
M A N N I N G

Dominik Picheta

SAMPLE CHAPTER

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

Nim in Action
by Dominik Picheta

Chapter 1

Copyright 2017 Manning Publications

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

www.itbook.st
brief contents

PART 1 THE BASICS OF NIM .. 1
1 ■ Why Nim? 3
2 ■ Getting started 22

PART 2 NIM IN PRACTICE.. 55
3 ■ Writing a chat application 57
4 ■ A tour through the standard library 101
5 ■ Package management 128
6 ■ Parallelism 150
7 ■ Building a Twitter clone 180

PART 3 ADVANCED CONCEPTS... 223
8 ■ Interfacing with other languages 225
9 ■ Metaprogramming 249
i

ore/books/9781617293436

https://itbook.store/books/9781617293436

3

Why Nim?

Nim is still a relatively new programming language. In fact, you’re holding one of
the very first books about it. The language is still not fully complete, but core
aspects, like its syntax, the semantics of procedures, methods, iterators, generics,
templates, and more, are all set in stone. Despite its newness, there has been signif-
icant interest in Nim from the programming community because of the unique set
of features that it implements and offers its users.

 This chapter answers questions that you may ask before learning Nim, such as
why you might want to use it. In this chapter, I outline some of the common practi-
cal uses of Nim, compare it to other programming languages, and discuss some of
its strengths and weaknesses.

This chapter covers
 What Nim is

 Why you should learn about it

 Comparing Nim to other programming languages

 Use cases

 Strengths and weaknesses

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

4 CHAPTER 1 Why Nim?

1.1 What is Nim?
Nim is a general-purpose programming language designed to be efficient, expressive,
and elegant. These three goals are difficult to achieve at the same time, so Nim’s
designers gave each of them different priorities, with efficiency being the most
important and elegance being the least.

 But despite the fact that elegance is relatively unimportant to Nim’s design, it’s still
considered during the design process. Because of this, the language remains elegant
in its own right. It’s only when trade-offs between efficiency and elegance need to be
made that efficiency wins.

 On the surface, Nim shares many of Python’s characteristics. In particular, many
aspects of Nim’s syntax are similar to Python’s, including the use of indentation to
delimit scope as well as the tendency to use words instead of symbols for certain oper-
ators. Nim also shares other aspects with Python that aren’t related to syntax, such as
the highly user-friendly exception tracebacks, shown here:

Traceback (most recent call last)
request.nim(74) request
request.nim(25) getUsers
json.nim(837) []
tables.nim(147) []
Error: unhandled exception: key not found: totalsForAllResults [KeyError]

You’ll also see many differences, especially when it comes to the semantics of the lan-
guage. The major differences lie within the type system and execution model, which
you’ll learn about in the next sections.

CONTRIBUTING TO NIM The compiler, standard library, and related tools are
all open source and written in Nim. The project is available on GitHub, and
everyone is encouraged to contribute. Contributing to Nim is a good way to
learn how it works and to help with its development. See Nim’s GitHub page
for more information: https://github.com/nim-lang/Nim#contributing.

1.1.1 Use cases

Nim was designed to be a general-purpose programming language from the outset. As
such, it consists of a wide range of features that make it usable for just about any soft-
ware project. This makes it a good candidate for writing software in a wide variety of

A little bit about Nim’s history
Andreas Rumpf started developing Nim in 2005. The project soon gained support and
many contributions from the open source community, with many volunteers around
the world contributing code via pull requests on GitHub. You can see the current open
Nim pull requests at https://github.com/nim-lang/Nim/pulls.

www.itbook.store/books/9781617293436

https://github.com/nim-lang/Nim/pulls
https://github.com/nim-lang/Nim#contributing
https://itbook.store/books/9781617293436

5What is Nim?

application domains, ranging from web applications to kernels. In this section, I’ll dis-
cuss how Nim’s features and programming support apply in several use cases.

 Although Nim may support practically any application domain, this doesn’t make
it the right choice for everything. Certain aspects of the language make it more suit-
able for some categories of applications than others. This doesn’t mean that some
applications can’t be written using Nim; it just means that Nim may not support the
code styles that are best suited for writing some kinds of applications.

 Nim is a compiled language, but the way in which it’s compiled is special. When
the Nim compiler compiles source code, it first translates the code into C code. C is an
old but well supported systems programming language that allows easier and more
direct access to the physical hardware of the machine. This makes Nim well suited to
systems programming, allowing projects such as operating systems (OSs), compilers,
device drivers, and embedded system software to be written.

 Internet of Things (IoT) devices, which are physical devices with embedded elec-
tronics that are connected to the internet, are good targets for Nim, primarily thanks
to the power offered by Nim’s ease of use and its systems programming capabilities.

 A good example of a project making use of Nim’s systems programming features is
a very simple OS called NimKernel available on GitHub: https://github.com/
dom96/nimkernel.

HOW DOES NIM COMPILE SOURCE CODE? I describe Nim’s unusual compilation
model and its benefits in detail in section 1.1.3.

