
M A N N I N G

Raoul-Gabriel Urma
Mario Fusco

Alan Mycroft

Lambdas, streams, functional and reactive programming

IN ACTION

S A M P L E C H A P T E R

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

Modern Java in Action

by Raoul-Gabriel Urma, Mario Fusco,
and Alan Mycroft

 Chapter 1

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

v

brief contents
PART 1 FUNDAMENTALS ..1

1 ■ Java 8, 9, 10, and 11: what’s happening? 3

2 ■ Passing code with behavior parameterization 26

3 ■ Lambda expressions 42

PART 2 FUNCTIONAL-STYLE DATA PROCESSING WITH STREAMS ... 79

4 ■ Introducing streams 81

5 ■ Working with streams 98

6 ■ Collecting data with streams 134

7 ■ Parallel data processing and performance 172

PART 3 EFFECTIVE PROGRAMMING WITH STREAMS
AND LAMBDAS..199

8 ■ Collection API enhancements 201

9 ■ Refactoring, testing, and debugging 216

10 ■ Domain-specific languages using lambdas 239

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

BRIEF CONTENTSvi

PART 4 EVERYDAY JAVA ...273

11 ■ Using Optional as a better alternative to null 275

12 ■ New Date and Time API 297

13 ■ Default methods 314

14 ■ The Java Module System 333

PART 5 ENHANCED JAVA CONCURRENCY355

15 ■ Concepts behind CompletableFuture and
reactive programming 357

16 ■ CompletableFuture: composable asynchronous
programming 387

17 ■ Reactive programming 416

PART 6 FUNCTIONAL PROGRAMMING AND FUTURE JAVA
EVOLUTION...443

18 ■ Thinking functionally 445

19 ■ Functional programming techniques 460

20 ■ Blending OOP and FP: Comparing Java and Scala 485

21 ■ Conclusions and where next for Java 500

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

3

Java 8, 9, 10, and 11:
what’s happening?

Since the release of Java Development Kit (JDK 1.0) in 1996, Java has won a large
following of students, project managers, and programmers who are active users. It’s
an expressive language and continues to be used for projects both large and small.
Its evolution (via the addition of new features) from Java 1.1 (1997) to Java 7
(2011) has been well managed. Java 8 was released in March 2014, Java 9 in Sep-
tember 2017, Java 10 in March 2018, and Java 11 planned for September 2018. The
question is this: Why should you care about these changes?

1.1 So, what’s the big story?
We argue that the changes to Java 8 were in many ways more profound than any
other changes to Java in its history (Java 9 adds important, but less-profound,
productivity changes, as you’ll see later in this chapter, while Java 10 makes much

This chapter covers
 Why Java keeps changing

 Changing computing background

 Pressures for Java to evolve

 Introducing new core features of Java 8 and 9

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

4 CHAPTER 1 Java 8, 9, 10, and 11: what’s happening?

smaller adjustments to type inference). The good news is that the changes enable you
to write programs more easily. For example, instead of writing verbose code (to sort a
list of apples in inventory based on their weight) like

Collections.sort(inventory, new Comparator<Apple>() {
 public int compare(Apple a1, Apple a2){
 return a1.getWeight().compareTo(a2.getWeight());
 }
});

in Java 8 you can write more concise code that reads a lot closer to the problem state-
ment, like the following:

inventory.sort(comparing(Apple::getWeight));

It reads “sort inventory comparing apple weight.” Don’t worry about this code for
now. This book will explain what it does and how you can write similar code.

 There’s also a hardware influence: commodity CPUs have become multicore—the
processor in your laptop or desktop machine probably contains four or more CPU
cores. But the vast majority of existing Java programs use only one of these cores and
leave the other three idle (or spend a small fraction of their processing power run-
ning part of the operating system or a virus checker).

 Prior to Java 8, experts might tell you that you have to use threads to use these
cores. The problem is that working with threads is difficult and error-prone. Java has
followed an evolutionary path of continually trying to make concurrency easier and
less error-prone. Java 1.0 had threads and locks and even a memory model—the best
practice at the time—but these primitives proved too difficult to use reliably in non-
specialist project teams. Java 5 added industrial-strength building blocks like thread
pools and concurrent collections. Java 7 added the fork/join framework, making par-
allelism more practical but still difficult. Java 8 gave us a new, simpler way of thinking
about parallelism. But you still have to follow some rules, which you’ll learn in this
book.

 As you’ll see later in this book, Java 9 adds a further structuring method for con-
currency—reactive programming. Although this has more-specialist use, it standard-
izes a means of exploiting the RxJava and Akka reactive streams toolkits that are
becoming popular for highly concurrent systems.

 From the previous two desiderata (more concise code and simpler use of multi-
core processors) springs the whole consistent edifice captured by Java 8. We start by
giving you a quick taste of these ideas (hopefully enough to intrigue you, but short
enough to summarize them):

 The Streams API
 Techniques for passing code to methods
 Default methods in interfaces

The first Java 8 code
of the book!

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

5So, what’s the big story?

Java 8 provides a new API (called Streams) that supports many parallel operations to
process data and resembles the way you might think in database query languages—
you express what you want in a higher-level manner, and the implementation (here
the Streams library) chooses the best low-level execution mechanism. As a result, it
avoids the need for you to write code that uses synchronized, which is not only highly
error-prone but also more expensive than you may realize on multicore CPUs.1

 From a slightly revisionist viewpoint, the addition of Streams in Java 8 can be seen
as a direct cause of the two other additions to Java 8: concise techniques to pass code to
methods (method references, lambdas) and default methods in interfaces.

 But thinking of passing code to methods as a mere consequence of Streams down-
plays its range of uses within Java 8. It gives you a new concise way to express behavior
parameterization. Suppose you want to write two methods that differ in only a few lines
of code. You can now simply pass the code of the parts that differ as an argument (this
programming technique is shorter, clearer, and less error-prone than the common
tendency to use copy and paste). Experts will here note that behavior parameteriza-
tion could, prior to Java 8, be encoded using anonymous classes—but we’ll let the
example at the beginning of this chapter, which shows increased code conciseness
with Java 8, speak for itself in terms of clarity.

 The Java 8 feature of passing code to methods (and being able to return it and
incorporate it into data structures) also provides access to a range of additional tech-
niques that are commonly referred to as functional-style programming. In a nutshell,
such code, called functions in the functional programming community, can be passed
around and combined in a way to produce powerful programming idioms that you’ll
see in Java guise throughout this book.

