
M A N N I N G

Keith J. Grant
FOREWORD BY Chris Coyier

S A M P L E C H A P T E R

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

CSS in Depth

by Keith J. Grant

 Chapter 2

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

v

brief contents
PART 1 REVIEWING THE FUNDAMENTALS....................................1

1 ■ Cascade, specificity, and inheritance 3

2 ■ Working with relative units 28

3 ■ Mastering the box model 55

PART 2 MASTERING LAYOUT..85

4 ■ Making sense of floats 87

5 ■ Flexbox 116

6 ■ Grid layout 144

7 ■ Positioning and stacking contexts 177

8 ■ Responsive design 201

PART 3 CSS AT SCALE ...231

9 ■ Modular CSS 233

10 ■ Pattern libraries 253

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

BRIEF CONTENTSvi

PART 4 ADVANCED TOPICS...277

11 ■ Backgrounds, shadows, and blend modes 279

12 ■ Contrast, color, and spacing 300

13 ■ Typography 329

14 ■ Transitions 353

15 ■ Transforms 370

16 ■ Animations 396

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

28

Working with
relative units

When it comes to specifying values, CSS provides a wide array of options to choose
from. One of the most familiar, and probably easiest to work with, is pixels. These
are known as absolute units; that is, 5 px always means the same thing. Other units,
such as em and rem, are not absolute, but relative. The value of relative units
changes, based on external factors; for example, the meaning of 2 em changes
depending on which element (and sometimes even which property) you’re using it
on. Naturally, this makes relative units more difficult to work with.

 Developers, even experienced CSS developers, often dislike working with rela-
tive units, the notorious em included. The way the value of an em can change
makes it seem unpredictable and less clear-cut than the pixel. In this chapter, I’ll
remove the mystery surrounding relative units. First, I’ll explain the unique value
they bring to CSS, then I’ll help you make sense of them. I’ll explain how they

This chapter covers
 The versatility of relative units

 How to use ems and rems, without letting them
drive you mad

 Using viewport-relative units

 An introduction to CSS variables

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

29The power of relative values

work, and I’ll show you how to tame their seemingly unpredictable nature. You can
make relative values work for you, and wielded correctly, they’ll make your code sim-
pler, more versatile, and easier to work with.

2.1 The power of relative values
CSS brings a late-binding of styles to the web page: The content and its styles aren’t
pulled together until after the authoring of both is complete. This adds a level of
complexity to the design process that doesn’t exist in other types of graphic design,
but it also provides more power—one stylesheet can be applied to hundreds, even
thousands, of pages. Furthermore, the final rendering of the page can be altered
directly by the user, who, for example, can change the default font size or resize the
browser window.

 In early computer application development (as well as in traditional publishing),
developers (or publishers) knew the exact constraints of their medium. A particular
program window might be 400 px wide by 300 px tall, or a page could be 4 in. wide by
6½ in. tall. Consequently, when developers set about laying out the application’s but-
tons and text, they knew exactly how big they could make those elements and exactly
how much space that would leave them to work with for other items on the screen. On
the web, this is not the case.

2.1.1 The struggle for pixel-perfect design

In the web environment, the user can have their browser window set to any number of
sizes, and the CSS has to apply to it. Furthermore, users can resize the page after it’s
opened, and the CSS needs to adjust to new constraints. This means that styles can’t
be applied when you create your page; the browser must calculate those when the
page is rendered onscreen.

 This adds a layer of abstraction to CSS. We can’t style an element according to an
ideal context; we need to specify rules that’ll work in any context where that element
could be placed. With today’s web, your page will need to render on a 4-in. phone
screen as well as on a 30-in. monitor.

 For a long time, designers mitigated this complexity by focusing on “pixel-perfect”
designs. They’d create a tightly defined container, often a centered column around
800 px wide. Then, within these constraints, they’d go about designing more or less
like their predecessors did with native applications or print publications.

2.1.2 The end of the pixel-perfect web

As technology improved and manufacturers introduced higher-resolution monitors,
the pixel-perfect approach slowly started to break down. In the early 2000s, there was
a lot of discussion on whether we developers could safely design for displays 1,024 px
wide instead of 800 px wide. Then, we’d have the same conversation all over again for
1,280 px. We had to make judgment calls. Was it better to make our site too wide
for older computers or too narrow for new ones?

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

30 CHAPTER 2 Working with relative units

 When smartphones emerged, developers were forced to stop pretending everyone
could have the same experience on their sites. Whether we loved it or hated it, we had
to abandon columns of some known number of pixels, and begin thinking about
responsive design. We could no longer hide from the abstraction that comes with CSS.
We had to embrace it.

Added abstraction means additional complexity. If I give an element a width of 800
px, how will that look in a smaller window? How will a horizontal menu look if it
doesn’t all fit on one line? As you write your CSS, you need to be able to think simulta-
neously in specifics, as well as in generalities. When you’ve multiple ways to solve a
particular problem, you’ll need to favor the solution that works more generally under
multiple and different circumstances.

 Relative units are one of the tools CSS provides to work at this level of abstraction.
Instead of setting a font size at 14 px, you can set it to scale proportionally to the size
of the window. Or, you can set the size of everything on the page relative to the base
font size, and then resize the entire page with a single line of code. Let’s take a look at
what CSS provides to make this sort of approach possible.

responsive—In CSS, this refers to styles that “respond” differently, based on
the size of the browser window. This entails intentional consideration for
mobile, tablet, or desktop screens of any size. We’ll take a good look at
responsive design in chapter 8, but in this chapter, I’ll lay some important
groundwork before we get there.

Pixels, points, and picas
CSS supports several absolute length units, the most common of which, and the
most basic, is the pixel (px). Less common absolute units are mm (millimeter), cm
(centimeter), in. (inch), pt (point—typographic term for 1/72nd of an inch), and pc
(pica—typographic term for 12 points). Any of these units can be translated directly
to another if you want to work out the math: 1 in. = 25.4 mm = 2.54 cm = 6 pc = 72
pt = 96 px. Therefore, 16 px is the same as 12 pt (16 / 96 × 72). Designers are often
more familiar with the use of points, where developers are more accustomed to pix-
els, so you may have to do some translation between the two when communicating
with a designer.

