
M A N N I N G

Paul P. Daniels
Luis Atencio
FOREWORD BY Ben Lesh

SAMPLE CHAPTER

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412

RxJS in Action
by Paul P. Daniels

Luis Atencio

Chapter 9

 Copyright 2017 Manning Publications

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412

v

brief contents
PART 1 UNDERSTANDING STREAMS 1

1 ■ Thinking reactively 3
2 ■ Reacting with RxJS 28
3 ■ Core operators 61
4 ■ It’s about time you used RxJS 85

PART 2 OBSERVABLES IN PRACTICE 119
5 ■ Applied reactive streams 121
6 ■ Coordinating business processes 151
7 ■ Error handling with RxJS 182

PART 3 MASTERING RXJS 209
8 ■ Heating up observables 211
9 ■ Toward testable, reactive programs 245

10 ■ RxJS in the wild 271

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412

245

Toward testable,
reactive programs

If you’ve been in the software industry for any appreciable amount of time, you’ve
likely encountered some form of testing. In production software, there’s no escap-
ing the need for tests (or there shouldn’t be), whether they target newly written
code or a system-wide refactoring. Changes to complex applications can easily pro-
duce unforeseen consequences in different paths of execution; it’s particularly
problematic when multiple developers work with code that they’re not intimately
familiar with. For instance, when a user types a negative number in the withdraw

This chapter covers
 Understanding functional programming’s inherent

testability

 Testing asynchronous code with Mocha.js

 Exploring the tools for testing observables

 Understanding the need for using virtual time
instead of physical time

 Introducing RxJS schedulers

 Refactoring streams to enhance testability

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412

246 CHAPTER 9 Toward testable, reactive programs

field or presses this number rapidly many times, your banking application should han-
dle it gracefully. As you know, in JavaScript, a misspelled variable or a forgotten return
statement means that certain execution paths may produce undefined values. These
sorts of errors may be obvious or subtle, and no developer—no matter how experi-
enced—is safe from them.

 Tests not only help catch programmatic errors and find places where code is brit-
tle, but they also ensure that there’s a unified understanding of the requirements. In
other words, tests also document the expected behavior of your code.

 There are multiple types of testing methods, probably more than we can keep track
of, but in this chapter, we’ll focus strictly on unit tests. Unit tests are used to create
expectations or assertions about the functionality of a single unit of work—a function.

 We’ll begin this chapter by demonstrating that pure functions are inherently much
easier to test than stateful functions, because they have clear inputs and predictable
outputs—known as boundary conditions. Likewise, observables are functional data types
that can be tested in the same manner as pure functions by translating these pure
function boundaries to the world of producers and observers. But this isn’t always
easy. In JavaScript, with so many asynchronous processes to coordinate, testing can be
difficult to wrap your head around. You’ll learn to use RxJS’s observable-based testing
to make asynchronous testing easier. With the help of a JavaScript testing framework,
Mocha.js, as well as an RxJS instrumentation tool known as a virtual scheduler, you can
learn to test streams that compose any sort of asynchronous code easily. Toward the
end of this chapter, you’ll learn about RxJS schedulers. Although they can be power-
ful, using schedulers in JavaScript applications, especially client-side, is not all that
common and intended only for edge cases where the schedulers that accompany the
RxJS operators aren’t sufficient.

 In the end, one of the main advantages of writing your programs functionally is
that you’ve organized the code in such a way that favors testability. Let’s start here.

9.1 Testing is inherently built into functional programs
Think back to when you last wrote a set of unit tests for some complex functionality.
Do you remember running into any challenges? If this application was written using
OOP, most likely you experienced at least one of the following:

 Methods rely on external state that must be properly set up and destroyed for
each test.

 Methods are tightly coupled to other modules of the system, making it impossi-
ble to test each one independently.

 Your application design lacks a proper dependency injection strategy, so you’re
unable to properly mock calls to all third-party dependencies.

 Methods are long and complex, so they contain many internal logic paths (lots
of if/else blocks), which requires you to write multiple tests against the same
method just to cover all the flows.

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412

247Testing is inherently built into functional programs

 The order in which tests are run can impact the results that output from the
functions under test, so changing the order or possibly commenting out a unit
can cause others to fail.

This is by no means an exhaustive list, just some of the more common pain points that
we’ve all experienced while unit testing. Now we don’t mean to say that functional
tests won’t ever have these problems, but what you’ll begin to see is that by using pure
functions, you can significantly diminish their occurrence.

 Pure functions tend to be small in scope, have at most three clearly defined param-
eters (rarely more), and have a predictable, consistent output—like a black box with
simple boundary conditions, as shown in figure 9.1. Moreover, a pure function is
deterministic, which means its result is directly determined from the arguments that
are passed to it, so half of the testing battle is just coming up with comprehensive sets
of inputs. These can be any primitive type like a number or a string, or complex types
such as objects and mocks (object impersonators), also shown in figure 9.1.

 The other half of the battle is asserting that the return value matches solely the
logic behind the function under test, which isn’t influenced by what’s happening
externally. In this book, we’ll use Mocha.js as our unit test framework (you can find
setup information in appendix A). Let’s look at a quick example of its basic usage.
Aside from loading the necessary scripts on the page, there’s a minor setup step for
you to specify the API style you’ll use for your assertions and expectations, known as
the UI of the test. You’ll use the BDD UI, which is the default. If you’re using it in the
browser, you can use this:

mocha.setup({ ui: 'bdd', checkLeaks: true});

Number Mock objectString

Inputs

Boundaries

Boundaries

Output

Mock objects can be used to
simulate the behavior of any
external component or service
such as a database, filesystem,
the DOM, and others.

[input] => output

assert() Figure 9.1 Boundary conditions of a
pure function include all the inputs and its
output. A pure function clearly defines all
the arguments that it needs to carry out
its work.

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412

248 CHAPTER 9 Toward testable, reactive programs

On the server, you can run your scripts as

mocha --check-leaks –-ui tests.js

The second parameter is very interesting (as a functional programmer, you’ll particu-
larly appreciate this). Mocha also has the ability to detect if global variables “leak”
during a single test. A leaked variable is global to the entire test suite with a lifespan
that exceeds the test that created it. You may want to leak variables in order to share
them with another test, but more often than not, that could cause a programmatic
error. For instance, can you spot the leak in this function?

function average(arr) {
 let len = arr.length;
 total = arr.reduce((a, b) => a + b);
 return Math.floor(total / len);
}
average([80, 90, 100]) //-> 90

As you know by now, a leaked variable is a side effect that can compromise both the
order and the results of your unit tests. Each it() block in your tests should be an iso-
lated set of expectations, which is to say that the order and outcome of other tests
within the suite should not affect the outcome of any one test. Each test case must
start and end with a clean environment, sometimes referred to as a sandbox.

 All the same principles of pure functions apply as best practices for test develop-
ment, particularly the property of idempotency that states you should be able to run
the tests as many times as needed and always obtain the same results.

