SAMPLE CHAPTER

N ACTION

Event-driven serverless applications

Danilo Poccia
James Governor

/ll MANNING

https://itbook.store/books/9781617293719

AWS Lambda in Action

by Danilo Poccia

Chapter 1

Copyright 2017 Manning Publications

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

brief contents

PART 1 FIRST STEPS uveeeeeerceeccescescesccsscescescessosscsscssossessssssossosses 1

1 = Running functions in the cloud 3
2 = Your first Lambda function 23
3 = Your function as a web API 38

PART 2 BUILDING EVENT-DRIVEN APPLICATIONS.ccctcescesccescescescs 61

4 w Managing security 63

m Using standalone functions 83

m Managing identities 111

Calling functions from a client 126

» Designing an authentication service 151

© 0 N O O
|

s Implementing an authentication service 164

10 = Adding more features to the authentication service 187
11 w Building a media-sharing application 216

12 = Why event-driven? 250

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

vi BRIEF CONTENTS

PART 3 FROM DEVELOPMENT TO PRODUCTION ..cocevvereerccesceses 273
13 m Improving development and testing 275
14 w Automating deployment 296
15 wm Automating infrastructure management 314

PART 4 USING EXTERNAL SERVICES .eueeteececescscecescscssscescssssesess 325

16 m Calling external services 327

17 wm Receiving events from other services 339

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

Running funci
in the cloud

In recent years, cloud computing has changed the way we think about and imple-
ment IT services, allowing companies of every size to build powerful and scalable
applications that could disrupt the industries in which they operated. Think of how
Dropbox changed the way we use digital storage and share files with each other, or
how Spotify changed the way we buy and listen to music.

Those two companies started small, and needed the capacity to focus their time
and resources on bringing their ideas to life quickly. In fact, one of the most impor-
tant advantages of cloud computing is that it frees developers from spending their
time on tasks that don’t add real value to their work, such as managing and scaling

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

4 CHAPTER 1 Running functions in the cloud

the infrastructure, patching the operating system (OS), or maintaining the software
stack used to run their code. Cloud computing lets them concentrate on the unique
and important features they want to build.

You can use cloud computing to provide the infrastructure for your application, in
the form of virtual servers, storage, network, load balancers, and so on. The infrastruc-
ture can be scaled automatically using specific configurations. But with this approach
you still need to prepare a whole environment to execute the code you write. You
install and prepare an operating system or a virtual environment; you choose and con-
figure a programming framework; and finally, when the overall stack is ready, you can
plug in our code. Even if you use a container-based approach in building the environ-
ment, with tools such as Docker, you’re still in change of managing versioning and
updates of the containers you use.

Sometimes you need infrastructure-level access because you want to view or man-
age low-level resources. But you can also use cloud computing services that abstract
from the underlying infrastructure implementation, acting like a platform on top of
which you deploy your own customizations. For example, you can have services that
provide you with a database, and you only need to plug in your data (together with a
data model) without having to manage the installation and availability of the data-
base itself. Another example is services where you provide the code of your applica-
tion, and a standard infrastructure to support the execution of your application is
automatically implemented.

If that’s true for a development environment, as soon as you get closer to produc-
tion things become more complex and you may have to take care of the scalability and
availability of the solution. And you must never forget to think about security—consid-
ering who can do what, and on which resources—during the course of the design and
implementation of an application.

With the introduction of AWS Lambda, the abstraction layer is set higher, allowing
developers to upload their code grouped in functions, and letting those functions be
executed by the platform. In this way you don’t have to manage the programming
framework, the OS, or the availability and scalability. Each function has its own config-
uration that will help you use standard security features provided by Amazon Web Ser-
vices (AWS) to define what a function can do and on which resources.

Those functions can be invoked directly or can subscribe to events generated by
other resources. When you subscribe a function to a resource such as a file repository or
a database, the function is automatically executed when something happens in that
resource, depending on which kinds of events you've subscribed to. For example,
when a file has been uploaded or a database item has been modified, an AWS Lambda
function can react to those changes and do something with the new file or the
updated data. If a picture has been uploaded, a function can create thumbnails to
show the pictures on the screens with different resolutions. If a new record is written
in an operational database, a function can keep the data warehouse in sync. In this
way you can design applications that are driven by events.

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

Running functions in the cloud 5

Book graphical conventions
This book uses the following graphical conventions to help present information
more clearly.

Update to

AP call » previous figure
Logically S -
Event ~ ————- - separated area Il \I
(for example, what happens |)
inside AWS Lambda) D -
Generic -
interaction Comment

(additional information on e

an element in the diagram)

Using multiple functions together, some of them called directly from a user device,
such as a smartphone, and other functions subscribed to multiple repositories, such as
a file share and a database, you can build a complete event-driven application. You
can see a sample flow of a media-sharing application built in this way in figure 1.1.
Users use a mobile app to upload pictures and share them with their friends.

with metadata.
Build
thumbnails.