Pixel is a slightly misleading name—a CSS pixel does not strictly equate to a moni-
tor’s pixel. This is notably the case on high-resolution (“retina”) displays. Although
the CSS measurements can be scaled a bit, depending on the browser, the operating
system, and the hardware, 96 px is usually in the ballpark of 1 physical inch
onscreen, though this can vary on certain devices or with a user’s resolution settings.

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

31Ems and rems

2.2 Ems and rems
Ems, the most common relative length unit, are a measure used in typography, refer-
ring to a specified font size. In CSS, 1 em means the font size of the current element;
its exact value varies depending on the element you’re applying it to. Figure 2.1 shows
a div with 1 em of padding.

The code to produce this is shown in the next listing. The ruleset specifies a font size
of 16 px, which becomes the element’s local definition for 1 em. Then the code uses
ems to specify the padding of the element. Add this to a new stylesheet, and put some
text in a <div class="padded"> to see it in your browser.

.padded {
 font-size: 16px;
 padding: 1em;
}

This padding has a specified value of 1em. This is multiplied by the font size, produc-
ing a rendered padding of 16 px. This is important: Values declared using relative
units are evaluated by the browser to an absolute value, called the computed value.

 In this example, editing the padding to 2 em would produce a computed value of
32 px. If another selector targets the same element and overrides it with a different
font size, it’ll change the local meaning of em, and the computed padding will change
to reflect that.

 Using ems can be convenient when setting properties like padding, height, width,
or border-radius because these will scale evenly with the element if it inherits differ-
ent font sizes, or if the user changes the font settings.

 Figure 2.2 shows two differently sized boxes. The font size, padding, and border
radius in each is not the same.

Listing 2.1 Applying ems to padding

Figure 2.1 Element with 1 em padding (dashed lines added to illustrate padding)

Sets padding on all sides
equal to font-size

Figure 2.2 Elements with a relatively
sized padding and border radius

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

32 CHAPTER 2 Working with relative units

You can define the styles for these boxes by specifying the padding and border radius
using ems. By giving each a padding and border radius of 1 em, you can specify a
different font size for each element, and the other properties will scale along with
the font.

 In your HTML, create two boxes as shown next. Add the box-small and box-large
classes to each, respectively, as size modifiers.

Small
Large

Now, add the styles shown next to your stylesheet. This defines a box using ems. It also
defines small and large modifiers, each specifying a different font size.

.box {
 padding: 1em;
 border-radius: 1em;
 background-color: lightgray;
}

.box-small {
 font-size: 12px;
}

.box-large {
 font-size: 18px;
}

This is a powerful feature of ems. You can define the size of an element and then scale
the entire thing up or down with a single declaration that changes the font size. You’ll
build another example of this in a bit, but first, let’s talk about ems and font sizes.

2.2.1 Using ems to define font-size

When it comes to the font-size property, ems behave a little differently. As I said,
ems are defined by the current element’s font size. But, if you declare font size:
1.2em, what does that mean? A font size can’t equal 1.2 times itself. Instead, font-size
ems are derived from the inherited font size.

 For a basic example, see figure 2.3. This shows two bits of text, each at a different
font size. You’ll define these using ems in listing 2.4.

Listing 2.2 Appying ems to different elements (HTML)

Listing 2.3 Applying ems applied to different elements (CSS)

Different font sizes,
which will define the
elements’ em size

Figure 2.3 Two different font sizes using ems

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

33Ems and rems

Change your page to match the following listing. The first line of text is inside the
<body> tag, so it’ll render at the body’s font size. The second part, the slogan, inherits
that font size.

<body>
 We love coffee
 <p class="slogan">We love coffee</p>
</body>

The CSS in the next listing specifies the body’s font size. I’ve used pixels here for clar-
ity. Next, you’ll use ems to scale up the size of the slogan.

body {
 font-size: 16px;
}

.slogan {
 font-size: 1.2em;
}

The slogan’s specified font size is 1.2 em. To determine the calculated pixel value,
you’ll need to refer to the inherited font size of 16 px: 16 times 1.2 equals 19.2, so the
calculated font size is 19.2 px.

TIP If you know the pixel-based font size you’d like, but want to specify the
declaration in ems, here’s a simple formula: divide the desired pixel size by
the parent (inherited) pixel size. For example, if you want a 10 px font and
your element is inheriting a 12 px font, 10 / 12 = 0.8333 em. If you want a 16
px font and the parent font is 12 px, 16 / 12 = 1.3333 em. We’ll do this calcu-
lation several times throughout this chapter.

It’s helpful to know that, for most browsers, the default font size is 16 px. Technically,
it’s the keyword value medium that calculates to 16 px.

EMS FOR FONT SIZE TOGETHER WITH EMS FOR OTHER PROPERTIES

You’ve now defined ems for font-size (based on an inherited font size). And, you’ve
defined ems for other properties like padding and border-radius (based on the cur-
rent element’s font size). What makes ems tricky is when you use them for both font
size and any other properties on the same element. When you do this, the browser
must calculate the font size first, and then it uses that value to calculate the other val-
ues. Both properties can have the same declared value, but they’ll have different com-
puted values.

 In the previous example, we calculated the font size to be 19.2 px (16 px inherited
font size times 1.2 em). Figure 2.4 shows the same slogan element, but with an added

Listing 2.4 Relative font-size markup

Listing 2.5 Applying ems to font-size

The slogan inherits its
font size from <body>.

Calculates to 1.2
times the element’s
inherited font size

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

34 CHAPTER 2 Working with relative units

padding of 1.2 em and a gray background to make the padding size more apparent.
This padding is a bit larger than the font size, even though both have the same
declared value.

What’s happening here is the paragraph inherits a font size of 16 px from the body,
producing a calculated font size of 19.2 px. This means that 19.2 px is now the local
value for an em, and that value is used to calculate the padding. The CSS for this is
shown next. Update your stylesheet to see this in your test page.

body {
 font-size: 16px;
}

.slogan {
 font-size: 1.2em;
 padding: 1.2em;
 background-color: #ccc;
}

In this example, padding has a specified value of 1.2 em. This multiplied by 19.2 px
(the current element’s font size) produces a calculated value of 23.04 px. Even
though font-size and padding have the same specified value, their calculated values
are different.