 Now, let’s look at the first function you want to test. Earlier in developing your
search widget, you used a function to validate the user’s input typed in the search
field. Here’s that function again to refresh your mind:

const notEmpty = input => !!input && input.trim().length > 0;

This function is pure because it doesn’t rely on any external state or mutate any of the
inputs, so it’s easy to test. Listing 9.1 shows your first Mocha test. With Mocha, you can
create nested suites of behavioral tests. A suite is marked as a describe block with a
brief description that should tie together the focus of the suite. These blocks can usu-
ally be nested so that tests can be further grouped by focus area. At the bottom level is
a test case encapsulated within an it block; this is where the application logic is actu-
ally exercised. Each of these blocks should ideally target a specific aspect of a specific
behavior—input validation, in this case.

const expect = chai.expect;

describe('Validation', function () {
 it('Should validate that a string is not empty', function() {
 expect(notEmpty('some input')).to.be.equal(true);

Listing 9.1 First unit test of a pure function notEmpty

Accidentally used “;” instead of
“,” for multivariable assignment.
As a result, the “total” variable is
declared globally.

Sets up the expect framework

Asserts the
positive use case

www.itbook.store/books/9781617293412

http://reactivex.io/rxjs/manual/overview.html%23using-schedulers
https://itbook.store/books/9781617293412

249Testing is inherently built into functional programs

 expect(notEmpty(' ')).to.be.equal(false);
 expect(notEmpty(null)).to.be.equal(false);
 expect(notEmpty(undefined)).to.be.equal(false);
 });
});

Finally, to run this unit test you invoke

mocha.run(); or mocha --check-leaks –-ui validation.js

And everything works as expected:

 Should validate that a string is not empty

CODE SAMPLES Remember that all the code for this chapter can be found in
the RxJSinAction GitHub repository, https://github.com/RxJSInAction/rxjs-
in-action.

As you can see, testing this pure function was easy, and setup was minimal. Now that
you know what a simple Mocha test looks like, let’s play with the leak-detection feature
for a bit. Running a test for our fishy average function

describe('Average numbers', function () {
 it('Leak the variable total', function () {
 expect(average([80, 90, 100])).to.be.equal(90);
 });
});

causes the result

Error: global leak detected: total

identifying exactly which variable caused a side effect. Inadvertently changing total, a
globally declared variable, because of a subtle code bug could have caused any other
tests that depended on it to fail. So as a general rule of thumb, try not to read from or
mutate any global state.

Asserts the
negative
use cases

Mocha with Chai
Mocha.js is a full-fledged JavaScript testing framework built for both the browser and
Node.js. It runs all of your unit tests serially and creates detailed reports. One of the
nice features of Mocha is that it allows you to easily plug in any assertion library you
want, whether you’re familiar with the xUnit assertion APIs like assert.js or other vari-
eties such as expect.js (used previously) and should.js, to name a few. In this book,
because we have synchronous as well as asynchronous test requirements, we’ll use
a flexible API or a domain-specific language (DSL) called Chai.js, which includes sup-
port for all the testing APIs mentioned previously. Should.js will be instrumental when
running tests involving Promises.

www.itbook.store/books/9781617293412

https://github.com/RxJSInAction/rxjs-in-action
https://github.com/RxJSInAction/rxjs-in-action
https://itbook.store/books/9781617293412

250 CHAPTER 9 Toward testable, reactive programs

Undeniably, the world would be a better place if all your code was this easy to unit test
(certainly people would be less afraid of it). But asynchronous functions throw a mon-
key wrench into the whole process, and JavaScript applications are notorious for deal-
ing with lots of asynchronous behavior. So let’s talk about how you can use Mocha to
test these types of programs.

9.2 Testing asynchronous code and promises
Asynchronous code creates a big wrinkle in your ability to write unit tests. Although
it’s true that Mocha is designed to run your individual test cases serially (one by one),
how can you instruct it to wait for the completion of some long-running computation
instead of sweeping through your entire test suite synchronously? In this section, we’ll
examine two testing scenarios: invoking AJAX requests directly and working with
Promises.

9.2.1 Testing AJAX requests

The smart search widget we developed in chapter 5 made AJAX requests against the
Wikipedia API to suggest potential search results using the RxJS DOM operator called
Rx.Observable.ajax(). As you can imagine, under the hood, this operator uses the
common XmlHttpRequest object to communicate with the server. Before you work
your way up to testing entire observables, let’s focus on testing plain asynchronous
calls for now. Consider this simple alternative:

const ajax = (url, success, error) => {
 let req = new XMLHttpRequest();
 req.responseType = 'json';
 req.open('GET', url);
 req.onload = function() {
 if(req.status == 200) {
 let data = JSON.parse(req.responseText);
 success(data);
 }
 else {
 req.onerror();
 }
 }
 req.onerror = function () {

(continued)
Mocha also has great reporting capabilities. It prints out the results as human-
readable sentences—allowing you to tell exactly which behaviors are failing in the
application—and lets you isolate debugging efforts to a specific region.

One of the main reasons for using Mocha is its ample support for asynchronous test-
ing and promises. Hence, it’s the framework with which core RxJS code is tested.
More details about installing Mocha can be found in appendix A. To explore the RxJS
test suites, you can visit http://reactivex.io/rxjs/test.html.

www.itbook.store/books/9781617293412

http://reactivex.io/rxjs/test.html
https://itbook.store/books/9781617293412

251Testing asynchronous code and promises

 if(error) {
 error(new Error('IO Error'));
 }
 };
 req.send();
};

You’ll use Mocha to set up a unit test for this just like before:

describe('Asynchronous Test', function () {
 it('Should fetch Wikipedia pages for search term +
 `"reactive programming"', function() {

 const searchTerm = 'reactive+programming';
 const url = `https://en.wikipedia.org/w/api.php?action=query +
 `&format=json&list=search&utf8=1&srsearch=${searchTerm}`;

 let result = undefined;

 ajax(url, response => {
 result = response;
 });

 expect(result).to.not.be.undefined;
 });
});

WATCH OUT: CORS Remember, if you’re running any of these examples in
the browser, make sure you disable CORS so that you can access the tested
endpoints. Otherwise, just use the example directory located at https://
github.com/RxJSInAction/rxjs-in-action, which handles these issues for you.

At a glance, this test seems pretty simple. Set up the initial conditions, make the asyn-
chronous request, capture its response, and assert it. Nothing to it, yet running it
prints this:

AssertionError: expected undefined not to be undefined

What happened? To be and not to be? The issue here is that your unit test is not async-
aware. In other words, it thinks it can run synchronously and execute every single
statement top to bottom, disregarding the latency present in the HTTP request.

 Luckily, Mocha provides excellent support for testing functions that execute asyn-
chronously. It’s pretty straightforward: provide a function (usually) called done() into
the callback passed to it(), and Mocha will understand that it needs to wait for this
function to be called. Instead of running these tests in parallel and printing randomly
ordered test reports, it’s advantageous that Mocha runs your tests serially and properly
waits for one test to finish before proceeding to the next (if you were thinking for a
second that the use of a done function looks familiar, it’s because you’ve gotten used
to the complete() function of observers by now). Let’s write a test suite that checks for
the success and error cases of ajax().