 The meat of this chapter begins with a high-level discussion on why languages
evolve, continues with sections on the core features of Java 8, and then introduces the
ideas of functional-style programming that the new features simplify using and that
new computer architectures favor. In essence, section 1.2 discusses the evolution pro-
cess and the concepts, which Java was previously lacking, to exploit multicore parallel-
ism in an easy way. Section 1.3 explains why passing code to methods in Java 8 is such
a powerful new programming idiom, and section 1.4 does the same for Streams—the
new Java 8 way of representing sequenced data and indicating whether these can be
processed in parallel. Section 1.5 explains how the new Java 8 feature of default meth-
ods enables interfaces and their libraries to evolve with less fuss and less recompila-
tion; it also explains the modules addition to Java 9, which enables components of large
Java systems to be specified more clearly than “just a JAR file of packages.” Finally, sec-
tion 1.6 looks ahead at the ideas of functional-style programming in Java and other
languages sharing the JVM. In summary, this chapter introduces ideas that are succes-
sively elaborated in the rest of the book. Enjoy the ride!

1 Multicore CPUs have separate caches (fast memory) attached to each processor core. Locking requires these
to be synchronized, requiring relatively slow cache-coherency-protocol inter-core communication.

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

6 CHAPTER 1 Java 8, 9, 10, and 11: what’s happening?

1.2 Why is Java still changing?
With the 1960s came the quest for the perfect programming language. Peter Landin,
a famous computer scientist of his day, noted in 1966 in a landmark article2 that there
had already been 700 programming languages and speculated on what the next 700
would be like—including arguments for functional-style programming similar to that
in Java 8.

 Many thousands of programming languages later, academics have concluded that
programming languages behave like ecosystems: new languages appear, and old lan-
guages are supplanted unless they evolve. We all hope for a perfect universal language,
but in reality certain languages are better fitted for certain niches. For example, C and
C++ remain popular for building operating systems and various other embedded sys-
tems because of their small runtime footprint and in spite of their lack of program-
ming safety. This lack of safety can lead to programs crashing unpredictably and
exposing security holes for viruses and the like; indeed, type-safe languages such as
Java and C# have supplanted C and C++ in various applications when the additional
runtime footprint is acceptable.

 Prior occupancy of a niche tends to discourage competitors. Changing to a new
language and tool chain is often too painful for just a single feature, but newcomers
will eventually displace existing languages, unless they evolve fast enough to keep up.
(Older readers are often able to quote a range of such languages in which they’ve pre-
viously coded but whose popularity has since waned—Ada, Algol, COBOL, Pascal,
Delphi, and SNOBOL, to name but a few.)

 You’re a Java programmer, and Java has been successful at colonizing (and displac-
ing competitor languages in) a large ecosystem niche of programming tasks for nearly
20 years. Let’s examine some reasons for that.

1.2.1 Java’s place in the programming language ecosystem

Java started well. Right from the start, it was a well-designed object-oriented language
with many useful libraries. It also supported small-scale concurrency from day one
with its integrated support for threads and locks (and with its early prescient acknowl-
edgment, in the form of a hardware-neutral memory model, that concurrent threads
on multicore processors can have unexpected behaviors in addition to those that hap-
pen on single-core processors). Also, the decision to compile Java to JVM bytecode (a
virtual machine code that soon every browser supported) meant that it became the
language of choice for internet applet programs (do you remember applets?).
Indeed, there’s a danger that the Java Virtual Machine (JVM) and its bytecode will be
seen as more important than the Java language itself and that, for certain applications,
Java might be replaced by one of its competing languages such as Scala, Groovy, or
Kotlin, which also run on the JVM. Various recent updates to the JVM (for example,
the new invokedynamic bytecode in JDK7) aim to help such competitor languages

2 P. J. Landin, “The Next 700 Programming Languages,” CACM 9(3):157–65, March 1966.

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

7Why is Java still changing?

run smoothly on the JVM—and to interoperate with Java. Java has also been successful
at colonizing various aspects of embedded computing (everything from smart cards,
toasters, and set-top boxes to car-braking systems).

But the climate is changing for the programming language ecosystem; programmers
are increasingly dealing with so-called big data (data sets of terabytes and up) and wish-
ing to exploit multicore computers or computing clusters effectively to process it. And
this means using parallel processing—something Java wasn’t previously friendly to.
You may have come across ideas from other programming niches (for example, Goo-
gle’s map-reduce or the relative ease of data manipulation using database query lan-
guages such as SQL) that help you work with large volumes of data and multicore
CPUs. Figure 1.1 summarizes the language ecosystem pictorially: think of the land-
scape as the space of programming problems and the dominant vegetation for a par-
ticular bit of ground as the favorite language for that program. Climate change is the
idea that new hardware or new programming influences (for example, “Why can’t I
program in an SQL-like style?”) mean that different languages become the language

How did Java get into a general programming niche?
Object orientation became fashionable in the 1990s for two reasons: its encapsulation
discipline resulted in fewer software engineering issues than those of C; and as a
mental model it easily captured the WIMP programming model of Windows 95 and
up. This can be summarized as follows: everything is an object; and a mouse click
sends an event message to a handler (invokes the clicked method in a Mouse
object). The write-once, run-anywhere model of Java and the ability of early browsers
to (safely) execute Java code applets gave it a niche in universities, whose
graduates then populated industry. There was initial resistance to the additional run
cost of Java over C/C++, but machines got faster, and programmer time became
more and more important. Microsoft’s C# further validated the Java-style object-
oriented model.

Figure 1.1 Programming-
language ecosystem and
climate changeJava C/C++

C#/F#

etc.

Climate change (multicore processors,

new programmer influences)

JavaScript

Scala

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

8 CHAPTER 1 Java 8, 9, 10, and 11: what’s happening?

of choice for new projects, just like increasing regional temperatures mean grapes
now thrive in higher latitudes. But there’s hysteresis—many an old farmer will keep
raising traditional crops. In summary, new languages are appearing and becoming
increasingly popular because they’ve adapted quickly to the climate change.

 The main benefit of the Java 8 additions for a programmer is that they provide
more programming tools and concepts to solve new or existing programming prob-
lems more quickly or, more importantly, in a more concise, more easily maintainable
way. Although the concepts are new to Java, they’ve proved powerful in niche research-
like languages. In the following sections, we’ll highlight and develop the ideas behind
three such programming concepts that have driven the development of the Java 8 fea-
tures to exploit parallelism and write more concise code in general. We’ll introduce
them in a slightly different order from the rest of the book to enable a Unix-based
analogy and to expose the “need this because of that” dependencies in Java 8’s new
parallelism for multicore.

