SAMPLE CHAPTER

T

ubernetes
N ACTION

Marko Luk3a

/l’l MANNING

https://itbook.store/books/9781617293726

Kubernetes in Action

by Marko Luksa

Chapter 1

Copyright 2018 Manning Publications

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

brief contents

PART 1 OVERVIEW

1 Introducing Kubernetes 1

2 First steps with Docker and Kubernetes 25

PART 2 CORE CONCEPTS

3 Pods: running containers in Kubernetes 55

4 Replication and other controllers: deploying
managed pods 84

5 Services: enabling clients to discover and talk
to pods 120

Volumes: attaching disk storage to containers 159
ConfigMaps and Secrets: configuring applications 191

Accessing pod metadata and other resources from
applications 225

9 Deployments: updating applications declaratively 250

10 StatefulSets: deploying replicated stateful
applications 280

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

BRIEF CONTENTS

PART 3 BEYOND THE BASICS

11
12
13
14
15
16
17
18

www.itbook.store/books/9781617293726

Understanding Kubernetes internals 309
Securing the Kubernetes API server 346
Securing cluster nodes and the network 375
Managing pods’ computational resources 404
Automatic scaling of pods and cluster nodes 437
Advanced scheduling 457

Best practices for developing apps 477
Extending Kubernetes 508

https://itbook.store/books/9781617293726

Introducing Kubernetes

This chapter covers

= Understanding how software development and
deployment has changed over recent years

= |solating applications and reducing environment
differences using containers

= Understanding how containers and Docker are
used by Kubernetes

= Making developers’ and sysadmins’ jobs easier
with Kubernetes

Years ago, most software applications were big monoliths, running either as a single
process or as a small number of processes spread across a handful of servers. These
legacy systems are still widespread today. They have slow release cycles and are
updated relatively infrequently. At the end of every release cycle, developers pack-
age up the whole system and hand it over to the ops team, who then deploys and
monitors it. In case of hardware failures, the ops team manually migrates it to the
remaining healthy servers.

Today, these big monolithic legacy applications are slowly being broken down
into smaller, independently running components called microservices. Because

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

2 CHAPTER 1 Introducing Kubernetes

microservices are decoupled from each other, they can be developed, deployed, updated,
and scaled individually. This enables you to change components quickly and as often as
necessary to keep up with today’s rapidly changing business requirements.

But with bigger numbers of deployable components and increasingly larger data-
centers, it becomes increasingly difficult to configure, manage, and keep the whole
system running smoothly. It’s much harder to figure out where to put each of those
components to achieve high resource utilization and thereby keep the hardware costs
down. Doing all this manually is hard work. We need automation, which includes
automatic scheduling of those components to our servers, automatic configuration,
supervision, and failure-handling. This is where Kubernetes comes in.

Kubernetes enables developers to deploy their applications themselves and as
often as they want, without requiring any assistance from the operations (ops) team.
But Kubernetes doesn’t benefit only developers. It also helps the ops team by automat-
ically monitoring and rescheduling those apps in the event of a hardware failure. The
focus for system administrators (sysadmins) shifts from supervising individual apps to
mostly supervising and managing Kubernetes and the rest of the infrastructure, while
Kubernetes itself takes care of the apps.

NOTE Kubernetes is Greek for pilot or helmsman (the person holding the
ship’s steering wheel). People pronounce Kubernetes in a few different ways.
Many pronounce it as Koo-ber-nay-tace, while others pronounce it more like
Koo-ber-netties. No matter which form you use, people will understand what
you mean.

Kubernetes abstracts away the hardware infrastructure and exposes your whole data-
center as a single enormous computational resource. It allows you to deploy and run
your software components without having to know about the actual servers under-
neath. When deploying a multi-component application through Kubernetes, it selects
a server for each component, deploys it, and enables it to easily find and communi-
cate with all the other components of your application.

This makes Kubernetes great for most on-premises datacenters, but where it starts
to shine is when it’s used in the largest datacenters, such as the ones built and oper-
ated by cloud providers. Kubernetes allows them to offer developers a simple platform
for deploying and running any type of application, while not requiring the cloud pro-
vider’s own sysadmins to know anything about the tens of thousands of apps running
on their hardware.

With more and more big companies accepting the Kubernetes model as the best
way to run apps, it’s becoming the standard way of running distributed apps both in
the cloud, as well as on local on-premises infrastructure.

1.1 Understanding the need for a system like Kubernetes

Before you start getting to know Kubernetes in detail, let’s take a quick look at how
the development and deployment of applications has changed in recent years. This
change is both a consequence of splitting big monolithic apps into smaller microservices

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

Understanding the need for a system like Kubernetes 3

and of the changes in the infrastructure that runs those apps. Understanding these
changes will help you better see the benefits of using Kubernetes and container tech-
nologies such as Docker.

1.1.1 Moving from monolithic apps to microservices

Monolithic applications consist of components that are all tightly coupled together and
have to be developed, deployed, and managed as one entity, because they all run as a sin-
gle OS process. Changes to one part of the application require a redeployment of the
whole application, and over time the lack of hard boundaries between the parts results
in the increase of complexity and consequential deterioration of the quality of the whole
system because of the unconstrained growth of inter-dependencies between these parts.

Running a monolithic application usually requires a small number of powerful
servers that can provide enough resources for running the application. To deal with
increasing loads on the system, you then either have to vertically scale the servers (also
known as scaling up) by adding more CPUs, memory, and other server components,
or scale the whole system horizontally, by setting up additional servers and running
multiple copies (or replicas) of an application (scaling out). While scaling up usually
doesn’t require any changes to the app, it gets expensive relatively quickly and in prac-
tice always has an upper limit. Scaling out, on the other hand, is relatively cheap hard-
ware-wise, but may require big changes in the application code and isn’t always
possible—certain parts of an application are extremely hard or next to impossible to
scale horizontally (relational databases, for example). If any part of a monolithic
application isn’t scalable, the whole application becomes unscalable, unless you can
split up the monolith somehow.