THE SHRINKING FONT PROBLEM

Ems can produce unexpected results when you use them to specify the font sizes of
multiple nested elements. To know the exact value for each element, you’ll need to
know its inherited font size, which, if defined on the parent element in ems, requires
you to know the parent element’s inherited size, and so on up the tree.

 This becomes quickly apparent when you use ems for the font size of lists and then
nest lists several levels deep. Almost every web developer at some point in their career
loads their page to find something resembling figure 2.5. The text is shrinking! This is
exactly the sort of problem that leaves developers dreading the use of ems.

Listing 2.6 Applying ems to font-size and padding

Figure 2.4 Element with 1.2 em font and 1.2 em padding

Evaluates to
19.2 px

Evaluates to
23.04 px

Figure 2.5 Nested lists
with shrinking text

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

35Ems and rems

Shrinking text occurs when you nest lists several levels deep and apply an em-based
font size to each level. Listings 2.7 and 2.8 provide an example of this by setting the
font size of unordered lists to .8 em. The selector targets every on the page; so
when these lists inherit their font size from other lists, the ems compound.

body {
 font-size: 16px;
}

ul {
 font-size: .8em;
}

 Top level

 Second level

 Third level

 Fourth level

 Fifth level

Each list has a font size 0.8 times that of its parent. This means the first list has a font
size of 12.8 px, but the next one down is 10.24 px (12.8 px × 0.8), and the third level is
8.192 px, and so on. Similarly, if you specified a size larger than 1 em, the text would
continually grow instead. What we want is to specify the font at the top level, then
maintain the same font size all the way down, as in figure 2.6.

Listing 2.7 Applying ems to a list

Listing 2.8 Nested lists

This list is nested inside the first
one, inheriting its font size . . .

. . . and this one is nested inside of that,
inheriting the second list’s font size . . .

. . . and so on

Figure 2.6 Nested lists with corrected text

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

36 CHAPTER 2 Working with relative units

One way you can accomplish this is with the code in listing 2.9. This sets the font size
of the first list to .8 em as before (listing 2.7). The second selector in the listing then
targets all unordered lists within an unordered list—all of them except the top level.
The nested lists now have a font size equal to their parents, as shown in figure 2.6.

ul {
 font-size: .8em;
}

ul ul {
 font-size: 1em;
}

This fixes the problem, though it’s not ideal; you’re setting a value and then immedi-
ately overriding it with another rule. It would be nicer if you could avoid overriding
rules by inching up the specificity of the selectors.

 By now, it should be clear that ems can get away from you if you’re not careful.
They’re nice for padding, margins, and element sizing, but when it comes to font size,
they can get complicated. Thankfully, there is a better option—rems.

2.2.2 Using rems for font-size

When the browser parses an HTML document, it creates a representation in memory
of all the elements on the page. This representation is called the DOM (Document
Object Model). It’s a tree structure, where each element is represented by a node. The
<html> element is the top-level (or root) node. Beneath it are its child nodes, <head>
and <body>. And beneath those are their children, then their children, and so on.

 The root node is the ancestor of all other elements in the document. It has a spe-
cial pseudo-class selector (:root) that you can use to target it. This is equivalent to
using the type selector html with the specificity of a class rather than a tag.

 Rem is short for root em. Instead of being relative to the current element, rems are
relative to the root element. No matter where you apply it in the document, 1.2 rem
has the same computed value: 1.2 times the font size of the root element. The follow-
ing listing establishes the root font size and then uses rems to define the font size for
unordered lists relative to that.

:root {
 font-size: 1em;
}

ul {
 font-size: .8rem;
}

Listing 2.9 Correcting the shrinking text

Listing 2.10 Specifying font size using rems

Lists within lists should have the
same font size as their parent.

The :root pseudo-class is
equivalent to the HTML
type selector.

Uses the browser’s
default size (16 px)

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

37Stop thinking in pixels

In this example, the root font size is the browser’s default of 16 px (an em on the root
element is relative to the browser’s default). Unordered lists have a specified font size
of .8 rem, which calculates to 12.8 px. Because this is relative to the root, the font
size will remain constant, even if you nest lists.

Rems simplify a lot of the complexities involved with ems. In fact, they offer a good
middle ground between pixels and ems by providing the benefits of relative units, but
are easier to work with. Does this mean you should use rems everywhere and abandon
the other options? No.

 In CSS, again, the answer is often, “it depends.” Rems are but one tool in your tool
bag. An important part of mastering CSS is learning when to use which tool. My
default is to use rems for font sizes, pixels for borders, and ems for most other mea-
sures, especially paddings, margins, and border radius (though I favor the use of per-
centages for container widths when necessary).

 This way, font sizes are predictable, but you’ll still get the power of ems scaling
your padding and margins, should other factors alter the font size of an element. Pix-
els make sense for borders, particularly when you want a nice fine line. These are my
go-to units for the various properties, but again, they’re tools, and in some circum-
stances, a different tool does the job better.

TIP When in doubt, use rems for font size, pixels for borders, and ems for
most other properties.

2.3 Stop thinking in pixels
One pattern, or rather, antipattern, that has been common for the past several years is
to reset the font size at the page’s root to .625 em or 62.5%.

Accessibility: use relative units for font size
Some browsers provide two ways for the user to customize the size of text: zoom
and a default font size. By pressing Ctrl-plus (+) or Ctrl-minus (–), the user can zoom
the page up or down. This visually scales all fonts and images and generally makes
everything on the page larger or smaller. In some browsers, this change is only
applied to the current tab and is temporary, meaning it doesn’t get carried over to
new tabs.

Setting a default font size is a bit different. Not only is it harder to find where to set
this (usually in the browser's settings page), but changes at this level remain perma-
nent, until the user returns and changes the value again. The catch is that this setting
does not resize fonts defined using pixels or other absolute units. Because a default
font size is vital to some users, particularly those who are vision-impaired, you should
always specify font sizes with relative units or percentages.