The next three sections examine the three programming concepts that drove the
design of Java 8.

1.2.2 Stream processing

The first programming concept is stream processing. For introductory purposes, a stream
is a sequence of data items that are conceptually produced one at a time. A program
might read items from an input stream one by one and similarly write items to an out-
put stream. The output stream of one program could well be the input stream of
another.

 One practical example is in Unix or Linux, where many programs operate by read-
ing data from standard input (stdin in Unix and C, System.in in Java), operating on
it, and then writing their results to standard output (stdout in Unix and C, System.out
in Java). First, a little background: Unix cat creates a stream by concatenating two
files, tr translates the characters in a stream, sort sorts lines in a stream, and tail -3
gives the last three lines in a stream. The Unix command line allows such programs to
be linked together with pipes (|), giving examples such as

cat file1 file2 | tr "[A-Z]" "[a-z]" | sort | tail -3

Another climate-change factor for Java
One climate-change factor involves how large systems are designed. Nowadays, it’s
common for a large system to incorporate large component subsystems from else-
where, and perhaps these are built on top of other components from other vendors.
Worse still, these components and their interfaces also tend to evolve. Java 8 and
Java 9 have addressed these aspects by providing default methods and modules to
facilitate this design style.

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

9Why is Java still changing?

which (supposing file1 and file2 contain a single word per line) prints the three
words from the files that appear latest in dictionary order, after first translating them
to lowercase. We say that sort takes a stream of lines3 as input and produces another
stream of lines as output (the latter being sorted), as illustrated in figure 1.2. Note
that in Unix these commands (cat, tr, sort, and tail) are executed concurrently, so
that sort can be processing the first few lines before cat or tr has finished. A more
mechanical analogy is a car-manufacturing assembly line where a stream of cars is
queued between processing stations that each take a car, modify it, and pass it on to
the next station for further processing; processing at separate stations is typically con-
current even though the assembly line is physically a sequence.

Java 8 adds a Streams API (note the uppercase S) in java.util.stream based on this
idea; Stream<T> is a sequence of items of type T. You can think of it as a fancy iterator
for now. The Streams API has many methods that can be chained to form a complex
pipeline just like Unix commands were chained in the previous example.

 The key motivation for this is that you can now program in Java 8 at a higher level
of abstraction, structuring your thoughts of turning a stream of this into a stream of
that (similar to how you think when writing database queries) rather than one item at
a time. Another advantage is that Java 8 can transparently run your pipeline of Stream
operations on several CPU cores on disjoint parts of the input—this is parallelism
almost for free instead of hard work using Threads. We cover the Java 8 Streams API in
detail in chapters 4–7.

1.2.3 Passing code to methods with behavior parameterization

The second programming concept added to Java 8 is the ability to pass a piece of code
to an API. This sounds awfully abstract. In the Unix example, you might want to tell
the sort command to use a custom ordering. Although the sort command supports
command-line parameters to perform various predefined kinds of sorting such as
reverse order, these are limited.

 For example, let’s say you have a collection of invoice IDs with a format similar to
2013UK0001, 2014US0002, and so on. The first four digits represent the year, the next
two letters a country code, and last four digits the ID of a client. You may want to sort

3 Purists will say a “stream of characters,” but it’s conceptually simpler to think that sort reorders lines.

Figure 1.2 Unix commands operating on streams

cat

file 1 file 2

tr

"[A-Z]" "[a-z]"

sort tail

-3

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

10 CHAPTER 1 Java 8, 9, 10, and 11: what’s happening?

these invoice IDs by year or perhaps using the customer ID or even the country code.
What you want is the ability to tell the sort command to take as an argument an
ordering defined by the user: a separate piece of code passed to the sort command.

 Now, as a direct parallel in Java, you want to tell a sort method to compare using a
customized order. You could write a method compareUsingCustomerId to compare
two invoice IDs, but, prior to Java 8, you couldn’t pass this method to another method!
You could create a Comparator object to pass to the sort method as we showed at the
start of this chapter, but this is verbose and obfuscates the idea of simply reusing an
existing piece of behavior. Java 8 adds the ability to pass methods (your code) as argu-
ments to other methods. Figure 1.3, based on figure 1.2, illustrates this idea. We also
refer to this conceptually as behavior parameterization. Why is this important? The
Streams API is built on the idea of passing code to parameterize the behavior of its
operations, just as you passed compareUsingCustomerId to parameterize the behavior
of sort.

We summarize how this works in section 1.3 of this chapter, but leave full details to
chapters 2 and 3. Chapters 18 and 19 look at more advanced things you can do using
this feature, with techniques from the functional programming community.

1.2.4 Parallelism and shared mutable data

The third programming concept is rather more implicit and arises from the phrase
“parallelism almost for free” in our previous discussion on stream processing. What do
you have to give up? You may have to make some small changes in the way you code
the behavior passed to stream methods. At first, these changes might feel a little
uncomfortable, but once you get used to them, you’ll love them. You must provide
behavior that is safe to execute concurrently on different pieces of the input. Typically
this means writing code that doesn’t access shared mutable data to do its job. Some-
times these are referred to as pure functions or side-effect-free functions or stateless
functions, and we’ll discuss these in detail in chapters 18 and 19. The previous paral-
lelism arises only by assuming that multiple copies of your piece of code can work
independently. If there’s a shared variable or object, which is written to, then things
no longer work. What if two processes want to modify the shared variable at the same

Figure 1.3 Passing method compareUsingCustomerId as an argument to sort

sort

public int compareUsingCustomerId(String inv1, String inv2){
....
}

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

11Why is Java still changing?

time? (Section 1.4 gives a more detailed explanation with a diagram.) You’ll find more
about this style throughout the book.

 Java 8 streams exploit parallelism more easily than Java’s existing Threads API, so
although it’s possible to use synchronized to break the no-shared-mutable-data rule,
it’s fighting the system in that it’s abusing an abstraction optimized around that rule.
Using synchronized across multiple processing cores is often far more expensive than
you expect, because synchronization forces code to execute sequentially, which works
against the goal of parallelism.

 Two of these points (no shared mutable data and the ability to pass methods and
functions—code—to other methods) are the cornerstones of what’s generally described
as the paradigm of functional programming, which you’ll see in detail in chapters 18 and
19. In contrast, in the imperative programming paradigm you typically describe a pro-
gram in terms of a sequence of statements that mutate state. The no-shared-mutable-
data requirement means that a method is perfectly described solely by the way it trans-
forms arguments to results; in other words, it behaves as a mathematical function and
has no (visible) side effects.