SPLITTING APPS INTO MICROSERVICES

These and other problems have forced us to start splitting complex monolithic appli-
cations into smaller independently deployable components called microservices. Each
microservice runs as an independent process (see figure 1.1) and communicates with
other microservices through simple, well-defined interfaces (APIs).

Monolithic application Microservices-based application
Server 1 Server 1 Server 2
Process 1.1 Process 2.1

QA
O

Single process Process 1.2 Process 2.2

Figure 1.1 Components inside a monolithic application vs. standalone microservices

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

4 CHAPTER 1 Introducing Kubernetes

Microservices communicate through synchronous protocols such as HT'TP, over which
they usually expose RESTful (REpresentational State Transfer) APIs, or through asyn-
chronous protocols such as AMQP (Advanced Message Queueing Protocol). These
protocols are simple, well understood by most developers, and not tied to any specific
programming language. Each microservice can be written in the language that’s most
appropriate for implementing that specific microservice.

Because each microservice is a standalone process with a relatively static external
API, it’s possible to develop and deploy each microservice separately. A change to one
of them doesn’t require changes or redeployment of any other service, provided that
the API doesn’t change or changes only in a backward-compatible way.

SCALING MICROSERVICES

Scaling microservices, unlike monolithic systems, where you need to scale the system as
a whole, is done on a per-service basis, which means you have the option of scaling only
those services that require more resources, while leaving others at their original scale.
Figure 1.2 shows an example. Certain components are replicated and run as multiple
processes deployed on different servers, while others run as a single application process.
When a monolithic application can’t be scaled out because one of its parts is unscal-
able, splitting the app into microservices allows you to horizontally scale the parts that
allow scaling out, and scale the parts that don’t, vertically instead of horizontally.

Single instance
(possibly not scalable)

Server 1 Server 2 Server 3 Server 4
Process 1.1 Process 2.1 Process 3.1 Process 4.1
Process 1.2 Process 2.2 Process 3.2 Process 4.2

Y

A

O
O
N4

N el

Process 1.3 Process 2.3 Process 3.3

Q. o

@

Three instances of
the same component

Figure 1.2 Each microservice can be scaled individually.

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

Understanding the need for a system like Kubernetes 5

DEPLOYING MICROSERVICES

As always, microservices also have drawbacks. When your system consists of only a
small number of deployable components, managing those components is easy. It’s
trivial to decide where to deploy each component, because there aren’t that many
choices. When the number of those components increases, deploymentrelated deci-
sions become increasingly difficult because not only does the number of deployment
combinations increase, but the number of inter-dependencies between the compo-
nents increases by an even greater factor.

Microservices perform their work together as a team, so they need to find and talk
to each other. When deploying them, someone or something needs to configure all of
them properly to enable them to work together as a single system. With increasing
numbers of microservices, this becomes tedious and error-prone, especially when you
consider what the ops/sysadmin teams need to do when a server fails.

Microservices also bring other problems, such as making it hard to debug and trace
execution calls, because they span multiple processes and machines. Luckily, these
problems are now being addressed with distributed tracing systems such as Zipkin.

UNDERSTANDING THE DIVERGENCE OF ENVIRONMENT REQUIREMENTS

As T've already mentioned, components in a microservices architecture aren’t only
deployed independently, but are also developed that way. Because of their indepen-
dence and the fact that it’s common to have separate teams developing each compo-
nent, nothing impedes each team from using different libraries and replacing them
whenever the need arises. The divergence of dependencies between application com-
ponents, like the one shown in figure 1.3, where applications require different ver-
sions of the same libraries, is inevitable.

Server running a monolithic app Server running multiple apps
Monolithic app App 1 App 2 App 3 App 4
1 Requires libraries
- Library A Library C
Requires libraries v1.0 v1.1
Library B
Library A Library B Library C Library A V24 Library C
v1.0 v2.4 vi.1 V2.2 / V2.0
Library Y
Library X v3.2
Library X | | Library Y Library X vi4 Library Y
v1.4 v3.2 v2.3 v4.0

Figure 1.3 Multiple applications running on the same host may have conflicting dependencies.

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

6 CHAPTER 1 Introducing Kubernetes

Deploying dynamically linked applications that require different versions of shared
libraries, and/or require other environment specifics, can quickly become a night-
mare for the ops team who deploys and manages them on production servers. The
bigger the number of components you need to deploy on the same host, the harder it
will be to manage all their dependencies to satisfy all their requirements.

1.1.2 Providing a consistent environment to applications

Regardless of how many individual components you're developing and deploying,
one of the biggest problems that developers and operations teams always have to deal
with is the differences in the environments they run their apps in. Not only is there a
huge difference between development and production environments, differences
even exist between individual production machines. Another unavoidable fact is that
the environment of a single production machine will change over time.

These differences range from hardware to the operating system to the libraries
that are available on each machine. Production environments are managed by the
operations team, while developers often take care of their development laptops on
their own. The difference is how much these two groups of people know about sys-
tem administration, and this understandably leads to relatively big differences
between those two systems, not to mention that system administrators give much more
emphasis on keeping the system up to date with the latest security patches, while a lot
of developers don’t care about that as much.

Also, production systems can run applications from multiple developers or devel-
opment teams, which isn’t necessarily true for developers’ computers. A production
system must provide the proper environment to all applications it hosts, even though
they may require different, even conflicting, versions of libraries.

To reduce the number of problems that only show up in production, it would be
ideal if applications could run in the exact same environment during development
and in production so they have the exact same operating system, libraries, system con-
figuration, networking environment, and everything else. You also don’t want this
environment to change too much over time, if at all. Also, if possible, you want the
ability to add applications to the same server without affecting any of the existing
applications on that server.

1.1.3 Moving to continuous delivery: DevOps and NoOps

In the last few years, we’ve also seen a shift in the whole application development pro-
cess and how applications are taken care of in production. In the past, the develop-
ment team’s job was to create the application and hand it off to the operations team,
who then deployed it, tended to it, and kept it running. But now, organizations are
realizing it’s better to have the same team that develops the application also take part
in deploying it and taking care of it over its whole lifetime. This means the developer,
QA, and operations teams now need to collaborate throughout the whole process.
This practice is called DevOps.

