
M A N N I N G

Marko Lukša

S A M P L E C H A P T E R

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

Kubernetes in Action

by Marko Lukša

 Chapter 3

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

vii

brief contents
PART 1 OVERVIEW

1 ■ Introducing Kubernetes 1

2 ■ First steps with Docker and Kubernetes 25

PART 2 CORE CONCEPTS

3 ■ Pods: running containers in Kubernetes 55

4 ■ Replication and other controllers: deploying
managed pods 84

5 ■ Services: enabling clients to discover and talk
to pods 120

6 ■ Volumes: attaching disk storage to containers 159

7 ■ ConfigMaps and Secrets: configuring applications 191

8 ■ Accessing pod metadata and other resources from
applications 225

9 ■ Deployments: updating applications declaratively 250

10 ■ StatefulSets: deploying replicated stateful
applications 280

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

BRIEF CONTENTSviii

PART 3 BEYOND THE BASICS

11 ■ Understanding Kubernetes internals 309

12 ■ Securing the Kubernetes API server 346

13 ■ Securing cluster nodes and the network 375

14 ■ Managing pods’ computational resources 404

15 ■ Automatic scaling of pods and cluster nodes 437

16 ■ Advanced scheduling 457

17 ■ Best practices for developing apps 477

18 ■ Extending Kubernetes 508

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

55

Pods: running
containers in Kubernetes

The previous chapter should have given you a rough picture of the basic compo-
nents you create in Kubernetes and at least an outline of what they do. Now, we’ll
start reviewing all types of Kubernetes objects (or resources) in greater detail, so
you’ll understand when, how, and why to use each of them. We’ll start with pods,
because they’re the central, most important, concept in Kubernetes. Everything
else either manages, exposes, or is used by pods.

This chapter covers
 Creating, running, and stopping pods

 Organizing pods and other resources with labels

 Performing an operation on all pods with a
specific label

 Using namespaces to split pods into non-
overlapping groups

 Scheduling pods onto specific types of worker
nodes

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

56 CHAPTER 3 Pods: running containers in Kubernetes

3.1 Introducing pods
You’ve already learned that a pod is a co-located group of containers and represents
the basic building block in Kubernetes. Instead of deploying containers individually,
you always deploy and operate on a pod of containers. We’re not implying that a pod
always includes more than one container—it’s common for pods to contain only a sin-
gle container. The key thing about pods is that when a pod does contain multiple con-
tainers, all of them are always run on a single worker node—it never spans multiple
worker nodes, as shown in figure 3.1.

3.1.1 Understanding why we need pods

But why do we even need pods? Why can’t we use containers directly? Why would we
even need to run multiple containers together? Can’t we put all our processes into a
single container? We’ll answer those questions now.

UNDERSTANDING WHY MULTIPLE CONTAINERS ARE BETTER THAN ONE CONTAINER RUNNING
MULTIPLE PROCESSES

Imagine an app consisting of multiple processes that either communicate through
IPC (Inter-Process Communication) or through locally stored files, which requires
them to run on the same machine. Because in Kubernetes you always run processes in
containers and each container is much like an isolated machine, you may think it
makes sense to run multiple processes in a single container, but you shouldn’t do that.

 Containers are designed to run only a single process per container (unless the
process itself spawns child processes). If you run multiple unrelated processes in a
single container, it is your responsibility to keep all those processes running, man-
age their logs, and so on. For example, you’d have to include a mechanism for auto-
matically restarting individual processes if they crash. Also, all those processes would
log to the same standard output, so you’d have a hard time figuring out what pro-
cess logged what.

Node 1

Pod 2

IP: 10.1.0.2

Container 1

Container 2

Pod 1

IP: 10.1.0.1

Container

Node 2

Pod 4

IP: 10.1.1.2

Container 1

Pod 5

IP: 10.1.1.3

Container 1

Container 2
Pod 3

Container 1 Container 2

Figure 3.1 All containers of a pod run on the same node. A pod never spans two nodes.

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

57Introducing pods

 Therefore, you need to run each process in its own container. That’s how Docker
and Kubernetes are meant to be used.

3.1.2 Understanding pods

Because you’re not supposed to group multiple processes into a single container, it’s
obvious you need another higher-level construct that will allow you to bind containers
together and manage them as a single unit. This is the reasoning behind pods.

 A pod of containers allows you to run closely related processes together and pro-
vide them with (almost) the same environment as if they were all running in a single
container, while keeping them somewhat isolated. This way, you get the best of both
worlds. You can take advantage of all the features containers provide, while at the
same time giving the processes the illusion of running together.