Sets up initial
conditions

Makes the request and assigns the
response to the result variable

Asserts the result
variable has a value

www.itbook.store/books/9781617293412

https://github.com/RxJSInAction/rxjs-in-action
https://github.com/RxJSInAction/rxjs-in-action
https://github.com/RxJSInAction/rxjs-in-action
https://itbook.store/books/9781617293412

252 CHAPTER 9 Toward testable, reactive programs

const assert = chai.assert;

describe('Ajax test', function () {
 it('Should fetch Wikipedia pages for search term +
 `"reactive programming"',
 function (done) {
 const searchTerm = 'reactive+programming';
 const url = `https://en.wikipedia.org/w/api.php?action=query& +
 `format=json&list=search&utf8=1&srsearch=${searchTerm}`;

 const success = results => {
 expect(results)
 .to.have.property('query')
 .with.property('search')
 .with.length(10);
 done();
 };

 const error = (err) => {
 done(err);
 };

 ajax(url, success, error);
 });

 it('Should fail for invalid URL', function (done) {

 const url = 'invalid-url';

 const success = data => {
 done(new Error('Should not have been successful!'));
 };

 const error = (err) => {
 expect(err).to.have.property('message').to.equal('IO Error');
 done();
 };

 ajax(url, success, error);
 });
});

The suite in listing 9.2 contains two test cases: one to test the Wikipedia response
object returned from invoking a successful AJAX query with matched results, and the
other asserting the error condition when no search results match.

 As you can imagine, the ability to test asynchronous functions is a necessity for appli-
cations involving RxJS. But recall that with promises you have several options when
working with these longer-running tasks. You could use the AJAX directly with RxJS:

Rx.Observable.ajax(query)

Or, if your AJAX function uses Promises or a promise-like (deferred) interface (like
jQuery’s popular $.get()), then you can also use

Rx.Observable.fromPromise(ajax(query))

Listing 9.2 Using Mocha/Chai to test an asynchronous function

Loads the assert style of assertions

Passing the done function
instructs Mocha to halt,
waiting for the async ajax()
function to return.

Sets up the success
function and the assertion

In the successful case, you
don’t expect the call to fail.

Within the same
test, includes
the error case

In the error case, you don’t
expect the call to be successful.

Asserts that the failure
occurred and that you received

the correct error message

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412

253Testing asynchronous code and promises

Using Promises to wrap these types of operations is the more functional approach
because it provides an abstraction over the factor of time, which is a form of side
effect. Also, many third-party libraries are wrapping their APIs with promises. Let’s dis-
cuss this a bit more.

9.2.2 Working with Promises

In this section, we’ll continue with our running example of invoking the ajax() func-
tion, except this time using Promises. As stated before, a Promise is a functional, con-
tinuation data type that allows you wrap any long-running operation, so that you can
map functions via then() to the eventually created value. It’s proven to be so success-
ful that Mocha includes support for working natively with Promises through a Chai
extension called chai-as-promised.js and the should.js fluent API (setup information
available in appendix A).

 Let’s start by refactoring ajax() to use Promises. This is simple; just wrap the body
of the function within the Promise and delegate the success and error conditions to
the Promise’s resolve and reject callbacks:

const ajax = url => new Promise((resolve, reject) => {
 let req = new XMLHttpRequest();
 req.responseType = 'json';
 req.open('GET', url);
 req.onload = () => {
 if(req.status == 200) {
 let data = JSON.parse(req.responseText);
 resolve(data);
 }
 else {
 reject(new Error(req.statusText));
 }
 };
 req.onerror = () => {
 reject(new Error('IO Error'));
 };
 req.send();
 });

Now you’re going to tell Chai to use the Promise extensions and load the should.js
APIs into your tests. This is a quick setup at the top of the file:

chai.use(chaiAsPromised);
const should = chai.should();

You can see that the test in listing 9.3 is similar to listing 9.2. The abstraction provided
by the Promise allows the test framework to instrument the result of the test much bet-
ter. Using the should.js APIs, you can wire up semantically meaningful expectations
for Promises such as should.be.fulfilled to assert the call completed and

To use Chai in environments that don’t support Node.js-like
CommonJS modules (like the browser), you’ll need to use
Browserify to create the compatible bundle. We’ve done
that for you in the GitHub repo accompanying this book.

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412

254 CHAPTER 9 Toward testable, reactive programs

should.enventually.have to inspect the results. Also, instead of passing done, Mocha
expects you to return the Promise object under test to the engine to run the specified
expectations.

describe('Ajax with promises', function () {
 it('Should fetch Wikipedia pages for search term +
 `"reactive programming"', function () {

 const searchTerm = 'reactive+programming';
 const url = `https://en.wikipedia.org/w/api.php?action=query& +
 `format=json&list=search&utf8=1&srsearch=${searchTerm}`;

 return ajax(url)
 .should.be.fulfilled
 .should.eventually.have.property('query')
 .with.property('search')
 .with.length(10);
 });
});

Nothing much changes with this test compared to the previous one, except that you
can work directly with the Promise returned from ajax(). It’s incredible to see how
descriptive and fluent tests can be using Mocha. Now that you’ve asserted ajax()
works as expected, let’s see how this function is used within the observable pipeline.
The following listing shows a snippet of the search$ observable again.

const search$ = Rx.Observable.fromEvent(inputText, 'keyup')
 .debounceTime(500)
 .pluck('target','value')
 .filter(notEmpty)
 .do(term => console.log(`Searching with term ${term}`))
 .map(query => URL + query)
 .switchMap(query =>
 Rx.Observable.fromPromise(ajax(query))
 .pluck('query', 'search')
 .defaultIfEmpty([]))
 .do(result => {
 count.innerHTML = `${result.length} results`;
 })
 .subscribe(arr => {
 clearResults(results);
 appendResults(results, arr);
 });

Pay attention to how the code branches off in the call to switchMap(). This additional
flow will make your tests complex. Because most of the data flow logic is handled by

Listing 9.3 Asynchronous testing with Promises

Listing 9.4 Search stream used in the smart search component

Instead of using the done() function, you return the Promise to Mocha so
that it knows to fulfill the Promise and run the necessary assertions.

Uses the should.js
support with Promises

Asserts the eventual
value resolved through
the Promise

Your main area of focus
when testing this program

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412

255Testing reactive streams

the observable itself, which you trust has already been tested extensively, all you need
to worry about is testing that your own functions work as expected. In this case, you’ve
tested that notEmpty() and ajax() work, and now you can test that this entire code
block integrated with your functions works as well. Before you can do this, in the next
sections, you’ll try to split the AJAX stream into its own observable and test that inde-
pendently. This will drastically simplify your tests and allow your code to be more
modular and reusable.

 Because observables are also pure functions (you can translate the black box anal-
ogy of inputs and output to be producer and consumer, respectively), you should be
able to test them with some confidence. You’ll need this for the stream projected into
search$ as well. In the next section, you’ll explore how to test reactive streams.