Applications written in Nim are very fast; in many cases, just as fast as applications writ-
ten in C, and more than thirteen times faster than applications written in Python. Effi-
ciency is the highest priority, and some features make optimizing code easy. This goes
hand in hand with a soft real-time garbage collector, which allows you to specify the
amount of time that should be spent collecting memory. This feature becomes
important during game development, where an ordinary garbage collector may slow
down the rendering of frames on the screen if it uses too much time collecting mem-
ory. It’s also useful in real-time systems that need to run in very strict time frames.

 Nim can be used alongside other much slower languages to speed up certain
performance-critical components. For example, an application written in Ruby that
requires certain CPU-intensive calculations can be partially written in Nim to gain a
considerable speed advantage. Such speed-ups are important in areas such as scien-
tific computing and high-speed trading.

 Applications that perform I/O operations, such as reading files or sending data
over a network, are also well supported by Nim. Web applications, for example, can be
written easily using a number of web frameworks like Jester (https://github
.com/dom96/jester). Nim’s script-like syntax, together with its powerful, asynchro-
nous I/O support, makes it easy to develop these applications rapidly.

 Command-line applications can benefit greatly from Nim’s efficiency. Also,
because Nim applications are compiled, they’re standalone and so don’t require any

www.itbook.store/books/9781617293436

https://github.com/dom96/nimkernel
https://github.com/dom96/nimkernel
https://github.com/dom96/nimkernel
https://github.com/dom96/jester
https://github.com/dom96/jester
https://github.com/dom96/jester
https://itbook.store/books/9781617293436

6 CHAPTER 1 Why Nim?

bulky runtime dependencies. This makes their distribution incredibly easy. One such
application written in Nim is Nimble; it’s a package manager for Nim that allows users
to install Nim libraries and applications.

 These are just a few use cases that Nim fits well; it’s certainly not an exhaustive list.
 Another thing to keep in mind is that, at the time of writing, Nim is still in develop-

ment, not having yet reached version 1.0. Certain features haven’t been implemented
yet, making Nim less suited for some applications. For example, Nim includes a back-
end that allows you to write JavaScript applications for your web pages in Nim. This
backend works, but it’s not yet as mature as the rest of the language. This will improve
with time.

 Of course, Nim’s ability to compile to JavaScript makes it suitable for full-stack
applications that need components that run on a server and in a browser. This is a
huge advantage, because code can easily be reused for both the browser and server
components of the application.

 Now that you know a little bit about what Nim is, its history, and some of the appli-
cations that it’s particularly well suited for, let’s look at some of Nim’s features and talk
about how it works.

1.1.2 Core features

In many ways, Nim is very innovative. Many of Nim’s features can’t be found in any
other programming language. If you enjoy learning new programming languages,
especially those with interesting and unique features, then Nim is definitely the lan-
guage for you.

 In this section, we’ll look at some of the core features of Nim—in particular, the
features that make Nim stand out from other programming languages:

 A facility called metaprogramming, used for, among many things, molding the
language to your needs.

 Style-insensitive variable, function, and type names. By using this feature, which
is slightly controversial, you can treat identifiers in whatever style you wish, no
matter if they were defined using camelCase or snake_case.

 A type system that’s rich in features such as generics, which make code easier to
write and maintain.

 Compilation to C, which allows Nim programs to be efficient and portable. The
compilation itself is also very fast.

 A number of different types of garbage collectors that can be freely selected or
removed altogether.

METAPROGRAMMING

The most practical, and in some senses unique, feature of Nim is its extensive
metaprogramming support. Metaprogramming allows you to read, generate, analyze,
and transform source code. It was by no means a Nim invention, but there’s no other
programming language with metaprogramming that’s so extensive and at the same

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

7What is Nim?

time easy to pick up as Nim’s. If you’re familiar with Lisp, then you might have some
experience with metaprogramming already.

 With metaprogramming, you treat code as data in the form of an abstract syntax tree.
This allows you to manipulate existing code as well as generate brand new code while
your application is being compiled.

 Metaprogramming in Nim is special because languages with good metaprogram-
ming features typically belong to the Lisp family of languages. If you’re already famil-
iar with the likes of Java or Python, you’ll find it easier to start using Nim than Lisp.
You’ll also find it more natural to learn how to use Nim’s metaprogramming features
than Lisp’s.

 Although it’s generally an advanced topic, metaprogramming is a very powerful
feature that you’ll get to know in far more detail in chapter 9 of this book. One of the
main benefits that metaprogramming offers is the ability to remove boilerplate code.
Metaprogramming also allows the creation of domain-specific languages (DSLs); for
example,

html:
body:

p: "Hello World"

This DSL specifies a bit of HTML code. Depending on how it’s implemented, the DSL
will likely be translated into Nim code resembling the following:

echo("<html>")
echo(" <body>")
echo(" <p>Hello World</p>")
echo(" </body>")
echo("</html>")

That Nim code will result in the following output:

<html>
<body>

<p>Hello World</p>
</body>

</html>

With Nim’s metaprogramming, you can define DSLs and mix them freely with your
ordinary Nim code. Such languages have many use cases; for example, the preceding
one can be used to create HTML templates for your web apps.

 Metaprogramming is at the center of Nim’s design. Nim’s designer wants to
encourage users to use metaprogramming in order to accommodate their style of pro-
gramming. For example, although Nim does offer some object-oriented program-
ming (OOP) features, it doesn’t have a class definition construct. Instead, anyone
wishing to use OOP in Nim in a style similar to that of other languages should use
metaprogramming to create such a construct.

