
M A N N I N G

Dominik Picheta

SAMPLE CHAPTER

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

Nim in Action
by Dominik Picheta

Chapter 8

Copyright 2017 Manning Publications

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

www.itbook.st
brief contents

PART 1 THE BASICS OF NIM .. 1
1 ■ Why Nim? 3
2 ■ Getting started 22

PART 2 NIM IN PRACTICE.. 55
3 ■ Writing a chat application 57
4 ■ A tour through the standard library 101
5 ■ Package management 128
6 ■ Parallelism 150
7 ■ Building a Twitter clone 180

PART 3 ADVANCED CONCEPTS... 223
8 ■ Interfacing with other languages 225
9 ■ Metaprogramming 249
i

ore/books/9781617293436

https://itbook.store/books/9781617293436

225

Interfacing with
other languages

For many years, computer programmers have been writing software libraries in var-
ious programming languages. Many of these libraries have been in development
for a very long time, accumulating features and maturing over the years. These
libraries are not typically written in Nim; instead, they’ve been written in older pro-
gramming languages such as C and C++.

 When writing software, you might have required an external C library to per-
form a task. A good example of this is the OpenSSL library, which implements the
SSL and TLS protocols. It’s primarily used for securely transferring sensitive data
over the internet, such as when navigating to a website using the HTTPS protocol.

This chapter covers
 Getting to know Nim’s foreign function interface

 Distinguishing between static and dynamic linking

 Creating a wrapper for an external C library

 Using the JavaScript backend

 Wrapping JavaScript APIs

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

226 CHAPTER 8 Interfacing with other languages

 Many of the HTTP client modules in the standard libraries of various programming
languages, including Nim’s, use the C library to transfer encrypted data to and from
HTTP servers securely. It’s easy to forget that this library is used, because it’s usually
invoked behind the scenes, reducing the amount of work the programmer needs to do.

 The Nim standard library takes care of a lot of things for you, including interfacing
with other languages, as is the case with the OpenSSL library. But there will be times
when you’ll need to interface with a library yourself.

 This chapter will prepare you for those times. First, you’ll learn how to call proce-
dures implemented in the C programming language, passing data to those procedures
and receiving data back from them. Then, you’ll learn how to wrap an external library
called SDL, and you’ll use your wrapper to create a simple SDL application that draws
on the screen. (A wrapper is a thin layer of code that acts as a bridge between Nim code
and a library written in another programming language, such as C.) Last, you’ll work
with the JavaScript backend, wrapping the Canvas API and drawing shapes on the
screen with it.

 Nim makes the job of calling procedures implemented in the C programming lan-
guage particularly easy. That’s because Nim primarily compiles to C. Nim’s other com-
pilation backends, including C++, Objective-C, and JavaScript, make using libraries
written in those languages easy as well.

8.1 Nim’s foreign function interface
Nim’s foreign function interface (FFI) is the mechanism by which Nim can call proce-
dures written in another programming language. Most languages offer such a mecha-
nism, but they don’t all use the same terminology. For example, Java refers to its FFI as
the Java Native Interface, whereas Common Language Runtime languages such as C#
refer to it as P/Invoke.

 In many cases, the FFI is used to employ services defined and implemented in a
lower-level language. This lower-level language is typically C or C++, because many
important OS services are defined using those languages. Nim’s standard library
makes extensive use of the FFI to take advantage of OS services; this is done to perform
tasks such as reading files or communicating over a network.

 In recent years, the web has become a platform of its own. Web browsers that
retrieve and present web pages implement the JavaScript programming language,
allowing complex and dynamic web applications to be run inside the browser easily. In
order to run Nim applications in a web browser and make use of the services provided
by the browser, like the DOM or WebGL, Nim source code can be compiled to Java-
Script. Accessing those services and the plethora of JavaScript libraries is also done via
the FFI. Figure 8.1 shows an overview of Nim’s FFI.

 It’s important to note that the FFI allows you to interface with C, C++, and Objective-C
libraries in the same application, but you can’t interface with both C and JavaScript
libraries at the same time. This is because C++ and Objective-C are both backward com-
patible with C, whereas JavaScript is a completely different language.

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

227Nim’s foreign function interface

8.1.1 Static vs. dynamic linking

Before looking at the FFI in more detail, let’s look at the two different ways that C,
C++, and Objective-C libraries can be linked to your Nim applications.

 When using an external library, your application must have a way to locate it. The
library can either be embedded in your application’s binary or it can reside some-
where on the user’s computer. The former refers to a statically linked library, whereas
the latter refers to a dynamically linked library.

 Dynamic and static linking are both supported, but dynamic linking is favored by
Nim. Each approach has its advantages and disadvantages, but dynamic linking is
favored for several reasons:

 Libraries can be updated to fix bugs and security flaws without updating the
applications that use the libraries.

 A development version of the linked library doesn’t need to be installed in
order to compile applications that use it.

 A single dynamic library can be shared between multiple applications.

The biggest advantage of static linking is that it avoids dependency problems. The
libraries are all contained in a single executable file, which simplifies the distribution
and installation of the application. Of course, this can also be seen as a disadvantage,
because these executables can become very big.

 Dynamically linked libraries are instead loaded when the application first starts.
The application searches special paths for the required libraries, and if they can’t be
found, the application fails to start. Figure 8.2 shows how libraries are loaded in stati-
cally and dynamically linked applications.

 It’s important to be aware of the dynamically linked libraries that your application
depends on, because without those libraries, it won’t run.

Nim compiler

C/C++/Obj C FFI JavaScript FFI

printf()
std::srand

[NSUserNotification new]

getElementById()
new WebSocket()

WebGLRenderingContext

Figure 8.1 Using the Nim FFI, you can take advantage of services in other languages. Nim
offers two versions of the FFI: one for C, C++, and Objective-C; and a second one for JavaScript.
Both can’t be used in the same application.

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

228 CHAPTER 8 Interfacing with other languages

With these differences in mind, let’s look at the process of creating wrappers in Nim.

