
M A N N I N G

Raoul-Gabriel Urma
Mario Fusco

Alan Mycroft

Lambdas, streams, functional and reactive programming

IN ACTION

S A M P L E C H A P T E R

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

Modern Java in Action

by Raoul-Gabriel Urma, Mario Fusco,
and Alan Mycroft

 Chapter 15

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

v

brief contents
PART 1 FUNDAMENTALS ..1

1 ■ Java 8, 9, 10, and 11: what’s happening? 3

2 ■ Passing code with behavior parameterization 26

3 ■ Lambda expressions 42

PART 2 FUNCTIONAL-STYLE DATA PROCESSING WITH STREAMS ... 79

4 ■ Introducing streams 81

5 ■ Working with streams 98

6 ■ Collecting data with streams 134

7 ■ Parallel data processing and performance 172

PART 3 EFFECTIVE PROGRAMMING WITH STREAMS
AND LAMBDAS..199

8 ■ Collection API enhancements 201

9 ■ Refactoring, testing, and debugging 216

10 ■ Domain-specific languages using lambdas 239

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

BRIEF CONTENTSvi

PART 4 EVERYDAY JAVA ...273

11 ■ Using Optional as a better alternative to null 275

12 ■ New Date and Time API 297

13 ■ Default methods 314

14 ■ The Java Module System 333

PART 5 ENHANCED JAVA CONCURRENCY355

15 ■ Concepts behind CompletableFuture and
reactive programming 357

16 ■ CompletableFuture: composable asynchronous
programming 387

17 ■ Reactive programming 416

PART 6 FUNCTIONAL PROGRAMMING AND FUTURE JAVA
EVOLUTION...443

18 ■ Thinking functionally 445

19 ■ Functional programming techniques 460

20 ■ Blending OOP and FP: Comparing Java and Scala 485

21 ■ Conclusions and where next for Java 500

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

357

Concepts behind
CompletableFuture and

reactive programming

In recent years, two trends are obliging developers to rethink the way software is
written. The first trend is related to the hardware on which applications run, and
the second trend concerns how applications are structured (particularly how they
interact). We discussed the effect of the hardware trend in chapter 7. We noted that
since the advent of multicore processors, the most effective way to speed your appli-
cations is to write software that can fully exploit multicore processors. You saw that

This chapter covers
 Threads, Futures, and the evolutionary forces

causing Java to support richer concurrency APIs

 Asynchronous APIs

 The boxes-and-channels view of concurrent
computing

 CompletableFuture combinators to connect boxes
dynamically

 The publish-subscribe protocol that forms the
basis of the Java 9 Flow API for reactive
programming

 Reactive programming and reactive systems

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

358 CHAPTER 15 Concepts behind CompletableFuture and reactive programming

you can split large tasks and make each subtask run in parallel with the others. You
also learned how the fork/join framework (available since Java 7) and parallel streams
(new in Java 8) allow you to accomplish this task in a simpler, more effective way than
working directly with threads.

 The second trend reflects the increasing availability and use by applications of
Internet services. The adoption of microservices architecture, for example, has
grown over the past few years. Instead of being one monolithic application, your
application is subdivided into smaller services. The coordination of these smaller
services requires increased network communication. Similarly, many more internet
services are accessible through public APIs, made available by known providers such
as Google (localization information), Facebook (social information), and Twitter
(news). Nowadays, it’s relatively rare to develop a website or a network application
that works in total isolation. It’s far more likely that your next web application will
be a mashup, using content from multiple sources and aggregating it to ease your
users’ lives.

 You may want to build a website that collects and summarizes social-media senti-
ment on a given topic to your French users. To do so, you could use the Facebook or
Twitter API to find trending comments about that topic in many languages and rank
the most relevant ones with your internal algorithms. Then you might use Google
Translate to translate the comments into French or use Google Maps to geolocate
their authors, aggregate all this information, and display it on your website.

 If any of these external network services are slow to respond, of course, you’ll want
to provide partial results to your users, perhaps showing your text results alongside a
generic map with a question mark in it instead of showing a blank screen until the
map server responds or times out. Figure 15.1 illustrates how this style of mashup appli-
cation interacts with remote services.

To implement applications like this, you have to contact multiple web services across
the Internet. But you don’t want to block your computations and waste billions of
precious clock cycles of your CPU waiting for an answer from these services. You

Figure 15.1 A typical mashup application

Facebook

GoogleTranslate
Twitter

Comments

tweets
Topic

Ranking

Remote

services

Your

program
French

sentiment
Sentiment

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

359

shouldn’t have to wait for data from Facebook before processing the data coming
from Twitter, for example.

 This situation represents the other side of the multitask-programming coin. The
fork/join framework and parallel streams, discussed in chapter 7, are valuable tools
for parallelism; they divide a task into multiple subtasks and perform those subtasks in
parallel on different cores, CPUs, or even machines.

 Conversely, when you’re dealing with concurrency instead of parallelism, or when your
main goal is to perform several loosely related tasks on the same CPUs, keeping their
cores as busy as possible to maximize the throughput of your application, you want to
avoid blocking a thread and wasting its computational resources while waiting (potentially
for quite a while) for a result from a remote service or from interrogating a database.

 Java offers two main tool sets for such circumstances. First, as you’ll see in chap-
ters 16 and 17, the Future interface, and particularly its Java 8 CompletableFuture
implementation, often provide simple and effective solutions (chapter 16). More
recently, Java 9 added the idea of reactive programming, built around the idea of the
so-called publish-subscribe protocol via the Flow API, which offers more sophisticated
programming approaches (chapter 17).

 Figure 15.2 illustrates the difference between concurrency and parallelism. Con-
currency is a programming property (overlapped execution) that can occur even for a
single-core machine, whereas parallelism is a property of execution hardware (simul-
taneous execution).

The rest of this chapter explains the fundamental ideas underpinning Java’s new
CompletableFuture and Flow APIs.

 We start by explaining the Java evolution of concurrency, including Threads, and
higher-level abstractions, including Thread Pools and Futures (section 15.1). We note
that chapter 7 dealt with mainly using parallelism in looplike programs. Section 15.2
explores how you can better exploit concurrency for method calls. Section 15.3 gives
you a diagrammatic way to see parts of programs as boxes that communicate over

Figure 15.2 Concurrency versus parallelism

task1

task2

task1

Core 1 Core 2

Concurrency

task1 task2

Core 1 Core 2

Parallelism

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

360 CHAPTER 15 Concepts behind CompletableFuture and reactive programming

channels. Section 15.4 and section 15.5 look at the CompletableFuture and reactive-
programming principles in Java 8 and 9. Finally, section 15.6 explains the difference
between a reactive system and reactive programming.

 We exemplify most of the concepts with a running example showing how to calculate
expressions such as f(x)+g(x) and then return, or print, the result by using various Java
concurrency features—assuming that f(x) and g(x) are long-running computations.

15.1 Evolving Java support for expressing concurrency
Java has evolved considerably in its support for concurrent programming, largely
reflecting the changes in hardware, software systems, and programming concepts over
the past 20 years. Summarizing this evolution can help you understand the reason for
the new additions and their roles in programming and system design.

 Initially, Java had locks (via synchronized classes and methods), Runnables and
Threads. In 2004, Java 5 introduced the java.util.concurrent package, which sup-
ported more expressive concurrency, particularly the ExecutorService1 interface
(which decoupled task submission from thread execution), as well as Callable<T>
and Future<T>, which produced higher-level and result-returning variants of Runnable
and Thread and used generics (also introduced in Java 5). ExecutorServices can exe-
cute both Runnables and Callables. These features facilitated parallel programming
on the multicore CPUs that started to appear the following year. To be honest, nobody
enjoyed working with threads directly!