Get content
and

/ thumbnails.

- R SEREE - D < »| Getcontent |4

index.

User Mobile Update

metadata.

app content index.
\ N
Update content |-....

Extract
and update
metadata.

Get content

~—

Upload content | oo

metadata. |

Files
(multimedia)

Database

Figure 1.1 An event-driven, media-sharing application built using multiple AWS Lambda functions,
some invoked directly by the mobile app. Other functions are subscribed to storage repositories such

as a file share or a database.

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

6 CHAPTER 1 Running functions in the cloud

NOTE Don’t worry if you don’t completely understand the flow of the appli-
cation in figure 1.1. Reading this book, you’ll first learn the architectural
principles used in the design of event-driven applications, and then you’ll
implement this media-sharing application using AWS Lambda together with
an authentication service to recognize users.

When using third-party software or a service not natively integrated with AWS Lambda,
it’s still easy to use that component in an event-driven architecture, adding the capac-
ity to generate those events by using one of the AWS software development kits (SDKs),
which are available for multiple platforms.

The event-driven approach not only simplifies the development of production
environments, but also makes it easier to design and scale the logic of the application.
For example, let’s take a function that’s subscribed to the upload of a file in a reposi-
tory. Every time this function is invoked, it extracts information from the content of
the file and writes this in a database table. You can think of this function as a logical
connection between the file repository and the database table: every time any compo-
nent of the application—including the client—uploads a file, the subscribed events
are triggered and, in this case, the database is updated.

As you add more features, the logic of any application becomes more and more
complex to manage. But in this case you created a relationship between the file reposi-
tory and the database, and this connection works independently from the process that
uploads the file. You’ll see more advantages of this approach in this book, along with
more practical examples.

If you’re building a new application for either a small startup or a large enterprise,
the simplifications introduced by using functions as the building blocks of your appli-
cation will allow you to be more efficient in where to spend your time and faster in
introducing new features to your users.

1.1 Introducing AWS Lambda

AWS Lambda is different from a traditional approach based on physical or virtual serv-
ers. You only need to give your logic, grouped in functions, and the service itself takes
care of executing the functions, if and when required, by managing the software stack
used by the runtime you chose, the availability of the platform, and the scalability of
the infrastructure to sustain the throughput of the invocations.

Functions are executed in containers. Containers are a server virtualization method
where the kernel of the OS implements multiple isolated environments. With AWS
Lambda, physical servers still execute the code, but because you don’t need to spend
time managing them, it’s common to define this kind of approach as serverless.

TIP For more details on the execution environment used by Lambda func-
tions, please visit http://docs.aws.amazon.com/lambda/latest/dg/current-
supported-versions.html.

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

Introducing AWS Lambda 7

When you create a new function with AWS Lambda, you choose a function name, create
your code, and specify the configuration of the execution environment that will be
used to run the function, including the following:

= The maximum memory size that can be used by the function
= A limeout after which the function is terminated, even if it hasn’t completed

= A role that describes what the function can do, and on which resources, using
AWS Identity and Access Management (IAM)

TIP When you choose the amount of memory you want for your function,
you’re allocated proportional CPU power. For example, choosing 256 MB of
memory allocates approximately twice as much CPU power to your Lambda
function as requesting 128 MB of memory and half as much CPU power as
choosing 512 MB of memory.

AWS Lambda implements the execution of those functions with an efficient use of the
underlying compute resources that allows for an interesting and innovative cost
model. With AWS Lambda you pay for

s The number of invocations
= The hundreds of milliseconds of execution time of all invocations, depending
on the memory given to the functions

The execution time costs grow linearly with the memory: if you double the memory
and keep the execution time the same, you double that part of the cost. To enable you
to get hands-on experience, a free tier allows you to use AWS Lambda without any
cost. Each month there’s no charge for

= The first one million invocations
= The first 400,000 seconds of execution time with 1 GB of memory

If you use less memory, you have more compute time at no cost; for example, with 128
MB of memory (1 GB divided by 8) you can have up to 3.2 million seconds of execu-
tion time (400,000 seconds multiplied by 8) per month. To give you a scale of the
monthly free tier, 400,000 seconds corresponds to slightly more than 111 hours or 4.6
days, whereas 3.2 million seconds comes close to 889 hours or 37 days.

TIP You’ll need an AWS account to follow the examples in this book. If you
create a new AWS account, all the examples that I provide fall in the Free Tier
and you’ll have no costs to sustain. Please look here for more information on
the AWS Free Tier and how to create a new AWS account: http://aws.amazon
.com/free/.