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

38 CHAPTER 2 Working with relative units

html {
 font-size: .625em;
}

I don’t recommend this. This takes the browser’s default font size, 16 px, and scales it
down to 10 px. This practice simplifies the math: If your designer tells you to make the
font 14 px, you can easily divide by 10 in your head and type 1.4 rem, all while still
using relative units.

 Initially, this may be convenient, but there are two problems with this approach.
First, it forces you to write a lot of duplicate styles. Ten pixels is too small for most text,
so you’ll have to override it throughout the page. You’ll find yourself setting para-
graphs to 1.4 rem and asides to 1.4 rem and nav links to 1.4 rem and so on. This intro-
duces more places for error, more points of contact in your code when it needs to
change, and increases the size of your stylesheet.

 The second problem is that when you do this, you’re still thinking in pixels. You
might type 1.4 rem into your code, but in your mind, you’re still thinking “14 pixels.”
On a responsive web, you should get comfortable with “fuzzy” values. It doesn’t matter
how many pixels 1.2 em evaluates to; all you need to know is that it’s a bit bigger than
the inherited font size. And, if it doesn’t look how you want it onscreen, change it.
This takes some trial and error, but in reality, so does working with pixels. (In chap-
ter 13, we’ll look at additional concrete rules to refine this approach.)

 When working with ems, it’s easy to get bogged down obsessing over exactly how
many pixels things will evaluate to, especially font sizes. You’ll drive yourself mad
dividing and multiplying em values as you go. Instead, I challenge you to get into the
habit of using ems first. If you’re accustomed to using pixels, using em values may take
practice, but it’s worth it.

 This isn’t to say you’ll never have to work with pixels. If you’re working with a
designer, you’ll probably need to talk in some concrete pixel numbers, and that’s
okay. At the beginning of a project, you’ll need to establish a base font size (and often
a few common sizes for headings and footnotes). Absolute values are easier to use
when discussing the size of things.

 Converting to rems will involve arithmetic, so keep a calculator handy. (I press
Command-Space on my Mac, and type the equation into Spotlight.) Putting a root
font size in place defines a rem. From that point on, working in pixels should be the
exception, not the norm.

 I’ll continue to mention pixels throughout this chapter. This will help me reiter-
ate why the relative units behave the way they do, as well as help you get accustomed
to the calculation of ems. After this chapter, I’ll primarily discuss font sizes using rel-
ative units.

Listing 2.11 Antipattern: globally resetting font-size to 10 px

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

39Stop thinking in pixels

2.3.1 Setting a sane default font size

Let’s say you want your default font size to be 14 px. Instead of setting a 10 px default
then overriding it throughout the page, set that value at the root. The desired value
divided by the inherited value—in this case, the browser’s default—is 14/16, which
equals 0.875.

 Add the following listing to the top of a new stylesheet, as you’ll be building on it.
This sets the default font at the root (<html>).

:root {
 font-size: 0.875em;
}

Now your desired font size is applied to the whole page. You won’t need to specify it
elsewhere. You’ll only need to change it in places where the design deviates from this,
such as headings.

 Let’s create the panel shown in figure 2.7. You’ll build this panel based on the 14
px font size, using relative measurements.

The markup for this is shown here. Add this to your page.

<div class="panel">
 <h2>Single-origin</h2>
 <div class="panel-body">
 We have built partnerships with small farms around the world to
 hand-select beans at the peak of season. We then carefully roast
 in small batches to maximize their
 potential.
 </div>
</div>

The next listing shows the styles. You’ll use ems for the padding and border radius, rem
for the font size of the heading, and px for the border. Add these to your stylesheet.

Listing 2.12 Setting the true default font size

Listing 2.13 Markup for a panel

Or use the HTML selector

14/16 (desired px / inherited
px) equals .875

Figure 2.7 Panel with relative units and an inherited font size

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

40 CHAPTER 2 Working with relative units

.panel {
 padding: 1em;
 border-radius: 0.5em;
 border: 1px solid #999;
}

.panel > h2 {
 margin-top: 0;
 font-size: 0.8rem;
 font-weight: bold;
 text-transform: uppercase;
}

This code puts a thin border around the panel and styles the heading. I opted for a
header that is smaller, but bold and all caps. (You can make this larger or a different
typeface if your design calls for it.)

 The > in the second selector is a direct descendant combinator. It targets an h2 that’s a
child element of a .panel element. See appendix A for a complete reference of selec-
tors and combinators.

 In listing 2.13, I added a panel-body class to the main body of the panel for clarity,
but you’ll notice you didn’t need to use it in your CSS. Because this element already
inherits the root font size, it already appears how you want it to look.

2.3.2 Making the panel responsive

Let’s take this a bit further. You can use some media queries to change the base font size,
depending on the screen size. This’ll make the panel render at different sizes based
on the size of the user’s screen (shown in figure 2.8).

Listing 2.14 Panel with relative units

media query—An @media rule used to specify styles that will be applied only to
certain screen sizes or media types (for example, print or screen). This is a
key component of responsive design. See listing 2.15 for an example; I’ll
cover this in greater depth in chapter 8.

Uses ems for padding
and border radius

Uses 1 px for a thin border

Removes extra space from the panel
top; more on this in chapter 3

Styles the heading font
using rems for font size

Figure 2.8 Responsive panel on different screen sizes: 300 px (top left), 800 px (top right), and 1,440 px
(bottom)

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

41Stop thinking in pixels

To see this result, edit this portion of your stylesheet to match this listing.

:root {
 font-size: 0.75em;
}

@media (min-width: 800px) {
 :root {
 font-size: 0.875em;
 }
}

@media (min-width: 1200px) {
 :root {
 font-size: 1em;
 }
}

This first ruleset specifies a small default font size. This is the font size that we want
to apply on smaller screens. Then you used media queries to override that value
with incrementally larger font sizes on screens with a width of 800 px and 1,200 px
or more.