 Later versions of Java continued to enhance concurrency support, as it became
increasingly demanded by programmers who needed to program multicore CPUs
effectively. As you saw in chapter 7, Java 7 added java.util.concurrent.Recursive-
Task to support fork/join implementation of divide-and-conquer algorithms, and Java 8
added support for Streams and their parallel processing (building on the newly added
support for lambdas).

 Java further enriched its concurrency features by providing support for composing
Futures (via the Java 8 CompletableFuture implementation of Future, section 15.4
and chapter 16), and Java 9, provided explicit support for distributed asynchronous
programming. These APIs give you a mental model and toolkit for building the sort
of mashup application mentioned in the introduction to this chapter. There the

Guidance for the reader
This chapter contains little real-life Java code. We suggest that readers who want to
see only code skip to chapters 16 and 17. On the other hand, as we’ve all discovered,
code that implements unfamiliar ideas can be hard to understand. Therefore, we use
simple functions and include diagrams to explain the big-picture ideas, such as the pub-
lish-subscribe protocol behind the Flow API capturing reactive programming.

1 The ExecutorService interface extends the Executor interface with the submit method to run a
Callable; the Executor interface merely has an execute method for Runnables.

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

361Evolving Java support for expressing concurrency

application worked by contacting various web services and combining their informa-
tion in real time for a user or to expose it as a further web service. This process is
called reactive programming, and Java 9 provides support for it via the publish-subscribe
protocol (specified by the java.util.concurrent.Flow interface; see section 15.5 and
chapter 17). A key concept of CompletableFuture and java.util.concurrent.Flow is
to provide programming structures that enable independent tasks to execute concur-
rently wherever possible and in a way that easily exploits as much as possible of the par-
allelism provided by multicore or multiple machines.

15.1.1 Threads and higher-level abstractions

Many of us learned about threads and processes from a course on operating systems. A
single-CPU computer can support multiple users because its operating system allocates
a process to each user. The operating system gives these processes separate virtual
address spaces so that two users feel like they’re the only users of the computer. The
operating system furthers this illusion by waking periodically to share the CPU among
the processes. A process can request that the operating system allocate it one or more
threads—processes that share an address space as their owning process and therefore
can run tasks concurrently and cooperatively.

 In a multicore setting, perhaps a single-user laptop running only one user process,
a program can never fully exploit the computing power of the laptop unless it uses
threads. Each core can be used for one or more processes or threads, but if your pro-
gram doesn’t use threads, it’s effectively using only one of the processor cores.

 Indeed, if you have a four-core CPU and can arrange for each core to continually
do useful work, your program theoretically runs up to four times faster. (Overheads
reduce this result somewhere, of course.) Given an array of numbers of size 1,000,000
storing the number of correct questions answered by students in an example, com-
pare the program

long sum = 0;
for (int i = 0; i < 1_000_000; i++) {
 sum += stats[i];
}

running on a single thread, which worked fine in single-core days, with a version that
creates four threads, with the first thread executing

long sum0 = 0;
for (int i = 0; i < 250_000; i++) {
 sum0 += stats[i];
}

and to the fourth thread executing

long sum3 = 0;
for (int i = 750_000; i < 1_000_000; i++) {
 sum3 += stats[i];
}

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

362 CHAPTER 15 Concepts behind CompletableFuture and reactive programming

These four threads are complemented by the main program starting them in turn
(.start() in Java), waiting for them to complete (.join()), and then computing

sum = sum0 + … + sum3;

The trouble is that doing this for each loop is tedious and error-prone. Also, what can
you do for code that isn’t a loop?

 Chapter 7 showed how Java Streams can achieve this parallelism with little program-
mer effort by using internal iteration instead of external iteration (explicit loops):

 sum = Arrays.stream(stats).parallel().sum();

The takeaway idea is that parallel Stream iteration is a higher-level concept than
explicit use of threads. In other words, this use of Streams abstracts a given use pattern
of threads. This abstraction into Streams is analogous to a design pattern, but with the
benefit that much of the complexity is implemented inside the library rather than
being boilerplate code. Chapter 7 also explained how to use java.util.concurrent
.RecursiveTask support in Java 7 for the fork/join abstraction of threads to paral-
lelize divide-and-conquer algorithms, providing a higher-level way to sum the array
efficiently on a multicore machine.

 Before looking at additional abstractions for threads, we visit the (Java 5) idea of
ExecutorServices and the thread pools on which these further abstractions are built.

15.1.2 Executors and thread pools

Java 5 provided the Executor framework and the idea of thread pools as a higher-level
idea capturing the power of threads, which allow Java programmers to decouple task
submission from task execution.

PROBLEMS WITH THREADS

Java threads access operating-system threads directly. The problem is that operating-sys-
tem threads are expensive to create and to destroy (involving interaction with page
tables), and moreover, only a limited number exist. Exceeding the number of operating-
system threads is likely to cause a Java application to crash mysteriously, so be careful not
to leave threads running while continuing to create new ones.

 The number of operating system (and Java) threads will significantly exceed the
number of hardware threads2, so all the hardware threads can be usefully occupied
executing code even when some operating-system threads are blocked or sleeping. As
an example, the 2016 Intel Core i7-6900K server processor has eight cores, each with
two symmetric multiprocessing (SMP) hardware threads, leading to 16 hardware
threads, and a server may contain several of these processors, consisting of perhaps 64
hardware threads. By contrast, a laptop may have only one or two hardware threads, so
portable programs must avoid making assumptions about how many hardware threads

2 We’d use the word core here, but CPUs like the Intel i7-6900K have multiple hardware threads per core, so the
CPU can execute useful instructions even for short delays such as a cache miss.

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

363Evolving Java support for expressing concurrency

are available. Contrarily, the optimum number of Java threads for a given program
depends on the number of hardware cores available!

THREAD POOLS AND WHY THEY’RE BETTER

The Java ExecutorService provides an interface where you can submit tasks and obtain
their results later. The expected implementation uses a pool of threads, which can be
created by one of the factory methods, such as the newFixedThreadPool method:

ExecutorService newFixedThreadPool(int nThreads)

This method creates an ExecutorService containing nThreads (often called worker
threads) and stores them in a thread pool, from which unused threads are taken to run
submitted tasks on a first-come, first-served basis. These threads are returned to the pool
when their tasks terminate. One great outcome is that it’s cheap to submit thousands of
tasks to a thread pool while keeping the number of tasks to a hardware-appropriate
number. Several configurations are possible, including the size of the queue, rejection
policy, and priority for different tasks.

 Note the wording: The programmer provides a task (a Runnable or a Callable),
which is executed by a thread.

THREAD POOLS AND WHY THEY’RE WORSE

Thread pools are better than explicit thread manipulation in almost all ways, but you
need to be aware of two “gotchas:”

 A thread pool with k threads can execute only k tasks concurrently. Any further
task submissions are held in a queue and not allocated a thread until one of the
existing tasks completes. This situation is generally good, in that it allows you to
submit many tasks without accidentally creating an excessive number of
threads, but you have to be wary of tasks that sleep or wait for I/O or network
connections. In the context of blocking I/O, these tasks occupy worker threads
but do no useful work while they’re waiting. Try taking four hardware threads
and a thread pool of size 5 and submitting 20 tasks to it (figure 15.3). You might
expect that the tasks would run in parallel until all 20 have completed. But sup-
pose that three of the first-submitted tasks sleep or wait for I/O. Then only two
threads are available for the remaining 15 tasks, so you’re getting only half the
throughput you expected (and would have if you created the thread pool with
eight threads instead). It’s even possible to cause deadlock in a thread pool if
earlier task submissions or already running tasks, need to wait for later task sub-
missions, which is a typical use-pattern for Futures.