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

8 CHAPTER 1 Why Nim?

STYLE INSENSITIVITY

Another of Nim’s interesting and likely unique features is style insensitivity. One of the
hardest things a programmer has to do is come up with names for all sorts of identifi-
ers like variables, functions, and modules. In many programming languages, these
names can’t contain whitespace, so programmers have been forced to adopt other
ways of separating multiple words in a single name. Multiple differing methods were
devised, the most popular being snake_case and camelCase. With Nim, you can use
snake_case even if the identifier has been defined using camelCase, and vice versa.
So you can write code in your preferred style even if the library you’re using adopted a
different style for its identifiers.

import strutils

echo("hello".to_upper())

echo("world".toUpper())

This works because Nim considers the identifiers to_upper and toUpper to be equal.
 When comparing identifiers, Nim considers the case of the first character, but it

doesn’t bother with the case of the rest of the identifier’s characters, ignoring the
underscores as well. As a result, the identifiers toUpper and ToUpper aren’t equal
because the case of the first character differs. This allows type names to be distin-
guished from variable names, because, by convention, type names should start with an
uppercase letter and variable names should start with a lowercase letter.

 The following listing shows one scenario where this convention is useful.

type
Dog = object

age: int

let dog = Dog(age: 3)

POWERFUL TYPE SYSTEM

One of the many characteristics that differentiate programming languages from one
another is their type system. The main purpose of a type system is to reduce the
opportunities for bugs in your programs. Other benefits that a good type system pro-
vides are certain compiler optimizations and better documentation of code.

 The main categories used to classify type systems are static and dynamic. Most pro-
gramming languages fall somewhere between the two extremes and incorporate ideas
from both. This is because both static and dynamic type systems require certain trade-
offs. Static typing finds more errors at compile time, but it also decreases the speed at
which programs can be written. Dynamic typing is the opposite.

Listing 1.1 Style insensitivity

Listing 1.2 Style insensitivity and type identifiers

The strutils module defines a procedure called toUpper.
You can call it using snake_case.
As it was originally defined, you can call it using camelCase.

The Dog type is defined with
an uppercase first letter.

Only primitive types such as int
start with a lowercase letter.

A dog variable can be safely defined because
it won’t clash with the Dog type.

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

9What is Nim?

 Nim is statically typed, but unlike some statically typed programming languages, it
also incorporates many features that make development fast. Type inference is a good
example of that: types can be resolved by the compiler without the need for you to
write the types out yourself (though you can choose to). Because of that, your pro-
gram can be bug-free and yet your development speed isn’t hindered. Nim also incor-
porates some dynamic type-checking features, such as runtime type information,
which allows for the dynamic dispatch of functions.

 One way that a type system ensures that your program is free of bugs is by verifying
memory safety. Some programming languages, like C, aren’t memory safe because
they allow programs to access memory that hasn’t been assigned for their use. Other
programming languages are memory safe at the expense of not allowing programs to
access low-level details of memory, which in some cases is necessary. Nim combines
both: it’s memory safe as long as you don’t use any of the unsafe types, such as ptr, in
your program, but the ptr type is necessary when interfacing with C libraries. Sup-
porting these unsafe features makes Nim a powerful systems programming language.

 By default, Nim protects you against every type of memory error:

 Arrays are bounds-checked at compile time, or at runtime when compile-time
checks aren’t possible, preventing both buffer overflows and buffer overreads.

 Pointer arithmetic isn’t possible for reference types as they’re entirely managed
by Nim’s garbage collector; this prevents issues such as dangling pointers and
other memory issues related to managing memory manually.

 Variables are always initialized by Nim to their default values, which prevents
variables containing unexpected and corrupt data.

Finally, one of the most important features of Nim’s type system is the ability to use
generic programming. Generics in Nim allow for a great deal of code reuse without
sacrificing type safety. Among other things, they allow you to specify that a single func-
tion can accept multiple different types. For example, you may have a showNumber
procedure that displays both integers and floats on the screen:

proc showNumber(num: int | float) =
echo(num)

showNumber(3.14)
showNumber(42)

Here, the showNumber procedure accepts either an int type or a float type. The |
operator specifies that both int and float can be passed to the procedure.

 This is a simple demonstration of Nim’s generics. You’ll learn a lot more about
Nim’s type system, as well as its generics, in later chapters.

COMPILATION

I mentioned in the previous section that the Nim compiler compiles source code into
C first, and then feeds that source code into a C compiler. You’ll learn a lot more
about how this works in section 1.1.3, but right now I’ll talk about some of the many
practical advantages of this compilation model.

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

10 CHAPTER 1 Why Nim?

 The C programming language is very well established as a systems programming
language and has been in use for over 40 years. C is one of the most portable pro-
gramming languages, with multiple implementations for Windows, Linux, Mac OS,
x86, AMD64, ARM, and many other, more obscure OSs and platforms. C compilers sup-
port everything from supercomputers to microcontrollers. They’re also very mature
and implement many powerful optimizations, which makes C very efficient.

 Nim takes advantage of these aspects of C, including its portability, widespread use,
and efficiency.