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

Introducing container technologies 7

UNDERSTANDING THE BENEFITS

Having the developers more involved in running the application in production leads
to them having a better understanding of both the users’ needs and issues and the
problems faced by the ops team while maintaining the app. Application developers
are now also much more inclined to give users the app earlier and then use their feed-
back to steer further development of the app.

To release newer versions of applications more often, you need to streamline the
deployment process. Ideally, you want developers to deploy the applications them-
selves without having to wait for the ops people. But deploying an application often
requires an understanding of the underlying infrastructure and the organization of
the hardware in the datacenter. Developers don’t always know those details and, most
of the time, don’t even want to know about them.

LETTING DEVELOPERS AND SYSADMINS DO WHAT THEY DO BEST

Even though developers and system administrators both work toward achieving the
same goal of running a successful software application as a service to its customers, they
have different individual goals and motivating factors. Developers love creating new fea-
tures and improving the user experience. They don’t normally want to be the ones mak-
ing sure that the underlying operating system is up to date with all the security patches
and things like that. They prefer to leave that up to the system administrators.

The ops team is in charge of the production deployments and the hardware infra-
structure they run on. They care about system security, utilization, and other aspects
that aren’t a high priority for developers. The ops people don’t want to deal with the
implicit interdependencies of all the application components and don’t want to think
about how changes to either the underlying operating system or the infrastructure
can affect the operation of the application as a whole, but they must.

Ideally, you want the developers to deploy applications themselves without know-
ing anything about the hardware infrastructure and without dealing with the ops
team. This is referred to as NoOps. Obviously, you still need someone to take care of
the hardware infrastructure, but ideally, without having to deal with peculiarities of
each application running on it.

As you’ll see, Kubernetes enables us to achieve all of this. By abstracting away the
actual hardware and exposing it as a single platform for deploying and running apps,
it allows developers to configure and deploy their applications without any help from
the sysadmins and allows the sysadmins to focus on keeping the underlying infrastruc-
ture up and running, while not having to know anything about the actual applications
running on top of it.

1.2 Introducing container technologies

In section 1.1 I presented a non-comprehensive list of problems facing today’s devel-
opment and ops teams. While you have many ways of dealing with them, this book will
focus on how they’re solved with Kubernetes.

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

8 CHAPTER 1 Introducing Kubernetes

Kubernetes uses Linux container technologies to provide isolation of running
applications, so before we dig into Kubernetes itself, you need to become familiar
with the basics of containers to understand what Kubernetes does itself, and what it
offloads to container technologies like Docker or 7kt (pronounced “rock-it”).

1.2.1 Understanding what containers are

In section 1.1.1 we saw how different software components running on the same
machine will require different, possibly conflicting, versions of dependent libraries or
have other different environment requirements in general.

When an application is composed of only smaller numbers of large components,
it’s completely acceptable to give a dedicated Virtual Machine (VM) to each compo-
nent and isolate their environments by providing each of them with their own operat-
ing system instance. But when these components start getting smaller and their
numbers start to grow, you can’t give each of them their own VM if you don’t want to
waste hardware resources and keep your hardware costs down. But it’s not only about
wasting hardware resources. Because each VM usually needs to be configured and
managed individually, rising numbers of VMs also lead to wasting human resources,
because they increase the system administrators’ workload considerably.

ISOLATING COMPONENTS WITH LINUX CONTAINER TECHNOLOGIES

Instead of using virtual machines to isolate the environments of each microservice (or
software processes in general), developers are turning to Linux container technolo-
gies. They allow you to run multiple services on the same host machine, while not only
exposing a different environment to each of them, but also isolating them from each
other, similarly to VMs, but with much less overhead.

A process running in a container runs inside the host’s operating system, like all
the other processes (unlike VMs, where processes run in separate operating sys-
tems). But the process in the container is still isolated from other processes. To the
process itself, it looks like it’s the only one running on the machine and in its oper-
ating system.

COMPARING VIRTUAL MACHINES TO CONTAINERS
Compared to VMs, containers are much more lightweight, which allows you to run
higher numbers of software components on the same hardware, mainly because each
VM needs to run its own set of system processes, which requires additional compute
resources in addition to those consumed by the component’s own process. A con-
tainer, on the other hand, is nothing more than a single isolated process running in
the host OS, consuming only the resources that the app consumes and without the
overhead of any additional processes.

Because of the overhead of VMs, you often end up grouping multiple applications
into each VM because you don’t have enough resources to dedicate a whole VM to
each app. When using containers, you can (and should) have one container for each

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

Introducing container technologies 9

application, as shown in figure 1.4. The end-result is that you can fit many more appli-
cations on the same bare-metal machine.

Apps running in three VMs Apps running in
(on a single machine) isolated containers
VM 1 VM 2 VM 3 Container 1 Container 2 Container 3
wn] || e || [|| || Gen) || [|| [
| App B | | App D | | App F | Container 4 Container 5 Container 6
[wo] || [we] || [wr]
Guest OS Guest OS Guest OS
Container 7 Container 8 Container 9
App ... App ... App ...
| Hypervisor | | e | | e | | A2 |
| Host OS | | Host OS |
Bare-metal machine Bare-metal machine

Figure 1.4 Using VMs to isolate groups of applications vs. isolating individual apps with containers

When you run three VMs on a host, you have three completely separate operating sys-
tems running on and sharing the same bare-metal hardware. Underneath those VMs
is the host’s OS and a hypervisor, which divides the physical hardware resources into
smaller sets of virtual resources that can be used by the operating system inside each
VM. Applications running inside those VMs perform system calls to the guest OS’ ker-
nel in the VM, and the kernel then performs x86 instructions on the host’s physical
CPU through the hypervisor.

NOTE Two types of hypervisors exist. Type 1 hypervisors don’t use a host OS,
while Type 2 do.