The takeaway is to try to avoid submitting tasks that can block (sleep or wait
for events) to thread pools, but you can’t always do so in existing systems.

 Java typically waits for all threads to complete before allowing a return from
main to avoid killing a thread executing vital code. Therefore, it’s important in
practice and as part of good hygiene to shut down every thread pool before exit-
ing the program (because worker threads for this pool will have been created but

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

364 CHAPTER 15 Concepts behind CompletableFuture and reactive programming

not terminated, as they’re waiting for another task submission). In practice, it’s
common to have a long-running ExecutorService that manages an always-
running Internet service.

Java does provide the Thread.setDaemon method to control this behavior,
which we discuss in the next section.

15.1.3 Other abstractions of threads: non-nested with method calls

To explain why the forms of concurrency used in this chapter differ from those used
in chapter 7 (parallel Stream processing and the fork/join framework), we’ll note that
the forms used in chapter 7 have one special property: whenever any task (or thread)
is started within a method call, the same method call waits for it to complete before
returning. In other words, thread creation and the matching join() happen in a way
that nests properly within the call-return nesting of method calls. This idea, called
strict fork/join, is depicted in figure 15.4.

 It’s relatively innocuous to have a more relaxed form of fork/join in which a
spawned task escapes from an internal method call but is joined in an outer call, so that
the interface provided to users still appears to be a normal call,3 as shown in figure 15.5.

3 Compare “Thinking Functionally” (chapter 18) in which we discuss having a side-effect-free interface to a
method that internally uses side-effects!

Figure 15.3 Sleeping tasks reduce the throughput of thread pools.

Queued tasks

Five worker

treads running

five active tasks

If these three tasks sleep or otherwise block, then these 15 queued tasks

all have to wait for the remaining two workers to run them—reducing the

execution parallelism.

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

365Evolving Java support for expressing concurrency

In this chapter, we focus on richer forms of concurrency in which threads created (or
tasks spawned) by a user’s method call may outlive the call, as shown in figure 15.6.

This type of method is often called an asynchronous method, particularly when the
ongoing spawned task continues to do work that’s helpful to the method caller. We
explore Java 8 and 9 techniques for benefiting from such methods later in this chap-
ter, starting in section 15.2, but first, check the dangers:

 The ongoing thread runs concurrently with the code following the method call
and therefore requires careful programming to avoid data races.

 What happens if the Java main() method returns before the ongoing thread has
terminated? There are two answers, both rather unsatisfactory:
– Wait for all such outstanding threads before exiting the application.
– Kill all outstanding threads and then exit.

Figure 15.4 Strict fork/join. Arrows denote threads, circles represent forks
and joins, and rectangles represent method calls and returns.

return
join

fork

call

Figure 15.5 Relaxed fork/join

Escaping spawned thread

returncall

fork join

Figure 15.6 An asynchronous method

return

fork

call

method

Ongoing thread

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

366 CHAPTER 15 Concepts behind CompletableFuture and reactive programming

The former solution risks a seeming application crash by never terminating due to a
forgotten thread; the latter risks interrupting a sequence of I/O operations writing to
disk, thereby leaving an external data in an inconsistent state. To avoid both of these
problems, ensure that your program keeps track of all threads it creates and joins
them all before exiting (including shutting down any thread pools).

 Java threads can be labeled as daemon4 or nondaemon, using the setDaemon()
method call. Daemon threads are killed on exit (and therefore are useful for services
that don’t leave the disk in an inconsistent state), whereas returning from main contin-
ues to wait for all threads that aren’t daemons to terminate before exiting the program.

15.1.4 What do you want from threads?

What you want is to be able to structure your program so that whenever it can benefit
from parallelism, enough tasks are available to occupy all the hardware threads, which
means structuring your program to have many smaller tasks (but not too small
because of the cost of task switching). You saw how to do this for loops and divide-
conquer algorithms in chapter 7, using parallel stream processing and fork/join, but
in the rest of this chapter (and in chapters 16 and 17), you see how to do it for
method calls without writing swaths of boilerplate thread-manipulation code.

15.2 Synchronous and asynchronous APIs
Chapter 7 showed you that Java 8 Streams give you a way to exploit parallel hardware.
This exploitation happens in two stages. First, you replace external iteration (explicit
for loops) with internal iteration (using Stream methods). Then you can use the
parallel() method on Streams to allow the elements to be processed in parallel by
the Java runtime library instead of rewriting every loop to use complex thread-creation
operations. An additional advantage is that the runtime system is much better informed
about the number of available threads when the loop is executed than is the program-
mer, who can only guess.

 Situations other than loop-based computations can also benefit from parallelism.
An important Java development that forms the background of this chapter and chap-
ters 16 and 17 is asynchronous APIs.

 Let’s take for a running example the problem of summing the results of calls to
methods f and g with signatures:

int f(int x);
int g(int x);

For emphasis, we’ll refer to these signatures as a synchronous API, as they return their
results when they physically return, in a sense that will soon become clear. You might

4 Etymologically, daemon and demon arise from the same Greek word, but daemon captures the idea of a helpful
spirit, whereas demon captures the idea of an evil spirit. UNIX coined the word daemon for computing pur-
poses, using it for system services such as sshd, a process or thread that listens for incoming ssh connections.

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

367Synchronous and asynchronous APIs

invoke this API with a code fragment that calls them both and prints the sum of
their results:

int y = f(x);
int z = g(x);
System.out.println(y + z);

Now suppose that methods f and g execute for a long time. (These methods could
implement a mathematical optimization task, such as gradient descent, but in chap-
ters 16 and 17, we consider more-practical cases in which they make Internet queries.)
In general, the Java compiler can do nothing to optimize this code because f and g
may interact in ways that aren’t clear to the compiler. But if you know that f and g don’t
interact, or you don’t care, you want to execute f and g in separate CPU cores, which
makes the total execution time only the maximum of that of the calls to f and g instead
of the sum. All you need to do is run the calls to f and g in separate threads. This idea
is a great one, but it complicates5 the simple code from before:

class ThreadExample {

 public static void main(String[] args) throws InterruptedException {
 int x = 1337;
 Result result = new Result();

 Thread t1 = new Thread(() -> { result.left = f(x); });
 Thread t2 = new Thread(() -> { result.right = g(x); });
 t1.start();
 t2.start();
 t1.join();
 t2.join();
 System.out.println(result.left + result.right);
 }

 private static class Result {
 private int left;
 private int right;
 }
}

You can simplify this code somewhat by using the Future API interface instead of
Runnable. Assuming that you previously set up a thread pool as an ExecutorService
(such as executorService), you can write

public class ExecutorServiceExample {
 public static void main(String[] args)
 throws ExecutionException, InterruptedException {

 int x = 1337;

5 Some of the complexity here has to do with transferring results back from the thread. Only final outer-object
variables can be used in lambdas or inner classes, but the real problem is all the explicit thread manipulation.