8.1.2 Wrapping C procedures

In this section, we’ll wrap a widely used and fairly simple C procedure: printf. In C,
the printf procedure is declared as follows:

int printf(const char *format, ...);

What you see here is the procedure prototype of printf. A prototype specifies the pro-
cedure’s name and type signature but omits its implementation. When wrapping
procedures, the implementation isn’t important; all that matters is the procedure
prototype. If you’re not familiar with this procedure, you’ll find out what it does later
in this section.

 In order to wrap C procedures, you must have a good understanding of these pro-
cedure prototypes. Let’s look at what the previous procedure prototype tells us about
printf. Going from left to right, the first word specifies the procedure’s return type,
in this case an int. The second specifies the procedure name, which is printf. What
follows is the list of parameters the procedure takes, in this case a format parameter of
type const char * and a variable number of arguments signified by the ellipsis.

Static linking Dynamic linking

handshake()
encrypt()

OpenSSL

CreateWindow()
RenderClear()

SDL

./app

handshake()
encrypt()

OpenSSL

CreateWindow()
RenderClear()

SDL

./app

Application
executed

Find libraries

/usr/lib/libsdl.so

/usr/lib/libssl.so

Libraries found

Load libraries

Libraries
missing

Could not load: libssl.so

Application
executed

When a library can’t be
found, the application
fails with an error.

When the libraries are
loaded, the application
can start its execution.

The libraries are embedded
in the application binary and
so are loaded into memory

before it’s executed.

Libraries need
to be found and

loaded before the
application can start.

Figure 8.2 Static vs. dynamic linking

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

229Nim’s foreign function interface

 Table 8.1 summarizes the information defined by the printf prototype.

This prototype has two special features:

 The const char * type represents a pointer to an immutable character.
 The function takes a variable number of arguments.

In many cases, the const char * type represents a string, as it does here. In C,
there’s no string type; instead, a pointer that points to the start of an array of charac-
ters is used.

 When wrapping a procedure, you need to look at each type and find a Nim equiva-
lent. The printf prototype has two argument types: int and const char *. Nim
defines an equivalent type for both, cint and cstring, respectively. The c in those
types doesn’t represent the C programming language but instead stands for compatible;
the cstring type is therefore a compatible string type. This is because C isn’t the only
language supported by Nim’s FFI. The cstring type is used as a native JavaScript
string as well.

 These compatible types are defined in the implicitly imported system module,
where you’ll find a lot of other similar types. Here are some examples:

 cstring

 cint, cuint
 pointer

 clong, clonglong, culong, culonglong
 cchar, cschar, cuchar
 cshort, cushort
 cint

 csize

 cfloat

 cdouble, clongdouble
 cstringArray

Let’s put all this together and create the wrapper procedure. Figure 8.3 shows a
wrapped printf procedure.

 The following code shows how the procedure can be invoked:

proc printf(format: cstring): cint {.importc, varargs, header: "stdio.h".}

discard printf("My name is %s and I am %d years old!\n", "Ben", 30)

Table 8.1 Summary of the printf prototype

Return type Name First parameter type First parameter name Second parameter

int printf const char * format Variable number of
arguments

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

230 CHAPTER 8 Interfacing with other languages

Save the preceding code as ffi.nim. Then compile and run it with nim c -r ffi.nim.
You should see the following output:

My name is Ben and I am 30 years old!

The printf procedure takes a string constant, format, that provides a description of
the output. It specifies the relative location of the arguments to printf in the format
string, as well as the type of output that this procedure should produce. The parame-
ters that follow specify what each format specifier in the format string should be
replaced with. The procedure then returns a count of the printed characters.

 One thing you might immediately notice is the discard keyword. Nim requires
return values that aren’t used to be explicitly discarded with the discard keyword.
This is useful when you’re working with procedures that return error codes or other
important pieces of information, where ignoring their values may lead to issues. In the
case of printf, the value can be safely discarded implicitly. The {.discardable.}
pragma can be used for this purpose:

proc printf(format: cstring): cint {.importc, varargs, header: "stdio.h",
discardable.}

printf("My name is %s and I am %d years old!\n", "Ben", 30)

What really makes this procedure work is the importc and header pragmas. The header
pragma specifies the header file that contains the imported procedure. The importc pragma
asks the Nim compiler to import the printf procedure from C. The name that’s
imported is taken from the procedure name, but it can be changed by specifying a dif-
ferent name as an argument to the importc pragma, like so:

proc displayFormatted(format: cstring): cint {.importc: "printf", varargs,
header: "stdio.h", discardable.}

displayFormatted("My name is %s and I am %d years old!\n", "Ben", 30)

That’s pretty much all there is to it. The printf procedure now wraps the printf pro-
cedure defined in the C standard library. You can even export it and use it from other
modules.

Maps to a
const char*

Maps to C’s
int

Allows proc to take a
variable number of

arguments

Standard procedure declaration
Imports printf from C Note the lack

of = here because
C provides the
implementation

Specifies where
printf

is defined.

Figure 8.3 printf wrapped in Nim

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

231Nim’s foreign function interface

8.1.3 Type compatibility

You may wonder why the cstring and cint types need to be used in the printf proce-
dure. Why can’t you use string and int? Let’s try it and see what happens.

 Modify your ffi.nim file so that the printf procedure returns an int type and takes
a string type as the first argument. Then, recompile and run the program.

 The program will likely show no output. This underlines the unfortunate danger
that comes with using the FFI. In this case, the procedure call does nothing, or at least
it appears that way. In other cases, your program may crash. The compiler trusts you
to specify the types correctly, because it has no way of inferring them.

 Because the cstring type was changed to the string type, your program now
passes a Nim string object to the C printf procedure. C expects to receive a const
char* type, and it always assumes that it receives one. Receiving the wrong type can
lead to all sorts of issues, one of the major ones being memory corruption.

 Nim’s string type isn’t as simple as C’s, but it is similar. A Nim string is an object
that contains two fields: the length of the string and a pointer to an array of chars.
This is why a Nim string can be easily converted to a const char*. In fact, because this
conversion is so easy, it’s done implicitly for you, which is why, even when you pass a
string to printf, which expects a cstring, the example compiles.

