
M A N N I N G

Danilo Poccia
FOREWORD BY James Governor

Event-driven serverless applications

S A M P L E C H A P T E R

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

AWS Lambda in Action

by Danilo Poccia

 Chapter 8

 Copyright 2017 Manning Publications

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

v

brief contents
PART 1 FIRST STEPS ..1

1 ■ Running functions in the cloud 3

2 ■ Your first Lambda function 23

3 ■ Your function as a web API 38

PART 2 BUILDING EVENT-DRIVEN APPLICATIONS.......................61

4 ■ Managing security 63

5 ■ Using standalone functions 83

6 ■ Managing identities 111

7 ■ Calling functions from a client 126

8 ■ Designing an authentication service 151

9 ■ Implementing an authentication service 164

10 ■ Adding more features to the authentication service 187

11 ■ Building a media-sharing application 216

12 ■ Why event-driven? 250

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

BRIEF CONTENTSvi

PART 3 FROM DEVELOPMENT TO PRODUCTION273

13 ■ Improving development and testing 275

14 ■ Automating deployment 296

15 ■ Automating infrastructure management 314

PART 4 USING EXTERNAL SERVICES ..325

16 ■ Calling external services 327

17 ■ Receiving events from other services 339

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

151

Designing an
authentication service

In the previous chapter you learned how to use standalone Lambda functions from
different client applications:

■ A web page, using JavaScript
■ A native Mobile App, with the help of the AWS Mobile Hub to generate your

starting code
■ An Amazon API Gateway to generate server-side dynamic content for web

browsers

Now it’s time to build your first event-driven serverless application, using multiple
functions together to achieve your purpose. Your goal is to implement a sample
authentication service that can be used by itself or together with Amazon Cognito
with developer-authenticated identities.

This chapter covers
■ Designing a sample event-driven application
■ Interacting with your users via JavaScript
■ Sending emails from Lambda functions
■ Storing data in Amazon DynamoDB
■ Managing encrypted data

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

152 CHAPTER 8 Designing an authentication service

NOTE The authentication service you’re going to build is an example of an
event-driven serverless application and hasn’t been validated by a security
audit. If you need such a service, my advice is to use an already built and pro-
duction-ready implementation, such as Amazon Cognito User Pools.

You’ll define the architecture of your serverless back end built with AWS Lambda. In
the chapter after this one, you’ll implement all the required components. The first
step is to define how your users interact with the application.

8.1 The interaction model
To make your application easy to use for a broad range of use cases, the main inter-
face for your users is the web browser. Via a web browser, users can access static HTML
pages that include JavaScript code, which can call one or more Lambda functions to
execute code in the back end. At the end of the chapter, you’ll see how it is easy to reuse
the same flow and architecture with a mobile app.

The HTML pages, JavaScript code, and any other file required to render the page cor-
rectly on the web browser (such as CSS style sheets) can be stored on Amazon S3 as
publicly readable objects. To store structured data, such as user profiles and passwords,

Using the Amazon API Gateway
Another option, instead of calling Lambda functions directly from the client applica-
tion, is to model a RESTful API with the Amazon API Gateway, using features similar
to what you learned in chapter 3. The advantage of this approach is the decoupling
of the client application from the actual back-end implementation:

■ You call a Web API from the client application and not a Lambda function.
■ You can easily change the back end implementation to (or from) AWS Lambda

at any time, without affecting the development of the client application (for
example, a web or mobile app).

■ You can potentially open your back end to other services, publishing a public API
that can further extend the reach of your application.

The Amazon API Gateway provides other interesting features, such as

■ SDK generation
■ Caching of function results
■ Throttling to withstand traffic spikes

However, for the purpose of this book, I decided to use AWS Lambda directly in the
authentication service. This makes the overall implementation simpler to build and
more understandable for a first-time learner.

If you’re building a new application, I advise you to evaluate the pros and cons of
using the Amazon API Gateway as I did and make an informed decision.

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

153The interaction model

Lambda functions can use DynamoDB tables. A summary of this interaction model is
shown in figure 8.1.

TIP Because the client side of the application is built using HTML pages and
JavaScript code, it’s relatively easy to repackage it as a hybrid mobile app,
using frameworks such as Apache Cordova (formerly PhoneGap). Hybrid apps
are popular because you can develop a mobile client once and use it in multi-
ple environments, such as iOS, Android, and Windows Mobile. For more infor-
mation on using Apache Cordova to implement mobile apps, please look at:
https://cordova.apache.org.