9.3 Testing reactive streams
Reactive testing follows a similar format to how you normally test functional programs
as described earlier. Because observables are pure functional data types, the transitive
property of purity applies, which states that if an observable is made up solely of pure
functions, the entire observable sequence is itself pure. Let’s begin with a cold observ-
able that synchronously adds the numbers in an array.

describe('Adding numbers', function () {
 it('Should add numbers together', function () {

 const adder = (total, delta) => total + delta;

 Rx.Observable.from([1, 2, 3, 4, 5, 6, 7, 8, 9])
 .reduce(adder)
 .subscribe(total => {
 expect(total).to.equal(45);
 });
 });
});

Notice that because the semantics of observables are designed for asynchronicity with
the producer/consumer model, you’re able to place all the assertions into the down-
stream observer, which is intuitive because that’s where the outcome of the stream is.
Again, this works only with synchronous functions. Here’s a similar program using
generators:

 it('Should add numbers from a generator', function () {

 const adder = (total, delta) => total + delta;

 function* numbers() {
 let start = 0;
 while(true) {
 yield start++;
 }
 }

Listing 9.5 Testing a stream that adds up all numbers of an array

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412

256 CHAPTER 9 Toward testable, reactive programs

 Rx.Observable.from(numbers)
 .take(10)
 .reduce(adder)
 .subscribe(total => {
 expect(total).to.equal(45);
 });
 });

And you obtain the same results. It’s clear that testing synchronous observables is as
simple as testing regular pure functions—you expect cold observables to behave like
this. Let’s mix it up a bit by injecting a time delay into your tests:

it('Should add numbers together with delay', function () {
 Rx.Observable.from([1, 2, 3, 4, 5, 6, 7, 8, 9])
 .reduce((total, delta) => total + delta)
 .delay(1000)
 .subscribe(total => {
 expect(total).to.equal(45);
 });
});

Running this code prints out the following:

 Should add numbers together with delay

It worked! But there’s a red herring. Although you get the impression the test is pass-
ing, the subscribe() block or the observer isn’t actually executing; it runs after a
whole second has passed, and the result is ignored. Try failing the test case by chang-
ing the result to some nonsense value:

Rx.Observable.from([1, 2, 3, 4, 5, 6, 7, 8, 9])
 .reduce((total, delta) => total + delta)
 .delay(1000)
 .subscribe(total => {
 expect(total).to.equal('non-sense!');
 });

Now, instead of passing the test, you expect that Mocha will throw an error and fail.
But you see the same outcome as in your test report. What happened? The obvious
culprit seems to be that the delay operator introduces something into the test mixture
that isn’t properly handled by the test. This intuition is correct, and it’s at the heart of
what you’re trying to accomplish with reactive testing. Because you’ve added an asyn-
chronous time element that isn’t being handled by the test, the test reports comple-
tion before the asynchronous block has completed running and you get a false
positive. You were deceived by RxJS’s abstraction over time. Observables make work-
ing with latency and time so simple that it seemed as though the operators were exe-
cuting synchronously to the test. Of course, this isn’t the case.

 No fear, grab a cup of Mocha and get to it. Here, you’ll need to come back to using
done() with the it() callback. Do you recall how similar Mocha’s concept of done() is
to the observer’s complete()? Try making them the same, as in the following listing.

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412

257Testing reactive streams

it('Should add numbers together with delay', function (done) {
 Rx.Observable.from([1, 2, 3, 4, 5, 6, 7, 8, 9])
 .reduce((total, delta) => total + delta)
 .delay(1000)
 .subscribe(total => {
 expect(total).to.equal(45);
 }, null, done);
});

Running it now prints this:

 Should add numbers together with delay (1008ms)

The time label in milliseconds next to the output should hint to you that Mocha
waited for this test to complete and actually ran the expectations. Armed with the
knowledge of how to test asynchronous observables, let’s go back to the search stream
search$ in listing 9.4. You can recognize that most of the observable pipeline in this
code is synchronous, until this:

.switchMap(query =>
 Rx.Observable.fromPromise(ajax(query))
 .pluck('query', 'search').defaultIfEmpty([]))

This segment spawns an AJAX request against Wikipedia for search results that match
the user’s input, which is actually its own observable stream. You can test this function
that’s being mapped to the source observable and apply the same technique as you
did in listing 9.6. The stream function under test this time is

query => Rx.Observable.fromPromise(ajax(query))
 .pluck('query', 'search').defaultIfEmpty([])

The next listing shows how to test your asynchronous, Promise-based observable
mapped to the source observable.

it('Should fetch Wikipedia pages for search term "reactive programming" +
 `using an observable + promise', function (done) {

 const searchTerm = 'reactive+programming';
 const url = `https://en.wikipedia.org/w/api.php?action=query& +
 `format=json&list=search&utf8=1&srsearch=${searchTerm}`;

 const testFn = query => Rx.Observable.fromPromise(ajax(query))
 .subscribe(data => {
 expect(data).to.have.property('query')

Listing 9.6 Testing an observable with a delay

Listing 9.7 Testing a promise AJAX call within an observable

Changing this output to anything
other than 45 will break the test.

Uses done to signal the completion of the stream
and hence the test. Because this code will never
produce errors, you skip it by passing null.

Uses done to notify Mocha this
will be an asynchronous test

Defines the
function under test

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412

258 CHAPTER 9 Toward testable, reactive programs

 .with.property('search')
 .with.length(10);
 }, null, done);
 testFn(url);
});

So far, you’ve covered lots of ground by testing all the functions that make up your
business logic as well as the asynchronous branch of the search component, in isola-
tion. This is certainly the right direction, but you shouldn’t have to rebuild or copy
and paste a testable version of your observable sequence into your unit tests; that
duplicates your efforts. Instead, it’s convenient to split these concerns so as not to mix
browser-specific details like emitting a DOM event and rendering to the screen with
actual data transformation and event processing. Let’s refactor the existing observable
to be testable, and we’ll show how to write reactive code with testing in mind.

9.4 Making streams testable
As visually pleasant as long observable sequences are (at least for two of us), for matters
of testability and even sometimes reusability, it’s important to separate the observer
from the pipeline and the subscription. Decoupling these main parts will allow you to
inject any assertions that you need to make, depending on the stream under test. The
goal is to not have to modify or rebuild the observable sequence in the application as
well as in the unit test and have code duplicated in both areas. Continuing with the
same mindset with which you started the chapter, to make this code more testable,
you’ll split up your functions so that they can be tested independently from the stream,
as well as decompose the stream into its three main parts: producer, pipeline, and con-
sumer. This will allow you to separate the pure (testable) part of the stream from the
impure. The impure sections involve writing to a database, making actual AJAX calls, or
writing to the DOM, all of which should be outside of your scope of test.

 Start out with this simple program that generates 10 consecutive numbers every
second and performs the sum of all the even numbers:

Rx.Observable.interval(1000)
 .take(10)
 .filter(num => num % 2 === 0)
 .map(num => num * num)
 .reduce((total, delta) => total + delta)
 .subscribe(console.log);

In order to make this program testable you need to do a few things:

1 Split out the business logic from the observable pipeline.
 2 Decouple the consumer and producer and isolate the stream pipeline. This will

allow you to inject your assertion code.
3 Wrap the stream into a function that you can call with the proper observer.