 Compiling to C also makes it easy to use existing C and C++ libraries—all you need
to do is write some simple wrapper code. You can write this code much faster by using
a tool called c2nim. This tool converts C and C++ header files to Nim code, which
wraps those files. This is of great benefit because many popular libraries are written in
C and C++.

 Nim also offers you the ability to build libraries that are compatible with C and
C++. This is handy if you want your library to be used from other programming lan-
guages. You’ll learn all about wrapping C and C++ libraries in chapter 8.

 Nim source code can also be compiled into Objective C and JavaScript. The Objec-
tive C language is mainly used for iOS software development; by compiling to it, you
can write iOS applications natively in Nim. You can also use Nim to develop Android
applications by using the C++ compilation backend. JavaScript is the client-side lan-
guage used by billions of websites; it’s sometimes called the “assembly language of the
web” because it’s the only programming language that’s supported by all the major
web browsers. By compiling to JavaScript, you can write client-side applications for
web browsers in Nim. Figure 1.1 shows the available Nim backends.

 You may now be wondering just how fast Nim is at compiling software. Perhaps
you’re thinking that it’s very slow; after all, Nim needs to translate source code to an
intermediate language first. But in fact it’s fairly fast. As an example, the Nim com-
piler, which consists of around 100,000 lines of Nim code, takes about 12 seconds to

Nim compiler

C C++ Objective C JavaScript

Allows

interfacing

with:

Backend:

Figure 1.1 Compilation backends

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

11What is Nim?

compile on a MacBook Pro with a 2.7 GHz Intel Core i5 CPU. Each compilation is
cached, so the time drops to 5 seconds after the initial compilation.

MEMORY MANAGEMENT

C and C++ both require you to manually manage memory, carefully ensuring that
what you allocate is deallocated once it’s no longer needed. Nim, on the other hand,
manages memory for you using a garbage collector. But there are situations when you
may want to avoid garbage collectors; they’re considered by many to be inadequate
for certain application domains, like embedded systems and games. For this reason,
Nim supports a number of different garbage collectors with different applications in
mind. The garbage collector can also be removed completely, giving you the ability to
manage memory yourself.

GARBAGE COLLECTORS Switching between garbage collectors is easy. You just
need to specify the --gc:<gc_name> flag during compilation and replace
<gc_name> with markandsweep, boehm, or none.

This was just a small taste of Nim’s most prominent features. There’s a lot more to it:
not just the unique and innovative features, but also the unique composition of fea-
tures from existing programming languages that makes Nim as a whole very unique
indeed.

1.1.3 How does Nim work?

One of the things that makes Nim unique is its implementation. Every programming
language has an implementation in the form of an application, which either inter-
prets the source code or compiles the source code into an executable. These imple-
mentations are called an interpreter and a compiler, respectively. Some languages may
have multiple implementations, but Nim’s only implementation is a compiler. The
compiler compiles Nim source code by first translating the code to another program-
ming language, C, and then passing that C source code to a C compiler, which then
compiles it into a binary executable. The executable file contains instructions that
indicate the specific tasks that the computer should perform, including the ones spec-
ified in the original Nim source code. Figure 1.2 shows how a piece of Nim code is
compiled into an executable.

 The compilers for most programming languages don’t have this extra step; they
compile the source code into a binary executable themselves. There are also others
that don’t compile code at all. Figure 1.3 shows how different programming languages
transform source code into something that can be executed.

Executable

Nim code

Nim compiler

C code

C compiler
Figure 1.2 How Nim
compiles source code

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

12 CHAPTER 1 Why Nim?

Nim connects to the C compilation process in order to compile the C source code
that was generated by it. This means that the Nim compiler depends on an external C
compiler, such as GCC or Clang. The result of the compilation is an executable that’s
specific to the CPU architecture and OS it was compiled on.

 This should give you a good idea of how Nim source code is transformed into a
working application, and how this process is different from the one used in other pro-
gramming languages. Every time you make a change to your Nim source code, you’ll
need to recompile it.

 Now let’s look at Nim’s positive and negative aspects.

1.2 Nim’s benefits and shortcomings
It’s important to understand why you might want to use a language, but it’s just as
important to learn why that language may not be correct for your particular use case.

 In this section, I’ll compare Nim to a number of other programming languages,
focusing on a variety of characteristics and factors that are typically used in such com-
parisons. After that, I’ll discuss some of the areas where Nim still needs to catch up
with other languages.

1.2.1 Benefits

As you read this book, you may wonder how Nim compares to the programming lan-
guages that you’re familiar with. There are many ways to draw a comparison and mul-
tiple factors that can be considered, including the language’s execution speed,
expressiveness, development speed, readability, ecosystem, and more. This section
looks at some of these factors to give you a better idea of the benefits of Nim.

Nim code

Nim compiler

C code

C compiler

Executable

Actions

Python code

Python interpreter

Actions

Java code

Java compiler

JAR file

Actions

Java virtual machine

Figure 1.3 How the Nim compilation process
compares to other programming languages

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

13Nim’s benefits and shortcomings

NIM IS EFFICIENT

The speed at which applications written in a programming language execute is often
used in comparisons. One of Nim’s goals is efficiency, so it should be no surprise that
it’s a very efficient programming language.