CONVERSION FROM CSTRING TO STRING A conversion in the other direction,
from a cstring to a string, is not implicit because it has some overhead.
That’s why you must do it explicitly using a type conversion or the $ operator.

As for the cint type, it’s very similar to the int type. As you’ll see in the Nim docu-
mentation, it’s actually just an alias for int32: http://nim-lang.org/docs/system
.html#cint. The difference between the int type and the int32 type is that the for-
mer’s bit width depends on the current architecture, whereas the bit width of the lat-
ter type is always 32 bits.

 The system module defines many more compatibility types, many of which are
inspired by C. But there will come a time when you need to import types defined in C
as well. The next section will show you how that can be done.

8.1.4 Wrapping C types

The vast majority of the work involved in interfacing with C libraries involves wrap-
ping procedures. Second to that is wrapping types, which we’ll look at now.

 In the previous section, I showed you how to wrap the printf procedure. In this sec-
tion, you’ll see how to wrap the time and localtime procedures, which allow you to
retrieve the current system time in seconds and to convert that time into calendar time,
respectively. These procedures return two custom types that need to be wrapped first.

 Let’s start by looking at the time procedure, which returns the number of seconds
since the UNIX epoch (Thursday, 1 January 1970). You can look up its prototype
online. For example, C++ Reference (http://en.cppreference.com/w/c/chrono/time)
specifies that its prototype looks like this:

time_t time(time_t *arg);

www.itbook.store/books/9781617293436

http://nim-lang.org/docs/system.html#cint
http://nim-lang.org/docs/system.html#cint
http://nim-lang.org/docs/system.html#cint
http://en.cppreference.com/w/c/chrono/time
https://itbook.store/books/9781617293436

232 CHAPTER 8 Interfacing with other languages

Further research into the type of time_t indicates that it’s a signed integer.1 That’s all
you need to know in order to declare this procedure in Nim. The following listing
shows this declaration.

type
CTime = int64

proc time(arg: ptr CTime): CTime {.importc, header: "<time.h>".}

In this case, you wrap the time_t type yourself. The procedure declaration has an
interesting new characteristic. It uses the ptr keyword to emulate the time_t * type,
which is a pointer to a time_t type.

 To convert the result of time into the current hour and minute, you’ll need to wrap
the localtime procedure and call it. Again, the specification of the prototype is available
online. The C++ Reference (http://en.cppreference.com/w/c/chrono/localtime)
specifies that the prototype looks like this:

struct tm *localtime(const time_t *time);

The localtime procedure takes a pointer to a time_t value and returns a pointer to a
struct tm value. A struct in Nim is equivalent to an object. Unfortunately, there’s
no way to tell from the return type alone whether the struct that the localtime
returns has been allocated on the stack or on the heap.

 Whenever a C procedure returns a pointer to a data structure, it’s important to
investigate whether that pointer needs to be manually deallocated by your code. The
documentation for this procedure states that the return value is a “pointer to a static
internal tm object.” This means that the object has a static storage duration and so
doesn’t need to be deallocated manually. Every good library will state the storage
duration of an object in its documentation.

 When wrapping code, you’ll undoubtedly run into a procedure that returns an
object with a dynamic storage duration. In that case, the procedure will allocate a new
object every time it’s called, and it’s your job to deallocate it when you no longer need it.

DEALLOCATING C OBJECTS The way in which objects created by a C library can
be deallocated depends entirely on the C library. A free function will usually
be offered for this purpose, and all you’ll need to do is wrap it and call it.

The struct tm type is much more complex than the time_t type. The documentation
available in the C++ Reference (http://en.cppreference.com/w/c/chrono/tm) shows

1 The type of time_t is described in this Stack Overflow answer: http://stackoverflow.com/a/471287/492186.

Listing 8.1 Wrapping time

The CTime type is the wrapped version
of time_t, defined as a simple alias for
a 64-bit signed integer.

The time C procedure is defined in the
<time.h> header file. To import it,

the header pragma is necessary.

www.itbook.store/books/9781617293436

http://stackoverflow.com/a/471287/492186
http://en.cppreference.com/w/c/chrono/tm
https://itbook.store/books/9781617293436

233Nim’s foreign function interface

that it contains nine integer fields. The definition of this type in C would look some-
thing like this:

struct tm {
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

};

Wrapping this type is fairly simple, although a bit mundane. Fortunately, you don’t
have to wrap the full type unless you need to access all the fields. For now, let’s just
wrap the tm_min and tm_hour fields. The following listing shows how you can wrap the
tm type together with the two fields.

type
TM {.importc: "struct tm", header: "<time.h>".} = object

tm_min: cint
tm_hour: cint

You can then wrap the localtime procedure and use it together with the time proce-
dure as follows.

type
CTime = int64

proc time(arg: ptr CTime): CTime {.importc, header: "<time.h>".}

type
TM {.importc: "struct tm", header: "<time.h>".} = object

tm_min: cint
tm_hour: cint

proc localtime(time: ptr CTime): ptr TM {.importc, header: "<time.h>".}

var seconds = time(nil)
let tm = localtime(addr seconds)
echo(tm.tm_hour, ":", tm.tm_min)

Listing 8.2 Wrapping struct tm

Listing 8.3 A complete time and localtime wrapper

The struct keyword can’t be omitted
in the argument to the pragma.

The two fields are defined as they
would be for any Nim data type. The
cint type is used because it’s
compatible with C.

The localtime procedure takes a "time_t *" and returns a "struct tm *",
both of which are pointers. That is why the ptr keyword is used.

Assigns the result of the time call to a new seconds variable. The
time procedure can also optionally store the return value in the
specified argument; nil is passed here, as it’s not needed.

Passes the address of
the seconds variable to
the localtime procedure

Displays the current time

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

234 CHAPTER 8 Interfacing with other languages

Save this code as ffi2.nim, and then compile and run it. You should see the current
time displayed on your screen after execution, such as 18:57.

 The main takeaway from the example in listing 8.3 is that wrapping a type essen-
tially involves copying its structure into a Nim type definition. It’s important to
remember that the field names have to match those of the C type. You can specify the
name of each field in an importc pragma if you wish to rename them. Figure 8.4
demonstrates this.