Containers, on the other hand, all perform system calls on the exact same kernel run-
ning in the host OS. This single kernel is the only one performing x86 instructions on
the host’s CPU. The CPU doesn’t need to do any kind of virtualization the way it does
with VMs (see figure 1.5).

The main benefit of virtual machines is the full isolation they provide, because
each VM runs its own Linux kernel, while containers all call out to the same kernel,
which can clearly pose a security risk. If you have a limited amount of hardware
resources, VMs may only be an option when you have a small number of processes that

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

10 CHAPTER 1 Introducing Kubernetes

Apps running in multiple VMs

Virtual CPU Virtual CPU Virtual CPU

Hypervisor

!

Physical CPU

Apps running in isolated containers

Container Container Container Container Container Container
A B (¢} D E F
App App App App App App
A B (e} D E =
Kernel
. Figure 1.5 The difference between
Ph | CP!
ysical CPU how apps in VMs use the CPU vs. how
they use them in containers

you want to isolate. To run greater numbers of isolated processes on the same
machine, containers are a much better choice because of their low overhead. Remem-
ber, each VM runs its own set of system services, while containers don’t, because they
all run in the same OS. That also means that to run a container, nothing needs to be
booted up, as is the case in VMs. A process run in a container starts up immediately.

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

Introducing container technologies 11

INTRODUCING THE MECHANISMS THAT MAKE CONTAINER ISOLATION POSSIBLE

By this point, you’re probably wondering how exactly containers can isolate processes
if they’re running on the same operating system. Two mechanisms make this possible.
The first one, Linux Namespaces, makes sure each process sees its own personal view of
the system (files, processes, network interfaces, hostname, and so on). The second
one is Linux Control Groups (cgroups), which limit the amount of resources the process
can consume (CPU, memory, network bandwidth, and so on).

ISOLATING PROCESSES WITH LINUX NAMESPACES

By default, each Linux system initially has one single namespace. All system resources,
such as filesystems, process IDs, user IDs, network interfaces, and others, belong to the
single namespace. But you can create additional namespaces and organize resources
across them. When running a process, you run it inside one of those namespaces. The
process will only see resources that are inside the same namespace. Well, multiple
kinds of namespaces exist, so a process doesn’t belong to one namespace, but to one
namespace of each kind.

The following kinds of namespaces exist:

Mount (mnt)

Process ID (pid)

Network (net)

Inter-process communication (ipc)
UTS

User ID (user)

Each namespace kind is used to isolate a certain group of resources. For example, the
UTS namespace determines what hostname and domain name the process running
inside that namespace sees. By assigning two different UTS namespaces to a pair of
processes, you can make them see different local hostnames. In other words, to the
two processes, it will appear as though they are running on two different machines (at
least as far as the hostname is concerned).

Likewise, what Network namespace a process belongs to determines which net-
work interfaces the application running inside the process sees. Each network inter-
face belongs to exactly one namespace, but can be moved from one namespace to
another. Each container uses its own Network namespace, and therefore each con-
tainer sees its own set of network interfaces.

This should give you a basic idea of how namespaces are used to isolate applica-
tions running in containers from each other.

LIMITING RESOURCES AVAILABLE TO A PROCESS

The other half of container isolation deals with limiting the amount of system
resources a container can consume. This is achieved with cgroups, a Linux kernel fea-
ture that limits the resource usage of a process (or a group of processes). A process
can’t use more than the configured amount of CPU, memory, network bandwidth,

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

12 CHAPTER 1 Introducing Kubernetes

and so on. This way, processes cannot hog resources reserved for other processes,
which is similar to when each process runs on a separate machine.

1.2.2 Introducing the Docker container platform

While container technologies have been around for a long time, they've become
more widely known with the rise of the Docker container platform. Docker was the
first container system that made containers easily portable across different machines.
It simplified the process of packaging up not only the application but also all its
libraries and other dependencies, even the whole OS file system, into a simple, por-
table package that can be used to provision the application to any other machine
running Docker.

When you run an application packaged with Docker, it sees the exact filesystem
contents that you've bundled with it. It sees the same files whether it’s running on
your development machine or a production machine, even if it the production server
is running a completely different Linux OS. The application won’t see anything from
the server it’s running on, so it doesn’t matter if the server has a completely different
set of installed libraries compared to your development machine.

For example, if you’ve packaged up your application with the files of the whole
Red Hat Enterprise Linux (RHEL) operating system, the application will believe it’s
running inside RHEL, both when you run it on your development computer that runs
Fedora and when you run it on a server running Debian or some other Linux distribu-
tion. Only the kernel may be different.

This is similar to creating a VM image by installing an operating system into a VM,
installing the app inside it, and then distributing the whole VM image around and
running it. Docker achieves the same effect, but instead of using VMs to achieve app
isolation, it uses Linux container technologies mentioned in the previous section to
provide (almost) the same level of isolation that VMs do. Instead of using big mono-
lithic VM images, it uses container images, which are usually smaller.

A big difference between Docker-based container images and VM images is that
container images are composed of layers, which can be shared and reused across mul-
tiple images. This means only certain layers of an image need to be downloaded if the
other layers were already downloaded previously when running a different container
image that also contains the same layers.

UNDERSTANDING DOCKER CONCEPTS

Docker is a platform for packaging, distributing, and running applications. As we’ve
already stated, it allows you to package your application together with its whole envi-
ronment. This can be either a few libraries that the app requires or even all the files
that are usually available on the filesystem of an installed operating system. Docker
makes it possible to transfer this package to a central repository from which it can
then be transferred to any computer running Docker and executed there (for the
most part, but not always, as we’ll soon explain).

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

Introducing container technologies 13

Three main concepts in Docker comprise this scenario:

Images—A Docker-based container image is something you package your appli-
cation and its environment into. It contains the filesystem that will be available
to the application and other metadata, such as the path to the executable that
should be executed when the image is run.