Throughout the book we’ll use JavaScript (Node.js, actually) and Python in the
examples, but other runtimes are available. For example, you can use Java and other

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

8 CHAPTER 1 Running functions in the cloud

languages running on top of the Java Virtual Machine (JVM), such as Scala or Clojure.
For object-oriented languages such as Java, the function you want to expose is a
method of an object.

To use platforms that aren’t supported by AWS Lambda, such as C or PHP, it’s pos-
sible to use one of the supported runtimes as a wrapper and bring together with the
function a static binary or anything that can be executed in the OS container used by
the function. For example, a statically linked program written in C can be embedded
in the archive used to upload a function.

When you call a function with AWS Lambda, you provide an event and a context in
the input:

= The eventis the way to send input parameters for your function and is expressed
using JSON syntax.

» The context is used by the service to describe the execution environment and
how the event is received and processed.

Functions can be called synchronously and return a result (figure 1.2). I use the term
“synchronous” to indicate this kind of invocation in the book, but in other sources,
such as the AWS Lambda API Reference documentation or the AWS command-line
interface (CLI), this is described as the RequestResponse invocation type.

s

/ N\
Lambda API call

Y
Event

RequestResponse —
function

invocation TN

Figure 1.2 Calling an AWS Lambda
function synchronously with the

Result A N
RequestResponse invocation type.
\ / Functions receive input as an event
_ N R
M S and a context and return a resulit.

For example, a simple synchronous function computing the sum of two numbers can
be implemented in AWS Lambda using the JavaScript runtime as

exports.handler = (event, context, callback) => {
var result = event.valuel + event.value2;
callback (null, result);

}i

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

Introducing AWS Lambda 9

The same can be done using the Python runtime:

def lambda_handler (event, context):
result = event['valuel'] + event['value2']
return result

We’ll dive deep into the syntax in the next chapter, but for now let’s focus on what the
functions are doing. Giving as input to those functions an event with the following
JSON payload would give back a result of 30:

{

"valuel": 10,
"value2": 20

NOTE The values in JSON are given as numbers, without quotation marks;
otherwise the + used in both the Node.js and Python functions would change
the meaning, becoming a concatenation of two strings.

Functions can also be called asynchronously. In this case the call returns immediately
and no result is given back, while the function is continuing its work (figure 1.3). I use
the term “asynchronous” to indicate this kind of invocation in the book, but in other
sources, such as the AWS Lambda API Reference documentation and the AWS CLlI,
this is described as the Event invocation type.

{ Lambda API call

s T T T T T T T N\,
AWS Lambda |
Event
Event ™
function Function
invocation

Figure 1.3 Calling an AWS Lambda
function asynchronously with the Event
invocation type. The invocation returns

" / immediately while the function

N D continues its work.

When a Lambda function terminates, no session information is retained by the AWS
Lambda service. This kind of interaction with a server is usually defined as stateless.
Considering this behavior, calling Lambda functions asynchronously (returning no
value) is useful when they are accessing and modifying the status of other resources
(such as files in a shared repository, records in a database, and so on) or calling other
services (for example, to send an email or to send a push notification to a mobile
device), as illustrated in figure 1.4.

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

10 CHAPTER 1 Running functions in the cloud

-

/ N\
Lambda API call

e e

e N /
! AWS Lambda Managed by AWS

\
:
I
I
I
l !
L Resource B

Event

by

Function ' N — SN
. : Function \
invocation | | _ S — ~ \
- Not managed | \
N] by AWS : \
: Result v | \
ol |
i
N P \] <~ |
N e N

Resources can
be files, records in
a database, and so on.

Figure 1.4 Functions can create, update, or delete other resources. Resources can also be other
services that can do some actions, such as sending an email.

For example, it’s possible to use the logging capabilities of AWS Lambda to imple-
ment a simple logging function (that you can call asynchronously) in Nodejs:

exports.handler = function(event, context) {
console.log (event .message) ;
context.done () ;

}i

In Python that’s even easier because you can use a normal print to log the output:
def lambda_ handler (event, context):

print (event ['message'])
return

You can send input to the function as a JSON event to log a message:

{
}

"message": "This message is being logged!"

In these two logging examples, we used the integration of AWS Lambda with Amazon
CloudWatch Logs. Functions are executed without a default output device (in what is
usually called a headless environment) and a default logging capability is given for each
AWS Lambda runtime to ship the logs to CloudWatch. You can then use all the fea-
tures provided by CloudWatch Logs, such as choosing the retention period or creat-
ing metrics from logged data. We’ll give more examples and use cases regarding
logging in part 4.

Asynchronous calls are useful when functions are subscribed to events generated by
other resources, such as Amazon S3, an object store, or Amazon DynamoDB, a fully
managed NoSQL database.

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

Functions as your back end 11

When you subscribe a function to events generated by other resources, the func-
tion is called asynchronously when the events you selected are generated, passing the
events as input to the function (figure 1.5).