Another interesting aspect of wrapping the localtime procedure is the need to pass a
pointer to it. You need to account for this in your wrapper. The addr keyword returns
a pointer to the value specified, and that value must be mutable, which is why the
return value of time is assigned to a new seconds variable in listing 8.3. Writing
localtime(addr time(nil)) wouldn’t work because the return value isn’t stored any-
where permanent yet.

 You should now have a pretty good idea of how C types can be wrapped in Nim. It’s
time to wrap something a little more ambitious: an external library.

8.2 Wrapping an external C library
So far, I’ve shown you how to wrap some very simple procedures that are part of the C
standard library. Most of these procedures have already been wrapped to some extent
by the Nim standard library and are exposed via modules such as times.

 Wrapping an external library is slightly different. In this section you’ll learn about
these differences as you wrap a small bit of the SDL library.

 Simple DirectMedia Layer, or SDL, is a cross-platform multimedia library. It’s one
of the most widely used libraries for writing computer games and other multimedia
applications. SDL manages video, audio, input devices, and much more. Some practi-
cal things that you can use it for are drawing 2D graphics on the screen or playing
sound effects.

 I’ll show you how to draw 2D graphics. By the end of this section, you’ll produce an
application that displays the window shown in figure 8.5.

SDL WRAPPER The wrapper shown here will be very basic. You’ll find a full
SDL wrapper that’s already been created by the Nim community here:
https://github.com/nim-lang/sdl2.

tm_min: cint

type

TM {.importc: "struct tm", ...} = object

}

struct tm {

int tm_min,
int tm_hour,
...min: cint

min {.importc: "tm_min".}: cint

Nim C

Figure 8.4 The mapping between fields in a wrapped type and a C struct

www.itbook.store/books/9781617293436

https://github.com/nim-lang/sdl2
https://itbook.store/books/9781617293436

235Wrapping an external C library

8.2.1 Downloading the library

Before you begin writing the wrapper for the SDL library, you should download it. For
this chapter’s example, you’ll only need SDL’s runtime binaries, which you can down-
load here: www.libsdl.org/download-2.0.php#source.

8.2.2 Creating a wrapper for the SDL library

A library, or package, wrapper consists of one or more modules that contain wrapped
procedures and type definitions. The wrapper modules typically mirror the contents
of C header files, which contain multiple declarations of procedure prototypes and
types. But they may also mirror other things, such as the contents of JavaScript API ref-
erence documentation.

 For large libraries like SDL, these header files are very large, containing thousands
of procedure prototypes and hundreds of types. The good news is that you don’t need
to wrap it all completely in order to use the library. A couple of procedures and types
will do. This means you can wrap libraries on demand instead of spending days wrap-
ping the full library, including procedures that you’re never going to use. You can just
wrap the procedures that you need.

AUTOMATIC WRAPPING An alternative means of wrapping libraries is to use a
tool such as c2nim. This tool takes a C or C++ header file as input and con-
verts it into a wrapper. For more information about c2nim, take a look at its
documentation: http://nim-lang.org/docs/c2nim.html.

Figure 8.5 The application you’ll produce in this section

www.itbook.store/books/9781617293436

www.libsdl.org/download-2.0.php#source
http://nim-lang.org/docs/c2nim.html
https://itbook.store/books/9781617293436

236 CHAPTER 8 Interfacing with other languages

As in the previous section, you can go online to look up the definition of the proce-
dure prototypes that you’re wrapping. Be sure to consult the project’s official docu-
mentation and ensure that it has been written for the version of the library that you’re
using. Alternatively, you can look up the desired procedure or type inside the library’s
header files.

 First, though, you need to figure out what needs to be wrapped. The easiest way to
figure that out is to look for examples in C, showing how the library in question can
be used to develop a program that performs your desired actions. In this section, your
objective is to create an application that shows a window of a specified color with the
letter N drawn in the middle, as shown in figure 8.5.

 The SDL library can do a lot more than this, but in the interest of showing you how
to wrap it, we’ll focus on this simple example.

 With that in mind, let’s start. The wrapper itself will be a single module called sdl.
Before moving on to the next section, create this module by creating a new file called
sdl.nim.

8.2.3 Dynamic linking

Earlier in this chapter, I explained the differences between static and dynamic linking.
The procedures you wrapped in the previous section are part of the C standard
library, and as such, the linking process was automatically chosen for you. The process
by which the C standard library is linked depends on your OS and C compiler.

 When it comes to linking with external C libraries, dynamic linking is recom-
mended. This process involves some trivial initial setup that we’ll look at now.

 Whenever you instruct the Nim compiler to dynamically link with a C library, you
must supply it with the filename of that library. The filenames depend entirely on the
library and the OS that the library has been built for. Table 8.2 shows the filenames of
the SDL libraries for Windows, Linux, and Mac OS.

These files are called shared library files because in many cases, especially on UNIX-like
OSs, they’re shared among multiple applications.

 The SDL wrapper needs to know these filenames, so let’s define them in the sdl
module you just created. The following listing shows how to define these for each OS.
Add this code to your sdl module.

when defined(Windows):
const libName* = "SDL2.dll"

elif defined(Linux):

Table 8.2 The filenames of the SDL library

Windows Linux Mac OS

SDL2.dll libSDL2.so libSDL2.dylib

Listing 8.4 Defining the shared library filename conditionally

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

237Wrapping an external C library

const libName* = "libSDL2.so"
elif defined(MacOsX):

const libName* = "libSDL2.dylib"

This code is fairly simple. Only one constant, libName, is defined. Its name remains
the same, but its value changes depending on the OS. This allows the wrapper to work
on the three major OSs.

 That’s all the setup that’s required. Strictly speaking, it’s not absolutely necessary
to create these constants, but they will enable you to easily change these filenames at a
later time.

 Now, recall the previous section, where I showed you the header and importc prag-
mas. These were used to import C procedures from a specific header in the C standard
library. In order to instruct the compiler to dynamically link a procedure, you need to
use a new pragma called dynlib to import C procedures from a shared library:

proc init*(flags: uint32): cint {.importc: "SDL_Init", dynlib: libName.}

The dynlib pragma takes one argument: the filename of the shared library where the
imported procedure is defined. Every time your application starts, it will load a shared
library for each unique filename specified by this pragma. If it can’t find the shared
library, or the wrapped procedure doesn’t exist in the shared library, the application
will display an error and terminate.