 C is one of the most efficient programming languages, so you may be wondering
how Nim compares. In the previous section, you learned that the Nim compiler first
translates Nim code into an intermediate language. By default, the intermediate lan-
guage is C, which suggests that Nim’s performance is similar to C’s, and that’s true.

 Because of this feature, you can use Nim as a complete replacement for C, with a
few bonuses:

 Nim has performance similar to C.
 Nim results in software that’s more reliable than software written in C.
 Nim features an improved type system.
 Nim supports generics.
 Nim implements an advanced form of metaprogramming.

In comparison to C, metaprogramming in Nim is unique, as it doesn’t use a prepro-
cessor but is instead a part of the main compilation process. In general, you can
expect to find many modern features in Nim that you won’t find in C, so picking Nim
as a C replacement makes a lot of sense.

 Table 1.1 shows the results of a small benchmark test.1 Nim matches C’s speed and
is significantly faster than Python.

In this benchmark, the Nim application’s runtime matches the speed of the C app and
is significantly faster than the app implemented in Python. Micro benchmarks such as
this are often unreliable, but there aren’t many alternatives. Nim’s performance
matches that of C, which is already one of the most efficient programming languages
out there.

NIM IS READABLE

Nim is a very expressive language, which means that it’s easy to write Nim code that’s
clear to both the compiler and the human reader. Nim code isn’t cluttered with the
curly brackets and semicolons of C-like programming languages, such as JavaScript

1 You can read more about this benchmark test on Dennis Felsing’s HookRace blog: http://hookrace.net/
blog/what-is-special-about-nim/#good-performance.

Table 1.1 Time taken to find which numbers from 0 to 100 million are prime

Programming language Time (seconds)

C 2.6

Nim 2.6

Python (CPython) 35.1

www.itbook.store/books/9781617293436

http://hookrace.net/blog/what-is-special-about-nim/#good-performance
http://hookrace.net/blog/what-is-special-about-nim/#good-performance
http://hookrace.net/blog/what-is-special-about-nim/#good-performance
https://itbook.store/books/9781617293436

14 CHAPTER 1 Why Nim?

and C++, nor does it require the do and end keywords that are present in languages
such as Ruby.

 Compare this expressive Nim code with the less-expressive C++ code

for i in 0 .. <10:
echo(i)

#include <iostream>
using namespace std;

int main()
{

for (int i = 0; i < 10; i++)
{

cout << i << endl;
}

return 0;
}

The Nim code is more readable and far more compact. The C++ code contains many
elements that are optional in Nim, such as the main function declaration, which is
entirely implicit in Nim.

 Nim is easy to write but, more importantly, it’s also easy to read. Good code read-
ability goes a long way. For example, it makes debugging easier, allowing you to spend
more time writing beautiful Nim code, cutting down your development time.

NIM STANDS ON ITS OWN

This has been mentioned already, but it’s worth revisiting to describe how other lan-
guages compare, and in particular why some require a runtime.

 Compiled programming languages such as Nim, C, Go, D, and Rust produce an
executable that’s native to the OS on which the compiler is running. Compiling a Nim
application on Windows results in an executable that can only be executed on Win-
dows. Similarly, compiling it on Mac OS results in an executable that can only be exe-
cuted on Mac OS. The CPU architecture also comes into play: compilation on ARM
results in an executable that’s only compatible with ARM CPUs. This is how things
work by default, but it’s possible to instruct Nim to compile an executable for a differ-
ent OS and CPU combination through a process known as cross-compilation.

 Cross-compilation is usually used when a computer with the desired architecture
or OS is unavailable, or the compilation takes too long. One common use case would
be compiling for ARM devices such as the Raspberry Pi, where the CPU is typically slow.
More information about cross-compilation can be found in the Nim Compiler User
Guide: http://nim-lang.org/docs/nimc.html#cross-compilation.

 Among other things, the JVM was created to remove the need for cross-compilation.
You may have heard the phrase “write once, run anywhere.” Sun Microsystems created

Listing 1.3 Iterating from 0 to 9 in Nim

Listing 1.4 Iterating from 0 to 9 in C++

www.itbook.store/books/9781617293436

http://nim-lang.org/docs/nimc.html#cross-compilation
https://itbook.store/books/9781617293436

15Nim’s benefits and shortcomings

this slogan to illustrate Java’s cross-platform benefits. A Java application only needs to
be compiled once, and the result of this compilation is a JAR file that holds all the com-
piled Java classes. The JAR file can then be executed by the JVM to perform the pro-
grammed actions on any platform and architecture. This makes the JAR file a platform-
and architecture-agnostic executable. The downside to this is that in order to run these
JAR files, the JVM must be installed on the user’s system. The JVM is a very big depen-
dency that may contain bugs and security issues. But on the other hand, it does allow
the Java application to be compiled only once.

 Python, Ruby, and Perl are similar. They also use a virtual machine (VM) to execute
code. In Python’s case, a VM is used to optimize the execution of Python code, but it’s
mostly hidden away as an implementation detail of the Python interpreter. The
Python interpreter parses the code, determines what actions that code is describing,
and immediately executes those actions. There’s no compilation step like with Java, C,
or Nim. But the advantages and disadvantages are mostly the same as the JVM’s;
there’s no need for cross-compilation, but in order to execute a Python application,
the system needs to have a Python interpreter installed.