_____________ e —————————— Generated
by AWS
: e N
AWS Lambda
Events

(context) [N
Function 2

Not managed
by AWS

P Function 3
Directuse | | ' 1 Events | A4~
of resource Resource (context) N /
/
- N

Not geherated
by AWS

"/

For example,
a file is uploaded or
something is written
in a database.

Figure 1.5 Functions can subscribe to events generated by direct use of resources, or by
other functions interacting with resources. For resources not managed by AWS, you should
find the best way to generate events to subscribe functions to those resources.

For example, if a user of a mobile application uploads a new high-resolution picture
to a file store, a function can be triggered with the location of the new file in its input
as part of the event. The function could then read the picture, build a small thumb-
nail to use in an index page, and write that back to the file store.

Now you know how AWS Lambda works at a high level, and that you can expose
your code as functions and directly call those functions or subscribe them to events
generated by other resources.

In the next section, you’ll see how to use those functions in your applications.

1.2 Functions as your back end

Imagine you’re a mobile developer and you’re working on a new application. You
can implement features in the mobile app running on the client device of the end
user, but you’d probably keep part of the logic and status outside of the mobile app.
For example:

= A mobile banking app wouldn’t allow an end user to add money to their bank
account without a good reason; only logic executed outside of the mobile
device, involving the business systems of the bank, can decide if a transfer of
money can be done or not.

= An online multiplayer game wouldn’t allow a player to go to the next level with-
out validating that the player has completed the current level.

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

12 CHAPTER 1 Running functions in the cloud

This is a common pattern when developing client/server applications and the same
applies to web applications. You need to keep part of the logic outside of the client
(be it a web browser or a mobile device) for a few reasons:

m Sharing, because the information must be used (directly or indirectly) by multi-
ple users of the application

m Security, because the data can be accessed or changed only if specific requirements
are satisfied and the client cannot be trusted to check those requirements by itself

m Access to computing resources or storage capacity not available on a client device

We refer to this external logic required by a front end application as the back end of
the application.

To implement this external logic, the normal approach is either to build a web
application that can be called by the mobile app or to integrate it into an already exist-
ing web application rendering the content for a web browser. But instead of building
and deploying a whole back end web application or extending the functionalities of
your current back end, you can have your web page or your mobile application call
one or more AWS Lambda functions that implement the logic you need. Those func-
tions become your serverless back end.

Security is one of the reasons why you implement back end logic for an applica-
tion, and you must always check the authentication and authorization of end users
accessing your back end. AWS Lambda uses the standard security framework provided
by AWS to control what a function can do, and on which resources. For example, a
function can read from only a specific path of a file share, and write in a certain data-
base table. This framework is based on AWS Identity and Access Management policies
and roles. In this way, taking care of the security required to execute the code is sim-
pler and becomes part of the development process itself. You can tailor security per-
missions specifically for each function, making it much easier to implement a least-
privilege approach for each module (function, in this case) of your application.

DEFINITION By least privilege,] mean a security practice in which you always use
the least privilege you need to perform an action in your application. For
example, if you have a part of your application that’s reading the user profiles
from a central repository to publish them on a web page, you don’t need to
have write access to the repository in that specific module; you only need to read
the subset of information you need to publish. Every other permission on top
of that is in excess of what’s required and can amplify the effects of a possible
attack—for example, allowing malicious users that discover a security breach
in your application to do more harm.

1.3 A single back end for everything

We can use AWS Lambda functions to expose the back end logic of our applications.
But is that enough, or do we need something different to cover all the possible use
cases for a back end application? Do we still need to develop traditional web applica-
tions, beyond the functions provided by AWS?

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

A single back end for everything 13

/ Application back end \

Back end
data

\ /
AN 7/

~ ——

Internet

Back end

logic

Figure 1.6 How users interact via the internet with the back end of an application.
Note that the back end has some logic and some data.

Let’s look at the overall flow and interactions of an application that can be used via a
web browser or a mobile app (figure 1.6). Users interact with the back end via the
internet. The back end has some logic and some data to manage.

The users of your application can use different devices, depending on what you
decide to support. Supporting multiple ways to interact with your application, such as
a web interface, a mobile app, and public application programming interfaces (APIs)
that more advanced users can use to integrate third-party products with your applica-
tion, is critical to success and is a common practice for new applications.

But if we look at the interfaces used by those different devices to communicate
with the back end, we discover that they aren’t always the same: a web browser expects
more than the others, because both the content required by the user interface
(dynamically generated HTML, CSS, JavaScript, multimedia files) and the application
back end logic (exposed via APIs) are required (figure 1.7).

E / Application back end \\

Web browsers
~.
D ~ .
Mobile apps S
Backlend IR ook ong
................... logic .data
RS
loT devices

= SN

Other services

Figure 1.7 Different ways in which users can interact with the back end of an
application. Users using a web browser receive different data than other front
end clients.