 By applying these font sizes at the root on your page, you’ve responsively redefined
the meaning of em and rem throughout the entire page. This means that the panel is
now responsive, even though you made no changes to it directly. On a small screen, such
as a smartphone, the font will be rendered smaller (12 px); likewise, the padding and
border radius will be smaller to match. And, on larger screens more than 800 px and
1,200 px wide, the component scales up to a 14 px and 16 px font size, respectively.
Resize your browser window to watch these changes take place.

 If you are disciplined enough to style your entire page in relative units like this, the
entire page will scale up and down based on the viewport size. This can be a huge part
of your responsive strategy. These two media queries near the top of your stylesheet
can eliminate the need for dozens of media queries throughout the rest of your CSS.
But it doesn’t work if you define your values in pixels.

 Similarly, if your boss or your client decides the fonts on the site you built are too
small or too large, you can change them globally by only touching one line of code.
The change will ripple throughout the rest of your page, effortlessly.

2.3.3 Resizing a single component

You can also use ems to scale an individual component on the page. Sometimes you
might need a larger version of the same part of your interface on certain parts of the
page. Let’s do this with our panel. You’ll add a large class to the panel: <div
class="panel large">.

Listing 2.15 Responsive base font-size

Applies to all screens,
but is overridden for
larger screens

Applies only to screens 800
px and wider, overriding
the original value

Applies only to screens
1,200 px and larger,
overriding both values

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

42 CHAPTER 2 Working with relative units

 Figure 2.9 shows both the normal and the large panel for comparison. The effect is
similar to the responsive panels, but both sizes can be used simultaneously on the
same page.

Let’s make a small change to the way you defined the panel’s font sizes. You’ll still use
relative units, but you’ll adjust what they’re relative to. First, add the declaration font-
size: 1rem to the parent element of each panel. This means each panel will establish
a predictable font size for itself, no matter where it’s placed on the page.

 Second, redefine the heading’s font size using ems rather than rems to make it rel-
ative to the parent’s font size you just established at 1 rem. The code for this is next.
Update your stylesheet to match.

.panel {
 font-size: 1rem;
 padding: 1em;
 border: 1px solid #999;
 border-radius: 0.5em;
}

.panel > h2 {
 margin-top: 0;
 font-size: 0.8em;
 font-weight: bold;
 text-transform: uppercase;
}

This change has no effect on the appearance of the panel, but now it sets you up to
make the larger version of the panel with a single line of CSS. All you have to do is
override the parent element’s 1 rem with another value. Because all the component’s
measurements are relative to this, overriding it will resize the entire panel. Add the
CSS in the next listing to your stylesheet to define a larger version.

Listing 2.16 Creating a larger version of the panel

Figure 2.9 A normal panel and a large panel defined on the same page

Establishes a predictable
font size for the
component

Uses ems to make other fonts
relative to the established
parent font size

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

43Viewport-relative units

.panel.large {
 font-size: 1.2rem;
}

Now, you can use class="panel" for a normal panel and class="panel large" for
a larger one. Similarly, you could define a smaller version of the panel by setting a
smaller font size. If the panel were a more complicated component, with multiple font
sizes or paddings, it’d still only take this one declaration to resize it, as long as every-
thing inside is defined using ems.

2.4 Viewport-relative units
You’ve learned that ems and rems are defined relative to font-size, but these aren’t
the only type of relative units. There are also viewport-relative units for defining lengths
relative to the browser’s viewport.

If you’re not familiar with viewport-relative units, here is a brief explanation.

 vh—1/100th of the viewport height
 vw—1/100th of the viewport width
 vmin—1/100th of the smaller dimension, height or width (IE9 supports vm

instead of vmin)
 vmax—1/100th of the larger dimension, height or width (not supported in IE

or, at the time of writing, Edge)

For example, 50 vw is equal to half the width of the viewport, and 25 vh equals 25% of
the viewport’s height. vmin is based on which of the two (height or width) is smaller.
This is helpful for ensuring that an element will fit on the screen regardless of its ori-
entation: If the screen is landscape, it’ll be based on the height; if portrait, it’s based
on the width.

 Figure 2.10 shows a square element as it appears in several viewports with different
screen sizes. It’s defined with both a height and a width of 90 vmin, which equals 90%
of the smaller of the two dimensions—90% of the height on landscape screens, or
90% of the width on portrait.

 Listing 2.18 shows the styles for this element. It produces a large square that always
fits in the viewport no matter how the browser is sized. You can add a <div class=
"square"> to your page to see this.

Listing 2.17 Scaling the entire panel with one declaration

viewport—The framed area in the browser window where the web page is vis-
ible. This excludes the browser’s address bar, toolbars, and status bar, if
present.

Compound selector targets
elements with both panel
and large classes

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

44 CHAPTER 2 Working with relative units

.square {
 width: 90vmin;
 height: 90vmin;
 background-color: #369;
}

The viewport-relative lengths are great for things like making a large hero image fill
the screen. Your image can be inside a long container, but setting the image height to
100 vh, makes it exactly the height of the viewport.

NOTE Viewport-relative units are a newer feature for most browsers, so there
are a few odd bugs when you use them in more exotic combinations with
other styles. See “Known Issues” at http://caniuse.com/#feat=viewport-units
for a list.

Listing 2.18 Square element sized using vmin

CSS3
Several of the unit types in this chapter weren’t in earlier versions of CSS (rems and
viewport-relative units, in particular). They were added amid a series of changes to
the language, which is often called CSS3.

In the late 1990s and early 2000s, after initial work on the CSS specification, little
changed for a long time. The W3C (World Wide Web Consortium) published the CSS

Figure 2.10 An element with a height and width
of 90 vmin will always display as a square a little
smaller than the viewport, regardless of its size
or orientation.

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

45Viewport-relative units

2.4.1 Using vw for font size

One application for viewport-relative units that may not be immediately obvious is
font size. In fact, I find this use more practical than applying vh and vw to element
heights or widths.

 Consider what would happen if you applied font-size: 2vw to an element. On a
desktop monitor at 1,200 px, this evaluates to 24 px (2% of 1,200). On a tablet with a
screen width of 768 px, it evaluates to about 15 px (2% of 768). And, the nice thing is,
the element scales smoothly between the two sizes. This means there’re no sudden
breakpoint changes; it transitions incrementally as the viewport size changes.