Unfortunately, in many cases, virtual machines and interpreters cause more problems
than they solve. The number of common CPU architectures and the most popular OSs
is not that large, so compiling for each of them isn’t that difficult. In contrast, the
source code for applications written in interpreted languages is often distributed to
the user, and they’re expected to install the correct version of the interpreter or vir-
tual machine. This can result in a lot of problems.

 One example of the difficulty associated with distributing such applications is the
recent introduction of Python 3. Because it’s not backward compatible with the previ-
ous version, it has caused many issues for software written originally in Python 2.
Python 3 was released in 2008, and as of this writing, there are still libraries written for
Python 2 that don’t work with the Python 3 interpreter.2 This wouldn’t be a problem
with a compiled language because the binaries would still continue to work.

 The lightweight nature of Nim should make it particularly appealing, especially in
contrast to some of the languages mentioned in this section.

2 See the Python 3 Readiness page for a list of Python 3–ready packages: http://py3readiness.org/.

Write once, run anywhere
Similar to the “write once, run anywhere” slogan, other programming languages
adopted the “write once, compile anywhere” philosophy, giving a computer program
the ability to be compiled on all platforms without the need to modify its source code.
This applies to languages such as C, Pascal, and Ada. But these languages still
require platform-specific code when dealing with more-specialized features of the OS,
such as when creating new threads or downloading the contents of a web page. Nim
goes a step further; its standard library abstracts away the differences between OSs
so you can use a lot of the features that modern OSs offer.

www.itbook.store/books/9781617293436

http://py3readiness.org/
https://itbook.store/books/9781617293436

16 CHAPTER 1 Why Nim?

NIM IS FLEXIBLE

There are many different styles that software can be written in. A programming para-
digm is a fundamental style of writing software, and each programming language sup-
ports a different set of paradigms. You’re probably already familiar with one or more
of them, and at the very least you know what object-oriented programming (OOP) is
because it’s taught as part of many computer science courses.

 Nim is a multi-paradigm programming language. Unlike some popular program-
ming languages, Nim doesn’t focus on the OOP paradigm. It’s mainly a procedural
programming language, with varying support for OOP, functional, declarative, concur-
rent, and other programming styles.

 That’s not to say that OOP isn’t well supported. OOP as a programming style is sim-
ply not forced on you. Nim supports common OOP features, including inheritance,
polymorphism, and dynamic dispatch.

 To give you a better idea of what Nim’s primary paradigm looks like, let’s look at
the one big difference between the OOP paradigm and the procedural paradigm. In
the OOP paradigm, methods and attributes are bound to objects, and the methods
operate on their own data structure. In the procedural paradigm, procedures are
standalone entities that operate on data structures. This may be hard for you to visual-
ize, so let’s look at some code examples to illustrate it.

SUBROUTINE TERMINOLOGY In this subsection I mention methods and proce-
dures. These are simply different names for subroutines or functions. Method is
the term used in the context of OOP, procedure is used in procedural program-
ming, and function is used in functional programming.

The following code listings show the same application. The first is written in Python
using the OOP style. The second is written in Nim using the procedural style.

class Dog:
def bark(self):

print("Woof!")

dog = Dog()

dog.bark()

type
Dog = object

proc bark(self: Dog) =
echo("Woof!")

let dog = Dog()
dog.bark()

Listing 1.5 Barking dog modeled using OOP in Python

Listing 1.6 Barking dog modeled using procedural programming in Nim

The bark method is associated with the
Dog class by being defined within it.

The bark method can be directly invoked on the
dog object by accessing the method via the dot.

The bark procedure isn’t directly associated with the
Dog type by being defined within it. This procedure
could also easily be defined outside this module.

The bark procedure can still be directly invoked on the
dog object, despite the fact that the procedure isn’t
associated with the Dog type as it is in the Python version.

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

17Nim’s benefits and shortcomings

In the Python code, the bark method is placed under the class definition. In the
Nim code, the bark method (called a procedure in Nim) isn’t bound to the Dog type in
the same way as it is in the Python code; it’s independent of the definition of the Dog
type. Instead, its first argument specifies the type it’s associated with.

 You could also implement something similar in Python, but it wouldn’t allow you
to call the bark method in the same manner. You’d be forced to call it like so:
bark(dog), explicitly passing the dog variable to the method as its first argument. The
reason this is not the case with Nim is because Nim rewrites dog.bark() to bark(dog),
making it possible for you to call methods using the traditional OOP style without hav-
ing to explicitly bind them to a class.

 This ability, which is referred to as Uniform Function Call Syntax (UFCS), has mul-
tiple advantages. It allows you to create new procedures on existing objects externally
and allows procedure calls to be chained.

CLASSES IN NIM Defining classes and methods in Nim in a manner similar to
Python is also possible. Metaprogramming can be used to do this, and the
community has already created numerous libraries that emulate the syntax.
See, for example, the Nim OOP macro: https://nim-by-example.github
.io/oop_macro/.

Another paradigm that Nim supports is the functional programming (FP) paradigm.
FP is not as popular as OOP, though in recent years it has seen a surge in popularity. FP
is a style of programming that primarily avoids the changing of state and the use of
mutable data. It uses certain features such as first-class functions, anonymous func-
tions, and closures, all of which Nim supports.