By applying these steps to the previous code, this program becomes a more generic set
of functions that you can test thoroughly:

Passes done in place of the
completed observer method
to signal the end of this
observable sequence and
hence the end of the testCalls the function

being tested

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412

259Making streams testable

const isEven = num => num % 2 === 0;
const square = num => num * num;
const add = (a, b) => a + b;

const runInterval = (source$) =>
 source$
 .take(10)
 .filter(isEven)
 .map(square)
 .reduce(add);

Notice how you also wrap the stream into a function that can be called from within
your test with whatever event producer you want. It could be a literal sequence of
numbers, an array, a generator, and others. The function allows you to pass in test
input arguments. Without refactoring it this way, if all these functions were embedded
into the observable itself as in the original version, you wouldn’t have the flexibility to
cover all the possible use cases required to run through all paths of this code. This is
also much more efficient because you don’t need to execute the entire sequence
every time. Now, with a more testable version of this stream, let’s proceed.

 The functions isEven(), square(), and add() are straightforward to test. We’ll
leave those as an exercise for you and focus on the observable. Because observables
are feed-forward, unidirectional flows that rely on side effect–free functions, you can
just as easily consider the entire stream as being pure.

 Instead of rewriting another version of the same stream in your test, just call it
from within your test, provide a producer into it, and place your assertions into the
subscribe block:

it('Should square and add even numbers', function (done) {

 this.timeout(20000);
 runInterval(Rx.Observable.interval(1000))
 .subscribe({
 next: total => expect(total).to.equal(120),
 err: err => assert.fail(err.message),
 complete: done
 });
});

The producer and the subscriber are the boundaries of this pure stream. Figure 9.2
highlights the sections of code that got decoupled from the observable pipeline. By
ensuring your functions work and trusting in RxJS to do the right thing, you can be
confident in your expectations. Also, parameterizing the observer gives you the extra
flexibility of directing the output of the stream toward a set of assertions (as in this
case), the console, a filesystem, an HTML page, a database, and others.

 Running this code prints the following:

 Should square and add even numbers (10032ms)

Separates producer (source) and
subscriber from the business
logic by making an argument

Increases Mocha’s
timeout setting to
allow the stream
to complete

The expectations are
wired up in the test,
decoupled from the
stream code.

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412

260 CHAPTER 9 Toward testable, reactive programs

This single unit test took 10 seconds to run, so you needed to tell Mocha that this test
will surpass the default (two-second) timeout. Imagine having test suites with hun-
dreds of these types of tests; it would easily render your CI pipeline useless. Unit tests
should be quick; the culprit here is the interval() operator (the same would be true
for timer()). How can you speed up tests of code that has explicit time values? The
main reason for adding physical time into your stream is to create the illusion of
movement for the user. For example, a panel slides to the right, a counter winds
down, a color fades out, and so on. But this isn’t important or relevant when running
it as a unit test, so instead of refactoring your streams to use a synchronous producer
or temporarily commenting out the timers, the proper way to solve this is to add a vir-
tual timer or scheduler.

9.5 Scheduling values in RxJS
If you’re dealing with observable sequences that publish values over an extended
period of time, unit testing them can be time consuming. As you know, Mocha will
run all your tests serially by design, so it’s wasteful for Mocha to be sitting idle waiting
for long intervals to complete. In RxJS, time is internally managed using an artifact
called a scheduler. In this section, we’ll briefly introduce this topic and then show how
you can apply it to speed up the runtime of your tests. After we’ve finished introduc-
ing schedulers, we’ll go back and fix our long-running unit test that uses a delay.

 Schedulers control when a subscription starts and when notifications are pub-
lished. This abstraction allows work to run immediately or in the future without the
calling code being aware of it. Remember that RxJS is used to abstract the notion of
time? At the heart of all this is a scheduler.

 Generally speaking, a scheduler consists of three main parts:

 A data structure that stores all the actions queued to be executed.
 An execution context that knows where the action will be executed: timer,

interval, immediately, callback, a different thread (for server-side Rx frame-
works), and so on.

 A virtual clock that provides a notion of time for itself. This point will become
very important for testing.

RxJS has different types of schedulers, but all abide by the same interface:

source$.take(10)

 .filter(

 .map(

 .reduce(

 .subscribe(

 observer

);

isEven

= Decoupled component

Expectations

square

add

Separate:
 • Producer
 • Pipeline
 • Subscriber

)

)

)

Figure 9.2 The areas from the stream that need to be decoupled in order to gain the
maximum test coverage of the entire stream

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412

261Scheduling values in RxJS

interface Scheduler {

 now(): number;

 schedule(work, delay?, state?): Subscription;

 flush(): void;

 active: boolean;

 actions: Action[];

 scheduledId: number;

}

Here’s how you can use it to schedule a set of actions to run synchronously and then
flush as a series of notifications:

it('Should schedule things in order', function () {
 let stored = [];

 let store = state => () => stored.push(state);

 let scheduler = Rx.Scheduler.queue;

 scheduler.schedule(store(1));
 scheduler.schedule(store(2));
 scheduler.schedule(store(3));
 scheduler.schedule(store(4));
 scheduler.schedule(store(5));

 scheduler.flush();

 expect(stored).to.deep.equal([1, 2, 3, 4, 5]);
 });

Just like observables, schedulers have a similar behavior in that you can push a set of
actions that are internally queued or buffered. Every call to schedule returns a
Subscription object that you can use to cancel the subscription if you wish to do so.

 Up to this point, we haven’t explicitly called out the fact that many of the RxJS fac-
tory operators you’ve seen in this book—from(), generate(), range(), delay(),
debounceTime(), interval(), timer(), of(), and others—have an extra parameter
for you to supply a scheduler. All operators make use of a single scheduler, if available.
For synchronous data sources, typically a value of null is used so that notifications are
delivered instantly. On the other hand, two often-used schedulers in RxJS are the
AsapScheduler and the AsyncScheduler, which apply to delayed (async) actions
(internally RxJS executes and manages these actions in the event loop through
setTimeout() and setInterval(), respectively).

Returns a number that represents
current time as managed internally
by its own clock

Schedules new work to be
executed, specifying optional
delay and state fields that are
used for future execution and
state management, respectively

Executes all actions and clears the queue

Indicates whether the queue is
currently executing a set of actions

Queue of
actions to
schedule

Temporarily stores the
scheduled actions so that
you can compare them to
what the scheduler remits.
Every time an action runs,
it stores its value into the
stored array.

Uses a simple scheduler that
queues the actions to run

Schedules actions to run immediately
(delay, the second parameter of
scheduler.schedule(), defaults to 0)

Runs all
the

actions

Performs a deep comparison of both data structures; looks at
the values contained within it. In later code samples, you’ll be

using deep.equal as the basis for your assertions.