Registries—A Docker Registry is a repository that stores your Docker images and
facilitates easy sharing of those images between different people and comput-
ers. When you build your image, you can either run it on the computer you've
built it on, or you can push (upload) the image to a registry and then pull
(download) it on another computer and run it there. Certain registries are pub-
lic, allowing anyone to pull images from it, while others are private, only accessi-
ble to certain people or machines.

Containers—A Docker-based container is a regular Linux container created from
a Docker-based container image. A running container is a process running on
the host running Docker, but it’s completely isolated from both the host and all
other processes running on it. The process is also resource-constrained, mean-
ing it can only access and use the amount of resources (CPU, RAM, and so on)
that are allocated to it.

BUILDING, DISTRIBUTING, AND RUNNING A DOCKER IMAGE

Figure 1.6 shows all three concepts and how they relate to each other. The developer
first builds an image and then pushes it to a registry. The image is thus available to
anyone who can access the registry. They can then pull the image to any other
machine running Docker and run the image. Docker creates an isolated container
based on the image and runs the binary executable specified as part of the image.

I. Developer tells 3. Docker
Docker to build 2. Docker pushes image
and push image builds image to registry

/ <> Container
Lo Image Q Image
Developer < Q
ﬁ N Image Docker u

Docker |\—/|

Development machine Production machine

Image registry

\

4. Developer tells 5. Docker pulls 6. Docker runs
Docker on production image from container from
machine to run image registry image

Figure 1.6 Docker images, registries, and containers

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

14 CHAPTER 1 Introducing Kubernetes

COMPARING VIRTUAL MACHINES AND DOCKER CONTAINERS

I've explained how Linux containers are generally like virtual machines, but much
more lightweight. Now let’s look at how Docker containers specifically compare to vir-
tual machines (and how Docker images compare to VM images). Figure 1.7 again shows
the same six applications running both in VMs and as Docker containers.

Host running multiple VMs

VM 1 VM 2 VM 3
App App App | App | App App
A B (¢} D E F
Binaries and Binaries and Binaries and
libraries libraries libraries
(Filesystem) (Filesystem) (Filesystem)
Guest OS kernel Guest OS kernel Guest OS kernel
Hypervisor
Host OS

Host running multiple Docker containers

Container 1
Container 2
Container 3
Container 4
Container 5
Container 6

App App || App | App | App || App
A B c D E F
Binaries and Binaries and Binaries and || Docker
libraries libraries libraries
(Filesystem) (Filesystem) (Filesystem)
Host OS Figure 1.7 Runnln.g six app_s on
three VMs vs. running them in

Docker containers

You’'ll notice that apps A and B have access to the same binaries and libraries both
when running in a VM and when running as two separate containers. In the VM, this
is obvious, because both apps see the same filesystem (that of the VM). But we said

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

Introducing container technologies 15

that each container has its own isolated filesystem. How can both app A and app B
share the same files?

UNDERSTANDING IMAGE LAYERS

I’'ve already said that Docker images are composed of layers. Different images can con-
tain the exact same layers because every Docker image is built on top of another
image and two different images can both use the same parent image as their base.
This speeds up the distribution of images across the network, because layers that have
already been transferred as part of the first image don’t need to be transferred again
when transferring the other image.

But layers don’t only make distribution more efficient, they also help reduce the
storage footprint of images. Each layer is only stored once. Two containers created
from two images based on the same base layers can therefore read the same files, but
if one of them writes over those files, the other one doesn’t see those changes. There-
fore, even if they share files, they’re still isolated from each other. This works because
container image layers are read-only. When a container is run, a new writable layer is
created on top of the layers in the image. When the process in the container writes to
a file located in one of the underlying layers, a copy of the whole file is created in the
top-most layer and the process writes to the copy.

UNDERSTANDING THE PORTABILITY LIMITATIONS OF CONTAINER IMAGES

In theory, a container image can be run on any Linux machine running Docker, but
one small caveat exists—one related to the fact that all containers running on a host use
the host’s Linux kernel. If a containerized application requires a specific kernel version,
it may not work on every machine. If a machine runs a different version of the Linux
kernel or doesn’t have the same kernel modules available, the app can’t run on it.

While containers are much more lightweight compared to VMs, they impose cer-
tain constraints on the apps running inside them. VMs have no such constraints,
because each VM runs its own kernel.

And it’s not only about the kernel. It should also be clear that a containerized app
built for a specific hardware architecture can only run on other machines that have
the same architecture. You can’t containerize an application built for the x86 architec-
ture and expect it to run on an ARM-based machine because it also runs Docker. You
still need a VM for that.

1.2.3 Introducing rkt—an alternative to Docker

Docker was the first container platform that made containers mainstream. I hope I've
made it clear that Docker itself doesn’t provide process isolation. The actual isolation
of containers is done at the Linux kernel level using kernel features such as Linux
Namespaces and cgroups. Docker only makes it easy to use those features.

After the success of Docker, the Open Container Initiative (OCI) was born to cre-
ate open industry standards around container formats and runtime. Docker is part
of that initiative, as is rk¢ (pronounced “rock-it”), which is another Linux container
engine.

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

16 CHAPTER 1 Introducing Kubernetes

Like Docker, rkt is a platform for running containers. It puts a strong emphasis on
security, composability, and conforming to open standards. It uses the OCI container
image format and can even run regular Docker container images.

This book focuses on using Docker as the container runtime for Kubernetes,
because it was initially the only one supported by Kubernetes. Recently, Kubernetes
has also started supporting rkt, as well as others, as the container runtime.

The reason I mention rkt at this point is so you don’t make the mistake of thinking
Kubernetes is a container orchestration system made specifically for Docker-based
containers. In fact, over the course of this book, you’ll realize that the essence of
Kubernetes isn’t orchestrating containers. It’s much more. Containers happen to be
the best way to run apps on different cluster nodes. With that in mind, let’s finally dive
into the core of what this book is all about—Kubernetes.