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

368 CHAPTER 15 Concepts behind CompletableFuture and reactive programming

 ExecutorService executorService = Executors.newFixedThreadPool(2);
 Future<Integer> y = executorService.submit(() -> f(x));
 Future<Integer> z = executorService.submit(() -> g(x));
 System.out.println(y.get() + z.get());

 executorService.shutdown();
 }
}

but this code is still polluted by the boilerplate code involving explicit calls to submit.
 You need a better way of expressing this idea, analogous to how internal iteration on

Streams avoided the need to use thread-creation syntax to parallelize external iteration.
 The answer involves changing the API to an asynchronous API.6 Instead of allowing

a method to return its result at the same time that it physically returns to the caller
(synchronously), you allow it to return physically before producing its result, as shown
in figure 15.6. Thus, the call to f and the code following this call (here, the call to g)
can execute in parallel. You can achieve this parallelism by using two techniques, both
of which change the signatures of f and g.

 The first technique uses Java Futures in a better way. Futures appeared in Java 5 and
were enriched into CompletableFuture in Java 8 to make them composable; we explain
this concept in section 15.4 and explore the Java API in detail with a worked Java code
example in chapter 16. The second technique is a reactive-programming style that uses
the Java 9 java.util.concurrent.Flow interfaces, based on the publish-subscribe pro-
tocol explained in section 15.5 and exemplified with practical code in chapter 17.

 How do these alternatives affect the signatures of f and g?

15.2.1 Future-style API

In this alternative, change the signature of f and g to

Future<Integer> f(int x);
Future<Integer> g(int x);

and change the calls to

Future<Integer> y = f(x);
Future<Integer> z = g(x);
System.out.println(y.get() + z.get());

The idea is that method f returns a Future, which contains a task that continues to
evaluate its original body, but the return from f happens as quickly as possible after
the call. Method g similarly returns a future, and the third code line uses get() to wait
for both Futures to complete and sums their results.

6 Synchronous APIs are also known as blocking APIs, as the physical return is delayed until the result is ready
(clearest when considering a call to an I/O operation), whereas asynchronous APIs can naturally implement
nonblocking I/O (where the API call merely initiates the I/O operation without waiting for the result, pro-
vided that the library at hand, such as Netty, supports nonblocking I/O operations).

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

369Synchronous and asynchronous APIs

 In this case, you could have left the API and call of g unchanged without reducing
parallelism—only introducing Futures for f. You have two reasons not to do so in big-
ger programs:

 Other uses of g may require a Future-style version, so you prefer a uniform
API style.

 To enable parallel hardware to execute your programs as fast as possible, it’s
useful to have more and smaller tasks (within reason).

15.2.2 Reactive-style API

In the second alternative, the core idea is to use callback-style programming by chang-
ing the signature of f and g to

void f(int x, IntConsumer dealWithResult);

This alternative may seem to be surprising at first. How can f work if it doesn’t
return a value? The answer is that you instead pass a callback 7 (a lambda) to f as an
additional argument, and the body of f spawns a task that calls this lambda with the
result when it’s ready instead of returning a value with return. Again, f returns
immediately after spawning the task to evaluate the body, which results in the follow-
ing style of code:

public class CallbackStyleExample {
 public static void main(String[] args) {

 int x = 1337;
 Result result = new Result();

 f(x, (int y) -> {
 result.left = y;
 System.out.println((result.left + result.right));
 });

 g(x, (int z) -> {
 result.right = z;
 System.out.println((result.left + result.right));
 });

 }
}

Ah, but this isn’t the same! Before this code prints the correct result (the sum of the
calls to f and g), it prints the fastest value to complete (and occasionally instead prints

7 Some authors use the term callback to mean any lambda or method reference passed as an argument to a
method, such as the argument to Stream.filter or Stream.map. We use it only for those lambda and
method references that can be called after the method has returned.

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

370 CHAPTER 15 Concepts behind CompletableFuture and reactive programming

the sum twice, as there’s no locking here, and both operands to + could be updated
before either of the println calls is executed). There are two answers:

 You could recover the original behavior by invoking println after testing with
if-then-else that both callbacks have been called, perhaps by counting them with
appropriate locking.

 This reactive-style API is intended to react to a sequence of events, not to single
results, for which Futures are more appropriate.

Note that this reactive style of programming allows methods f and g to invoke their
callback dealWithResult multiple times. The original versions of f and g were obliged
to use a return that can be performed only once. Similarly, a Future can be completed
only once, and its result is available to get(). In a sense, the reactive-style asynchronous
API naturally enables a sequence (which we will later liken to a stream) of values,
whereas the Future-style API corresponds to a one-shot conceptual framework.

 In section 15.5, we refine this core-idea example to model a spreadsheet call con-
taining a formula such as =C1+C2.

 You may argue that both alternatives make the code more complex. To some
extent, this argument is correct; you shouldn’t thoughtlessly use either API for every
method. But APIs keep code simpler (and use higher-level constructs) than explicit
thread manipulation does. Also, careful use of these APIs for method calls that (a)
cause long-running computations (perhaps longer than several milliseconds) or (b)
wait for a network or for input from a human can significantly improve the efficiency
of your application. In case (a), these techniques make your program faster without
the explicit ubiquitous use of threads polluting your program. In case (b), there’s the
additional benefit that the underlying system can use threads effectively without clog-
ging up. We turn to the latter point in the next section.

15.2.3 Sleeping (and other blocking operations) considered harmful

When you’re interacting with a human or an application that needs to restrict the rate
at which things happen, one natural way to program is to use the sleep() method. A
sleeping thread still occupies system resources, however. This situation doesn’t matter
if you have only a few threads, but it matters if you have many threads, most of which
are sleeping. (See the discussion in section 15.2.1 and figure 15.3.)

 The lesson to remember is that tasks sleeping in a thread pool consume resources
by blocking other tasks from starting to run. (They can’t stop tasks already allocated to
a thread, as the operating system schedules these tasks.)

 It’s not only sleeping that can clog the available threads in a thread pool, of course.
Any blocking operation can do the same thing. Blocking operations fall into two
classes: waiting for another task to do something, such as invoking get() on a Future;
and waiting for external interactions such as reads from networks, database servers, or
human interface devices such as keyboards.

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

371Synchronous and asynchronous APIs

 What can you do? One rather totalitarian answer is never to block within a task or
at least to do so with a small number of exceptions in your code. (See section 15.2.4
for a reality check.) The better alternative is to break your task into two parts—before
and after—and ask Java to schedule the after part only when it won’t block.

 Compare code A, shown as a single task

work1();
Thread.sleep(10000);
work2();

with code B:

public class ScheduledExecutorServiceExample {
 public static void main(String[] args) {
 ScheduledExecutorService scheduledExecutorService
 = Executors.newScheduledThreadPool(1);

 work1();
 scheduledExecutorService.schedule(
 ScheduledExecutorServiceExample::work2, 10, TimeUnit.SECONDS);

 scheduledExecutorService.shutdown();
 }

 public static void work1(){
 System.out.println("Hello from Work1!");
 }

 public static void work2(){
 System.out.println("Hello from Work2!");
 }
}

Think of both tasks being executed within a thread pool.
 Consider how code A executes. First, it’s queued to execute in the thread pool,

and later, it starts executing. Halfway through, however, it blocks in the call to sleep,
occupying a worker thread for 10 whole seconds doing nothing. Then it executes
work2() before terminating and releasing the worker thread. Code B, by comparison,
executes work1() and then terminates—but only after having queued a task to do
work2() 10 seconds later.

 Code B is better, but why? Code A and code B do the same thing. The difference is
that code A occupies a precious thread while it sleeps, whereas code B queues another
task to execute (with a few bytes of memory and no requirement for a thread) instead
of sleeping.

 This effect is something that you should always bear in mind when creating tasks.
Tasks occupy valuable resources when they start executing, so you should aim to keep
them running until they complete and release their resources. Instead of blocking,
a task should terminate after submitting a follow-up task to complete the work it
intended to do.