 Let’s look at an example to see the differences between programming in a proce-
dural style and a functional one. The following code listings show code that separates
people’s full names into first and last names. Listing 1.7 shows this done in a func-
tional style and listing 1.8 in a procedural style.

import sequtils, future, strutils
let list = @["Dominik Picheta", "Andreas Rumpf", "Desmond Hume"]
list.map(

(x: string) -> (string, string) => (x.split[0], x.split[1])
).echo

Listing 1.7 Iterating over a sequence using functional programming in Nim

Imports the sequtils, future, and strutils
modules. These modules define the map,
->, and split procedures respectively.

Defines new list variable
containing a list of names

The map procedure is used to
iterate over the list.

The map procedure takes a
closure that specifies how to
modify each item in the list.The modified list is then

displayed on the screen.

www.itbook.store/books/9781617293436

https://nim-by-example.github.io/oop_macro/
https://nim-by-example.github.io/oop_macro/
https://nim-by-example.github.io/oop_macro/
https://itbook.store/books/9781617293436

18 CHAPTER 1 Why Nim?

import strutils
let list = @["Dominik Picheta", "Andreas Rumpf", "Desmond Hume"]
for name in list:

echo((name.split[0], name.split[1]))

The functional version uses the map procedure to iterate over the list variable, which
contains a list of names. The procedural version uses a for loop. Both versions split
the name into a first and last name. They then display the result in a tuple. (I’m throw-
ing a lot of new terms at you here. Don’t worry if you aren’t familiar with them; I’ll
introduce you to them in chapter 2.) The output of the code listings will look similar
to this:

(Field0: Dominik, Field1: Picheta)
(Field0: Andreas, Field1: Rumpf)
(Field0: Desmond, Field1: Hume)

THE MEANING OF FIELD0 AND FIELD1 Field0 and Field1 are just default field
names given to tuples when a field name isn’t specified.

Nim is incredibly flexible and allows you to write software in many different styles.
This was just a small taste of the most popular paradigms supported by Nim and of
how they compare to Nim’s main paradigm. Nim also supports more-obscure para-
digms, and support for others can be introduced easily using metaprogramming.

NIM CATCHES ERRORS AHEAD OF TIME

Throughout this chapter, I’ve been comparing Python to Nim. While Nim does take a
lot of inspiration from Python, the two languages differ in one important way: Python
is dynamically typed and Nim is statically typed. As a statically typed language, Nim
provides a certain level of type safety that dynamically typed programming languages
don’t provide.

 Although Nim is statically typed, it feels very dynamic because it supports type
inference and generics. You’ll learn more about these features later in the book. For
now, think of it as a way to retain the high development speed that dynamically typed
programming languages allow, while also providing extra type safety at compile time.

 In addition to being statically typed, Nim implements an exception-tracking mech-
anism that is entirely opt-in. With exception tracking, you can ensure that a procedure
won’t raise any exceptions, or that it will only raise exceptions from a predefined list.
This prevents unexpected crashes by ensuring that you handle exceptions.

Listing 1.8 Iterating over a sequence using a procedural style in Nim

Imports the strutils module,
which defines the split procedure

A for loop is used to iterate
over each item in the list.

The code inside the for loop is
executed during each iteration; in
this case, each name is split into
two and displayed as a tuple.

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

19Nim’s benefits and shortcomings

COMPARING DIFFERENT PROGRAMMING LANGUAGE FEATURES

Throughout this section, I’ve compared Nim to various other programming lan-
guages. I’ve discussed efficiency, the dependencies of the resulting software, the flexi-
bility of the language, and the language’s ability to catch errors before the software is
deployed. Based on these characteristics alone, Nim is an excellent candidate for
replacing some of the most popular programming languages out there, including
Python, Java, C, and more.

 For reference, table 1.2 lists different programming languages and shows some of
the features that they do and don’t support.

Table 1.2 Common programming language features

Programming
language

Type
 system

Generics Modules GC Syntax Metaprogramming Execution

Nim Static and
strong

Yes Yes Yes, multiple
and optionala

a Nim supports ref counting, a custom GC, and Boehm. Nim also allows the GC to be switched off altogether.

Python-
like

Yes Compiled
binary

C Static and
weak

No No No C Very limitedb

b Some very limited metaprogramming can be achieved via C’s preprocessor.

Compiled
binary

C++ Static and
weak

Yes No No C-like Limitedc

c C++ only offers metaprogramming through templates, limited CTFE (compile-time function execution), and no AST macros.

Compiled
binary

D Static and
strong

Yes Yes Yes, optional C-like Yes Compiled
binary

Go Static and
strong

No Yes Yes C-like No Compiled
binary

Rust Static and
strong

Yes Yes No C-like Limitedd

d Rust has some support for declarative macros through its macro_rules! directive, but no built-in procedural macros that
allow you to transform the AST except for compiler plugins, and no CTFE.

Compiled
binary

Java Static and
strong

Yes Yes Yes, multiplee

e See the “Oracle JVM Garbage Collectors Available From JDK 1.7.0_04 And After” article on Fasterj: www.fasterj.com/
articles/oraclecollectors1.shtml.