 Unfortunately, 24 px is a bit too large on a big screen. And worse, it scales all the
way down to 7.5 px on an iPhone 6. What would be nice is this scaling effect, but with
the extremes a little less severe. You can achieve this with CSS’s calc() function.

2.4.2 Using calc() for font size

The calc() function lets you do basic arithmetic with two or more values. This is par-
ticularly useful for combining values that are measured in different units. This func-
tion supports addition (+), subtraction (-), multiplication (*) and division (/). The

2 specification in May 1998. Shortly thereafter, work began on version 2.1 to correct
issues and bugs in version 2. Work on CSS 2.1 continued for many years, with few
significant additions to the language. It was not finalized as a Proposed Recommen-
dation until April 2011. By this point, browsers had already implemented most of the
CSS 2.1 changes, and were well on their way to adding newer features under the
moniker CSS3.

The “3” is an informal version number; there’s no CSS3 specification. Instead, the
specification was broken up into individual modules, each independently versioned.
The specification for backgrounds and borders is now separate from the one for box
models, and from the one for cascading and inheritance. This allows the W3C to
make new revisions to one area of CSS without unnecessarily updating areas that
are not changing. Many of these specifications remain at version 3 (now called level
3), but some, such as the selectors specification, are at level 4 and others, such as
a flexbox, are at level 1.

As these changes were introduced, we saw an explosion of new features rolling out
in browsers from 2009 through 2013. Notable additions at this time included rems
and viewport-relative units, as well as new selectors, media queries, web fonts,
rounded borders, animations, transitions, transformations, and different ways to
specify colors. And, new features are steadily emerging each year.

This means we’re no longer working with one particular version of CSS. It’s a living
standard. Each browser is continually adding support for new features. Developers
work with those changes and adapt to them. There won’t be a CSS4, except perhaps
as a more generic marketing term. Although this book covers CSS3 features, I don’t
necessarily call them out at as such because, as far as the web is concerned, it’s
all CSS.

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

46 CHAPTER 2 Working with relative units

addition and subtraction operators must be surrounded by whitespace, so I suggest
getting in the habit of always adding a space before and after each operator; for exam-
ple, calc(1em + 10px).

 You’ll use calc() in the next listing to combine ems with vw units. Remove the
previous base font size (and the related media queries) from your stylesheet. Add this
in its place.

:root {
 font-size: calc(0.5em + 1vw);
}

Now, open the page and slowly resize your browser. You’ll see the font scale smoothly
as you do. The 0.5 em here operates as a sort of minimum font size, and the 1 vw adds
a responsive scalar. This’ll give you a base font size that scales from 11.75 px on an
iPhone 6 up to 20 px in a 1,200 px browser window. You can adjust these values to
your liking.

 You’ve now accomplished a large piece of your responsive strategy without a single
media query. Instead of three or four hard-coded breakpoints, everything on your
page will scale fluidly according to the viewport.

2.5 Unitless numbers and line-height
Some properties allow for unitless values (that is, a number with no specified unit).
Properties that support this include line-height, z-index, and font-weight (700 is
equivalent to bold; 400 is equivalent to normal, and so on). You can also use the unit-
less value 0 anywhere a length unit (such as px, em, or rem) is required because, in
these cases, the unit does not matter—0 px equals 0% equals 0 em.

WARNING A unitless 0 can only be used for length values and percentages,
such as in paddings, borders, and widths. It can’t be used for angular values,
such as degrees or time-based values like seconds.

The line-height property is unusual in that it accepts both units and unitless values.
You should typically use unitless numbers because they’re inherited differently. Let’s
put text into the page and see how this behaves. Add the code in the following listing
to your stylesheet.

<body>
 <p class="about-us">
 We have built partnerships with small farms around the world to
 hand-select beans at the peak of season. We then carefully roast in
 small batches to maximize their potential.
 </p>
</body>

Listing 2.19 Using calc() to define font-size in ems and vh units

Listing 2.20 Inherited line-height markup

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

47Unitless numbers and line-height

You’ll specify a line height for the body element and allow it to be inherited by the rest
of the document. This will work as expected, no matter what you do to the font sizes
in the page (figure 2.11).

Add listing 2.21 to your stylesheet for these styles. The paragraph inherits a line height
of 1.2. Because the font size is 32 px (2 em × 16 px, the browser’s default), the line
height is calculated locally to 38.4 px (32 px × 1.2). This will leave an appropriate
amount of space between lines of text.

body {
 line-height: 1.2;
}

.about-us {
 font-size: 2em;
}

If instead you specify the line height using a unit, you may encounter unexpected
results, like that shown in figure 2.12. The lines of text overlap one another. Listing 2.22
shows the CSS that generated the overlap.

body {
 line-height: 1.2em;
}

.about-us {
 font-size: 2em;
}

Listing 2.21 Line height with a unitless number

Listing 2.22 Line height with units results in unexpected output

Figure 2.11 Unitless line height is recalculated
for each descendant element.

Descendant elements
inherit the unitless value.

Figure 2.12 Overlapping lines due
to an inherited line-height

Descendant elements
inherit the calculated
value (19.2 px).

Evaluates to 32 px

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

48 CHAPTER 2 Working with relative units

These results are due to a peculiar quirk of inheritance: when an element has a value
defined using a length (px, em, rem, and so forth), its computed value is inherited by
child elements. When units such as ems are specified for a line height, their value is
calculated, and that calculated value is passed down to any inheriting children. With
the line-height property, this can cause unexpected results if the child element has a
different font size, like the overlapping text.

When you use a unitless number, that declared value is inherited, meaning its com-
puted value is recalculated for each inheriting child element. This will almost always
be the result you want. Using a unitless number lets you set the line height on the
body and then forget about it for the rest of the page, unless there are particular
places where you want to make an exception.