1.3 Introducing Kubernetes

We’ve already shown that as the number of deployable application components in
your system grows, it becomes harder to manage them all. Google was probably the
first company that realized it needed a much better way of deploying and managing
their software components and their infrastructure to scale globally. It’s one of only a
few companies in the world that runs hundreds of thousands of servers and has had to
deal with managing deployments on such a massive scale. This has forced them to
develop solutions for making the development and deployment of thousands of soft-
ware components manageable and cost-efficient.

1.3.1 Understanding its origins

Through the years, Google developed an internal system called Borg (and later a new
system called Omega), that helped both application developers and system administra-
tors manage those thousands of applications and services. In addition to simplifying
the development and management, it also helped them achieve a much higher utiliza-
tion of their infrastructure, which is important when your organization is that large.
When you run hundreds of thousands of machines, even tiny improvements in utiliza-
tion mean savings in the millions of dollars, so the incentives for developing such a
system are clear.

After having kept Borg and Omega secret for a whole decade, in 2014 Google
introduced Kubernetes, an open-source system based on the experience gained
through Borg, Omega, and other internal Google systems.

1.3.2 Looking at Kubernetes from the top of a mountain

Kubernetes is a software system that allows you to easily deploy and manage container-
ized applications on top of it. It relies on the features of Linux containers to run het-
erogeneous applications without having to know any internal details of these
applications and without having to manually deploy these applications on each host.
Because these apps run in containers, they don’t affect other apps running on the

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

Introducing Kubernetes 17

same server, which is critical when you run applications for completely different orga-
nizations on the same hardware. This is of paramount importance for cloud provid-
ers, because they strive for the best possible utilization of their hardware while still
having to maintain complete isolation of hosted applications.

Kubernetes enables you to run your software applications on thousands of com-
puter nodes as if all those nodes were a single, enormous computer. It abstracts away
the underlying infrastructure and, by doing so, simplifies development, deployment,
and management for both development and the operations teams.

Deploying applications through Kubernetes is always the same, whether your clus-
ter contains only a couple of nodes or thousands of them. The size of the cluster
makes no difference at all. Additional cluster nodes simply represent an additional
amount of resources available to deployed apps.

UNDERSTANDING THE CORE OF WHAT KUBERNETES DOES

Figure 1.8 shows the simplest possible view of a Kubernetes system. The system is com-
posed of a master node and any number of worker nodes. When the developer sub-
mits a list of apps to the master, Kubernetes deploys them to the cluster of worker
nodes. What node a component lands on doesn’t (and shouldn’t) matter—neither to
the developer nor to the system administrator.

Tens or thousands of worker nodes exposed

App descriptor as a single deployment platform
Developer 1x
5x
|| Kubernetes
master

-

2x

>0D||0)®

Figure 1.8 Kubernetes exposes the whole datacenter as a single deployment platform.

The developer can specify that certain apps must run together and Kubernetes will
deploy them on the same worker node. Others will be spread around the cluster, but
they can talk to each other in the same way, regardless of where they’re deployed.

HELPING DEVELOPERS FOCUS ON THE CORE APP FEATURES

Kubernetes can be thought of as an operating system for the cluster. It relieves appli-
cation developers from having to implement certain infrastructure-related services
into their apps; instead they rely on Kubernetes to provide these services. This includes
things such as service discovery, scaling, load-balancing, self-healing, and even leader

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

18 CHAPTER 1 Introducing Kubernetes

election. Application developers can therefore focus on implementing the actual fea-
tures of the applications and not waste time figuring out how to integrate them with
the infrastructure.

HELPING OPS TEAMS ACHIEVE BETTER RESOURCE UTILIZATION

Kubernetes will run your containerized app somewhere in the cluster, provide infor-
mation to its components on how to find each other, and keep all of them running.
Because your application doesn’t care which node it’s running on, Kubernetes can
relocate the app at any time, and by mixing and matching apps, achieve far better
resource utilization than is possible with manual scheduling.

1.3.3 Understanding the architecture of a Kubernetes cluster

We’ve seen a bird’s-eye view of Kubernetes’ architecture. Now let’s take a closer look at
what a Kubernetes cluster is composed of. At the hardware level, a Kubernetes cluster
is composed of many nodes, which can be split into two types:

The master node, which hosts the Kubernetes Control Plane that controls and man-
ages the whole Kubernetes system
Worker nodes that run the actual applications you deploy

Figure 1.9 shows the components running on these two sets of nodes. I'll explain
them next.

Control Plane (master)

— >
API server L
\\

Controller
Manager Kubelet kube-proxy

Worker node(s)

Scheduler

Container Runtime

Figure 1.9 The components that make up a Kubernetes cluster

THE CONTROL PLANE

The Control Plane is what controls the cluster and makes it function. It consists of
multiple components that can run on a single master node or be split across multiple
nodes and replicated to ensure high availability. These components are

The Kubernetes API Server, which you and the other Control Plane components
communicate with

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

Introducing Kubernetes 19

The Scheduler, which schedules your apps (assigns a worker node to each deploy-
able component of your application)

The Controller Manager, which performs cluster-level functions, such as repli-
cating components, keeping track of worker nodes, handling node failures,
and so on

eled, a reliable distributed data store that persistently stores the cluster
configuration.

The components of the Control Plane hold and control the state of the cluster, but
they don’t run your applications. This is done by the (worker) nodes.

THE NODES

The worker nodes are the machines that run your containerized applications. The
task of running, monitoring, and providing services to your applications is done by
the following components:

Docker, rkt, or another container runtime, which runs your containers

The Kubelet, which talks to the API server and manages containers on its node
The Kubernetes Service Proxy (kube-proxy), which load-balances network traffic
between application components

We’ll explain all these components in detail in chapter 11. I'm not a fan of explaining
how things work before first explaining what something does and teaching people to
use it. It’s like learning to drive a car. You don’t want to know what’s under the hood.
You first want to learn how to drive it from point A to point B. Only after you learn
how to do that do you become interested in how a car makes that possible. After all,
knowing what’s under the hood may someday help you get the car moving again after
it breaks down and leaves you stranded at the side of the road.