1.2.5 Java needs to evolve

You’ve seen evolution in Java before. For example, the introduction of generics and
using List<String> instead of just List may initially have been irritating. But
you’re now familiar with this style and the benefits it brings (catching more errors at
compile time and making code easier to read, because you now know what some-
thing is a list of).

 Other changes have made common things easier to express (for example, using
a for-each loop instead of exposing the boilerplate use of an Iterator). The main
changes in Java 8 reflect a move away from classical object orientation, which often
focuses on mutating existing values, and toward the functional-style programming
spectrum in which what you want to do in broad-brush terms (for example, create a
value representing all transport routes from A to B for less than a given price) is con-
sidered prime and separated from how you can achieve this (for example, scan a data
structure modifying certain components). Note that classical object-oriented pro-
gramming and functional programming, as extremes, might appear to be in con-
flict. But the idea is to get the best from both programming paradigms, so you have
a better chance of having the right tool for the job. We discuss this in detail in sec-
tions 1.3 and 1.4.

 A takeaway line might be this: languages need to evolve to track changing hard-
ware or programmer expectations (if you need convincing, consider that COBOL
was once one of the most important languages commercially). To endure, Java has to
evolve by adding new features. This evolution will be pointless unless the new features
are used, so in using Java 8 you’re protecting your way of life as a Java programmer.
On top of that, we have a feeling you’ll love using Java 8’s new features. Ask anyone
who’s used Java 8 whether they’re willing to go back! Additionally, the new Java 8

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

12 CHAPTER 1 Java 8, 9, 10, and 11: what’s happening?

features might, in the ecosystem analogy, enable Java to conquer programming-task
territory currently occupied by other languages, so Java 8 programmers will be even
more in demand.

 We now introduce the new concepts in Java 8, one by one, pointing out the chap-
ters that cover these concepts in more detail.

1.3 Functions in Java
The word function in programming languages is commonly used as a synonym for
method, particularly a static method; this is in addition to it being used for mathematical
function, one without side effects. Fortunately, as you’ll see, when Java 8 refers to func-
tions these usages nearly coincide.

 Java 8 adds functions as new forms of value. These facilitate the use of streams, cov-
ered in section 1.4, which Java 8 provides to exploit parallel programming on multi-
core processors. We start by showing that functions as values are useful in themselves.

 Think about the possible values manipulated by Java programs. First, there are
primitive values such as 42 (of type int) and 3.14 (of type double). Second, values can
be objects (more strictly, references to objects). The only way to get one of these is by
using new, perhaps via a factory method or a library function; object references point
to instances of a class. Examples include "abc" (of type String), new Integer(1111)
(of type Integer), and the result new HashMap<Integer, String>(100) of explicitly
calling a constructor for HashMap. Even arrays are objects. What’s the problem?

 To help answer this, we’ll note that the whole point of a programming language is
to manipulate values, which, following historical programming-language tradition, are
therefore called first-class values (or citizens, in the terminology borrowed from the
1960s civil rights movement in the United States). Other structures in our program-
ming languages, which perhaps help us express the structure of values but which can’t
be passed around during program execution, are second-class citizens. Values as listed
previously are first-class Java citizens, but various other Java concepts, such as methods
and classes, exemplify second-class citizens. Methods are fine when used to define
classes, which in turn may be instantiated to produce values, but neither are values
themselves. Does this matter? Yes, it turns out that being able to pass methods around
at runtime, and hence making them first-class citizens, is useful in programming, so
the Java 8 designers added the ability to express this directly in Java. Incidentally, you
might wonder whether making other second-class citizens such as classes into first-
class-citizen values might also be a good idea. Various languages such as Smalltalk and
JavaScript have explored this route.

1.3.1 Methods and lambdas as first-class citizens

Experiments in other languages, such as Scala and Groovy, have determined that
allowing concepts like methods to be used as first-class values made programming
easier by adding to the toolset available to programmers. And once programmers
become familiar with a powerful feature, they become reluctant to use languages

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

13Functions in Java

without it! The designers of Java 8 decided to allow methods to be values—to make
it easier for you to program. Moreover, the Java 8 feature of methods as values forms
the basis of various other Java 8 features (such as Streams).

 The first new Java 8 feature we introduce is that of method references. Suppose you
want to filter all the hidden files in a directory. You need to start writing a method
that, given a File, will tell you whether it’s hidden. Fortunately, there’s such a method
in the File class called isHidden. It can be viewed as a function that takes a File and
returns a boolean. But to use it for filtering, you need to wrap it into a FileFilter
object that you then pass to the File.listFiles method, as follows:

File[] hiddenFiles = new File(".").listFiles(new FileFilter() {
 public boolean accept(File file) {
 return file.isHidden();
 }
});

Yuck! That’s horrible. Although it’s only three significant lines, it’s three opaque
lines—we all remember saying “Do I really have to do it this way?” on first encounter.
You already have the method isHidden that you could use. Why do you have to wrap it
up in a verbose FileFilter class and then instantiate it? Because that’s what you had
to do prior to Java 8.

 Now, you can rewrite that code as follows:

File[] hiddenFiles = new File(".").listFiles(File::isHidden);

Wow! Isn’t that cool? You already have the function isHidden available, so you pass it
to the listFiles method using the Java 8 method reference :: syntax (meaning “use this
method as a value”); note that we’ve also slipped into using the word function for
methods. We’ll explain later how the mechanics work. One advantage is that your
code now reads closer to the problem statement.

 Here’s a taste of what’s coming: methods are no longer second-class values. Analo-
gous to using an object reference when you pass an object around (and object references
are created by new), in Java 8 when you write File::isHidden, you create a method ref-
erence, which can similarly be passed around. This concept is discussed in detail in
chapter 3. Given that methods contain code (the executable body of a method), using
method references enables passing code around as in figure 1.3. Figure 1.4 illustrates
the concept. You’ll also see a concrete example (selecting apples from an inventory)
in the next section.

LAMBDAS: ANONYMOUS FUNCTIONS

As well as allowing (named) methods to be first-class values, Java 8 allows a richer idea
of functions as values, including lambdas4 (or anonymous functions). For example, you
can now write (int x) -> x + 1 to mean “the function that, when called with argument

4 Originally named after the Greek letter  (lambda). Although the symbol isn’t used in Java, its name lives on.

Filtering hidden files!