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

14 CHAPTER 1 Running functions in the cloud

If the mobile app of a specific service is developed after the web browser interface is
already implemented, the back end application should be refactored to split API func-
tionalities from web rendering—but that’s usually not an easy task, depending on how
the original application was developed. This sometimes causes developers to support
two different back end platforms: one for web browsers serving web content and one
for mobile apps, new devices (for example, wearable, home automation, and Internet
of Things devices), and external services consuming their APIs. Even if the two back
end platforms are well designed and share most of the functionalities (and hence the
code), this wastes the developer’s resources, because for each new feature they have to
understand the impact on both platforms and run more tests to be sure those features
are correctly implemented, while not adding value for their end users.

If we split the back end data between structured content that can go in one or
more databases and unstructured content, such as files, we can simplify the overall
architecture in a couple of steps:

1 Adding a (secure) web interface to the file repository so that it becomes a stand-
alone resource that clients can directly access

2 Moving part of the logic into the web browser using a JavaScript client applica-
tion and bringing it on par with the logic of the mobile app

Such a JavaScript client application, from an architectural point of view, behaves in
the same way as a mobile app, in terms of functionality implemented, security, and
(most importantly for our use case) the interactions with the back end (figure 1.8).
Looking at the back end logic, we now have a single architecture for all clients and the
same interactions and data flows for all the consuming applications. We can abstract
our back end from the actual implementation of the client and design it to serve a

HTML, CSS, JavaScript
and multimedia content

- ~.

~. !/ Application back end AN
Web browsers N :
: T
T M
D :
| v Files
Mobile apps I Back end
logic
| T
@ ! a—]
loT devices L i Databases
~_
o 4 -
: \ /
* : AN J

Other services :
API calls

Figure 1.8 Using a JavaScript application running in the browser, back end
architecture is simplified by serving only APlIs to all clients.

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

Event-driven applications 15

generic client application using standard API calls that we define once and for all possi-
ble end users.

This is an important step because we’ve now decoupled the front end implementa-
tions, which could be different depending on the supported client devices, from the
back end architecture (figure 1.9). Also, later you can add a new kind of client appli-
cation (for example, an application running on wearable devices) without affecting
the back end.

HTML, CSS, JavaScript
and multimedia content

/ Application back end N
T
v
.............. >
........................ | Files
v
Client Back end
application logic
T
: R\
The client application Databases
can be a web browser, : ~—
a mobile app, : \ /

an loT device, : No -7
or another service. :

API calls

Figure 1.9 Think of your clients as a single client application consuming your APls,
which is possible when you decouple the implementation of the back end from the
different user devices that interact with your application.

Looking again at the decoupled architecture, you can see that each of those API calls
takes input parameters, does something in the back end, and returns a result. Does
that remind you of something? Each API call is a function exposed by the back end that
you can implement using AWS Lambda. Applying the same approach, all back end
APIs can be implemented as functions managed by AWS Lambda.

In this way you have a single serverless back end, powered by AWS Lambda, that serves
the same APIs to all clients of your application.

14 Event-driven applications

Up to now, we’ve used the functions provided by AWS Lambda directly, calling them
as back end APIs from the client application. This is what’s usually referred to as a cus-
tom event approach. But you could subscribe a function to receive events from another
resource, for example if a file is uploaded to a repository or if a record in a database
is updated.

Using subscriptions, you can change the internal behavior of the back end so that it
can react not only to direct requests from client applications, but also to changes in the

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

16 CHAPTER 1 Running functions in the cloud

resources that are used by the application. Instead of implementing a centralized work-
flow to support all the interactions among the resources, each interaction is described
by the relationship between the resources involved. For example, if a file is added in a repos-
itory, a database table is updated with new information extracted from the file.

NOTE This approach simplifies the design and the future evolution of the
application, because we’re inherently capitalizing on one of the advantages
that microservices architectures bring: bottom-up choreography among soft-
ware modules is much easier to manage than top-down orchestration.

With this approach, our back end becomes a distributed application, because it’s not
centrally managed and executed anymore, and we should apply best practices from dis-
tributed systems. For example, it’s better to avoid synchronous transactions across mul-
tiple resources, which are difficult and slow to manage, and design each function to
work independently (thanks to event subscriptions) with eventual consistency of data.

DEFINITION By eventual consistency, I mean that we shouldn’t expect the state
of data to always be in sync across all resources used by the back end, but that
the data will eventually converge over time to the last updated state.

Applications designed to react to internal and external events without a centralized
workflow to coordinate processing on the resources are eveni-driven applications. Let’s
introduce this concept with a practical example.

Imagine you want to implement a media-sharing application, where the users can
upload pictures from their client, a web browser or a mobile app, and share those pic-
tures publicly with everyone or only with their friends.