1.3.4 Running an application in Kubernetes

To run an application in Kubernetes, you first need to package it up into one or more
container images, push those images to an image registry, and then post a description
of your app to the Kubernetes API server.

The description includes information such as the container image or images that
contain your application components, how those components are related to each
other, and which ones need to be run co-located (together on the same node) and
which don’t. For each component, you can also specify how many copies (or replicas)
you want to run. Additionally, the description also includes which of those compo-
nents provide a service to either internal or external clients and should be exposed
through a single IP address and made discoverable to the other components.

UNDERSTANDING HOW THE DESCRIPTION RESULTS IN A RUNNING CONTAINER

When the API server processes your app’s description, the Scheduler schedules the
specified groups of containers onto the available worker nodes based on computa-
tional resources required by each group and the unallocated resources on each node

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

20

CHAPTER 1 Introducing Kubernetes

at that moment. The Kubelet on those nodes then instructs the Container Runtime
(Docker, for example) to pull the required container images and run the containers.

Examine figure 1.10 to gain a better understanding of how applications are
deployed in Kubernetes. The app descriptor lists four containers, grouped into three
sets (these sets are called pods; we’ll explain what they are in chapter 3). The first two
pods each contain only a single container, whereas the last one contains two. That
means both containers need to run co-located and shouldn’t be isolated from each
other. Next to each pod, you also see a number representing the number of replicas
of each pod that need to run in parallel. After submitting the descriptor to Kuberne-
tes, it will schedule the specified number of replicas of each pod to the available
worker nodes. The Kubelets on the nodes will then tell Docker to pull the container
images from the image registry and run the containers.

Worker nodes

O Image registry : O : O
é @‘~3§:“=::: T A
':“; - Docker TTH- Docker
:," e Kubelet‘\kube-proxy Kubelet | kube-proxy
1x |< > i 3
5x Q Control Plane :"f O Q \\ O
(master) i f
Q ! - Docker - Docker
2x |
A : | Kubelet | kube-proxy Kubelet | kube-proxy
App descriptor ! O
Legend:
- Docker Docker
<> Container image Q Multiple containers
running “together”
O Container A (not fully isolated) | Kubelet | kube-proxy Kubelet | kube-proxy

Figure 1.10 A basic overview of the Kubernetes architecture and an application running on top of it

KEEPING THE CONTAINERS RUNNING
Once the application is running, Kubernetes continuously makes sure that the deployed
state of the application always matches the description you provided. For example, if

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

Introducing Kubernetes 21

you specify that you always want five instances of a web server running, Kubernetes will
always keep exactly five instances running. If one of those instances stops working
properly, like when its process crashes or when it stops responding, Kubernetes will
restart it automatically.

Similarly, if a whole worker node dies or becomes inaccessible, Kubernetes will
select new nodes for all the containers that were running on the node and run them
on the newly selected nodes.

SCALING THE NUMBER OF COPIES

While the application is running, you can decide you want to increase or decrease the
number of copies, and Kubernetes will spin up additional ones or stop the excess
ones, respectively. You can even leave the job of deciding the optimal number of cop-
ies to Kubernetes. It can automatically keep adjusting the number, based on real-time
metrics, such as CPU load, memory consumption, queries per second, or any other
metric your app exposes.

HITTING A MOVING TARGET

We’ve said that Kubernetes may need to move your containers around the cluster.
This can occur when the node they were running on has failed or because they were
evicted from a node to make room for other containers. If the container is providing a
service to external clients or other containers running in the cluster, how can they use
the container properly if it’s constantly moving around the cluster? And how can cli-
ents connect to containers providing a service when those containers are replicated
and spread across the whole cluster?

To allow clients to easily find containers that provide a specific service, you can tell
Kubernetes which containers provide the same service and Kubernetes will expose all
of them at a single static IP address and expose that address to all applications run-
ning in the cluster. This is done through environment variables, but clients can also
look up the service IP through good old DNS. The kube-proxy will make sure connec-
tions to the service are load balanced across all the containers that provide the service.
The IP address of the service stays constant, so clients can always connect to its con-
tainers, even when they’re moved around the cluster.

1.3.5 Understanding the benefits of using Kubernetes

If you have Kubernetes deployed on all your servers, the ops team doesn’t need to
deal with deploying your apps anymore. Because a containerized application already
contains all it needs to run, the system administrators don’t need to install anything to
deploy and run the app. On any node where Kubernetes is deployed, Kubernetes can
run the app immediately without any help from the sysadmins.

SIMPLIFYING APPLICATION DEPLOYMENT

Because Kubernetes exposes all its worker nodes as a single deployment platform,
application developers can start deploying applications on their own and don’t need
to know anything about the servers that make up the cluster.

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

22 CHAPTER 1 Introducing Kubernetes

In essence, all the nodes are now a single bunch of computational resources that
are waiting for applications to consume them. A developer doesn’t usually care what
kind of server the application is running on, as long as the server can provide the
application with adequate system resources.

Certain cases do exist where the developer does care what kind of hardware the
application should run on. If the nodes are heterogeneous, you’ll find cases when you
want certain apps to run on nodes with certain capabilities and run other apps on oth-
ers. For example, one of your apps may require being run on a system with SSDs
instead of HDDs, while other apps run fine on HDDs. In such cases, you obviously
want to ensure that particular app is always scheduled to a node with an SSD.

Without using Kubernetes, the sysadmin would select one specific node that has an
SSD and deploy the app there. But when using Kubernetes, instead of selecting a spe-
cific node where your app should be run, it’s more appropriate to tell Kubernetes to
only choose among nodes with an SSD. You’ll learn how to do that in chapter 3.

ACHIEVING BETTER UTILIZATION OF HARDWARE

By setting up Kubernetes on your servers and using it to run your apps instead of run-
ning them manually, you’ve decoupled your app from the infrastructure. When you
tell Kubernetes to run your application, you're letting it choose the most appropriate
node to run your application on based on the description of the application’s
resource requirements and the available resources on each node.