 The dynlib pragma also supports a simple versioning scheme. For example, if
you’d like to load either libSDL2-2.0.1.so or libSDL2.so, you can specify
"libSDL2(|-2.0.1).so" as the argument to dynlib. More information about the
dynlib pragma is available in the Nim manual: http://nim-lang.org/docs/manual
.html#foreign-function-interface-dynlib-pragma-for-import.

 Now, you’re ready to start wrapping.

8.2.4 Wrapping the types

Before you can successfully wrap the required procedures, you first need to define four
types. Thankfully, wrapping their internals isn’t necessary. The types will simply act as
stubs to identify some objects. The following listing shows how to define these types.

type
SdlWindow = object
SdlWindowPtr* = ptr SdlWindow
SdlRenderer = object
SdlRendererPtr* = ptr SdlRenderer

Listing 8.5 Wrapping the four necessary types

Defines an object stub. This object likely contains
fields, but you don’t need to access them in your
application, so you can omit their definitions.

Many of the procedures in the SDL library work
on pointers to objects, so it’s convenient to
give this type a name and export it instead of
writing “ptr TheType” everywhere.

www.itbook.store/books/9781617293436

http://nim-lang.org/docs/manual.html#foreign-function-interface-dynlib-pragma-for-import
http://nim-lang.org/docs/manual.html#foreign-function-interface-dynlib-pragma-for-import
http://nim-lang.org/docs/manual.html#foreign-function-interface-dynlib-pragma-for-import
https://itbook.store/books/9781617293436

238 CHAPTER 8 Interfacing with other languages

The type definitions are fairly simple. The SdlWindow type will represent a single on-
screen SDL window, and the SdlRenderer will represent an object used for rendering
onto the SDL window.

 The pointer types are defined for convenience. They’re exported because the SDL
procedures that you’ll wrap soon return them.

 Let’s look at these procedures now.

8.2.5 Wrapping the procedures

Only a handful of procedures need to be wrapped in order to show a colored window
on the screen using SDL. The following listing shows the C prototypes that define
those procedures.

int SDL_Init(Uint32 flags)

int SDL_CreateWindowAndRenderer(int width,
int height,
Uint32 window_flags,
SDL_Window** window,
SDL_Renderer** renderer)

int SDL_PollEvent(SDL_Event* event)

int SDL_SetRenderDrawColor(SDL_Renderer* renderer,
Uint8 r,
Uint8 g,
Uint8 b,
Uint8 a)

void SDL_RenderPresent(SDL_Renderer* renderer)

int SDL_RenderClear(SDL_Renderer* renderer)

int SDL_RenderDrawLines(SDL_Renderer* renderer,
const SDL_Point* points,
int count)

You’ve already seen how to wrap the SDL_Init procedure:

proc init*(flags: uint32): cint {.importc: "SDL_Init", dynlib: libName.}

The wrapper for this procedure is fairly straightforward. The Uint32 and int types in
the prototype map to the uint32 and cint Nim types, respectively. Notice how the
procedure was renamed to init; this was done because the SDL_ prefixes are redun-
dant in Nim.

 Now consider the rest of the procedures. Each wrapped procedure will need to
specify the same dynlib pragma, but you can remove this repetition with another
pragma called the push pragma. The push pragma allows you to apply a specified
pragma to the procedures defined below it, until a corresponding pop pragma is used.

Listing 8.6 The SDL C prototypes that will be wrapped in this section

Initializes the SDL library

Creates an SDL
window and
rendering context
associated with
that window

Checks for input events

Sets the current draw color
on the specified renderer

Updates the screen with any
rendering that was performed

Clears the specified renderer
with the drawing color

Draws a series of
connected lines

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

239Wrapping an external C library

The following listing shows how the rest of the procedures can be wrapped with the
help of the push pragma.

{.push dynlib: libName.}
proc init*(flags: uint32): cint {.importc: "SDL_Init".}

proc createWindowAndRenderer*(width, height: cint, window_flags: cuint,
window: var SdlWindowPtr, renderer: var SdlRendererPtr): cint
{.importc: "SDL_CreateWindowAndRenderer".}

proc pollEvent*(event: pointer): cint {.importc: "SDL_PollEvent".}

proc setDrawColor*(renderer: SdlRendererPtr, r, g, b, a: uint8): cint
{.importc: "SDL_SetRenderDrawColor", discardable.}

proc present*(renderer: SdlRendererPtr) {.importc: "SDL_RenderPresent".}

proc clear*(renderer: SdlRendererPtr) {.importc: "SDL_RenderClear".}

proc drawLines*(renderer: SdlRendererPtr, points: ptr tuple[x, y: cint],
count: cint): cint {.importc: "SDL_RenderDrawLines", discardable.}

{.pop.}

Most of the code here is fairly standard. The createWindowAndRenderer procedure’s
arguments include one pointer to a pointer to an SdlWindow and another pointer to a
pointer to an SdlRenderer, written as SdlWindow** and SdlRenderer**, respectively.
Pointers to SdlWindow and SdlRenderer were already defined in the previous subsec-
tion under the names SdlWindowPtr and SdlRendererPtr, respectively, so you can
define the types of those arguments as ptr SdlWindowPtr and ptr SdlRendererPtr.
This will work well, but using var in place of ptr is also appropriate in this case.

 You may recall var T being used in chapter 6, where it stored a result in a variable
that was passed as a parameter to a procedure. The exact same thing is being done by
the createWindowAndRenderer procedure. Nim implements these var parameters
using pointers, so defining that argument’s type using var is perfectly valid. The
advantage of doing so is that you no longer need to use addr, and Nim also prevents
you from passing nil for that argument.