To do that, you need two repositories:

= A file repository for the multimedia content (pictures)

= A database to handle user profiles (user table), friendships among the users
(friendship table), and content metadata (content table).

You need to implement the following basic functionalities:

= Allow users to upload new multimedia content (pictures) with its own metadata.
(By metadata, I mean: Is this content public or shared only among friends? Who
uploaded the file? Where was the picture taken? At what time? Is there a caption?)

= Allow users to get specific content (pictures) shared by other users, but only if
they have permission.

= Getan index of the content a specific user can see (all public content plus what
has been shared with that user by their friends).

» Update content metadata. For example, a user can upload pictures only for
their friends, and then change their mind and make a picture public for every-
one to see.

= Get content metadata to be shown on the client together with the picture
thumbnails; for example, adding the owner of the content, a date, a location,
and a caption.

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

Event-driven applications 17

Of course, a real application needs more features (and more functions), but for the
sake of simplicity we’ll consider only the features listed here for now. You’ll build a
more complex (but still relatively simple) media-sharing application in chapter 8.

Because the content won’t change too quickly, it’s also effective to compute in
advance (precompute) what each user can see in terms of content: end users will
probably look at recent content often, and when they do, they want to see the result
quickly. Using a precomputed index for the most recent content makes the rendering
fast for users and makes the application use fewer computing resources in the back
end. If users go back to older content outside the scope of the precomputed index,
you can still compute that dynamically, but it happens less often and is easier to man-
age. The precomputed indexes must be updated each time the content (files or meta-
data) is updated and when the friendships between users change (because picture
visibility is based on friendship).

You can see those features, and how they access repositories, implemented using
one AWS Lambda function for each feature in figure 1.10.

In this way all interactions from the client application are covered, but you still
miss basic back end functionalities here:

= What happens if a user uploads a new piece of content?

= What happens to the index if the user changes the metadata?

= You need to build thumbnails for the pictures to show them as a preview to
end users.

e AWS Lambda N/ Resources N

Upload content
with metadata

/\—/
/ Get content

| —

. - CI'Ient_ Get content |a
application index

| —

Files
(multimedia)

Update content | -

metadata |

=

Getcontent | L1
metadata | Database

i

Figure 1.10 Features of a sample media-sharing application implemented as AWS Lambda functions,
still missing basic back end functionalities

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

18 CHAPTER 1 Running functions in the cloud

Those new back end features that you want to introduce are different from the previ-
ous ones, because they depend on what’s happening in the back end repositories (files
and database tables, in this case). You can implement those new features as additional
functions that are subscribed to events coming from the repositories. For example:

m If a file (picture) is added or updated, you build the new thumbnail and add it
back to the file repository.

= Ifafile (picture) is added or updated, you extract the new metadata and update
the database (in the content table).

= Whenever the database is updated (user, friendship, or content table), you
rebuild the dependent precomputed indexes, changing what a user can see.

Implementing those functionalities as AWS Lambda functions and subscribing those
functions to the relevant events allows you to have an efficient architecture that drives
updates when something relevant happens in the repositories, without enforcing a
centralized workflow of activities that are required when data is changed by the end
users. You can see a sample architecture implementing those new features as func-
tions subscribed to events in figure 1.11.

Consider in our example the function subscribed to database events: that function
is activated when the database is changed directly by end users (explicitly changing
something in the metadata) or when an update is made by another function (because
a new picture has been uploaded, bringing new metadata with it).

e AWS Lambda N/ Resources ™

Upload content | ...y IO
with metadata. .

Files
(multimedia)

Build
thumbnails.

Get content e - ’
/ and L et "'.//
thumbnails. - i
-— ;- Event:
/ .. hewor
. // updated file
- Bl CI-|ent. Getcontent |4 /'/-~~'
application index. — ,
User Update / Event:
content index. \\\ / new or updated
b content metadata
\ Update content |..... , AN
metadata. ;
Extract ¥ '
— and update
Get content metadata. I
metadata. |eg.oooi b
\ | S —]
\ /
\\ //

~

Figure 1.11 Sample media-sharing application with event-driven functions in the back end, subscribed
to events from back end resources, such as file shares or databases

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

Calling functions from a client 19

You don’t need to manage the two use cases separately; they’re both managed by the
same subscription, a subscription that describes the relationship among the resources
and the action you need to do when something changes.

You’ll see when implementing this media-sharing application that some of the Lambda
functions can be replaced by direct interactions to back end resources. For example, you
can upload new or updated content (together with its own metadata) directly in a file
share. Or update content metadata by directly writing to a database. The Lambda func-
tions subscribed to those resources will implement the required back end logic.