It’s important for an authentication service to verify contact data provided by users. A
common use case is to verify that the email address given by a user is valid. To do that,
the Lambda functions in the back end need to send emails to the users. To avoid the
complexity of configuring and managing an email server, you can use Amazon Simple
Email Services (SES) to send emails. This allows you to extend your interaction model
adding this capability (figure 8.2).

NOTE Amazon SES is a fully managed email service that you can use to
send any volume of email, and receive emails that can be automatically
stored on Amazon S3 or processed by AWS Lambda. When you receive an
email with Amazon SES, you can also send a notification using Amazon Sim-
ple Notification Service (SNS). For more information on Amazon SES, see
https://aws.amazon.com/ses/.

User

Web
browser

Users

Amazon S3 AWS Lambda

Amazon
DynamoDB

Static
HTML Page +

JavaScript Code

function1

Figure 8.1 The first step in implementing the interaction model for your application: using
a web browser to execute back end logic via Lambda functions that can store data on
DynamoDB tables

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

154 CHAPTER 8 Designing an authentication service

When a user receives an email sent by Amazon SES, you need a way of interacting with
your back end to complete the verification process. To do that, you can include in the
body of the email a link to the URL of another static HTML page on Amazon S3.
When the user clicks the link, the web browser will open that page and execute the
JavaScript code that’s embedded in the page. The execution includes the invocation
of another Lambda function that can interact with the data stored in Amazon Dyna-
moDB (figure 8.3).

 Now that you know how to interact with your users using a web browser or by send-
ing emails, you can design the overall architecture of the authentication service.

8.2 The event-driven architecture
Every static HTML page you put on Amazon S3 can potentially be used as an interactive
step to engage the user. If you compare this with a native mobile app, each of those
pages can behave similarly to an activity in Android or a scene in iOS.

 As the first step, you’ll implement a menu of all possible actions users can perform
(such as sign-up, login, or change password) and put that in an index.html page (fig-
ure 8.4). For now, this page doesn’t require any client logic, so you have no JavaScript
code to execute; it’s a list of actions linking to other HTML pages.

SendEmail

Email

Amazon
SES

User

Web
browser

Users

Amazon S3 AWS Lambda

Amazon
DynamoDB

Static
HTML page +

JavaScript code

function1

Figure 8.2 Adding the capability for Lambda functions to send emails to the
users, via Amazon SES. In this way you can verify the validity of email addresses
provided by users.

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

155The event-driven architecture

Static
HTML page +

JavaScript code
function2

SendEmail

Email

Amazon
SES

User

Web
browser

Users

Amazon S3 AWS Lambda

Amazon
DynamoDB

Static
HTML page +

JavaScript code

function1

Figure 8.3 Emails received by users can include links to other HTML pages that
can execute JavaScript code and invoke other Lambda function to interact with
back-end data repositories such as DynamoDB tables.

SendEmail

Email

Amazon
SES

User

Web
browser

Users

Amazon S3 AWS Lambda

Amazon
DynamoDB

signUp.html
signUp.js

verify.html
verify.js

index.html

createUser

verifyUser

Figure 8.4 The first HTML pages, JavaScript files, and Lambda functions
required to sign up new users and verify their email addresses

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

156 CHAPTER 8 Designing an authentication service

Next, you’ll want users to sign up and create a new account using a signUp.html page.
This page needs JavaScript code to invoke the createUser Lambda function (see fig-
ure 8.4).

TIP To simplify separate management of the user interface (in the HTML
page) and the client-side login (in the JavaScript code), put the JavaScript
code in a separate file, with the same name as the HMTL page, but with the .js
extension (for example, signUp.js in this case).

The createUser Lambda function takes as input all the information provided by a
new user (such as the email and the password) and stores it in the Users DynamoDB
table. A new user is flagged as unverified on the table because you don’t know if the
provided email address is correct. To verify that the email address given by the user is
valid and that the user can receive emails at that address, the createUser function
sends an email to the user (via Amazon SES).

 The email sent to the user has a link to the verify.html page that includes a query
parameter with a unique identifier (for example, a token) that’s randomly generated
for that specific user and stored in the Users DynamoDB table. For example, the link
in the HTML page would be similar to the following:

http://some.domain/verify.html?token=<some unique identifier>

The JavaScript code in the verify.html page can read the unique identifier (token)
from the URL and send it as input (as part of the event) to the verifyUser Lambda
function. The function can check the validity of the token and change the status of
the user to “verified” on the DynamoDB table.