By using containers and not tying the app down to a specific node in your cluster,
you’re allowing the app to freely move around the cluster at any time, so the different
app components running on the cluster can be mixed and matched to be packed
tightly onto the cluster nodes. This ensures the node’s hardware resources are utilized
as best as possible.

The ability to move applications around the cluster at any time allows Kubernetes
to utilize the infrastructure much better than what you can achieve manually. Humans
aren’t good at finding optimal combinations, especially when the number of all possi-
ble options is huge, such as when you have many application components and many
server nodes they can be deployed on. Computers can obviously perform this work
much better and faster than humans.

HEALTH CHECKING AND SELF-HEALING

Having a system that allows moving an application across the cluster at any time is also
valuable in the event of server failures. As your cluster size increases, you’ll deal with
failing computer components ever more frequently.

Kubernetes monitors your app components and the nodes they run on and auto-
matically reschedules them to other nodes in the event of a node failure. This frees
the ops team from having to migrate app components manually and allows the team
to immediately focus on fixing the node itself and returning it to the pool of available
hardware resources instead of focusing on relocating the app.

If your infrastructure has enough spare resources to allow normal system opera-
tion even without the failed node, the ops team doesn’t even need to react to the failure

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

Summary 23

immediately, such as at 3 a.m. They can sleep tight and deal with the failed node
during regular work hours.

AUTOMATIC SCALING

Using Kubernetes to manage your deployed applications also means the ops team
doesn’t need to constantly monitor the load of individual applications to react to sud-
den load spikes. As previously mentioned, Kubernetes can be told to monitor the
resources used by each application and to keep adjusting the number of running
instances of each application.

If Kubernetes is running on cloud infrastructure, where adding additional nodes is
as easy as requesting them through the cloud provider’s API, Kubernetes can even
automatically scale the whole cluster size up or down based on the needs of the
deployed applications.

SIMPLIFYING APPLICATION DEVELOPMENT

The features described in the previous section mostly benefit the operations team. But
what about the developers? Does Kubernetes bring anything to their table? It defi-
nitely does.

If you turn back to the fact that apps run in the same environment both during
development and in production, this has a big effect on when bugs are discovered. We
all agree the sooner you discover a bug, the easier it is to fix it, and fixing it requires
less work. It’s the developers who do the fixing, so this means less work for them.

Then there’s the fact that developers don’t need to implement features that they
would usually implement. This includes discovery of services and/or peers in a clustered
application. Kubernetes does this instead of the app. Usually, the app only needs to look
up certain environment variables or perform a DNS lookup. If that’s not enough, the
application can query the Kubernetes API server directly to get that and/or other infor-
mation. Querying the Kubernetes API server like that can even save developers from
having to implement complicated mechanisms such as leader election.

As a final example of what Kubernetes brings to the table, you also need to con-
sider the increase in confidence developers will feel knowing that when a new version
of their app is going to be rolled out, Kubernetes can automatically detect if the new
version is bad and stop its rollout immediately. This increase in confidence usually
accelerates the continuous delivery of apps, which benefits the whole organization.

14 Summary

In this introductory chapter, you’ve seen how applications have changed in recent
years and how they can now be harder to deploy and manage. We’ve introduced
Kubernetes and shown how it, together with Docker and other container platforms,
helps deploy and manage applications and the infrastructure they run on. You've
learned that

Monolithic apps are easier to deploy, but harder to maintain over time and
sometimes impossible to scale.

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

24 CHAPTER 1 Introducing Kubernetes

Microservices-based application architectures allow easier development of each
component, but are harder to deploy and configure to work as a single system.
Linux containers provide much the same benefits as virtual machines, but are
far more lightweight and allow for much better hardware utilization.

Docker improved on existing Linux container technologies by allowing easier and
faster provisioning of containerized apps together with their OS environments.
Kubernetes exposes the whole datacenter as a single computational resource
for running applications.

Developers can deploy apps through Kubernetes without assistance from
sysadmins.

Sysadmins can sleep better by having Kubernetes deal with failed nodes auto-
matically.

In the next chapter, you’ll get your hands dirty by building an app and running it in
Docker and then in Kubernetes.

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

SOFTWARE DEVELOPMENT/OPERATIONS

Kubernetes geee €
Marko LukSa

ubernetes is Greek for “helmsman,” your guide through

unknown waters. The Kubernetes container orchestra-

tion system safely manages the structure and flow of a
distributed application, organizing containers and services for
maximum efficiency. Kubernetes serves as an operating system

¢C Authoritative and
exhaustive. In a hands-on

for your clusters, eliminating the need to factor the underlying style, the author teaches how

network and server infrastructure into your designs. to manage the complete

lifecycle of any distributed

Kubernetes in Action teaches you to use Kubernetes to deploy N D)

container-based distributed applications. You'll start with an

overview of Docker and Kubernetes before building your first —Antonio Magnaghi, System1
Kubernetes cluster. You'll gradually expand your initial
application, adding features and deepening your knowledge ¢CThe best parts are the real-
of Kubernetes architecture and operation. As you navigate world examples. They don’t
this comprehensive guide, you'll explore high-value topics just app]y the concepts,
like monitoring, tuning, and scaling,. they road test them.??
i —Paolo Antinori, Red Hat

What's Inside

¢ Kubernetes internals ¢CAn in-depth discussion

* Deploying containers across a cluster of Kubernetes and related

* Securing clusters technologies. A must-have!??

e Updating applications with zero downtime — Al Krinker, USPTO

Written for intermediate software developers with little or no
familiarity with Docker or container orchestration systems.

¢CThe full path to becoming

a professional Kubernaut.

Marko Luksa is an engineer at Red Hat working on Kubernetes Fundamental reading. »
and OpenShift. —Csaba Sdri

Chimera Entertainment

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit
www.manning.com/books/kubernetes-in-action

ISBN-13: 978-1-E1729-372-b
ISBN-10: L- I:l?E“i 3?e-5

“ “‘ |H|| “ l

$59.99 / Can $79.99 [INCLUDING eBOOK]

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