This is a simplified but working example of a media-sharing application with an
event-driven back end. Functions are automatically chained one after the other by the
relationships we created by subscribing them to events. For example, if a picture is
updated with new metadata (say, a new caption), a first function is invoked by the
event generated in the file repository, updating the metadata in the database content
table. This triggers a new event that invokes a second function to update the content
index for all users who can see that content.

NOTE In a way, the behavior I described is similar to a spreadsheet, where
you update one cell and all the dependent cells (sums, average, more complex
functions) are recomputed automatically. A spreadsheet is a good example of
an event-driven application. This is a first step toward reactive programming,
as you’ll see later in the book.

Try to think of more features for our sample media-sharing application, such as creat-
ing, updating, and deleting a user; changing friendships (adding or removing a
friend) and adding the required functions to the previous diagram to cover those
aspects; subscribing (when it makes sense) the new functions to back end resources to
have the flow of the application driven by events and avoid putting all the workflow
logic in the functions themselves.

For example, suppose you have access to a mobile push notification service such as
the Amazon Simple Notification Service (SNS). Think about the best way to use that in
the back end to notify end users if new or updated content is available for them. What
would you need to add, in terms of resources, events, and functions, to figure 1.11?

1.5 Calling functions from a client

In the previous discussion we didn’t consider how, technically, the client application
interacts with the AWS Lambda functions, assuming that a sort of direct invocation
is possible.

As mentioned previously, each function can be invoked synchronously or asynchro-
nously, and a specific AWS Lambda API exists to do that: the Invoke API (figure 1.12).

6 - Client AWS Lambda
application function Figure 1.12 Calling

User : AWS Lambda functions
AWS Lambda from a client application
Invoke API using the Invoke API

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

20

CHAPTER 1 Running functions in the cloud

To call the Invoke API, AWS applies the standard security checks and requires that the
client application has the right permissions to invoke the function. As per all other
AWS APIs, you need AWS credentials to authenticate, and based on that authentica-
tion, AWS verifies whether those credentials have the right authorization to execute
that API call (Invoke) on that specific resource (the function).

TIP We’ll discuss the security model used by AWS Lambda in more detail in
chapter 4. The most important thing to remember now is to never put security
credentials in a client application, be that a mobile app or a JavaScript web
application. If you put security credentials in something you deliver to end
users, such as a mobile app or HTML or JavaScript code, an advanced user
can find the credentials and compromise your application. In those cases,
you need to use a different approach to authenticate a client application
with the back end.

In the case of AWS Lambda, and all other AWS APIs, it’s possible to use a specific ser-
vice to manage authentication and authorization in an easy way: Amazon Cognito.
With Amazon Cognito, the client can authenticate using an external social or cus-
tom authentication (such as Facebook or Amazon) and get temporary AWS creden-
tials to invoke the AWS Lambda functions the client is authorized to use (figure 1.13).

Get temporary
AWS credentials.

Amazon
Cognito

. —— Client AWS Lambda | Figure 1.13 Using
application function Amazon Coghnito to
User : authenticate and
AWS Lambda authorize invocation for
Invoke API AWS Lambda functions

NOTE Amazon Cognito provides a simplified interface to other AWS services,
such as AWS Identity and Access Management (IAM) and AWS Security Token
Service (STS). Figure 1.12 makes the flow easier to visualize, not including all
details for the sake of simplicity.

Moving a step forward, it’s possible to replace the direct use of the AWS Lambda
Invoke API by clients with your own web APIs that you can build by mapping the
access to AWS Lambda functions to more generic HTTP URLs and verbs.

For example, let’s implement the web API for a bookstore. Users may need to list
books, get more information for a specific book, and add, update, or delete a book.
Using the Amazon API Gateway, you can map the access to a specific resource (the
URL of the bookstore or a specific book) with an HTTP verb (GET, POST, PUT, DELETE,
and so on) to the invocation of an AWS Lambda function. See table 1.1 for a sample
configuration.

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

Calling functions from a client 21

Table 1.1 A sample web API for a bookstore

Resource + HTTP verb - Method (function)
/books + GET - GetAllBooksByRange
/books + POST - CreateNewBook
/books/{id} + GET - GetBookById
/books/{id} + PUT - CreateOrUpdateBookById
/books/{id} + DELETE - DeleteBookById

Let’s look at the example in table 1.1 in more detail:

» Ifyoudoan HTTP GET on the /books resource, you execute a Lambda function
(GetAllBooksByRange) that will return a list of books, depending on a range
you can optionally specify.

= If you do an HTTP POST on the same URL, you create a new book (using the
CreateNewBook function) and get the ID of the book as the result.

= With an HTTP GET on /books/ID, you execute a function (GetBookById) that
will give you a description (a representation, according to the REST architec-
ture style) of the book with that specific ID.

= And so on for the other examples in the table.