2.6 Custom properties (aka CSS variables)
In 2015, a long-awaited CSS specification titled Custom Properties for Cascading Vari-
ables was published as a Candidate Recommendation. This specification introduced
the concept of variables to the language, which enabled a new level of dynamic,
context-based styles. You can declare a variable and assign it a value; then you can
reference this value throughout your stylesheet. You can use this to reduce repeti-
tion in your stylesheet, as well as some other beneficial applications as you’ll see
shortly.

 At the time of writing, support for custom properties has rolled out in all major
browsers except IE. For up-to-date support information on lesser-known browsers,
check “Can I Use” at http://caniuse.com/#feat=css-variables.

NOTE If you happen to use a CSS preprocessor that supports its own vari-
ables, such as Sass (syntactically awesome stylesheets) or Less, you may be
tempted to disregard CSS variables. Don’t. The new CSS variables are differ-
ent in nature and are far more versatile than anything a preprocessor can
accomplish. I tend to refer to them as “custom properties” rather than vari-
ables to emphasize this distinction.

To define a custom property, you declare it much like any other CSS property. List-
ing 2.23 is an example of a variable declaration. Start a fresh page and stylesheet,
and add this CSS.

length—The formal name for a CSS value that denotes a distance measure-
ment. It’s a number followed by a unit, such as 5 px. Length comes in two
flavors: absolute and relative. Percentages are similar to lengths, but strictly
speaking, they’re not considered lengths.

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

49Custom properties (aka CSS variables)

:root {
 --main-font: Helvetica, Arial, sans-serif;
}

This listing defines a variable named --main-font, and sets its value to a set of com-
mon sans-serif fonts. The name must begin with two hyphens (--) to distinguish it
from CSS properties, followed by whatever name you’d like to use.

 Variables must be declared inside a declaration block. I’ve used the :root selector
here, which sets the variable for the whole page—I’ll explain this shortly.

 By itself, this variable declaration doesn’t do anything until we use it. Let’s apply it
to a paragraph to produce a result like that in figure 2.13.

A function called var() allows the use of variables. You’ll use this function to refer-
ence the --main-font variable just defined. Add the ruleset shown in the following
listing to put the variable to use.

:root {
 --main-font: Helvetica, Arial, sans-serif;
}

p {
 font-family: var(--main-font);
}

Custom properties let you define a value in one place, as a “single source of truth,”
and reuse that value throughout the stylesheet. This is particularly useful for recurring
values like colors. The next listing adds a brand-color custom property. You can use
this variable dozens of times throughout your stylesheet, but if you want to change it,
you only have to edit it in one place.

:root {
 --main-font: Helvetica, Arial, sans-serif;
 --brand-color: #369;
}

Listing 2.23 Defining a custom property

Listing 2.24 Using a custom property

Listing 2.25 Using custom properties for colors

Figure 2.13 Simple paragraph using a variable’s sans-serif font

Sets the font family for
paragraphs to Helvetica,
Arial, sans-serif

Defines a blue
brand-color variable

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

50 CHAPTER 2 Working with relative units

p {
 font-family: var(--main-font);
 color: var(--brand-color);
}

The var() function accepts a second parameter, which specifies a fallback value. If the
variable specified in the first parameter is not defined, then the second value is used
instead.

:root {
 --main-font: Helvetica, Arial, sans-serif;
 --brand-color: #369;
}

p {
 font-family: var(--main-font, sans-serif);
 color: var(--secondary-color, blue);
}

This listing specifies fallback values in two different declarations. In the first, --main
-font is defined as Helvetica, Arial, sans-serif, so this value is used. In the second,
--secondary-color is an undefined variable, so the fallback value blue is used.

NOTE If a var() function evaluates to an invalid value, the property will be
set to its initial value. For example, if the variable in padding: var(--brand
-color) evaluates to a color, it would be an invalid padding value. In that
case, the padding would be set to 0 instead.

2.6.1 Changing custom properties dynamically

In the examples so far, custom properties are merely a nice convenience; they can save
you from a lot of repetition in your code. But what makes them particularly interest-
ing is that the declarations of custom properties cascade and inherit: You can define
the same variable inside multiple selectors, and the variable will have a different value
for various parts of the page.

 You can define a variable as black, for example, and then redefine it as white inside
a particular container. Then, any styles based on that variable will dynamically resolve
to black if they are outside the container and to white if inside. Let’s use this to
achieve a result like that shown in figure 2.14.

 This panel is similar to the one you saw earlier (figure 2.7). The HTML for this is
shown in listing 2.27. It has two instances of the panel: one inside the body and one
inside a dark section. Update your HTML to match this.

Listing 2.26 Providing fallback values

Specifies a fallback
value of sans-serif

The secondary-color variable
is not defined, so the fallback
value blue is used.

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

51Custom properties (aka CSS variables)

<body>
 <div class="panel">
 <h2>Single-origin</h2>
 <div class="body">
 We have built partnerships with small farms
 around the world to hand-select beans at the
 peak of season. We then careful roast in
 small batches to maximize their potential.
 </div>
 </div>

 <aside class="dark">
 <div class="panel">
 <h2>Single-origin</h2>
 <div class="body">
 We have built partnerships with small farms
 around the world to hand-select beans at the
 peak of season. We then careful roast in
 small batches to maximize their potential.
 </div>
 </div>
 </aside>
</body>

Let’s redefine the panel to use variables for text and background color. Add the next
listing to your stylesheet. This sets the background color to white and the text to black.
I’ll explain how this works before you add styles for the dark variant.

Listing 2.27 Two panels in different contexts on the page

Figure 2.14 Custom properties produce different colored panels based on local
variable values.

A regular panel
on the page

The second panel inside
a dark container

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

52 CHAPTER 2 Working with relative units

:root {
 --main-bg: #fff;
 --main-color: #000;
}

.panel {
 font-size: 1rem;
 padding: 1em;
 border: 1px solid #999;
 border-radius: 0.5em;
 background-color: var(--main-bg);
 color: var(--main-color);
}

.panel > h2 {
 margin-top: 0;
 font-size: 0.8em;
 font-weight: bold;
 text-transform: uppercase;
}

Again, you’ve defined the variables inside a ruleset with the :root selector. This is sig-
nificant because it means these values are set for everything in the root element (the
entire page). When a descendant element of the root uses the variables, these are
the values they’ll resolve to.