 For the pollEvent procedure, the argument type was defined as pointer. This type
is equivalent to a void* type in C, essentially a pointer to any type. This was done
because it avoids the need to wrap the SdlEvent type. You may run into C libraries that
declare procedures accepting a void* type, in which case you can use the pointer

Listing 8.7 Wrapping the procedures in the sdl module

This ensures that each proc
gets the dynlib pragma. The var keyword is used in place of a ptr. In Nim,

these end up generating equivalent C code.

The pointer type in Nim is equivalent to
a void *, which is a pointer of any type.

The discardable pragma is
used here to implicitly discard
the return value.

The points parameter is a
pointer to the beginning of

an array of tuples.

This stops the
propagation of the
dynlib pragma.

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

240 CHAPTER 8 Interfacing with other languages

type. In practice, however, it’s better to use a ptr T type for improved type safety. But
you can only do so if you know that the procedure you’re wrapping will only ever
accept a specific pointer type.

 Lastly, the drawLines procedure is the most complicated, as it accepts an array of
points to draw as lines. In C, an array of elements is represented by a pointer to the
first element in the array and the number of variables in that array. In the case of the
drawLines procedure, each element in the points array is an SDL_Point type, and it’s
defined as a simple C struct containing two integers that represent the x and y coordi-
nates of the point. In Nim, this simple struct can be represented using a tuple.

 Add the contents of listing 8.7 to your sdl module. It’s time to use it to write the
application.

8.2.6 Using the SDL wrapper

You can now use the wrapper you’ve just written. First, create an sdl_test.nim file beside
your wrapper, and then import the wrapper by writing import sdl at the top of the file.

 Before the library can be used, you’ll have to initialize it using the init procedure.
The init procedure expects to receive a flags argument that specifies which SDL
subsystems should be initialized. For the purposes of this application, you only need
to initialize the video subsystem. To do this, you’ll need to define a constant for the
SDL_INIT_VIDEO flag, like this:

const INIT_VIDEO* = 0x00000020

The value of this constant needs to be defined in the Nim source file because it’s not
available in the shared library. C header files typically define such constants using a
#define that isn’t compiled into any shared libraries.

 Add this constant into your sdl module. Then, you’ll finally be ready to use the
sdl wrapper to implement a simple application. The following listing shows the code
needed to do so.

import os
import sdl

if sdl.init(INIT_VIDEO) == -1:
quit("Couldn't initialise SDL")

var window: SdlWindowPtr
var renderer: SdlRendererPtr
if createWindowAndRenderer(640, 480, 0, window, renderer) == -1:

quit("Couldn't create a window or renderer")

Listing 8.8 An SDL application implemented using the sdl wrapper

Initializes the SDL video subsystem

Quits with an error if
the initialization fails

Creates a window and
renderer to draw things on

Quits with an error if the creation
of the window or renderer fails

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

241Wrapping an external C library

discard pollEvent(nil)
renderer.setDrawColor 29, 64, 153, 255
renderer.clear

renderer.present
sleep(5000)

Compile and run the sdl_test.nim file.
You should see a window with a blue
background, as shown in figure 8.6
(to see color versions of the figures,
please refer to the electronic version
of this book).

 A blank SDL window is a great
achievement, but it isn’t a very excit-
ing one. Let’s use the drawLines pro-
cedure to draw the letter N in the
middle of the screen. The following
code shows how this can be done:

renderer.setDrawColor 255, 255, 255, 255
var points = [

(260'i32, 320'i32),
(260'i32, 110'i32),
(360'i32, 320'i32),
(360'i32, 110'i32)

]
renderer.drawLines(addr points[0], points.len.cint)

Add this code just below the renderer.clear statement in the sdl_test.nim file. Then,
compile and run the file. You should see a window with a blue background and the let-
ter N, as shown in figure 8.7.

 In the preceding code, the drawLines call is the important one. The address of the
first element in the points array is passed to this procedure together with the length
of the points array. The drawLines procedure then has all the information it needs to
read all the points in the array. It’s important to note that this call isn’t memory safe; if
the points count is too high, the drawLines procedure will attempt to read memory

This is where you’d handle any pending
input events. For this application, it’s only
called so that the window initializes properly.

Sets the drawing color to
the specified red, green,
blue, and alpha values

Clears the screen with the
specified drawing color

Shows the pixels drawn
on the renderer

Waits for 5 seconds before
terminating the application

Figure 8.6 The result of running listing 8.8

Changes the draw color to white

Defines an array of points that define the
coordinates to draw an N. Each coordinate
must be an int32 because that’s what a cint is.

Draws the lines defined
by the points array

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

242 CHAPTER 8 Interfacing with other languages

that’s adjacent to the array. This is known as a buffer overread and can result in serious
issues because there’s no way of knowing what the adjacent memory contains.2

 That’s how you wrap an external library using Nim. Of course, there’s plenty of
room for improvement. Ideally, a module that provides a higher-level API should
always be written on top of a wrapper; that way, a much more intuitive interface can be
used for writing applications. Currently, the biggest improvement that could be made
to the sdl module is to add exceptions. Both init and createWindowAndRenderer
should raise an exception when an error occurs, instead of requiring the user to check
the return value manually.

 The last two sections have given you an overview of the C FFI. Nim also supports
interfacing with other C-like languages, including C++ and Objective-C. Those two back-
ends are beyond the scope of this book, but the concepts you’ve learned so far should
give you a good starting point. For further information about these backends, take a
look at the Nim manual: http://nim-lang.org/docs/manual.html#implementation-
specific-pragmas-importcpp-pragma.

 Next, we’ll look at how to write JavaScript wrappers.

8.3 The JavaScript backend
JavaScript is increasingly becoming known as the “assembly language of the web”
because of the many new languages that target it. Languages that can be translated to
JavaScript are desirable for various reasons. For example, they make it possible to

2 See the Wikipedia article for an explanation of buffer overreads: https://en.wikipedia.org/wiki/Buffer_over-read.

Figure 8.7 The final sdl_test application with the letter N drawn

www.itbook.store/books/9781617293436

http://nim-lang.org/docs/manual.html#implementation-specific-pragmas-importcpp-pragma
http://nim-lang.org/docs/manual.html#implementation-specific-pragmas-importcpp-pragma
https://en.wikipedia.org/wiki/Buffer_over-read
https://itbook.store/books/9781617293436

243The JavaScript backend

share code between client scripts that run in a web browser and applications that run
on a server, reducing the need for code duplication.