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

14 CHAPTER 1 Java 8, 9, 10, and 11: what’s happening?

x, returns the value x + 1.” You might wonder why this is necessary, because you could
define a method add1 inside a class MyMathsUtils and then write MyMathsUtils::add1!
Yes, you could, but the new lambda syntax is more concise for cases where you don’t
have a convenient method and class available. Chapter 3 explores lambdas in detail.
Programs using these concepts are said to be written in functional-programming
style; this phrase means “writing programs that pass functions around as first-class
values.”

1.3.2 Passing code: an example

Let’s look at an example of how this helps you write programs (discussed in more
detail in chapter 2). All the code for the examples is available on a GitHub repository
and as a download via the book’s website. Both links may be found at www.manning
.com/books/modern-java-in-action. Suppose you have a class Apple with a method
getColor and a variable inventory holding a list of Apples; then you might wish to
select all the green apples (here using a Color enum type that includes values GREEN

Figure 1.4 Passing the method reference File::isHidden to the method listFiles

Old way of filtering hidden files

Filtering files with

the isHidden method

requires wrapping the

method inside a FileFilter

object before passing it to

the File.listFiles method.

In Java 8 you can

pass the isHidden

function to the listFiles

method using the method

reference :: syntax.

isHidden Method

File::isHidden File.listFiles

File.listFilesFile -> boolean

File::isHidden syntax

FileFilter Object

Java 8 style

File[] hiddenFiles = new File(".").listFiles(new FileFilter() {
public boolean accept(File file) {

return file.isHidden();
}

});

File[] hiddenFiles = new File(".").listFiles(File::isHidden)

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

15Functions in Java

and RED) and return them in a list. The word filter is commonly used to express this
concept. Before Java 8, you might write a method filterGreenApples:

public static List<Apple> filterGreenApples(List<Apple> inventory) {
 List<Apple> result = new ArrayList<>();
 for (Apple apple: inventory){
 if (GREEN.equals(apple.getColor())) {
 result.add(apple);
 }
 }
 return result;
}

But next, somebody would like the list of heavy apples (say over 150 g), and so, with a
heavy heart, you’d write the following method to achieve this (perhaps even using
copy and paste):

public static List<Apple> filterHeavyApples(List<Apple> inventory) {
 List<Apple> result = new ArrayList<>();
 for (Apple apple: inventory){
 if (apple.getWeight() > 150) {
 result.add(apple);
 }
 }
 return result;
}

We all know the dangers of copy and paste for software engineering (updates and bug
fixes to one variant but not the other), and hey, these two methods vary only in one
line: the highlighted condition inside the if construct. If the difference between the
two method calls in the highlighted code had been what weight range was acceptable,
then you could have passed lower and upper acceptable weights as arguments to
filter—perhaps (150, 1000) to select heavy apples (over 150 g) or (0, 80) to select
light apples (under 80 g).

 But as we mentioned previously, Java 8 makes it possible to pass the code of the
condition as an argument, avoiding code duplication of the filter method. You can
now write this:

public static boolean isGreenApple(Apple apple) {
 return GREEN.equals(apple.getColor());
}
public static boolean isHeavyApple(Apple apple) {
 return apple.getWeight() > 150;
}
public interface Predicate<T>{
 boolean test(T t);
}
static List<Apple> filterApples(List<Apple> inventory,
 Predicate<Apple> p) {
 List<Apple> result = new ArrayList<>();
 for (Apple apple: inventory){

The result list
accumulates the result;
it starts as empty, and
then green apples are
added one by one.

The highlighted
text selects only

green apples.

Here the highlighted
text selects only
heavy apples.

Included for clarity
(normally imported
from java.util.function)

A method is passed as
a Predicate parameter
named p (see the
sidebar “What’s a
Predicate?”).

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

16 CHAPTER 1 Java 8, 9, 10, and 11: what’s happening?

 if (p.test(apple)) {
 result.add(apple);
 }
 }
 return result;
}

And to use this, you call either

filterApples(inventory, Apple::isGreenApple);

or

filterApples(inventory, Apple::isHeavyApple);

We explain how this works in detail in the next two chapters. The key idea to take away
for now is that you can pass around a method in Java 8.

1.3.3 From passing methods to lambdas

Passing methods as values is clearly useful, but it’s annoying having to write a defini-
tion for short methods such as isHeavyApple and isGreenApple when they’re used
perhaps only once or twice. But Java 8 has solved this, too. It introduces a new nota-
tion (anonymous functions, or lambdas) that enables you to write just

filterApples(inventory, (Apple a) -> GREEN.equals(a.getColor()));

or

filterApples(inventory, (Apple a) -> a.getWeight() > 150);

or even

filterApples(inventory, (Apple a) -> a.getWeight() < 80 ||
 RED.equals(a.getColor()));

You don’t even need to write a method definition that’s used only once; the code is
crisper and clearer because you don’t need to search to find the code you’re passing.

What’s a Predicate?
The previous code passed a method Apple::isGreenApple (which takes an Apple
for argument and returns a boolean) to filterApples, which expected a Predicate
<Apple> parameter. The word predicate is often used in mathematics to mean some-
thing function-like that takes a value for an argument and returns true or false. As
you’ll see later, Java 8 would also allow you to write Function<Apple, Boolean>—
more familiar to readers who learned about functions but not predicates at school—
but using Predicate<Apple> is more standard (and slightly more efficient because
it avoids boxing a boolean into a Boolean).

Does the apple match
the condition
represented by p?

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

17Streams

But if such a lambda exceeds a few lines in length (so that its behavior isn’t instantly
clear), you should instead use a method reference to a method with a descriptive
name instead of using an anonymous lambda. Code clarity should be your guide.

 The Java 8 designers could almost have stopped here, and perhaps they would
have done so before multicore CPUs. Functional-style programming as presented so
far turns out to be powerful, as you’ll see. Java might then have been rounded off by
adding filter and a few friends as generic library methods, such as

static <T> Collection<T> filter(Collection<T> c, Predicate<T> p);

You wouldn’t even have to write methods like filterApples because, for example, the
previous call

filterApples(inventory, (Apple a) -> a.getWeight() > 150);

could be written as a call to the library method filter:

filter(inventory, (Apple a) -> a.getWeight() > 150);

But, for reasons centered on better exploiting parallelism, the designers didn’t do
this. Java 8 instead contains a new Collection-like API called Stream, containing a
comprehensive set of operations similar to the filter operation that functional pro-
grammers may be familiar with (for example, map and reduce), along with methods to
convert between Collections and Streams, which we now investigate.