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412

262 CHAPTER 9 Toward testable, reactive programs

 Let’s spend some time looking at the effect of having a scheduler control the
stream. In the same spirit as the previous code snippet, consider this simple range
observable that pushes the values emitted into an external array:

it('Emits values synchronously on default scheduler', function () {
 let temp = [];
 Rx.Observable.range(1, 5)
 .do([].push.bind(temp))
 .subscribe(value => {
 expect(temp).to.have.length(value);
 expect(temp).to.contain(value);
 });
});

This stream uses the default scheduler, so this test asserts that each value emitted by
range() is pushed into temp and immediately propagated down to the subscriber.
Your expectations check that the size of the array increases with every value and the
array contains that value. This stream is fairly simple, and it’s behavior that you’re
accustomed to. Now you’re going to change the scheduler used to publish the value to
an AsyncScheduler, and in the case of most factory operators, you can do this by pass-
ing an additional scheduler parameter. By doing so, as shown in the next listing, you
change how the stream publishes the values produced by range() from synchronous
to asynchronous. Let’s introduce this new parameter and change your assertions to
match this new behavior.

 it('Emits values on an asynchronous scheduler', function (done) {
 let temp = [];
 Rx.Observable.range(1, 5, Rx.Scheduler.async)
 .do([].push.bind(temp))
 .subscribe(value => {
 expect(temp).to.have.length(value);
 expect(temp).to.contain(value);
 }, done, done);
 });

Notice that, because it’s asynchronous, you need to use the done() resolution callback
to let Mocha know to wait for all values to be emitted. In sum, just by using a sched-
uler, you can manipulate how time flows through the stream and control how
the events are published. In this case, you overrode the default synchronous event-
publishing mechanism to emit asynchronously.

Listing 9.8 Publishing values on an async scheduler

Side effect that pushes value into
array temp that lives outside the
context of your observable

Configures the stream to use an async scheduler to proxy the
values emitted by the producer. This additional proxying will
cause all values to be emitted before the subscription block.

Asserts that the array is
growing at every
asynchronous emitted value

You can also pass an error handler to done() to
indicate an exception condition (the test failed).

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412

263Augmenting virtual reality

It’s important to note that in server-side implementations of the Rx family, like Rx.Net
or RxJava, schedulers can be extremely important to offload heavy processing onto
different threads while keeping the active UI thread idle to react to user actions. In
the single-threaded world of JavaScript, you’d normally use the default schedulers,
and it’s rare to choose otherwise. For this reason, in this book we don’t cover schedul-
ers in regular application-level code; here’s a good resource to start with if you’re
interested: http://reactivex.io/rxjs/manual/overview.html#using-schedulers. But
given their ability to control time, schedulers are very useful, if not necessary, for unit
testing asynchronous streams. Let’s begin writing some unit tests in virtual time with
Rx.TestScheduler.

9.6 Augmenting virtual reality
Now that you know what schedulers are, let’s circle back to our long-running unit test
that used delay() and where you also had to set an arbitrarily long timeout value—you
want to avoid doing that at all costs! The root of the problem here is that the unit test
was using physical time. We mentioned recently that by using schedulers, you could
manipulate how these values were emitted, so a physical delay could become a virtual
(fake) delay and your tests could run instantly. You can use the Rx.TestScheduler
class, which is derived from VirtualTimeScheduler. This almighty artifact can actually
create time!

it('Create time from a marble diagram', function () {
 let scheduler = new Rx.TestScheduler();
 let time = scheduler.createTime('-----|');
 expect(time).to.equal(50);
});

The observeOn() operator
Aside from passing schedulers into the observable factory operations to control how
producers emit events, you can also use the observeOn() instance operator to
transform the emission of events midstream:

Rx.Observable.range(1, 5)
 .do([].push.bind(temp))
 .observeOn(Rx.Scheduler.async)
 .subscribe(...)

It’s important to note that configuring the scheduler midway controls the emission of
events downstream only from the point of observeOn(), not before. In other words,
in this code the execution of range() and do() still happens synchronously, and the
results of those events are then emitted asynchronously to the subscriber. For the
examples in this chapter, however, we’ll keep it simple and apply schedulers at the
factory operator level, just like in listing 9.8.

An empty marble
diagram with five
time frames

Each time frame counts as 10 units
of time (usually milliseconds), so 5
units amounts to 50.

www.itbook.store/books/9781617293412

http://reactivex.io/rxjs/manual/overview.html#using-schedulers
https://itbook.store/books/9781617293412

264 CHAPTER 9 Toward testable, reactive programs

Instead of passing in a set of notification objects or actions, you probably recognize
the “-----” notation as segments of a marble diagram. In this section, you’ll learn
how to use the virtual scheduler provided in RxJS and how it’s intimately related to
the marble diagrams you’ve seen all along.

9.6.1 Playing with marbles

The TestScheduler is driven by the RxJS language of marbles, which, among other
characters, primarily contains frames and notifications. In Rx parlance, you use mar-
ble diagrams to communicate how a particular operator works with respect to time.
Every event that’s pushed onto the stream is internally wrapped using a Notification
object, which transports all of the necessary metadata for a particular event. They’re
more useful as testing artifacts because they make it easier to represent events that you
can extend to add more behavior, such as timestamps or numerical ordering, that
you’d want to assert. Here’s a simple example of how you’d use notifications directly
in your tests:

it('Should parse a marble string into a series of notifications',
 function () {
 let result = Rx.TestScheduler.parseMarbles(
 '--a---b---|',
 { a: 'A', b: 'B' });
 expect(result).deep.equal([
 { frame: 20, notification: Rx.Notification.createNext('A') },
 { frame: 60, notification: Rx.Notification.createNext('B') },
 { frame: 100, notification: Rx.Notification.createComplete() }
]);
});

The marble diagrams are a convenience method of creating expectations and events.
Under the hood, the test scheduler parses out the ASCII text, and from this it gener-
ates and queues the actions to perform, which then get published as notifications.
The notification is an abstraction of the emission mechanism within RxJS. As you can
see from this code, you have three types of emitted events in RxJS: a value, an error,
and a completion—yes, this is the observer’s API. Even though each type is fundamen-
tally different, you can think of each one more generically as an event, similar to how
all DOM events are an abstraction of a single base event type. In other words, you can
create a data type to encapsulate an event type regardless of its underlying kind.

 Luckily, this internal mechanism can also be abstracted even further by the test
scheduler, which uses the high-level Marbles language, kind of like a DSL, to make
testing even easier. Consider the map() operator we’ve been using extensively
throughout the book. Representing a simple stream that uses it as a marble diagram
in ASCII form looks like this:

source --1--2--3--4--5--6--7--8--9--|
map square => a * a
subs --1--4--9--16--25--36--49--64--81--|

The dashes represent frames and the letters
events (or notifications) that the stream will

publish. Every dash represents 10 frames.

The mapping
comparisons
used in your

assertions

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412

265Augmenting virtual reality

Let’s use the TestScheduler to verify that this diagram holds, literally. This class has a
rich set of features that helps you create and wire expectations onto observables.
Here’s a unit test of map() using the square() function.

function square(x) {
 return x * x;
}

function assertDeepEqual(actual, expected) {
 expect(actual).to.deep.equal(expected);
}

 describe('Map operator', function () {
 it('Should map multiple values', function () {
 let scheduler = new Rx.TestScheduler(assertDeepEqual);

 let source = scheduler.createColdObservable(
 '--1--2--3--4--5--6--7--8--9--|');

 let expected = '--a--b--c--d--e--f--g--h--i--|';

 let r = source.map(square);

 scheduler.expectObservable(r).toBe(expected,
 { 'a': 1, 'b': 4, 'c': 9, 'd': 16, 'e': 25,
 'f': 36, 'g':49, 'h': 64, 'i': 81});

 scheduler.flush();
 });
});

In this example, you use two marble diagrams to set up your test case. The first is used
to create a source input that behaves like a cold observable. Like the normal diagrams
that you saw earlier in the book, each number indicates an event, and each dash indi-
cates a single unit of time. What a single unit of time means for your application is
something you’ll need to determine. Again, this comes down to how you dilate time in
a stream, whether a dash means 1 ms or 1 minute. These marble diagrams carry a lot
more meaning than just lines and letters. It turns out that each line segment “-” rep-
resents 10 frames of a time period. So, “- - - - -” is a total of 50 frames of the unit of time
(typically, each frame represents 10 ms).