 As an example, consider a chat application. The server manages connections and
messages from multiple clients, and a client script allows users to connect to the server
and send messages to it from their web browser. These messages must be understood
by all the clients and the server, so it’s beneficial for the code that parses those mes-
sages to be shared between the server and the client. If both the client and the server
are written in Nim, sharing this code is trivial. Figure 8.8 shows how such a chat appli-
cation could take advantage of Nim’s JavaScript backend.

Of course, when writing JavaScript applications, you’ll eventually need to interface
with the APIs exposed by the web browser as well as libraries that abstract those APIs.
The process of wrapping JavaScript procedures and types is similar to what was
described in the previous sections for the C backend, but there are some differences
that are worth an explanation.

 This section will show you how to wrap the JavaScript procedures required to
achieve the same result as in the previous section with the SDL library: filling the
drawable surface with a blue color and drawing a list of lines to form the letter N.

8.3.1 Wrapping the canvas element

The canvas element is part of HTML5, and it allows rendering of 2D shapes and bitmap
images on an HTML web page. All major web browsers support it and expose it via a
JavaScript API.

Figure 8.8 How the same code is shared between two platforms

Client Server

Running in a
web browser

JavaScript

Running on a
server

Binary

protocol.nim

The same module is
reused for the client

and the server.

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

244 CHAPTER 8 Interfacing with other languages

Let’s look at an example of its usage. Assuming that an HTML page contains a <can-
vas> element with an ID of canvas, and its size is 600 x 600, the code in the following
listing will fill the canvas with the color blue and draw the letter N in the middle of it.

var canvas = document.getElementById("canvas");
canvas.width = 600;
canvas.height = 600;
var ctx = canvas.getContext("2d");

ctx.fillStyle = "#1d4099";
ctx.fillRect(0, 0, 600, 600);
ctx.strokeStyle = "#ffffff";
ctx.moveTo(250, 320);
ctx.lineTo(250, 110);
ctx.lineTo(350, 320);
ctx.lineTo(350, 110);
ctx.stroke();

The code is fairly self-explanatory. It starts by retrieving the canvas element from the
DOM by ID. The canvas size is set, and a 2D drawing context is created. Lastly, the
screen is filled with a blue color, the letter N is traced using the moveTo and lineTo
procedures, and the letter is drawn using the stroke procedure. Wrapping the proce-
dures used in this example shouldn’t take too much effort, so let’s begin.

 Create a new file called canvas.nim. This file will contain the procedure wrappers
needed to use the Canvas API. The getElementById procedure is already wrapped by
Nim; it’s a part of the DOM, so it’s available via the dom module.

 Unlike in C, in JavaScript there’s no such thing as a header file. The easiest way to
find out how a JavaScript procedure is defined is to look at the documentation. The
following list contains the documentation for the types and procedures that will be
wrapped in this section:

 CanvasRenderingContext2D type—https://developer.mozilla.org/en-US/docs/
Web/API/CanvasRenderingContext2D

 canvas.getContext(contextType, contextAttributes); procedure—http://mng
.bz/6kIp

 void ctx.fillRect(x, y, width, height); procedure—http://mng.bz/xN3Y
 void ctx.moveTo(x, y); procedure—http://mng.bz/A9Bk
 void ctx.lineTo(x, y); procedure—http://mng.bz/t355
 void ctx.stroke(); procedure—http://mng.bz/nv6C

Because JavaScript is a dynamically typed programming language, procedure defini-
tions don’t contain information about each argument’s type. You must look at the
documentation, which more often than not tells you enough to figure out the under-
lying type. The following listing shows how the CanvasRenderingContext2D type and
the five procedures should be wrapped. Save the listing as canvas.nim.

Listing 8.9 Using the Canvas API in JavaScript

www.itbook.store/books/9781617293436

https://developer.mozilla.org/en-US/docs/ Web/API/CanvasRenderingContext2D
http://mng.bz/6kIp
http://mng.bz/6kIp
http://mng.bz/6kIp
http://mng.bz/xN3Y
http://mng.bz/A9Bk
https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D
https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D
http://mng.bz/t355
http://mng.bz/nv6C
https://itbook.store/books/9781617293436

245The JavaScript backend

import dom

type
CanvasRenderingContext* = ref object

fillStyle* {.importc.}: cstring
strokeStyle* {.importc.}: cstring

{.push importcpp.}

proc getContext*(canvasElement: Element,
contextType: cstring): CanvasRenderingContext

proc fillRect*(context: CanvasRenderingContext, x, y, width, height: int)

proc moveTo*(context: CanvasRenderingContext, x, y: int)

proc lineTo*(context: CanvasRenderingContext, x, y: int)

proc stroke*(context: CanvasRenderingContext)

This code is fairly short and to the point. You should be familiar with everything
except the importcpp pragma. The name of this pragma is borrowed from the C++
backend. It instructs the compiler to generate JavaScript code that calls the specified
procedure as if it were a member of the first argument’s object. Figure 8.9 demon-
strates the difference between importc and importcpp for the JavaScript backend.

Listing 8.10 Wrapping the Canvas API

The dom module exports
the Element type used in
the getContext proc.

All JavaScript objects
have ref semantics;

hence, the ref object
definition.

Each field must be
explicitly imported
using importc.

Each procedure is given
the importcpp pragma.

The contextAttributes
argument is intentionally

omitted here. It’s an
optional argument

with a default value.

Figure 8.9 The differences in JavaScript code produced with the importc and importcpp pragmas

{.importc.} {.importcpp.}vs.

proc getContext*(el: Element, typ: cstring): Ctx

nim js file.nim

element.getContext("2D")

getContext(element, "2D");

Function getContext is
not defined.

nim js file.nim

element.getContext("2D")

element.getContext("2D");

getContext is a
member of element, so

this works!

JavaScript
code after

compilation

Nim code
before

compilation

when applied to the following definition:

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

246 CHAPTER 8 Interfacing with other languages

There aren’t many other surprises, but one interesting aspect to note is that when
you’re wrapping a data type in JavaScript, the wrapped type should be declared as a ref
object. JavaScript objects have reference semantics and so should be wrapped as such.