 A verified user can log in using the provided credentials (email, password). You
can use a login.html page and a login Lambda function to check in the User table
that the user is verified and the credentials are correct (figure 8.5). At first, this func-
tion can return the login status as a Boolean value (true or false). You’ll learn later
in this chapter how to federate the authentication service you’re building with Ama-
zon Cognito as a developer-authenticated identity.

 Another important capability is for your users to change their passwords. Chang-
ing passwords periodically (for example, every few months) is a good practice to
reduce the risk associated with compromised credentials.

 You can add a changePassword.html page that can use a changePassword Lambda
function to update credentials in the Users DynamoDB table (figure 8.6). But this page
is different from others: only an authenticated user can change their own password.

 There are two possible implementations that you can use for secure access to the
changePassword function:

1 Add the current password to the input event of the function, to check the
authentication of the user before changing the password.

2 Use Amazon Cognito, via the login function, to provide an authenticated status
to the user.

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

157The event-driven architecture

SendEmail

Email

Amazon
SES

User

Web
browser

Users

Amazon S3 AWS Lambda

Amazon
DynamoDB

signUp.html
signUp.js

verify.html
verify.js

login.html
login.js

index.html

createUser

verifyUser

login

Figure 8.5 Adding a login page to test the provided credentials and the validity
of the user in the Users repository

SendEmail

Email

Amazon
SES

User

Web
browser

Users

Amazon S3 AWS Lambda

Amazon
DynamoDB

signUp.html
signUp.js

verify.html
verify.js

changePassword.html
changePassword.js

login.html
login.js

index.html

createUser

verifyUser

changePassword

login

Figure 8.6 The page to allow users to change their passwords is calling a
function that must be protected so that only authenticated users can use it.

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

158 CHAPTER 8 Designing an authentication service

The first solution is easy to implement (for example, reusing code from the login
function), but because we’re going to federate this authentication service with Ama-
zon Cognito, let’s make this example more interesting and go for the second option.

 As you may recall, HTML pages need to get AWS credentials from Amazon Cog-
nito to invoke Lambda functions. In all examples so far, we used only unauthenticated
users; to allow those users to invoke a Lambda function, we added those functions to
the unauthenticated IAM role associated with the Cognito identity pool.

 To protect access to the changePassword function, you’ll add this function to the
authenticated IAM role (and not to the unauthenticated role). The same approach
will work for any function that needs to be executed by only authenticated users.

 Sometimes users need to change passwords because they forgot their current one.
In those cases, you can use their email address to validate their request in a way similar
to what you did for the initial sign-up: send an email with an embedded link and a
unique identifier.

 The lostPassword.html page is calling a lostPassword Lambda function to gen-
erate a unique identifier (resetToken) that’s stored in the Users DynamoDB table.
The resetToken is then sent to the user as a query parameter in a link embedded in a
verification email (figure 8.7).

SendEmail

Email

Amazon
SES

User

Web
browser

Users

Amazon S3 AWS Lambda

Amazon
DynamoDB

signUp.html
signUp.js

verify.html
verify.js

changePassword.html
changePassword.js

resetPassword.html
resetPassword.js

login.html
login.js

lostPassword.html
lostPassword.js

index.html

createUser

verifyUser

changePassword

lostPassword

resetPassword

login

Figure 8.7 In case of a lost password, a lost password page is used to send an
email with an embedded link to reset the password. A unique identifier, stored in
the DynamoDB table and part of the reset password link, is used to verify that
the user making the request to reset the password is the same user who receives
the email.

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

159Working with Amazon Cognito

For example, the link can be something similar to the following:

http://some.domain/resetPassword?resetToken=<some unique identifier>

The user can then open the email and click the link to the resetPassword.html page,
which will ask for a new password and then call a resetPassword Lambda function to
check the unique identifier (resetToken) in the Users DynamoDB table. If the identi-
fier is correct, the function will change the password to the new value.

 You’ve now designed the overall flow and the necessary components to cover the
basic functionalities for implementing the authentication service. But before you move
into the implementation phase in the next chapter, you’ll learn how to federate the
authentication with Amazon Cognito, and define how to implement other details. By
identity federation I mean having an authorization service (Amazon Cognito in this
case) trusting the authentication of an external service (the sample authentication ser-
vice you are building).

NOTE Instead of creating multiple Lambda functions, one for each HTML
page, you could create a single Lambda function and pass the kind of action
(for example signUp or resetPassword) as part of the input event. You’d
have fewer functions to manage (potentially, only one) but the codebase of
that function would be larger and more difficult to evolve and extend with
further functionalities. Following a microservices approach, my advice is to
have multiple smaller functions, each one with a well-defined input/output
interface that you can update and deploy separately. However, the right bal-
ance between function size and the number of functions to implement
depends on your actual use case and programming style. If you need to aggre-
gate multiple functions into a single service call, the Amazon API Gateway is
the place to do that instead of the functions themselves.