UNDERSTANDING THE PARTIAL ISOLATION BETWEEN CONTAINERS OF THE SAME POD

In the previous chapter, you learned that containers are completely isolated from
each other, but now you see that you want to isolate groups of containers instead of
individual ones. You want containers inside each group to share certain resources,
although not all, so that they’re not fully isolated. Kubernetes achieves this by config-
uring Docker to have all containers of a pod share the same set of Linux namespaces
instead of each container having its own set.

 Because all containers of a pod run under the same Network and UTS namespaces
(we’re talking about Linux namespaces here), they all share the same hostname and
network interfaces. Similarly, all containers of a pod run under the same IPC namespace
and can communicate through IPC. In the latest Kubernetes and Docker versions, they
can also share the same PID namespace, but that feature isn’t enabled by default.

NOTE When containers of the same pod use separate PID namespaces, you
only see the container’s own processes when running ps aux in the container.

But when it comes to the filesystem, things are a little different. Because most of the
container’s filesystem comes from the container image, by default, the filesystem of
each container is fully isolated from other containers. However, it’s possible to have
them share file directories using a Kubernetes concept called a Volume, which we’ll
talk about in chapter 6.

UNDERSTANDING HOW CONTAINERS SHARE THE SAME IP AND PORT SPACE

One thing to stress here is that because containers in a pod run in the same Network
namespace, they share the same IP address and port space. This means processes run-
ning in containers of the same pod need to take care not to bind to the same port
numbers or they’ll run into port conflicts. But this only concerns containers in the
same pod. Containers of different pods can never run into port conflicts, because
each pod has a separate port space. All the containers in a pod also have the same
loopback network interface, so a container can communicate with other containers in
the same pod through localhost.

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

58 CHAPTER 3 Pods: running containers in Kubernetes

INTRODUCING THE FLAT INTER-POD NETWORK

All pods in a Kubernetes cluster reside in a single flat, shared, network-address space
(shown in figure 3.2), which means every pod can access every other pod at the other
pod’s IP address. No NAT (Network Address Translation) gateways exist between them.
When two pods send network packets between each other, they’ll each see the actual
IP address of the other as the source IP in the packet.

Consequently, communication between pods is always simple. It doesn’t matter if two
pods are scheduled onto a single or onto different worker nodes; in both cases the
containers inside those pods can communicate with each other across the flat NAT-
less network, much like computers on a local area network (LAN), regardless of the
actual inter-node network topology. Like a computer on a LAN, each pod gets its own
IP address and is accessible from all other pods through this network established spe-
cifically for pods. This is usually achieved through an additional software-defined net-
work layered on top of the actual network.

 To sum up what’s been covered in this section: pods are logical hosts and behave
much like physical hosts or VMs in the non-container world. Processes running in the
same pod are like processes running on the same physical or virtual machine, except
that each process is encapsulated in a container.

3.1.3 Organizing containers across pods properly

You should think of pods as separate machines, but where each one hosts only a cer-
tain app. Unlike the old days, when we used to cram all sorts of apps onto the same
host, we don’t do that with pods. Because pods are relatively lightweight, you can have
as many as you need without incurring almost any overhead. Instead of stuffing every-
thing into a single pod, you should organize apps into multiple pods, where each one
contains only tightly related components or processes.

Node 1

Pod A

IP: 10.1.1.6

Container 1

Container 2

Pod B

IP: 10.1.1.7

Container 1

Container 2

Node 2

Flat network

Pod C

IP: 10.1.2.5

Container 1

Container 2

Pod D

IP: 10.1.2.7

Container 1

Container 2

Figure 3.2 Each pod gets a routable IP address and all other pods see the pod under
that IP address.

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

59Introducing pods

 Having said that, do you think a multi-tier application consisting of a frontend
application server and a backend database should be configured as a single pod or as
two pods?

SPLITTING MULTI-TIER APPS INTO MULTIPLE PODS

Although nothing is stopping you from running both the frontend server and the
database in a single pod with two containers, it isn’t the most appropriate way. We’ve
said that all containers of the same pod always run co-located, but do the web server
and the database really need to run on the same machine? The answer is obviously no,
so you don’t want to put them into a single pod. But is it wrong to do so regardless? In
a way, it is.