C-like No Executed via
the JVM

Python Dynamic
and strong

N/A Yes Yes Python Yesf

f You can modify the behavior of functions, including manipulating their AST, using the ast module, but only at runtime.

Executed via
the Python
interpreter

Lua Dynamic
and weak

N/A Yes Yes Modula-
likeg

g Lua uses do and end keywords to delimit scope.

Yes via Metalua Executed via
the Lua inter-
preter or Lua
JIT compiler

www.itbook.store/books/9781617293436

www.fasterj.com/articles/oraclecollectors1.shtml
www.fasterj.com/articles/oraclecollectors1.shtml
https://itbook.store/books/9781617293436

20 CHAPTER 1 Why Nim?

1.2.2 Areas where Nim still needs to improve

Nothing in this world is perfect, and programming languages are no exception.
There’s no programming language that can solve every problem in the most reliable
and rapid manner. Each programming language has its own strengths and weak-
nesses, and Nim is no exception.

 So far, I’ve been focusing on Nim’s strengths. Nim has many more fine aspects that
I haven’t yet mentioned, and you’ll discover them throughout this book. But it would
be unfair to only talk about Nim’s strengths. Nim is still a young programming lan-
guage, so of course it can still improve.

NIM IS STILL YOUNG AND IMMATURE

All programming languages go through a period of immaturity. Some of Nim’s newer
and more-advanced features are still unstable. Using them can result in buggy behav-
ior in the compiler, such as crashes, though crashes don’t happen very often. Impor-
tantly, Nim’s unstable features are opt-in, which means that you can’t accidentally use
them.

 Nim has a package manager called Nimble. Where other programming languages
may have thousands of packages available, Nim only has about 500. This means that
you may need to write libraries for certain tasks yourself. This situation is, of course,
improving, with new packages being created by the Nim community every day. In
chapter 5, I’ll show you how to create your own Nimble packages.

NIM’S USER BASE AND COMMUNITY IS STILL QUITE SMALL

Nim has a small number of users compared to the mainstream programming lan-
guages. The result is that few Nim jobs exist. Finding a company that uses Nim in pro-
duction is rare, but when it does happen, the demand for good Nim programmers can
make the salaries quite high.

 On the other hand, one of the most unique things about Nim is that its develop-
ment is exceptionally open. Andreas Rumpf (Nim’s creator) and many other Nim
developers (including me) openly discuss Nim’s future development plans on GitHub
and on IRC. Anyone is free to challenge these plans and, because the community is
still quite small, it’s easy to do so. IRC is also a great place for newcomers to ask ques-
tions about Nim and to meet fellow Nim programmers.

IRC Take a look at appendix A for details on how to connect to Nim’s IRC
channel.

These problems are temporary. Nim has a bright future ahead of it, and you can help
shape it. This book teaches you how.

1.3 Summary
 Created by Andreas Rumpf in 2005, Nim is still a very new programming lan-

guage; it hasn’t yet reached version 1.0. Because Nim is so new, it’s a bit imma-
ture and its user base is relatively small.

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

21Summary

 Nim is efficient, expressive, and elegant (in that order).
 Nim is an open source project that’s developed entirely by the Nim community

of volunteers.
 Nim is general-purpose programming language and can be used to develop

anything from web applications to kernels.
 Nim is a compiled programming language that compiles to C and takes advan-

tage of C’s speed and portability.
 Nim supports multiple programming paradigms, including OOP, procedural

programming, and functional programming.

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

Dominik Picheta

N
im is a multi-paradigm programming language that
offers powerful customization options with the ability
to compile to everything from C to JavaScript. It can

be used in any project and illustrates that you don’t have to
sacrifi ce performance for expressiveness!

Nim in Action is your guide to application development in
Nim. You’ll learn how Nim compares to other languages in
style and performance, master its structure and syntax, and
discover unique features. By carefully walking through a
Twitter clone and other real-world examples, you’ll see just
how Nim can be used every day while also learning how to
tackle concurrency, package fi nished applications, and inter-
face with other languages. With the best practices and rich
examples in this book, you’ll be able to start using Nim today.

What’s Inside
● Language features and implementation
● Nimble package manager
● Asynchronous I/O
● Interfacing with C and JavaScript
● Metaprogramming

For developers comfortable with mainstream languages like
Java, Python, C++ or C#.

Dominik Picheta is one of the principal developers of Nim and
author of the Nimble package manager.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit www.manning.com/books/nim-in-action

$49.99 / Can $65.99 [INCLUDING eBOOK]

Nim IN ACTION

PROGRAMMING LANGUAGES

M A N N I N G

“A great resource for
an incredibly

 powerful language.”
—Jonathan Rioux, TD Insurance

“Gives readers a solid
foundation in Nim, a robust
and fl exible language suitable
 for a variety of projects.”

—Robert Walsh
Excalibur Solutions

“A great job breaking down
the language. This book

will no doubt become the
de facto learning guide
 in the Nim space.”—Peter J. Hampton

Ulster University

“A goldmine for Nim
programmers; great insights

for any general programmer.”
—Cosimo Attanasi, ER Sistemi

SEE INSERT

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

	Copyright
	SampleCh01