 The second stream is the expected stream. In order to clarify what’s happening,
you use a simple associative array that maps the expected values for each notification
emitted through the stream.

 The test scheduler is extremely powerful because it allows you to test your streams
visually. In addition, you’re able to test the entire range of observable behaviors, from
the construction of the stream, to the emission of events, all the way to the teardown
of the stream on completion.

 But, admittedly, there are easier ways to test map() using a plain Mocha test
because it’s a synchronous operation and doesn’t use time for anything. Remember,

Listing 9.9 Testing the map() operator

Helper function that uses
Chai to perform a deep.equal
assertion of its arguments

Creates an instance of the
TestScheduler and passes the

comparison function to use

Creates a cold
observable from
the ASCII diagram

Creates the
assertion

value
placeholders

Source stream with square operation

Uses the scheduler
to wire expectations

Flushes the stream, which causes the
cold observable to emit its values

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412

266 CHAPTER 9 Toward testable, reactive programs

time is what makes asynchronous programming difficult, and that’s the problem
you’re trying to solve.

MARBLE SYNTAX You can find the meaning of all the ASCII symbols of the
marble language here: https://github.com/ReactiveX/RxJS/blob/master/
doc/writing-marble-tests.md.

These frames are meaningful for operations that are based on time. Let’s use the vir-
tual scheduler to test a stream with debounceTime(), which would otherwise be com-
plicated and brittle to test because you’d have to rely on adding your own timestamps
to emitted notification objects. Let RxJS do this for you.

describe('Marble test with debounceTime', function () {
 it('Should delay all element by the specified time', function () {
 let scheduler = new Rx.TestScheduler(assertDeepEqual);

 let source = scheduler.createHotObservable(
 '-a--------b------c----|');

 let expected = '------a--------b------(s|)';

 let r = source.debounceTime(50, scheduler);
 scheduler.expectObservable(r).toBe(expected);
 scheduler.flush();
 });
});

Running this test creates a stream that simulates (fakes) the effect of debounceTime()
with a behavior that matches the expected number of frames. As you can see from the
diagram, the first notification as a result of emitting a should appear after the fifth
frame in debounceTime(50). Now that you know how to fake time, you can speed up
that long-running unit test based on interval().

9.6.2 Fake it ’til you make it

Removing time from the stream means that you shift to using the virtual timer’s inter-
nal clock, which you can wind up by using the time units “-” in the marble diagrams.
The interval(1000) operator emits consecutive integers every second and is an
example of code you might use in production. So in order to simulate your one-
second interval, you’ll use a 10 ms mocked interval. Now, you know that a scheduler is
what’s controlling this behavior behind the scenes, so let’s take advantage of it to cre-
ate the mock source as well as the correct expectation.

it('Should square and add even numbers', function () {
 let scheduler = new Rx.TestScheduler(assertDeepEqual);

 let source = scheduler.createColdObservable(

Listing 9.10 Testing the debounceTime operator

Listing 9.11 Speeding up runInterval() with the virtual time scheduler

Creates a stream with
the first element on
the second frame

You debounce with 50 ms
(5 frames), the first input
after the fifth frame.Passes in the virtual scheduler

into debounceTime()

Creates an
observable that
emits values every
unit of time (10 ms)

www.itbook.store/books/9781617293412

https://github.com/ReactiveX/RxJS/blob/master/doc/writing-marble-tests.md
https://github.com/ReactiveX/RxJS/blob/master/doc/writing-marble-tests.md
https://github.com/ReactiveX/RxJS/blob/master/doc/writing-marble-tests.md
https://itbook.store/books/9781617293412

267Augmenting virtual reality

 '-1-2-3-4-5-6-7-8-9-|');

 let expected = '-------------------(s-|';

 let r = runInterval(source);

 scheduler.expectObservable(r).toBe(expected, {'s': 120});

 scheduler.flush();
});

Certainly, refactoring the runInterval() stream to make it more testable paid off.
You were able to easily inject a virtual cold observable as the producer of events, and
everything worked exactly as expected.

9.6.3 Refactoring your search stream for testability

As you’ve seen in this chapter, RxJS’s notion of time is much more sophisticated than
a simple callback, and your test cases must reflect that. The simple fact that you can
incorporate delays or debouncing into a stream means that the test cases must also
understand how time flows and, perhaps more important, must be able to manipulate
it when necessary.

 Let’s finally circle back to the example of your search component, which used a
debounceTime() operation to prevent flooding the Wikipedia servers with unneces-
sary search queries. This stream is a bit longer and more complex, but now you have
everything you need to properly test it.

 If you used a realistic time of 250–500 ms to handle this scenario, it would mean
that your test case would likely need to run for at least a second. Although that may
not seem like a lot, as we mentioned previously, in a large test suite with several hun-
dred test cases, that could mean minutes to run, which throws continuous integration
right out the window. You definitely want to do better than this for your tests if you
plan to test as you develop. Now, let’s apply what you learned and refactor your exist-
ing search stream with an eye for testability.

 Testing this in its original state is somewhat difficult. Thus, one of the benefits of
plugging this into the RxJS tests is that you can refactor the code based on best prac-
tices. So how would you test this?

 As before, the focus should be on decoupling the producer, the pipeline, and the
subscription so that you can test that your functions are working correctly as inte-
grated into the stream without worrying about how the DOM emits events (producer)
and gets updated (observer). You’re interested in testing the actual business logic and
not the interaction with any other technology.

 Just like before, refactoring your stream into a function changes the stream from
the hardcoded

const search$ = Rx.Observable.fromEvent(inputText, 'keyup')
 .pluck('target','value')
 .debounceTime(500)
 .filter(notEmpty)
 .do(term => console.log(`Searching with term ${term}`))

The expected output is a stream
with a single result at the end,
given by the reduce operation.