1.4 Streams
Nearly every Java application makes and processes collections. But working with collec-
tions isn’t always ideal. For example, let’s say you need to filter expensive transactions
from a list and then group them by currency. You’d need to write a lot of boilerplate
code to implement this data-processing query, as shown here:

Map<Currency, List<Transaction>> transactionsByCurrencies =
 new HashMap<>();
for (Transaction transaction : transactions) {
 if(transaction.getPrice() > 1000){
 Currency currency = transaction.getCurrency();
 List<Transaction> transactionsForCurrency =
 transactionsByCurrencies.get(currency);
 if (transactionsForCurrency == null) {
 transactionsForCurrency = new ArrayList<>();
 transactionsByCurrencies.put(currency,
 transactionsForCurrency);
 }
 transactionsForCurrency.add(transaction);
 }
}

Creates the Map where the grouped
transaction will be accumulated

Iterates the List
of transactions

Filters
expensive

transactions

Extracts the
transaction’s
currencyIf there isn’t

an entry in
the grouping
Map for this

currency,
create it. Adds the currently

traversed transaction to
the List of transactions
with the same currency

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

18 CHAPTER 1 Java 8, 9, 10, and 11: what’s happening?

In addition, it’s difficult to understand at a glance what the code does because of the
multiple nested control-flow statements.

 Using the Streams API, you can solve this problem as follows:

import static java.util.stream.Collectors.groupingBy;
Map<Currency, List<Transaction>> transactionsByCurrencies =
 transactions.stream()
 .filter((Transaction t) -> t.getPrice() > 1000)
 .collect(groupingBy(Transaction::getCurrency));

Don’t worry about this code for now because it may look like a bit of magic. Chap-
ters 4–7 are dedicated to explaining how to make sense of the Streams API. For now,
it’s worth noticing that the Streams API provides a different way to process data in
comparison to the Collections API. Using a collection, you’re managing the iteration
process yourself. You need to iterate through the elements one by one using a for-
each loop processing them in turn. We call this way of iterating over data external itera-
tion. In contrast, using the Streams API, you don’t need to think in terms of loops. The
data processing happens internally inside the library. We call this idea internal iteration.
We come back to these ideas in chapter 4.

 As a second pain point of working with collections, think for a second about how
you would process the list of transactions if you had a vast number of them; how can
you process this huge list? A single CPU wouldn’t be able to process this large amount
of data, but you probably have a multicore computer on your desk. Ideally, you’d like
to share the work among the different CPU cores available on your machine to reduce
the processing time. In theory, if you have eight cores, they should be able to process
your data eight times as fast as using one core, because they work in parallel.5

Multicore computers
All new desktop and laptop computers are multicore computers. Instead of a single
CPU, they have four or eight or more CPUs (usually called Cores5). The problem is that
a classic Java program uses just a single one of these cores, and the power of the oth-
ers is wasted. Similarly, many companies use computing clusters (computers con-
nected together with fast networks) to be able to process vast amounts of data
efficiently. Java 8 facilitates new programming styles to better exploit such computers.

Google’s search engine is an example of a piece of code that’s too big to run on a
single computer. It reads every page on the internet and creates an index, mapping
every word appearing on any internet page back to every URL containing that word.
Then, when you do a Google search involving several words, software can quickly use
this index to give you a set of web pages containing those words. Try to imagine how
you might code this algorithm in Java (even for a smaller index than Google’s, you’d
need to exploit all the cores in your computer).

5 This naming is unfortunate in some ways. Each of the cores in a multicore chip is a full-fledged CPU. But the
phrase multicore CPU has become common, so core is used to refer to the individual CPUs.

Filters expensive
transactions

Groups them
by currency

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

19Streams

1.4.1 Multithreading is difficult

The problem is that exploiting parallelism by writing multithreaded code (using the
Threads API from previous versions of Java) is difficult. You have to think differently:
threads can access and update shared variables at the same time. As a result, data
could change unexpectedly if not coordinated6 properly. This model is harder to
think about7 than a step-by-step sequential model. For example, figure 1.5 shows a
possible problem with two threads trying to add a number to a shared variable sum if
they’re not synchronized properly.

Java 8 also addresses both problems (boilerplate and obscurity involving processing
collections and difficulty exploiting multicore) with the Streams API (java.util
.stream). The first design motivator is that there are many data-processing patterns
(similar to filterApples in the previous section or operations familiar from database
query languages such as SQL) that occur over and over again and that would benefit
from forming part of a library: filtering data based on a criterion (for example, heavy
apples), extracting data (for example, extracting the weight field from each apple in a
list), or grouping data (for example, grouping a list of numbers into separate lists of
even and odd numbers), and so on. The second motivator is that such operations can

6 Traditionally via the keyword synchronized, but many subtle bugs arise from its misplacement. Java 8’s
Stream-based parallelism encourages a functional programming style where synchronized is rarely used; it
focuses on partitioning the data rather than coordinating access to it.

7 Aha—a source of pressure for the language to evolve!

Figure 1.5 A possible problem with two threads trying to add to a shared sum variable. The result is
105 instead of an expected result of 108.

Execution

1

100

100

Thread 1

Thread 2

sum

Read

Thread 1: sum = sum + 3;
Thread 2: sum = sum + 5;

2

100

100

Read

3

103

Add (3)

100

4

100

Add (5)

105

5

103

103

Write

6

105

105

Write

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

20 CHAPTER 1 Java 8, 9, 10, and 11: what’s happening?

often be parallelized. For instance, as illustrated in figure 1.6, filtering a list on two
CPUs could be done by asking one CPU to process the first half of a list and the sec-
ond CPU to process the other half of the list. This is called the forking step (1). The
CPUs then filter their respective half-lists (2). Finally (3), one CPU would join the two
results. (This is closely related to how Google searches work so quickly, using many
more than two processors.)

For now, we’ll just say that the new Streams API behaves similarly to Java’s existing
Collections API: both provide access to sequences of data items. But it’s useful for
now to keep in mind that Collections is mostly about storing and accessing data,
whereas Streams is mostly about describing computations on data. The key point
here is that the Streams API allows and encourages the elements within a stream to be
processed in parallel. Although it may seem odd at first, often the fastest way to fil-
ter a collection (for example, to use filterApples in the previous section on a list)
is to convert it to a stream, process it in parallel, and then convert it back to a list.
Again, we’ll just say “parallelism almost for free” and provide a taste of how you can
filter heavy apples from a list sequentially or in parallel using streams and a lambda
expression.