Sleep for 10 seconds.

Schedule a separate task
for work2() 10 seconds
after work1() finishes.

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

372 CHAPTER 15 Concepts behind CompletableFuture and reactive programming

 Whenever possible, this guideline applies to I/O, too. Instead of doing a classical
blocking read, a task should issue a nonblocking “start a read” method call and terminate
after asking the runtime library to schedule a follow-up task when the read is complete.

 This design pattern may seem to lead to lots of hard-to-read code. But the Java
CompletableFuture interface (section 15.4 and chapter 16) abstracts this style of code
within the runtime library, using combinators instead of explicit uses of blocking
get() operations on Futures, as we discussed earlier.

 As a final remark, we’ll note that code A and code B would be equally effective if
threads were unlimited and cheap. But they aren’t, so code B is the way to go when-
ever you have more than a few tasks that might sleep or otherwise block.

15.2.4 Reality check

If you’re designing a new system, designing it with many small, concurrent tasks so
that all possible blocking operations are implemented with asynchronous calls is
probably the way to go if you want to exploit parallel hardware. But reality needs to
intrude into this “everything asynchronous” design principle. (Remember, “the best
is the enemy of the good.”) Java has had nonblocking IO primitives (java.nio)
since Java 1.4 in 2002, and they’re relatively complicated and not well known. Prag-
matically, we suggest that you try to identify situations that would benefit from Java’s
enhanced concurrency APIs, and use them without worrying about making every
API asynchronous.

 You may also find it useful to look at newer libraries such as Netty (https://netty.io/),
which provides a uniform blocking/nonblocking API for network servers.

15.2.5 How do exceptions work with asynchronous APIs?

In both Future-based and reactive-style asynchronous APIs, the conceptual body of the
called method executes in a separate thread, and the caller’s execution is likely to have
exited the scope of any exception handler placed around the call. It’s clear that unusual
behavior that would have triggered an exception needs to perform an alternative
action. But what might this action be? In the CompletableFuture implementation of
Futures, the API includes provision for exposing exceptions at the time of the get()
method and also provides methods such as exceptionally() to recover from excep-
tions, which we discuss in chapter 16.

 For reactive-style asynchronous APIs, you have to modify the interface by introduc-
ing an additional callback, which is called instead of an exception being raised, as the
existing callback is called instead of a return being executed. To do this, include mul-
tiple callbacks in the reactive API, as in this example:

void f(int x, Consumer<Integer> dealWithResult,
 Consumer<Throwable> dealWithException);

Then the body of f might perform

dealWithException(e);

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

373The box-and-channel model

If there are multiple callbacks, instead of supplying them separately, you can equiva-
lently wrap them as methods in a single object. The Java 9 Flow API, for example,
wraps these multiple callbacks within a single object (of class Subscriber<T> contain-
ing four methods interpreted as callbacks). Here are three of them:

void onComplete()
void onError(Throwable throwable)
void onNext(T item)

Separate callbacks indicate when a value is available (onNext), when an exception
arose while trying to make a value available (onError), and when an onComplete call-
back enables the program to indicate that no further values (or exceptions) will be
produced. For the preceding example, the API for f would now be

void f(int x, Subscriber<Integer> s);

and the body of f would now indicate an exception, represented as Throwable t, by
performing

s.onError(t);

Compare this API containing multiple callbacks with reading numbers from a file or
keyboard device. If you think of such a device as being a producer rather than a passive
data structure, it produces a sequence of “Here’s a number” or “Here’s a malformed
item instead of a number” items, and finally a “There are no more characters left
(end-of-file)” notification.

 It’s common to refer to these calls as messages, or events. You might say, for example,
that the file reader produced the number events 3, 7, and 42, followed by a malformed-
number event, followed by the number event 2 and then by the end-of-file event.

 When seeing these events as part of an API, it’s important to note that the API signi-
fies nothing about the relative ordering of these events (often called the channel protocol).
In practice, the accompanying documentation specifies the protocol by using phases
such as “After an onComplete event, no more events will be produced.”

15.3 The box-and-channel model
Often, the best way to design and think about concurrent systems is pictorially. We call
this technique the box-and-channel model. Consider a simple situation involving inte-
gers, generalizing the earlier example of calculating f(x) + g(x). Now you want to call
method or function p with argument x, pass its result to functions q1 and q2, call
method or function r with the results of these two calls, and then print the result. (To
avoid clutter in this explanation, we’re not going to distinguish between a method m of
class C and its associated function C::m.) Pictorially, this task is simple, as shown in fig-
ure 15.7.

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

374 CHAPTER 15 Concepts behind CompletableFuture and reactive programming

Look at two ways of coding figure 15.7 in Java to see the problems they cause. The first
way is

int t = p(x);
System.out.println(r(q1(t), q2(t)));

This code appears to be clear, but Java runs the calls to q1 and q2 in turn, which is
what you want to avoid when trying to exploit hardware parallelism.

 Another way is to use Futures to evaluate f and g in parallel:

int t = p(x);
Future<Integer> a1 = executorService.submit(() -> q1(t));
Future<Integer> a2 = executorService.submit(() -> q2(t));
System.out.println(r(a1.get(),a2.get()));

Note: We didn’t wrap p and r in Futures in this example because of the shape of the
box-and-channel diagram. p has to be done before everything else and r after every-
thing else. This would no longer be the case if we changed the example to mimic

System.out.println(r(q1(t), q2(t)) + s(x));

in which we’d need to wrap all five functions (p, q1, q2, r, and s) in Futures to maxi-
mize concurrency.

 This solution works well if the total amount of concurrency in the system is small. But
what if the system becomes large, with many separate box-and-channel diagrams, and
with some of the boxes themselves internally using their own boxes and channels? In this
situation, many tasks might be waiting (with a call to get()) for a Future to complete,
and as discussed in section 15.1.2, the result may be underexploitation of hardware paral-
lelism or even deadlock. Moreover, it tends to be hard to understand such large-scale sys-
tem structure well enough to work out how many tasks are liable to be waiting for a
get(). The solution that Java 8 adopts (CompletableFuture; see section 15.4 for details)
is to use combinators. You’ve already seen that you can use methods such as compose() and
andThen() on two Functions to get another Function (see chapter 3). Assuming that
add1 adds 1 to an Integer and that dble doubles an Integer, for example, you can write

Function<Integer, Integer> myfun = add1.andThen(dble);

Figure 15.7 A simple box-and-
channel diagram

q1

q2

p rx

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

375CompletableFuture and combinators for concurrency

to create a Function that doubles its argument and adds 2 to the result. But box-and-
channel diagrams can be also coded directly and nicely with combinators. Figure 15.7
could be captured succinctly with Java Functions p, q1, q2 and BiFunction r as

p.thenBoth(q1,q2).thenCombine(r)

Unfortunately, neither thenBoth nor thenCombine is part of the Java Function and
BiFunction classes in exactly this form.

 In the next section, you see how similar ideas of combinators work for Completable-
Future and prevent tasks from ever to have to wait using get().

 Before leaving this section, we want to emphasize the fact that the box-and-chan-
nel model can be used to structure thoughts and code. In an important sense, it
raises the level of abstraction for constructing a larger system. You draw boxes (or use
combinators in programs) to express the computation you want, which is later exe-
cuted, perhaps more efficiently than you might have obtained by hand-coding the
computation. This use of combinators works not only for mathematical functions,
but also for Futures and reactive streams of data. In section 15.5, we generalize these
box-and-channel diagrams into marble diagrams in which multiple marbles (repre-
senting messages) are shown on every channel. The box-and-channel model also
helps you change perspective from directly programming concurrency to allowing
combinators to do the work internally. Similarly, Java 8 Streams change perspective
from the coder having to iterate over a data structure to combinators on Streams
doing the work internally.