NOTE You don’t need to have a different Lambda function for every resource
and HTTP verb (method) combination. You can send the resource and the
method as part of the input parameters of a single function that can then pro-
cess it to understand if it has been triggered by a GET or a POST. The choice
between having more and smaller functions, or fewer and bigger ones, depends
on your programming habits.

But the Amazon API Gateway adds more value than that, such as caching results to
reduce load on the back end, throttling to avoid overloading the back end in peak
moments, managing developer keys, generating the SDKs for the web API you design
for multiple platforms, and other features that we’ll start to see in chapter 2.

What’s important is that by using the Amazon API Gateway we’re decoupling the cli-
ent from directly using AWS Lambda, exposing a clean web API that can be consumed
by external services that should have no knowledge of AWS. However, even with the
web API exposed by the Amazon API Gateway, we can optionally use AWS credentials
(and hence Amazon Cognito) to manage authentication and authorization for the cli-
ents (figure 1.14).

With the Amazon API Gateway, we can also give public access to some of our web
APIs. By public access I mean that no credentials are required to access those web APIs.
Because one of the possible HTTP verbs that we can use in configuring an API is GET,

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

22 CHAPTER 1 Running functions in the cloud

Get temporary
AWS credentials.

Amazon
Cognito

- - Client Amazon AWS Lambda
application API| Gateway function
User i i
: Figure 1.14 Using the
Web API modeling, Amazon API Gateway to
caching, throttling, access functions via
logging, CDN, and so on web APIs

and GET is the default that is used when you type a URL in a web browser, we can use
this configuration to create public websites whose URLs are dynamically served by
AWS Lambda functions (figure 1.15).

Client Amazon AWS Lambda Figure 1.15 Using the
application API| Gateway function
: Amazon API Gateway to

give public access to an

Web API modeling, APl a.nd create public
caching, throttling, websites backed by
logging, CDN, and so on AWS Lambda

In fact, the web API exposed publicly via the HTTP GET method can return any con-
tent type, including HTML content, such as a web page that can be seen in a browser.

TIP For an example of a joint use of AWS Lambda and the Amazon API
Gateway to build dynamic websites, see the Serverless framework at http://
www.serverless.com/.

Summary
In this first chapter, I introduced the core topics that will be seen in depth in the rest
of the book:

= An overview of AWS Lambda functions.

= Using functions to implement the back end of an application.

= Having a single back end for different clients, such as web browsers and mobile

apps.

= An overview of how event-driven applications work.

= Managing authentication and authorization from a client.

» Using Lambda functions from a client, directly or via the Amazon API Gateway.

Now let’s put all this theory into practice and build our first functions.

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

SOFTWARE DEVELOPMENT/CLOUD

AWS Lambda v action

Danilo Poccia

ith AWS Lambda, you write your code and upload it to
the AWS cloud. AWS Lambda responds to the events

triggered by your application or your users, and auto-
matically manages the underlying computer resources for you.
Back-end tasks like analyzing a new document or processing
requests from a mobile app are easy to implement. Your ap-
plication is divided into small functions, leading naturally to a
reactive architecture and the adoption of microservices.

AWS Lambda in Action is an example-driven tutorial that
teaches you how to build applications that use an event-driven
approach on the back-end. Starting with an overview of AWS
Lambda, the book moves on to show you common examples
and patterns that you can use to call Lambda functions from
a web page or a mobile app. The second part of the book puts
these smaller examples together to build larger applications.
By the end, you'll be ready to create applications that take
advantage of the high availability, security, performance, and
scalability of AWS.

What's Inside

e Create a simple API

* Create an event-driven media-sharing application

* Secure access to your application in the cloud

* Use functions from different clients like web pages
or mobile apps

* Connect your application with external services

Requires basic knowledge of JavaScript. Some examples are
also provided in Python. No AWS experience is assumed.

Danilo Poccia is a technical evangelist at Amazon Web Services
and a frequent speaker at public events and workshops.

To download their free eBook in PDF, ePub, and Kindle formats, owners

of this book should visit www.manning.com/books/aws-lambda-in-action

$49.99 / Can $57.99 [INCLUDING eBOOK]

www.itbook.store/books/9781617293719

¢¢Clear and concise ...
the code samples are as well
structured as the writing.??

—From the Foreword by
James Governor, RedMonk

¢CA superb guide to an
important aspect of AWS.??
—Ben Leibert, VillageReach

¢CStep-by-step examples

and clear prose make this
the go-to book for
AWS Lambda!??

—Dan Kacenjar, Wolters Kluwer

¢Like Lambda itself, this

book is easy to follow, concise,
and very functional.”?

—Christopher Haupt, New Relic

ISBN-13: 978-1-E1729-371-9
ISBN-10: 1L-EL729-37L-7

“ ‘ “‘” “|‘ Il
9781617293719

https://itbook.store/books/9781617293719

