OOP where state or data is
held in variables or collections, state in RP is transient, which means that data never
remains stored but actually flows through the streams that are being subscribed to,
which makes event handling easy to reason about and test. 

 Another noticeable difference is the style used in both paradigms. On one hand,
OOP is typically written imperatively. In other words, you instantiate objects that keep
track of state while running through a sequence of statements revealing how those
objects interact and transform to arrive at your desired solution. 

 On the other hand, RxJS code encourages you to write declaratively, which means
your code expresses the what and not the how of what you’re trying to accomplish.
RxJS follows a simple and declarative design inspired by FP. No longer will you be
required to create variables to track the progress of your callbacks or worry about
inadvertently corrupting some closed-over outer state causing side effects to occur.
Besides, with RxJS it becomes easy to manage multiple streams of data, filtering and
transforming them at will. By creating operations that can be chained together, you
can also fluently create pipelines of logic that sound very much like spoken sentences
like this: “When I receive a magazine for the month of July, notify me.”

 In this chapter, you learned how RxJS elegantly combines both functional and
reactive paradigms into a simple computing model that places observables (streams)

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412


27Summary

at the forefront. Observables are pure and free of side effects, with a powerful arsenal
of operators and transformations that allow you to elegantly compose your business
logic with asynchronous operations. We chose to keep the code abstract for now as we
work through some of the new concepts. But we’ll quickly ramp up to a comprehen-
sive theoretical and practical understanding of the library, so that you can begin to
apply it immediately at work or on your personal projects. Now it’s time to start really
thinking in streams, and that’s the topic of the next chapter.

1.6 Summary
 Asynchronous code can be very difficult to implement because existing pro-

gramming patterns don’t scale to complex behavior.
 Callbacks and Promises can be used to deal with asynchronous code, but they

have many limitations when targeted against large streams generated from
repeated button clicks or mouse movements. 

 RxJS is a reactive solution that can more concisely and declaratively deal with
large amounts of data separated over time.

 RxJS is a paradigm shift that requires seeing and understanding data in streams
with propagation of change.

 Streams originate from a producer (observable), where data flows through a
pipeline, arriving at a consumer (observer). This same programming model is
used whether or not data is separated by time.   

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412


Daniels  ●   Atencio

O
n the web, events and messages fl ow constantly between 
UI and server components. With RxJS, you can fi lter, 
merge, and transform these streams directly, opening the 

world of data fl ow programming to browser-based apps. This 
JavaScript implementation of the ReactiveX spec is perfect for 
on-the-fl y tasks like autocomplete. Its asynchronous commu-
nication model makes concurrency much, much easier.

RxJS in Action is your guide to building a reactive web UI using 
RxJS. You’ll begin with an intro to stream-based programming 
as you explore the power of RxJS through practical examples. 
With the core concepts in hand, you’ll tackle production tech-
niques like error handling, unit testing, and interacting with 
frameworks like React and Redux. And because RxJS builds on 
ideas from the world of functional programming, you’ll even 
pick up some key FP concepts along the way. 

What’s Inside
●  Building clean, declarative, fault-tolerant applications
●  Transforming and composing streams
●  Taming asynchronous processes
●  Integrating streams with third-party libraries
●  Covers RxJS 5

This book is suitable for readers comfortable with JavaScript 
and standard web application architectures.

Paul P. Daniels is a professional software engineer with experi-
ence in .NET, Java, and JavaScript. Luis Atencio is a software 
engineer working daily with Java, PHP, and JavaScript 
platforms, and author of Manning’s Functional Programming 
in JavaScript.

To download their free eBook in PDF, ePub, and Kindle formats, owners 
of this book should visit www.manning.com/books/rxjs-in-action

$49.99 / Can $65.99  [INCLUDING eBOOK]

RxJS IN ACTION 

JAVASCRIPT/WEB DEVELOPMENT

M A N N I N G

“Important information 
you need to know in order 

to become an effective 
reactive programmer.” 

—From the Foreword by Ben Lesh 
Project lead, RxJS 5

“Covers the subject 
thoroughly and with 
  great accessibility.” 

—Corinna Cohn, Fusion Alliance

“All you need to really 
  understand streaming!”—Carlos Corutto, Globant 

“Learn to leverage the power 
of RxJS to build a reactive 
and resilient foundation 
for your applications.” 

—Thomas Peklak, Emakina CEE

SEE  INSERT

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412

	cover
	Copyright
	BriefTOC
	SampleCh01
	coverB