15.4 CompletableFuture and combinators for concurrency
One problem with the Future interface is that it’s an interface, encouraging you to
think of and structure your concurrent coding tasks as Futures. Historically, however,
Futures have provided few actions beyond FutureTask implementations: creating a
future with a given computation, running it, waiting for it to terminate, and so on.
Later versions of Java provided more structured support (such as RecursiveTask, dis-
cussed in chapter 7).

 What Java 8 brings to the party is the ability to compose Futures, using the
CompletableFuture implementation of the Future interface. So why call it
CompletableFuture rather than, say, ComposableFuture? Well, an ordinary Future is
typically created with a Callable, which is run, and the result is obtained with a get().
But a CompletableFuture allows you to create a Future without giving it any code to
run, and a complete() method allows some other thread to complete it later with a
value (hence the name) so that get() can access that value. To sum f(x) and g(x)
concurrently, you can write

public class CFComplete {

 public static void main(String[] args)
 throws ExecutionException, InterruptedException {

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

376 CHAPTER 15 Concepts behind CompletableFuture and reactive programming

 ExecutorService executorService = Executors.newFixedThreadPool(10);
 int x = 1337;

 CompletableFuture<Integer> a = new CompletableFuture<>();
 executorService.submit(() -> a.complete(f(x)));
 int b = g(x);
 System.out.println(a.get() + b);

 executorService.shutdown();
 }
}

or you can write

public class CFComplete {

 public static void main(String[] args)
 throws ExecutionException, InterruptedException {
 ExecutorService executorService = Executors.newFixedThreadPool(10);
 int x = 1337;

 CompletableFuture<Integer> a = new CompletableFuture<>();
 executorService.submit(() -> b.complete(g(x)));
 int a = f(x);
 System.out.println(a + b.get());

 executorService.shutdown();
 }
}

Note that both these code versions can waste processing resources (recall section 15.2.3)
by having a thread blocked waiting for a get—the former if f(x) takes longer, and the
latter if g(x) takes longer. Using Java 8’s CompletableFuture enables you to avoid this
situation; but first a quiz.

First, refresh your memory about composing operations, which you’ve seen twice
before in this book. Composing operations is a powerful program-structuring idea
used in many other languages, but it took off in Java only with the addition of lambdas

Quiz 15.1:
Before reading further, think how you might write tasks to exploit threads perfectly in
this case: two active threads while both f(x) and g(x) are executing, and one thread
starting from when the first one completes up to the return statement.

The answer is that you’d use one task to execute f(x), a second task to execute
g(x), and a third task (a new one or one of the existing ones) to calculate the sum,
and somehow, the third task can’t start before the first two finish. How do you solve
this problem in Java?

The solution is to use the idea of composition on Futures.

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

377CompletableFuture and combinators for concurrency

in Java 8. One instance of this idea of composition is composing operations on
streams, as in this example:

myStream.map(…).filter(…).sum()

Another instance of this idea is using methods such as compose() and andThen() on
two Functions to get another Function (see section 15.5).

 This gives you a new and better way to add the results of your two computations by
using the thenCombine method from CompletableFuture<T>. Don’t worry too much
about the details at the moment; we discuss this topic more comprehensively in chap-
ter 16. The method thenCombine has the following signature (slightly simplified to
prevent the clutter associated with generics and wildcards):

CompletableFuture<V> thenCombine(CompletableFuture<U> other,
 BiFunction<T, U, V> fn)

The method takes two CompletableFuture values (with result types T and U) and cre-
ates a new one (with result type V). When the first two complete, it takes both their
results, applies fn to both results, and completes the resulting future without block-
ing. The preceding code could now be rewritten in the following form:

public class CFCombine {

 public static void main(String[] args) throws ExecutionException,
InterruptedException {

 ExecutorService executorService = Executors.newFixedThreadPool(10);
 int x = 1337;

 CompletableFuture<Integer> a = new CompletableFuture<>();
 CompletableFuture<Integer> b = new CompletableFuture<>();
 CompletableFuture<Integer> c = a.thenCombine(b, (y, z)-> y + z);
 executorService.submit(() -> a.complete(f(x)));
 executorService.submit(() -> b.complete(g(x)));

 System.out.println(c.get());
 executorService.shutdown();

 }
}

The thenCombine line is critical: without knowing anything about computations in the
Futures a and b, it creates a computation that’s scheduled to run in the thread pool
only when both of the first two computations have completed. The third computation,
c, adds their results and (most important) isn’t considered to be eligible to execute on
a thread until the other two computations have completed (rather than starting to
execute early and then blocking). Therefore, no actual wait operation is performed,

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

378 CHAPTER 15 Concepts behind CompletableFuture and reactive programming

which was troublesome in the earlier two versions of this code. In those versions, if the
computation in the Future happens to finish second, two threads in the thread pool
are still active, even though you need only one! Figure 15.8 shows this situation dia-
grammatically. In both earlier versions, calculating y+z happens on the same fixed
thread that calculates f(x) or g(x)—with a potential wait in between. By contrast,
using thenCombine schedules the summing computation only after both f(x) and
g(x) have completed.

To be clear, for many pieces of code, you don’t need to worry about a few threads
being blocked waiting for a get(), so pre-Java 8 Futures remain sensible programming
options. In some situations, however, you want to have a large number of Futures (such
as for dealing with multiple queries to services). In these cases, using Completable-
Future and its combinators to avoid blocking calls to get() and possible loss of paral-
lelism or deadlock is often the best solution.

15.5 Publish-subscribe and reactive programming
The mental model for a Future and CompletableFuture is that of a computation that
executes independently and concurrently. The result of the Future is available with
get() after the computation completes. Thus, Futures are one-shot, executing code
that runs to completion only once.

 By contrast, the mental model for reactive programming is a Future-like object that,
over time, yields multiple results. Consider two examples, starting with a thermometer
object. You expect this object to yield a result repeatedly, giving you a temperature value
every few seconds. Another example is an object representing the listener component of
a web server; this object waits until an HTTP request appears over the network and sim-
ilarly yields with the data from the request. Then other code can process the result: a
temperature or data from an HTTP request. Then the thermometer and listener objects
go back to sensing temperatures or listening before potentially yielding further results.

 Note two points here. The core point is that these examples are like Futures but
differ in that they can complete (or yield) multiple times instead of being one-shot.
Another point is that in the second example, earlier results may be as important as
ones seen later, whereas for a thermometer, most users are interested only in the

Figure 15.8 Timing diagram showing
three computations: f(x), g(x) and
adding their results

f x()
y

g x()
z

y z+

time

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

379Publish-subscribe and reactive programming

most-recent temperature. But why is this type of a programming called reactive? The
answer is that another part of the program may want to react to a low temperature
report (such as by turning on a heater).

 You may think that the preceding idea is only a Stream. If your program fits naturally
into the Stream model, a Stream may be the best implementation. In general, though,
the reactive-programming paradigm is more expressive. A given Java Stream can be con-
sumed by only one terminal operation. As we mention in section 15.3, the Stream para-
digm makes it hard to express Stream-like operations that can split a sequence of values
between two processing pipelines (think fork) or process and combine items from two
separate streams (think join). Streams have linear processing pipelines.