8.3 Working with Amazon Cognito
To use the authentication service with Amazon Cognito, you need to add to the
login Lambda function a call to Amazon Cognito to get a token for a developer
identity. The login function can then return the authentication token for a correct
authentication.

 The JavaScript code in the page can use that token to authenticate with Amazon
Cognito and get AWS temporary credentials for the authenticated role (figure 8.8).

WARNING The AWS credentials returned by Amazon Cognito are temporary
and expire after a period of time. You need to manage credential rotation—
for example, using the JavaScript setInterval() method to periodically call
Amazon Cognito to refresh the credentials.

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

160 CHAPTER 8 Designing an authentication service

8.4 Storing user profiles
To store user profiles, you’re using the Users DynamoDB table in this sample applica-
tion. Generally speaking, in a Lambda function you can use any repository reachable
via the internet, or that’s deployed on AWS in an Amazon Virtual Private Cloud (VPC),
or deployed on-premises and connected to an Amazon VPC with a VPN connection.
I’m using Amazon DynamoDB because it’s a fully-managed NoSQL database service
that embraces the serverless approach of this book.

 In Amazon DynamoDB, when you create a new table, only the primary key must be
declared and must be used in all items in the table. The rest of the table schema is flexi-
ble and other attributes can be used (or not) to add more information to any item.

NOTE A DynamoDB item is a collection of attributes, and each attribute has a
name and a value. For more details on how to work with items, see https://
docs.aws.amazon.com/amazondynamodb/latest/developerguide/Working-
WithItems.html.

The primary key must be unique for an item and can be composed of a single hash key
(for example, a user ID), or of a hash key together with a range key (such as a user ID
and a validity date).

 For this authentication service, the email of the user is a unique identifier that you
can use as hash key, without a range key. If you want to have multiple items for the
same users—for example, to keep track of changes and updates in the user profile—
you could use a composed primary key with the email as hash key and a validity date in
the sort key.

8.5 Adding more data to user profiles
Because Amazon DynamoDB doesn’t enforce a schema outside of the primary key,
you can freely add more attributes to any item in a table. Different items can have

User

Web
browser

login Users

Amazon S3 AWS Lambda

Amazon
DynamoDB

2. Get temporary AWS
credentials for the authenticated

role using the Developer Identity Token.

Amazon
Cognito

1. Get Token for
Developer Identity.

login.html
login.js

Figure 8.8 Integrating the login function with Cognito Developer Authenticated Identities. The
login function gets the token from Amazon Cognito, and then the JavaScript code running in the
browser can get AWS Credentials for the authenticated role by passing the token as a login.

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

161Encrypting passwords

different attributes. For example, to flag newly created users as unverified, you can
add an unverified attribute equal to true.

 When a user email is verified, instead of keeping the unverified attribute with a
false value, you can remove it from the item using the assumption that if the unver-
ified attribute isn’t present, the user is verified. This approach (that can be easily
used with Boolean values) provides a compact and efficient usage of the database stor-
age, especially if you create an index on the unverified attribute, because only items
with that attribute are part of the index.

 Amazon DynamoDB also supports a JSON Document Model, so that the value of
an attribute can be a JSON document. In this way, you can further extend the possibil-
ity of storing data in a hierarchical and structured way. For example, in the AWS
JavaScript SDK, you can use the document client to have native JavaScript data types
mapped to and from DynamoDB attributes.

 For more information on the document client in the AWS JavaScript SDK, see
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/Document-
Client.html.

8.6 Encrypting passwords
When managing passwords, certain interactions are critical and must be secured. For
example, the following are not secure:

■ Storing passwords in plain text in a database table, because any user who has
read access to the database table can intercept user credentials

■ Sending passwords on an insecure channel, where malicious eavesdropping
users can intercept user credentials

For this authentication service, you’ll store the password as encrypted using a salt. In
cryptography, a salt is random data that’s generated for each password and used as an
additional input to a one-way function that computes a hash of the password that’s
stored in the user profile, together with the salt:

hashingFunction(password, salt) = hash

To test the password in a login, the salt is read from the user profile and the same
hashing function is used to compare the result with the stored hash. For example,

if hashingFunction(inputPassword, salt) == hash then // Logged in...

If user profiles are compromised and a malicious user has access to the database con-
tent, the use of a salt can protect against dictionary attacks, which use a list of com-
mon passwords versus a list of password hashes.