 You have two panels, but they still look the same. Now, let’s define the variables
again, but this time with a different selector. The next listing provides styles for the
dark container. It sets a dark gray background on the container, as well as a little pad-
ding and margin. It also redefines both variables. Add this to your stylesheet.

.dark {
 margin-top: 2em;
 padding: 1em;
 background-color: #999;
 --main-bg: #333;
 --main-color: #fff;
}

Reload the page, and the second panel will have a dark background and white text.
This is because when the panel uses these variables, they’ll resolve to the values
defined on the dark container, rather than on the root. Notice you didn’t have to
restyle the panel, or apply any additional classes.

Listing 2.28 Using variables to define the panel colors

Listing 2.29 Styling the dark container

Defines background and text
color variables as white and
black, respectively

Uses the variables
in the panel's styles

Puts a margin between the
dark container and the
preceding panel

Applies a dark gray
background to the
dark containerRedefines the --main-bg and

--main-color variables within
the scope of the container

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

53Custom properties (aka CSS variables)

 In this example, you’ve defined custom properties twice: first on the root (where
--main-color is black), and then on the dark container (where --main-color is
white). The custom properties behave as a sort of scoped variable because the values
are inherited by descendant elements. Inside the dark container, --main-color is
white; elsewhere on the page, it’s black.

2.6.2 Changing custom properties with JavaScript

Custom properties can also be accessed and manipulated live in the browser using
JavaScript. Because this isn’t a book on JavaScript, I’ll show you enough to get
acquainted with the concept. I’ll leave it to you to integrate this into your JavaScript
projects.

 The following listing shows how to access a property on an element. It adds a script
to the page, which logs the value of the root element’s --main-bg property.

<script type="text/javascript">
 var rootElement = document.documentElement;
 var styles = getComputedStyle(rootElement);
 var mainColor = styles.getPropertyValue('--main-bg');
 console.log(String(mainColor).trim());
</script>

Because you can specify new values for custom properties on the fly, you can use Java-
Script to set a new value for --main-bg dynamically. If you set it to a light blue, it’ll
appear as shown in figure 2.15.

The code in the next listing sets a new value to --main-bg on the root element. Add
this at the end of the <script> tag.

var rootElement = document.documentElement;
rootElement.style.setProperty('--main-bg', '#cdf');

Listing 2.30 Accessing a custom property in JavaScript

Listing 2.31 Setting a custom property in JavaScript

Gets the styles object
for an element

Gets the --main-bg
value from the
styles object

Ensures mainColor is a String and
trims whitespace; logs “#fff”

Figure 2.15 JavaScript can set the panel’s background by changing the --main-bg variable.

Sets --main-bg to a
light blue on the
root element

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

54 CHAPTER 2 Working with relative units

If you run this script, any elements inheriting the --main-bg property will update to
use this new value. On your page, this changes the background of the first panel to light
blue. The second panel remains unchanged, as it’s still inheriting the property from
the dark container.

 With this technique, you can use JavaScript to re-theme your site, live in the
browser. Or, you could highlight certain parts of the page or make any number of
other on-the-fly changes. Using only a few lines of JavaScript, you can make changes
that’ll affect a large number of elements on the page.

2.6.3 Experimenting with custom properties

Custom properties are a whole new area of CSS that developers are just beginning to
explore. Because browser support has been limited, it hasn’t yet seen much “prime-
time” use. I’m sure that over time, you’ll see best practices and novel uses emerge.
This is something to keep your eye on. Experiment with custom properties and see
what you can come up with.

 Be aware that any declaration using var() will be ignored by old browsers that
don’t understand it. Provide a fallback behavior for those browsers when possible:

color: black;
color: var(--main-color);

This will not always be possible, however, given the dynamic nature of custom proper-
ties. Keep an eye on browser support at http://caniuse.com.

Summary
 Embrace the use of relative units, allowing the page’s structure to determine

the meaning of your styles.
 Favor the use of rems for font size, but selectively use ems for simple scaling of

components on the page.
 You can make your entire page scale responsively without any media queries.
 Use unitless values when specifying line height.
 You can start getting familiar with one of CSS’s newest features, custom properties.

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

Keith J. Grant

S
ome websites really pop. They look great, they’re visually
consistent, and they feel interactive and responsive. You
can bet their developers knew CSS in depth. CSS specifi es

everything from the structural layout of page elements to their
individual look and feel. True masters know the patterns of
CSS development, the techniques to implement them, and the
subtle touches that result in beautiful typography, fl uid transi-
tions, and balanced graphics. Join them!

CSS in Depth exposes you to a world of CSS techniques that
range from clever to mind-blowing. This instantly useful book
is packed with creative examples and powerful best practices
that will sharpen your technical skills and inspire your sense of
design. You’ll gain new insights into familiar features like fl oats
and units, and experiment with emerging ideas like responsive
design and pattern libraries. Bottom line: this book will make
you a better web designer and your apps will look fantastic!

What’s Inside
● Avoid common CSS pitfalls
● Master misunderstood concepts
● Use fl exbox and grid layout
● Responsive designs for any device
● Code for reuse and maintainability

Written for web developers who know the basics of CSS and
HTML.

Keith J. Grant is a senior web developer who builds and main-
tains web applications and websites, including The New York
Stock Exchange site.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/css-in-depth

$44.99 / Can $59.99 [INCLUDING eBOOK]

CSS IN DEPTH

WEB DEVELOPMENT/HTML

M A N N I N G

“Become better at
writing code that lasts
and is understandable
 and performant.”

—From the Foreword by
Chris Coyier

Cofounder of CodePen

“From zero to hero in CSS!”
—Pierfrancesco D’Orsogna

GamePix

“The bible of the most
 up-to-date CSS.”—Phily Austria

Faraday Future

“A well-written, concise
book. I enjoyed every

 minute of reading it.”
—Tanya Wilke, Sanlam

“A clear and complete
 guide to CSS.”—Giancarlo Massari, Unic

See first page

www.itbook.store/books/9781617293450

https://itbook.store/books/9781617293450