 Java 9 models reactive programming with interfaces available inside java.util
.concurrent.Flow and encodes what’s known as the publish-subscribe model (or pro-
tocol, often shortened to pub-sub). You learn about the Java 9 Flow API in more detail
in chapter 17, but we provide a short overview here. There are three main concepts:

 A publisher to which a subscriber can subscribe.
 The connection is known as a subscription.
 Messages (also known an events) are transmitted via the connection.

Figure 15.9 shows the idea pictorially, with subscriptions as channels and publishers and
subscribers as ports on boxes. Multiple components can subscribe to a single publisher,
a component can publish multiple separate streams, and a component can subscribe to
multiple publishers. In this next section, we show you how this idea works step by step,
using the nomenclature of the Java 9 Flow interface.

Figure 15.9 The publish-subscribe model

Component

Subscriptions

Component

(an object)

Component

Publishers

Subscribers

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

380 CHAPTER 15 Concepts behind CompletableFuture and reactive programming

15.5.1 Example use for summing two flows

A simple but characteristic example of publish-subscribe combines events from two
sources of information and publishes them for others to see. This process may sound
obscure at first, but it’s what a cell containing a formula in a spreadsheet does concep-
tually. Model a spreadsheet cell C3, which contains the formula "=C1+C2". Whenever
cell C1 or C2 is updated (by a human or because the cell contains a further formula),
C3 is updated to reflect the change. The following code assumes that the only opera-
tion available is adding the values of cells.

 First, model the concept of a cell that holds a value:

private class SimpleCell {
 private int value = 0;
 private String name;

 public SimpleCell(String name) {
 this.name = name;
 }
}

At the moment, the code is simple, and you can initialize a few cells, as follows:

SimpleCell c2 = new SimpleCell("C2");
SimpleCell c1 = new SimpleCell("C1");

How do you specify that when the value of c1 or c2 changes, c3 sums the two values?
You need a way for c1 and c2 to subscribe c3 to their events. To do so, introduce the
interface Publisher<T>, which at its core looks like this:

interface Publisher<T> {
 void subscribe(Subscriber<? super T> subscriber);
}

This interface takes a subscriber as an argument that it can communicate with. The
Subscriber<T> interface includes a simple method, onNext, that takes that informa-
tion as an argument and then is free to provide a specific implementation:

interface Subscriber<T> {
 void onNext(T t);
}

How do you bring these two concepts together? You may realize that a Cell is in fact
both a Publisher (can subscribe cells to its events) and a Subscriber (reacts to events
from other cells). The implementation of the Cell class now looks like this:

private class SimpleCell implements Publisher<Integer>, Subscriber<Integer> {
 private int value = 0;
 private String name;
 private List<Subscriber> subscribers = new ArrayList<>();

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

381Publish-subscribe and reactive programming

 public SimpleCell(String name) {
 this.name = name;
 }

 @Override
 public void subscribe(Subscriber<? super Integer> subscriber) {
 subscribers.add(subscriber);
 }

 private void notifyAllSubscribers() {
 subscribers.forEach(subscriber -> subscriber.onNext(this.value));
 }

 @Override
 public void onNext(Integer newValue) {
 this.value = newValue;
 System.out.println(this.name + ":" + this.value);
 notifyAllSubscribers();
 }
}

Try a simple example:

Simplecell c3 = new SimpleCell("C3");
SimpleCell c2 = new SimpleCell("C2");
SimpleCell c1 = new SimpleCell("C1");

c1.subscribe(c3);

c1.onNext(10); // Update value of C1 to 10
c2.onNext(20); // update value of C2 to 20

This code outputs the following result because C3 is directly subscribed to C1:

C1:10
C3:10
C2:20

How do you implement the behavior of "C3=C1+C2" ? You need to introduce a sepa-
rate class that’s capable of storing two sides of an arithmetic operation (left and right):

 public class ArithmeticCell extends SimpleCell {

 private int left;
 private int right;

 public ArithmeticCell(String name) {
 super(name);
 }

 public void setLeft(int left) {
 this.left = left;
 onNext(left + this.right);
 }

This method notifies
all the subscribers
with a new value.

Reacts to a
new value

from a cell it is
subscribed to

by updating
its value

Prints the value in
the console but
could be rendering
the updated cell as
part of an UI

Notifies all
subscribers

about the
updated

value

Update the cell value
and notify any
subscribers.

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

382 CHAPTER 15 Concepts behind CompletableFuture and reactive programming

 public void setRight(int right) {
 this.right = right;
 onNext(right + this.left);
 }
 }

Now you can try a more-realistic example:

ArithmeticCell c3 = new ArithmeticCell("C3");
SimpleCell c2 = new SimpleCell("C2");
SimpleCell c1 = new SimpleCell("C1");

c1.subscribe(c3::setLeft);
c2.subscribe(c3::setRight);

c1.onNext(10); // Update value of C1 to 10
c2.onNext(20); // update value of C2 to 20
c1.onNext(15); // update value of C1 to 15

The output is

C1:10
C3:10
C2:20
C3:30
C1:15
C3:35

By inspecting the output, you see that when C1 was updated to 15, C3 immediately
reacted and updated its value as well. What’s neat about the publisher-subscriber interac-
tion is the fact that you can set up a graph of publishers and subscribers. You could create
another cell C5 that depends on C3 and C4 by expressing "C5=C3+C4", for example:

ArithmeticCell c5 = new ArithmeticCell("C5");
ArithmeticCell c3 = new ArithmeticCell("C3");
SimpleCell c4 = new SimpleCell("C4");
SimpleCell c2 = new SimpleCell("C2");
SimpleCell c1 = new SimpleCell("C1");

c1.subscribe(c3::setLeft);
c2.subscribe(c3::setRight);

c3.subscribe(c5::setLeft);
c4.subscribe(c5::setRight);

Then you can perform various updates in your spreadsheet:

c1.onNext(10); // Update value of C1 to 10
c2.onNext(20); // update value of C2 to 20
c1.onNext(15); // update value of C1 to 15
c4.onNext(1); // update value of C4 to 1
c4.onNext(3); // update value of C4 to 3

Update the cell value
and notify any
subscribers.

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

383Publish-subscribe and reactive programming

These actions result in the following output:

C1:10
C3:10
C5:10
C2:20
C3:30
C5:30
C1:15
C3:35
C5:35
C4:1
C5:36
C4:3
C5:38

In the end, the value of C5 is 38 because C1 is 15, C2 is 20, and C4 is 3.

That’s the core idea of publish-subscribe. We’ve left out a few things, however, some of
which are straightforward embellishments, and one of which (backpressure) is so vital
that we discuss it separately in the next section.

 First, we’ll discuss the straightforward things. As we remark in section 15.2, practi-
cal programming of flows may want to signal things other than an onNext event, so
subscribers (listeners) need to define onError and onComplete methods so that the
publisher can indicate exceptions and terminations of data flow. (Perhaps the exam-
ple of a thermometer has been replaced and will never produce more values via
onNext.) The methods onError and onComplete are supported in the actual Sub-
scriber interface in the Java 9 Flow API. These methods are among the reasons why
this protocol is more powerful than the traditional Observer pattern.

 Two simple but vital ideas that significantly complicate the Flow interfaces are pres-
sure and backpressure. These ideas can appear to be unimportant, but they’re vital
for thread utilization. Suppose that your thermometer, which previously reported a
temperature every few seconds, was upgraded to a better one that reports a tempera-
ture every millisecond. Could your program react to these events sufficiently quickly,
or might some buffer overflow and cause a crash? (Recall the problems giving thread
pools large numbers of tasks if more than a few tasks might block.) Similarly, suppose
that you subscribe to a publisher that furnishes all the SMS messages onto your
phone. The subscription might work well on my newish phone with only a few SMS
messages, but what happens in a few years when there are thousands of messages, all

Nomenclature
Because data flows from publisher (producer) to subscriber (consumer), developers
often use words such as upstream and downstream. In the preceding code examples,
the data newValue received by the upstream onNext() methods is passed via the
call to notifyAllSubscribers() to the downstream onNext() call.