TIP Common hashing functions, used in the past for salting passwords, were
MD5 and SHA1, but they’ve been demonstrated to not be robust enough to
protect against specific attacks. You have to check the robustness of a hashing
function at the time you use it.

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

162 CHAPTER 8 Designing an authentication service

In the login phase, you send the password over a secure channel, because the AWS
API, used by the login.html page to invoke the login Lambda function, is using
HTTPS as transport.

TIP This approach is secure enough for a sample implementation, but for a
more robust solution you should never send the password as plain text. Use a
challenge-response authentication, such as that implemented by the Secure
Remote Password (SRP) protocol, used by Amazon Cognito User Pools. For
more information on the SRP protocol, see http://srp.stanford.edu.

For a more in-depth analysis of password security in case of remote access, I suggest
you to have a look at “Password Security: A Case History” by Robert Morris and Ken
Thompson (1978), https://www.bell-labs.com/usr/dmr/www/passwd.ps.

Summary
In this chapter you designed the overall architecture of your first event-driven appli-
cation, a sample authentication service using AWS lambda to implement the back-
end logic.

 In particular, you learned how to do the following:

■ Interact with a client application via a static HTML page using JavaScript
■ Differentiate between authenticated and unauthenticated access
■ Send emails and interact using custom links in the email body
■ Map application functionality to different components in the architecture
■ Federate the custom authentication service with Amazon Cognito
■ Use Amazon DynamoDB to store user profiles
■ Use encryption to protect passwords from being intercepted and compromised

In the next chapter, you’ll implement this sample authentication service.

EXERCISE

1 To send an email from a web page, you can

a Use JavaScript in the browser to use SMTP
b Use JavaScript in the browser to use IMAP
c Use a Lambda function to call Amazon SES
d Use a Lambda function to call Amazon SQS

2 To give access to a Lambda function only to authenticated users coming from a
web or mobile app, you can

a Use AWS IAM users and groups to give access to the function to authenti-
cated users only

b Use Amazon Cognito and give access to the function to the authenticated
role only

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

163Summary

c Use AWS IAM users and groups to give access to the function to unauthenti-
cated users only

d Use Amazon Cognito and give access to the function to the unauthenticated
role only

3 The most secure way to validate a user password with a login service is to

a Use a challenge-response interface such as CAPTCHA
b Send the password over HTTP
c Use a challenge-response protocol such as SRP
d Send the password via email

Solution

1 c
2 b
3 c

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

Danilo Poccia

W
ith AWS Lambda, you write your code and upload it to
the AWS cloud. AWS Lambda responds to the events
triggered by your application or your users, and auto-

matically manages the underlying computer resources for you.
Back-end tasks like analyzing a new document or processing
requests from a mobile app are easy to implement. Your ap-
plication is divided into small functions, leading naturally to a
reactive architecture and the adoption of microservices.

AWS Lambda in Action is an example-driven tutorial that
teaches you how to build applications that use an event-driven
approach on the back-end. Starting with an overview of AWS
Lambda, the book moves on to show you common examples
and patterns that you can use to call Lambda functions from
a web page or a mobile app. The second part of the book puts
these smaller examples together to build larger applications.
By the end, you’ll be ready to create applications that take
advantage of the high availability, security, performance, and
scalability of AWS.

What’s Inside
● Create a simple API
● Create an event-driven media-sharing application
● Secure access to your application in the cloud
● Use functions from different clients like web pages
 or mobile apps
● Connect your application with external services

Requires basic knowledge of JavaScript. Some examples are
also provided in Python. No AWS experience is assumed.

Danilo Poccia is a technical evangelist at Amazon Web Services
and a frequent speaker at public events and workshops.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit www.manning.com/books/aws-lambda-in-action

$49.99 / Can $57.99 [INCLUDING eBOOK]

AWS Lambda IN ACTION

SOFTWARE DEVELOPMENT/CLOUD

M A N N I N G

“Clear and concise …
the code samples are as well
structured as the writing.”

—From the Foreword by
James Governor, RedMonk

“A superb guide to an
 important aspect of AWS.”—Ben Leibert, VillageReach

“Step-by-step examples
and clear prose make this

the go-to book for
 AWS Lambda!”—Dan Kacenjar, Wolters Kluwer

“Like Lambda itself, this
book is easy to follow, concise,

and very functional.”
—Christopher Haupt, New Relic

SEE INSERT

www.itbook.store/books/9781617293719

https://itbook.store/books/9781617293719