 Here’s an example of sequential processing:

import static java.util.stream.Collectors.toList;
List<Apple> heavyApples =
 inventory.stream().filter((Apple a) -> a.getWeight() > 150)
 .collect(toList());

Figure 1.6 Forking filter onto two CPUs and joining the result

A CB E
List of

5 apples
D

Fork

1

B C E
Filter

CPU 1 CPU 2
2

B EC
Joint

results

3

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

21Default methods and Java modules

And here it is using parallel processing:

import static java.util.stream.Collectors.toList;
List<Apple> heavyApples =
 inventory.parallelStream().filter((Apple a) -> a.getWeight() > 150)
 .collect(toList());

Chapter 7 explores parallel data processing in Java 8 and its performance in more
detail. One of the practical issues the Java 8 developers found in evolving Java with all
these new goodies was that of evolving existing interfaces. For example, the method
Collections.sort belongs to the List interface but was never included. Ideally, you’d
like to do list.sort(comparator) instead of Collections.sort(list, comparator).
This may seem trivial but, prior to Java 8 you can update an interface only if you
update all the classes that implement it—a logistical nightmare! This issue is resolved
in Java 8 by default methods.

1.5 Default methods and Java modules
As we mentioned earlier, modern systems tend to be built from components—perhaps
bought-in from elsewhere. Historically, Java had little support for this, apart from a
JAR file containing a set of Java packages with no particular structure. Moreover, evolv-
ing interfaces to such packages was hard—changing a Java interface meant changing
every class that implements it. Java 8 and 9 have started to address this.

 First, Java 9 provides a module system that provide you with syntax to define mod-
ules containing collections of packages—and keep much better control over visibility
and namespaces. Modules enrich a simple JAR-like component with structure, both
as user documentation and for machine checking; we explain them in detail in
chapter 14. Second, Java 8 added default methods to support evolvable interfaces. We
cover these in detail in chapter 13. They’re important because you’ll increasingly
encounter them in interfaces, but because relatively few programmers will need to
write default methods themselves and because they facilitate program evolution

Parallelism in Java and no shared mutable state
People have always said parallelism in Java is difficult, and all this stuff about
synchronized is error-prone. Where’s the magic bullet in Java 8?

There are two magic bullets. First, the library handles partitioning—breaking down
a big stream into several smaller streams to be processed in parallel for you. Sec-
ond, this parallelism almost for free from streams, works only if the methods passed
to library methods like filter don’t interact (for example, by having mutable shared
objects). But it turns out that this restriction feels natural to a coder (see, by way
of example, our Apple::isGreenApple example). Although the primary meaning of
functional in functional programming means “using functions as first-class values,”
it often has a secondary nuance of “no interaction during execution between com-
ponents.”

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

22 CHAPTER 1 Java 8, 9, 10, and 11: what’s happening?

rather than helping write any particular program, we keep the explanation here
short and example-based.

 In section 1.4, we gave the following example Java 8 code:

List<Apple> heavyApples1 =
 inventory.stream().filter((Apple a) -> a.getWeight() > 150)
 .collect(toList());
List<Apple> heavyApples2 =
 inventory.parallelStream().filter((Apple a) -> a.getWeight() > 150)
 .collect(toList());

But there’s a problem here: a List<T> prior to Java 8 doesn’t have stream or parallel-
Stream methods—and neither does the Collection<T> interface that it implements—
because these methods hadn’t been conceived of. And without these methods, this code
won’t compile. The simplest solution, which you might employ for your own interfaces,
would have been for the Java 8 designers to add the stream method to the Collection
interface and add the implementation in the ArrayList class.

 But doing this would have been a nightmare for users. Many alternative collection
frameworks implement interfaces from the Collections API. Adding a new method to
an interface means all concrete classes must provide an implementation for it. Lan-
guage designers have no control over existing implementations of Collection, so you
have a dilemma: How can you evolve published interfaces without disrupting existing
implementations?

 The Java 8 solution is to break the last link: an interface can now contain method
signatures for which an implementing class doesn’t provide an implementation. Then
who implements them? The missing method bodies are given as part of the interface
(hence default implementations) rather than in the implementing class.

 This provides a way for an interface designer to enlarge an interface beyond those
methods that were originally planned—without breaking existing code. Java 8 allows
the existing default keyword to be used in interface specifications to achieve this.

 For example, in Java 8, you can call the sort method directly on a list. This is made
possible with the following default method in the Java 8 List interface, which calls the
static method Collections.sort:

default void sort(Comparator<? super E> c) {
 Collections.sort(this, c);
}

This means any concrete classes of List don’t have to explicitly implement sort,
whereas in previous Java versions such concrete classes would fail to recompile unless
they provided an implementation for sort.

 But wait a second. A single class can implement multiple interfaces, right? If you
have multiple default implementations in several interfaces, does that mean you have
a form of multiple inheritance in Java? Yes, to some extent. We show in chapter 13 that
there are some rules that prevent issues such as the infamous diamond inheritance prob-
lem in C++.

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

23Other good ideas from functional programming

1.6 Other good ideas from functional programming
The previous sections introduced two core ideas from functional programming that
are now part of Java: using methods and lambdas as first-class values, and the idea that
calls to functions or methods can be efficiently and safely executed in parallel in the
absence of mutable shared state. Both of these ideas are exploited by the new Streams
API we described earlier.

 Common functional languages (SML, OCaml, Haskell) also provide further con-
structs to help programmers. One of these is avoiding null by explicit use of more
descriptive data types. Tony Hoare, one of the giants of computer science, said this in
a presentation at QCon London 2009:

I call it my billion-dollar mistake. It was the invention of the null reference in 1965. . . .I
couldn’t resist the temptation to put in a null reference, simply because it was so easy to
implement.

Java 8 introduced the Optional<T> class that, if used consistently, can help you avoid
null-pointer exceptions. It’s a container object that may or may not contain a value.
Optional<T> includes methods to explicitly deal with the case where a value is absent,
and as a result you can avoid null-pointer exceptions. It uses the type system to allow
you to indicate when a variable is anticipated to potentially have a missing value. We
discuss Optional<T> in detail in chapter 11.