 If both the frontend and backend are in the same pod, then both will always be
run on the same machine. If you have a two-node Kubernetes cluster and only this sin-
gle pod, you’ll only be using a single worker node and not taking advantage of the
computational resources (CPU and memory) you have at your disposal on the second
node. Splitting the pod into two would allow Kubernetes to schedule the frontend to
one node and the backend to the other node, thereby improving the utilization of
your infrastructure.

SPLITTING INTO MULTIPLE PODS TO ENABLE INDIVIDUAL SCALING

Another reason why you shouldn’t put them both into a single pod is scaling. A pod is
also the basic unit of scaling. Kubernetes can’t horizontally scale individual contain-
ers; instead, it scales whole pods. If your pod consists of a frontend and a backend con-
tainer, when you scale up the number of instances of the pod to, let’s say, two, you end
up with two frontend containers and two backend containers.

 Usually, frontend components have completely different scaling requirements
than the backends, so we tend to scale them individually. Not to mention the fact that
backends such as databases are usually much harder to scale compared to (stateless)
frontend web servers. If you need to scale a container individually, this is a clear indi-
cation that it needs to be deployed in a separate pod.

UNDERSTANDING WHEN TO USE MULTIPLE CONTAINERS IN A POD

The main reason to put multiple containers into a single pod is when the application
consists of one main process and one or more complementary processes, as shown in
figure 3.3.

Pod

Main container

Supporting

container 1

Supporting

container 2

Volume

Figure 3.3 Pods should contain tightly coupled
containers, usually a main container and containers
that support the main one.

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

60 CHAPTER 3 Pods: running containers in Kubernetes

For example, the main container in a pod could be a web server that serves files from
a certain file directory, while an additional container (a sidecar container) periodi-
cally downloads content from an external source and stores it in the web server’s
directory. In chapter 6 you’ll see that you need to use a Kubernetes Volume that you
mount into both containers.

 Other examples of sidecar containers include log rotators and collectors, data pro-
cessors, communication adapters, and others.

DECIDING WHEN TO USE MULTIPLE CONTAINERS IN A POD

To recap how containers should be grouped into pods—when deciding whether to
put two containers into a single pod or into two separate pods, you always need to ask
yourself the following questions:

 Do they need to be run together or can they run on different hosts?
 Do they represent a single whole or are they independent components?
 Must they be scaled together or individually?

Basically, you should always gravitate toward running containers in separate pods,
unless a specific reason requires them to be part of the same pod. Figure 3.4 will help
you memorize this.

Although pods can contain multiple containers, to keep things simple for now, you’ll
only be dealing with single-container pods in this chapter. You’ll see how multiple
containers are used in the same pod later, in chapter 6.

Pod

Frontend

process

Backend

process

Container

Pod

Frontend

process

Frontend

container
Frontend pod

Frontend

process

Frontend

container

Backend pod

Backend

process

Backend

container

Backend

process

Backend

container

Figure 3.4 A container shouldn’t run multiple processes. A pod shouldn’t contain multiple
containers if they don’t need to run on the same machine.

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

61Creating pods from YAML or JSON descriptors

3.2 Creating pods from YAML or JSON descriptors
Pods and other Kubernetes resources are usually created by posting a JSON or YAML
manifest to the Kubernetes REST API endpoint. Also, you can use other, simpler ways
of creating resources, such as the kubectl run command you used in the previous
chapter, but they usually only allow you to configure a limited set of properties, not
all. Additionally, defining all your Kubernetes objects from YAML files makes it possi-
ble to store them in a version control system, with all the benefits it brings.

 To configure all aspects of each type of resource, you’ll need to know and under-
stand the Kubernetes API object definitions. You’ll get to know most of them as you
learn about each resource type throughout this book. We won’t explain every single
property, so you should also refer to the Kubernetes API reference documentation at
http://kubernetes.io/docs/reference/ when creating objects.

3.2.1 Examining a YAML descriptor of an existing pod

You already have some existing pods you created in the previous chapter, so let’s look
at what a YAML definition for one of those pods looks like. You’ll use the kubectl get
command with the -o yaml option to get the whole YAML definition of the pod, as
shown in the following listing.