 That’s all there is to it! Time to put this wrapper to use.

8.3.2 Using the Canvas wrapper

Now that the wrapper is complete, you can write a little script that will make use of it,
together with a small HTML page to execute it.

 Save the following listing as index.html beside your canvas.nim file.

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8"/>
<title>Nim in Action - Chapter 8</title>
<script type="text/javascript" src="canvas_test.js"></script>
<style type="text/css">

canvas { border: 1px solid black; }
</style>

</head>
<body onload="onLoad();" style="margin: 0; overflow: hidden;">

<canvas id="canvas"></canvas>
</body>

</html>

The HTML is pretty bare bones. It’s got some small style adjustments to make the can-
vas full screen, and it defines an onLoad procedure to be called when the <body> tag’s
onLoad event fires.

 Save the next listing as canvas_test.nim beside your canvas.nim file.

import canvas, dom

proc onLoad() {.exportc.} =
var canvas = document.getElementById("canvas").EmbedElement
canvas.width = window.innerWidth
canvas.height = window.innerHeight
var ctx = canvas.getContext("2d")

ctx.fillStyle = "#1d4099"
ctx.fillRect(0, 0, window.innerWidth, window.innerHeight)

Note how similar the code is to JavaScript. This code listing defines an onLoad proce-
dure that’s then exported, which allows the browser to use it as an event callback. The
exportc procedure is used to do this. It simply ensures that the generated JavaScript
code contains an onLoad procedure. This pragma also works for the other backends.

Listing 8.11 The index.html file

Listing 8.12 The canvas_test.nim file

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

247The JavaScript backend

 You may wonder what the purpose of the .EmbedElement type conversion is. The
getElementById procedure returns an object of type Element, but this object doesn’t
have width or height properties, so it must be converted to a more concrete type. In
this case, it’s converted to the EmbedElement type, which allows the two width and
height assignments.

 Compile this canvas_test module by running nim js -o:canvas_test.js canvas_
test.nim. You can then test it by opening the index.html file in your favorite browser.
You should see something resembling figure 8.10.

For now, this is just a blue screen. Let’s extend it to draw the letter N. Add the follow-
ing code at the bottom of the onLoad procedure:

ctx.strokeStyle = "#ffffff"
let letterWidth = 100
let letterLeftPos = (window.innerWidth div 2) - (letterWidth div 2)
ctx.moveTo(letterLeftPos, 320)
ctx.lineTo(letterLeftPos, 110)
ctx.lineTo(letterLeftPos + letterWidth, 320)
ctx.lineTo(letterLeftPos + letterWidth, 110)
ctx.stroke()

In this case, the code calculates where the letter should be placed so that it’s in the
middle of the screen. This is necessary because the canvas size depends on the size of
the web browser window. In the SDL example, the SDL window was always the same
size, so this calculation wasn’t needed.

 Recompile the canvas_test.nim file by running the same command again, and then
refresh your browser. You should see something resembling figure 8.11.

 That’s all there is to it. You should now have a good basic understanding of how to
wrap JavaScript and how to make use of Nim’s JavaScript backend.

Figure 8.10 The canvas_test.nim script
showing a blue screen in the web browser

Sets the stroke color to white Creates a local letterWidth
variable to store the desired
letter width

Calculates the top-left
position where the

letter should be placed

Begins tracing the lines
of the letter

Draws the letter

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

248 CHAPTER 8 Interfacing with other languages

8.4 Summary
 The Nim foreign function interface supports interfacing with C, C++, Objective-C,

and JavaScript.
 C libraries can be either statically or dynamically linked with Nim applications.
 C header files declare procedure prototypes and types that provide all the infor-

mation necessary to wrap them.
 The importc pragma is used to wrap a foreign procedure, including C and

JavaScript procedures.
 The discardable pragma can be used to override the need to explicitly discard

values.
 The cstring type should be used to wrap procedures that accept a string argu-

ment.
 Using an external C library is best done via dynamic linking.
 The dynlib pragma is used to import a procedure from a shared library.
 The importcpp pragma is used to wrap C++ procedures and also member pro-

cedures in JavaScript.

Figure 8.11 The canvas_test.nim script showing a blue screen with the
letter N in the web browser

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

Dominik Picheta

N
im is a multi-paradigm programming language that
offers powerful customization options with the ability
to compile to everything from C to JavaScript. It can

be used in any project and illustrates that you don’t have to
sacrifi ce performance for expressiveness!

Nim in Action is your guide to application development in
Nim. You’ll learn how Nim compares to other languages in
style and performance, master its structure and syntax, and
discover unique features. By carefully walking through a
Twitter clone and other real-world examples, you’ll see just
how Nim can be used every day while also learning how to
tackle concurrency, package fi nished applications, and inter-
face with other languages. With the best practices and rich
examples in this book, you’ll be able to start using Nim today.

What’s Inside
● Language features and implementation
● Nimble package manager
● Asynchronous I/O
● Interfacing with C and JavaScript
● Metaprogramming

For developers comfortable with mainstream languages like
Java, Python, C++ or C#.

Dominik Picheta is one of the principal developers of Nim and
author of the Nimble package manager.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit www.manning.com/books/nim-in-action

$49.99 / Can $65.99 [INCLUDING eBOOK]

Nim IN ACTION

PROGRAMMING LANGUAGES

M A N N I N G

“A great resource for
an incredibly

 powerful language.”
—Jonathan Rioux, TD Insurance

“Gives readers a solid
foundation in Nim, a robust
and fl exible language suitable
 for a variety of projects.”

—Robert Walsh
Excalibur Solutions

“A great job breaking down
the language. This book

will no doubt become the
de facto learning guide
 in the Nim space.”—Peter J. Hampton

Ulster University

“A goldmine for Nim
programmers; great insights

for any general programmer.”
—Cosimo Attanasi, ER Sistemi

SEE INSERT

www.itbook.store/books/9781617293436

https://itbook.store/books/9781617293436

	Copyright
	SampleCh08