 A second idea is that of (structural) pattern matching.8 This is used in mathematics.
For example:

 f(0) = 1
 f(n) = n*f(n-1) otherwise

In Java, you would write an if-then-else or a switch statement. Other languages
have shown that, for more complex data types, pattern matching can express pro-
gramming ideas more concisely compared to using if-then-else. For such data
types, you might also use polymorphism and method overriding as an alternative to
if-then-else, but there’s ongoing language-design discussion as to which is more
appropriate.9 We’d say that both are useful tools and that you should have both in
your armory. Unfortunately, Java 8 doesn’t have full support for pattern matching,
although we show how it can be expressed in chapter 19. A Java Enhancement Pro-
posal is also being discussed to support pattern matching in a future version of Java
(see http://openjdk.java.net/jeps/305). In the meantime, let’s illustrate with an exam-
ple expressed in the Scala programming language (another Java-like language using
the JVM that has inspired some aspects of Java evolution; see chapter 20). Suppose you

8 This phrase has two uses. Here we mean the one familiar from mathematics and functional programming
whereby a function is defined by cases, rather than using if-then-else. The other meaning concerns phrases
like “find all files of the form ‘IMG*.JPG’ in a given directory” associated with so-called regular expressions.

9 The Wikipedia article on the “expression problem” (a term coined by Phil Wadler) provides an entry to the
discussion.

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

24 CHAPTER 1 Java 8, 9, 10, and 11: what’s happening?

want to write a program that does basic simplifications on a tree representing an arith-
metic expression. Given a data type Expr representing such expressions, in Scala you
can write the following code to decompose an Expr into its parts and then return
another Expr:

def simplifyExpression(expr: Expr): Expr = expr match {
 case BinOp("+", e, Number(0)) => e
 case BinOp("-", e, Number(0)) => e
 case BinOp("*", e, Number(1)) => e
 case BinOp("/", e, Number(1)) => e
 case _ => expr
}

Here Scala’s syntax expr match corresponds to Java’s switch (expr). Don’t worry
about this code for now—you’ll read more on pattern matching in chapter 19. For
now, you can think of pattern matching as an extended form of switch that can
decompose a data type into its components at the same time.

 Why should the switch statement in Java be limited to primitive values and strings?
Functional languages tend to allow switch to be used on many more data types,
including allowing pattern matching (in the Scala code, this is achieved using a match
operation). In object-oriented design, the visitor pattern is a common pattern used to
walk through a family of classes (such as the different components of a car: wheel,
engine, chassis, and so on) and apply an operation to each object visited. One advan-
tage of pattern matching is that a compiler can report common errors such as, “Class
Brakes is part of the family of classes used to represent components of class Car. You
forgot to explicitly deal with it.”

 Chapters 18 and 19 give a full tutorial introduction to functional programming
and how to write functional-style programs in Java 8—including the toolkit of func-
tions provided in its library. Chapter 20 follows by discussing how Java 8 features com-
pare to those in Scala—a language that, like Java, is implemented on top of the JVM
and that has evolved quickly to threaten some aspects of Java’s niche in the program-
ming language ecosystem. This material is positioned toward the end of the book to
provide additional insight into why the new Java 8 and Java 9 features were added.

Java 8, 9, 10, and 11 features: Where do you start?
Java 8 and Java 9 both provided significant updates to Java. But as a Java program-
mer, it’s likely to be the Java 8 additions that affect you most on a daily small-scale-
coding basis—the idea of passing a method or a lambda is rapidly becoming vital
Java knowledge. In contrast, the Java 9 enhancements enrich our ability to define and
use larger-scale components, be it structuring a system using modules or importing
a reactive-programming toolkit. Finally, Java 10 is a much smaller increment com-
pared to previous upgrades and consists of allowing type inference for local vari-
ables, which we discuss briefly in chapter 21, where we also mention the related
richer syntax for arguments of lambda expressions due to be introduced in Java 11.

Adds 0

Subtracts 0

Multiplies by 1

Divides by 1Can’t be simplified with
these cases, so leave alone

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

25Summary

Summary
 Keep in mind the idea of the language ecosystem and the consequent evolve-

or-wither pressure on languages. Although Java may be supremely healthy at
the moment, we can recall other healthy languages such as COBOL that
failed to evolve.

 The core additions to Java 8 provide exciting new concepts and functionality to
ease the writing of programs that are both effective and concise.

 Multicore processors aren’t fully served by pre-Java-8 programming practice.
 Functions are first-class values; remember how methods can be passed as func-

tional values and how anonymous functions (lambdas) are written.
 The Java 8 concept of streams generalizes many aspects of collections, but the

former often enables more readable code and allows elements of a stream to be
processed in parallel.

 Large-scale component-based programming, and evolving a system’s interfaces,
weren’t historically well served by Java. You can now specify modules to struc-
ture systems in Java 9 and use default methods to allow an interface to be
enhanced without changing all the classes that implement it.

 Other interesting ideas from functional programming include dealing with
null and using pattern matching.

At the time of writing, Java 11 is scheduled to be released in September 2018. Java 11
also brings a new asynchronous HTTP client library (http://openjdk.java.net/jeps/321)
that leverages the Java 8 and Java 9 developments (details in chapters 15, 16, and
17) of CompletableFuture and reactive programming.

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

Urma ● Fusco ● Mycroft

M
odern applications take advantage of innovative
designs, including microservices, reactive architectures,
and streaming data. Modern Java features like lambdas,

streams, and the long-awaited Java Module System make
implementing these designs signifi cantly easier. It’s time to
upgrade your skills and meet these challenges head on!

Modern Java in Action connects new features of the Java
language with their practical applications. Using crystal-clear
examples and careful attention to detail, this book respects
your time. It will help you expand your existing knowledge
of core Java as you master modern additions like the Streams
API and the Java Module System, explore new approaches to
concurrency, and learn how functional concepts can help you
write code that’s easier to read and maintain.

What’s Inside
● Thoroughly revised edition of Manning’s bestselling
 Java 8 in Action
● New features in Java 8, Java 9, and beyond
● Streaming data and reactive programming
● The Java Module System

Written for developers familiar with core Java features.

Raoul-Gabriel Urma is CEO of Cambridge Spark. Mario Fusco
is a senior software engineer at Red Hat. Alan Mycroft is a
University of Cambridge computer science professor; he
cofounded the Raspberry Pi Foundation.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/modern-java-in-action

$54.99 / Can $72.99 [INCLUDING eBOOK]

Modern Java IN ACTION

JAVA

M A N N I N G

“A comprehensive and
practical introduction to the

modern features of the
latest Java releases with
excellent examples!”
—Oleksandr Mandryk

EPAM Systems

“Hands-on Java 8 and 9,
simply and elegantly

explained.”
—Deepak Bhaskaran, Salesforce

“A lot of great examples
and use cases for streams,
concurrency, and reactive

programming.”—Rob Pacheco, Synopsys

“My Java code improved
signifi cantly after reading this
book. I was able to take the

clear examples and immediately
put them into practice.”—Holly Cummins, IBM

See first page

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