Asserts the end
value to be 120

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412

268 CHAPTER 9 Toward testable, reactive programs

 .map(query => URL + query)
 .switchMap(query =>
 Rx.Observable.fromPromise(ajax(query)).pluck('query',
 'search').defaultIfEmpty([]))
 .subscribe(arr => {
 count.innerHTML = `${result.length} results`;
 if(arr.length === 0) {
 clearResults(results);
 }
 else {
 appendResults(results, arr);
 }
 });

to a more modular stream composed of a source$ to which you can pass a virtual
observable stream and a search stream fetchResult$ in charge of making the AJAX
call to fetch results from Wikipedia (which you already tested in listing 9.3). By mock-
ing both of these parameters, you can execute the entire stream without worrying
about asynchronous callbacks, how the data is produced, and how it’s affected by
debounceTime(). Here’s the refactored search$ function, as implemented in applica-
tion code:

const search$ = (source$, fetchResult$, url = '', scheduler = null) =>
 source$
 .debounceTime(500, scheduler)
 .filter(notEmpty)
 .do(term => console.log(`Searching with term ${term}`))
 .map(query => url + query)
 .switchMap(fetchResult$);

This way of encapsulating an observable sequence into its own function is known as an
epic. Epics will become important in chapter 10, because they will allow you to easily
embed RxJS into an overall reactive architecture.

 To use the reactive architecture, just call the function with the source and AJAX
streams:

search$(

 Rx.Observable.fromEvent(inputText, 'keyup')
 .pluck('target','value'),

 query =>
 Rx.Observable.fromPromise(ajax(query))
 .pluck('query', 'search')
 .defaultIfEmpty([])

).subscribe(arr => {
 if(arr.length === 0) {
 clearResults(results);
 }
 else {
 appendResults(results, arr);
 }
 });

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412

269Augmenting virtual reality

Furthermore, parameterizing the dependent streams keeps your tests from making
outbound calls to the Wikipedia APIs. This is desirable because you don’t want your
unit test to be compromised by a third-party dependency. In other words, in place of
fetchResults$, you’ll provide an observable with a compatible return type.

 This second version doesn’t look as fluent as the original, but it’s now a lot easier
to test, as shown in the next listing. Using the virtual scheduler, you’re also able to test
how the debouncing works in the stream. Because your debouncing extends to half a
second, you use a simple function frame() to easily inline any number of time units
into your marble diagrams.

function frames(n = 1, unit = '-') {
 return (n === 1) ? unit :
 unit + frames(n - 1, unit);
}

describe('Search component', function () {
 const results_1 = [
 'rxmarbles.com',
 'https://www.manning.com/books/rxjs-in-action'
];

 const results_2 =
 ['https://www.manning.com/books/rxjs-in-action'
];

 const searchFn = term => {
 let r = [];
 if(term.toLowerCase() === 'rx') {
 r = results_1;
 }
 else if (term.toLowerCase() === 'rxjs') {
 r = results_2;
 }
 return Rx.Observable.of(r);
 };

 it('Should test the search stream with debouncing', function () {

 let searchTerms = {
 a: 'r',
 b: 'rx',
 c: 'rxjs',
 };

 let scheduler = new Rx.TestScheduler(assertDeepEqual);
 let source = scheduler.createHotObservable(
 '-(ab)-' + frames(50) +'-c|', searchTerms);

 let r = search$(source, searchFn, '', scheduler);

 let expected = frames(50) + '-f------(s|)';

 scheduler.expectObservable(r).toBe(expected,
 {

Listing 9.12 Unit test main search logic

Helper function to embed any number
of time units “-”into a marble diagram

Dummy data for first search action

Dummy data for second search action

Stub search stream that will be
projected onto the source
observable as part of the search

User input into search stream

Observable that describes the debounce
effect. Helper function frames(50) is used

to emulate a debounceTime of 500 ms.
Invokes

the
search
stream
with all

necessary
pieces

Creates expectations
for the first and
second result sets

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412

270 CHAPTER 9 Toward testable, reactive programs

 'f': results_1,
 's': results_2
 });

 scheduler.flush();
 });
});

This unit test attempts to simulate a user entering the letters rx quickly, producing two
results. The stream gets debounced with 500 ms, and finally the third and fourth let-
ters are entered to make rxjs. At this moment, the dummy AJAX observable returns
only one result to simulate the result set being filtered down. Finally, you’ve thor-
oughly unit tested the entire search component.

 As Einstein postulated in the early 1900s, all time is relative to the observer. In
RxJS, we can transpile this expression to “all time is relative to the scheduler used.” In
this chapter, we explored how to use the tools provided by RxJS to test reactive appli-
cations. In doing so, we also unpacked some concepts surrounding time and its rela-
tionship with streams and the RxJS internal notification publishing mechanism. These
concepts are important to support the future maintainability of your code. In the next
chapter, we’ll take reactive programming to new heights. We’ll put everything
together to create a simple web application that mixes the power of RxJS with a UI
component library known as React.

9.7 Summary
 Functional programs are easy to test, given that all functions are pure and have

clear signatures.
 Testing asynchronous code can be challenging, and you need to leverage async-

aware unit-testing frameworks like Mocha.
 You can combine Mocha with powerful assertion interfaces like Chai.js to create

elegant and fluent tests.
 Testing synchronous observables follows the same procedures as testing any

pure function.
 Testing asynchronous behavior as well as streams that bend time can be done

effectively using the virtual scheduler.
 It’s best to make your streams testable and modular. Attempt to keep your busi-

ness logic separate, as a set of functions, and to decouple a stream from its pro-
ducer and observer; this will allow you to manipulate its test boundaries to suit
the different use cases you want to test.

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412

Daniels ● Atencio

O
n the web, events and messages fl ow constantly between
UI and server components. With RxJS, you can fi lter,
merge, and transform these streams directly, opening the

world of data fl ow programming to browser-based apps. This
JavaScript implementation of the ReactiveX spec is perfect for
on-the-fl y tasks like autocomplete. Its asynchronous commu-
nication model makes concurrency much, much easier.

RxJS in Action is your guide to building a reactive web UI using
RxJS. You’ll begin with an intro to stream-based programming
as you explore the power of RxJS through practical examples.
With the core concepts in hand, you’ll tackle production tech-
niques like error handling, unit testing, and interacting with
frameworks like React and Redux. And because RxJS builds on
ideas from the world of functional programming, you’ll even
pick up some key FP concepts along the way.

What’s Inside
● Building clean, declarative, fault-tolerant applications
● Transforming and composing streams
● Taming asynchronous processes
● Integrating streams with third-party libraries
● Covers RxJS 5

This book is suitable for readers comfortable with JavaScript
and standard web application architectures.

Paul P. Daniels is a professional software engineer with experi-
ence in .NET, Java, and JavaScript. Luis Atencio is a software
engineer working daily with Java, PHP, and JavaScript
platforms, and author of Manning’s Functional Programming
in JavaScript.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit www.manning.com/books/rxjs-in-action

$49.99 / Can $65.99 [INCLUDING eBOOK]

RxJS IN ACTION

JAVASCRIPT/WEB DEVELOPMENT

M A N N I N G

“Important information
you need to know in order

to become an effective
reactive programmer.”

—From the Foreword by Ben Lesh
Project lead, RxJS 5

“Covers the subject
thoroughly and with
 great accessibility.”

—Corinna Cohn, Fusion Alliance

“All you need to really
 understand streaming!”—Carlos Corutto, Globant

“Learn to leverage the power
of RxJS to build a reactive
and resilient foundation
for your applications.”

—Thomas Peklak, Emakina CEE

SEE INSERT

www.itbook.store/books/9781617293412

https://itbook.store/books/9781617293412

	cover
	Copyright
	BriefTOC
	SampleCh09
	coverB