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

384 CHAPTER 15 Concepts behind CompletableFuture and reactive programming

potentially sent via calls to onNext in less than a second? This situation is often known
as pressure.

 Now think of a vertical pipe containing messages written on balls. You also need a
form of backpressure, such as a mechanism that restricts the number of balls being
added to the column. Backpressure is implemented in the Java 9 Flow API by a
request() method (in a new interface called Subscription) that invites the pub-
lisher to send the next item(s), instead of items being sent at an unlimited rate (the
pull model instead of the push model). We turn this topic in the next section.

15.5.2 Backpressure

You’ve seen how to pass a Subscriber object (containing onNext, onError, and
OnComplete methods) to a Publisher, which the publisher calls when appropriate.
This object passes information from Publisher to Subscriber. You want to limit the
rate at which this information is sent via backpressure (flow control), which requires
you to send information from Subscriber to Publisher. The problem is that the
Publisher may have multiple Subscribers, and you want backpressure to affect only
the point-to-point connection involved. In the Java 9 Flow API, the Subscriber inter-
face includes a fourth method

void onSubscribe	(Subscription subscription);
that’s called as the first event sent on the channel established between Publisher and
Subscriber. The Subscription object contains methods that enable the Subscriber
to communicate with the Publisher, as follows:

interface Subscription {
 void cancel	();
 void request	(long n);
}

Note the usual “this seems backward” effect with callbacks. The Publisher creates the
Subscription object and passes it to the Subscriber, which can call its methods to
pass information from the Subscriber back to the Publisher.

15.5.3 A simple form of real backpressure

To enable a publish-subscribe connection to deal with events one at a time, you need
to make the following changes:

 Arrange for the Subscriber to store the Subscription object passed by
OnSubscribe locally, perhaps as a field subscription.

 Make the last action of onSubscribe, onNext, and (perhaps) onError be a call
to channel.request(1) to request the next event (only one event, which stops
the Subscriber from being overwhelmed).

 Change the Publisher so that notifyAllSubscribers (in this example) sends
an onNext or onError event along only the channels that made a request.

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

385Reactive systems vs. reactive programming

(Typically, the Publisher creates a new Subscription object to associate
with each Subscriber so that multiple Subscribers can each process data at
their own rate.)

Although this process seems to be simple, implementing backpressure requires think-
ing about a range of implementation trade-offs:

 Do you send events to multiple Subscribers at the speed of the slowest, or do
you have a separate queue of as-yet-unsent data for each Subscriber?

 What happens when these queues grow excessively?
 Do you drop events if the Subscriber isn’t ready for them?

The choice depends on the semantics of the data being sent. Losing one temperature
report from a sequence may not matter, but losing a credit in your bank account cer-
tainly does!

 You often hear this concept referred to as reactive pull-based backpressure. The
concept is called reactive pull-based because it provides a way for the Subscriber to
pull (request) more information from the Publisher via events (reactive). The result
is a backpressure mechanism.

15.6 Reactive systems vs. reactive programming
Increasingly in the programming and academic communities, you may hear about
reactive systems and reactive programming, and it’s important to realize that these
terms express quite different ideas.

 A reactive system is a program whose architecture allows it to react to changes in its
runtime environments. Properties that reactive systems should have are formalized in
the Reactive Manifesto (http://www.reactivemanifesto.org) (see chapter 17). Three of
these properties can be summarized as responsive, resilient, and elastic.

 Responsive means that a reactive system can respond to inputs in real time rather
delaying a simple query because the system is processing a big job for someone else.
Resilient means that a system generally doesn’t fail because one component fails; a bro-
ken network link shouldn’t affect queries that don’t involve that link, and queries to
an unresponsive component can be rerouted to an alternative component. Elastic
means that a system can adjust to changes in its workload and continue to execute effi-
ciently. As you might dynamically reallocate staff in a bar between serving food and
serving drinks so that wait times in both lines are similar, you might adjust the number
of worker threads associated with various software services so that no worker is idle
while ensuring that each queue continues to be processed.

 Clearly, you can achieve these properties in many ways, but one main approach is
to use reactive programming style, provided in Java by interfaces associated with java
.util.concurrent.Flow. The design of these interfaces reflects the fourth and final
property of the Reactive Manifesto: being message-driven. Message-driven systems have
internal APIs based on the box-and-channel model, with components waiting for

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

386 CHAPTER 15 Concepts behind CompletableFuture and reactive programming

inputs that are processed, with the results sent as messages to other components to
enable the system to be responsive.

15.7 Road map
Chapter 16 explores the CompletableFuture API with a real Java example, and chap-
ter 17 explores the Java 9 Flow (publish-subscribe) API.

Summary
 Support for concurrency in Java has evolved and continues to evolve. Thread

pools are generally helpful but can cause problems when you have many tasks
that can block.

 Making methods asynchronous (returning before all their work is done) allows
additional parallelism, complementary to that used to optimize loops.

 You can use the box-and-channel model to visualize asynchronous systems.
 The Java 8 CompletableFuture class and the Java 9 Flow API can both represent

box-and-channel diagrams.
 The CompletableFuture class expresses one-shot asynchronous computations.

Combinators can be used to compose asynchronous computations without the
risk of blocking that’s inherent in traditional uses of Futures.

 The Flow API is based on the publish-subscribe protocol, including backpres-
sure, and forms the basis for reactive programming in Java.

 Reactive programming can be used to implement a reactive system.

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

Urma ● Fusco ● Mycroft

M
odern applications take advantage of innovative
designs, including microservices, reactive architectures,
and streaming data. Modern Java features like lambdas,

streams, and the long-awaited Java Module System make
implementing these designs signifi cantly easier. It’s time to
upgrade your skills and meet these challenges head on!

Modern Java in Action connects new features of the Java
language with their practical applications. Using crystal-clear
examples and careful attention to detail, this book respects
your time. It will help you expand your existing knowledge
of core Java as you master modern additions like the Streams
API and the Java Module System, explore new approaches to
concurrency, and learn how functional concepts can help you
write code that’s easier to read and maintain.

What’s Inside
● Thoroughly revised edition of Manning’s bestselling
 Java 8 in Action
● New features in Java 8, Java 9, and beyond
● Streaming data and reactive programming
● The Java Module System

Written for developers familiar with core Java features.

Raoul-Gabriel Urma is CEO of Cambridge Spark. Mario Fusco
is a senior software engineer at Red Hat. Alan Mycroft is a
University of Cambridge computer science professor; he
cofounded the Raspberry Pi Foundation.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/modern-java-in-action

$54.99 / Can $72.99 [INCLUDING eBOOK]

Modern Java IN ACTION

JAVA

M A N N I N G

“A comprehensive and
practical introduction to the

modern features of the
latest Java releases with
excellent examples!”
—Oleksandr Mandryk

EPAM Systems

“Hands-on Java 8 and 9,
simply and elegantly

explained.”
—Deepak Bhaskaran, Salesforce

“A lot of great examples
and use cases for streams,
concurrency, and reactive

programming.”—Rob Pacheco, Synopsys

“My Java code improved
signifi cantly after reading this
book. I was able to take the

clear examples and immediately
put them into practice.”—Holly Cummins, IBM

See first page

www.itbook.store/books/9781617293566

https://itbook.store/books/9781617293566