$ kubectl get po kubia-zxzij -o yaml
apiVersion: v1
kind: Pod
metadata:
 annotations:
 kubernetes.io/created-by: ...
 creationTimestamp: 2016-03-18T12:37:50Z
 generateName: kubia-
 labels:
 run: kubia
 name: kubia-zxzij
 namespace: default
 resourceVersion: "294"
 selfLink: /api/v1/namespaces/default/pods/kubia-zxzij
 uid: 3a564dc0-ed06-11e5-ba3b-42010af00004
spec:
 containers:
 - image: luksa/kubia
 imagePullPolicy: IfNotPresent
 name: kubia
 ports:
 - containerPort: 8080
 protocol: TCP
 resources:
 requests:
 cpu: 100m

Listing 3.1 Full YAML of a deployed pod

Kubernetes API version used
in this YAML descriptor

Type of Kubernetes
object/resource

Pod metadata (name,
labels, annotations,
and so on)

Pod specification/
contents (list of
pod’s containers,
volumes, and so on)

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

62 CHAPTER 3 Pods: running containers in Kubernetes

 terminationMessagePath: /dev/termination-log
 volumeMounts:
 - mountPath: /var/run/secrets/k8s.io/servacc
 name: default-token-kvcqa
 readOnly: true
 dnsPolicy: ClusterFirst
 nodeName: gke-kubia-e8fe08b8-node-txje
 restartPolicy: Always
 serviceAccount: default
 serviceAccountName: default
 terminationGracePeriodSeconds: 30
 volumes:
 - name: default-token-kvcqa
 secret:
 secretName: default-token-kvcqa
status:
 conditions:
 - lastProbeTime: null
 lastTransitionTime: null
 status: "True"
 type: Ready
 containerStatuses:
 - containerID: docker://f0276994322d247ba...
 image: luksa/kubia
 imageID: docker://4c325bcc6b40c110226b89fe...
 lastState: {}
 name: kubia
 ready: true
 restartCount: 0
 state:
 running:
 startedAt: 2016-03-18T12:46:05Z
 hostIP: 10.132.0.4
 phase: Running
 podIP: 10.0.2.3
 startTime: 2016-03-18T12:44:32Z

I know this looks complicated, but it becomes simple once you understand the basics
and know how to distinguish between the important parts and the minor details. Also,
you can take comfort in the fact that when creating a new pod, the YAML you need to
write is much shorter, as you’ll see later.

INTRODUCING THE MAIN PARTS OF A POD DEFINITION

The pod definition consists of a few parts. First, there’s the Kubernetes API version
used in the YAML and the type of resource the YAML is describing. Then, three
important sections are found in almost all Kubernetes resources:

 Metadata includes the name, namespace, labels, and other information about
the pod.

 Spec contains the actual description of the pod’s contents, such as the pod’s con-
tainers, volumes, and other data.

Pod specification/
contents (list of
pod’s containers,
volumes, and so on)

Detailed status
of the pod and
its containers

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

63Creating pods from YAML or JSON descriptors

 Status contains the current information about the running pod, such as what
condition the pod is in, the description and status of each container, and the
pod’s internal IP and other basic info.

Listing 3.1 showed a full description of a running pod, including its status. The status
part contains read-only runtime data that shows the state of the resource at a given
moment. When creating a new pod, you never need to provide the status part.

 The three parts described previously show the typical structure of a Kubernetes
API object. As you’ll see throughout the book, all other objects have the same anat-
omy. This makes understanding new objects relatively easy.

 Going through all the individual properties in the previous YAML doesn’t make
much sense, so, instead, let’s see what the most basic YAML for creating a pod looks
like.

3.2.2 Creating a simple YAML descriptor for a pod

You’re going to create a file called kubia-manual.yaml (you can create it in any
directory you want), or download the book’s code archive, where you’ll find the
file inside the Chapter03 directory. The following listing shows the entire contents
of the file.

apiVersion: v1
kind: Pod
metadata:
 name: kubia-manual
spec:
 containers:
 - image: luksa/kubia
 name: kubia
 ports:
 - containerPort: 8080
 protocol: TCP

I’m sure you’ll agree this is much simpler than the definition in listing 3.1. Let’s exam-
ine this descriptor in detail. It conforms to the v1 version of the Kubernetes API. The
type of resource you’re describing is a pod, with the name kubia-manual. The pod
consists of a single container based on the luksa/kubia image. You’ve also given a
name to the container and indicated that it’s listening on port 8080.

SPECIFYING CONTAINER PORTS

Specifying ports in the pod definition is purely informational. Omitting them has no
effect on whether clients can connect to the pod through the port or not. If the con-

Listing 3.2 A basic pod manifest: kubia-manual.yaml

Descriptor conforms
to version v1 of
Kubernetes API

You’re
describing a pod.

The name
of the pod

Container image to create
the container from

Name of the container

The port the app
is listening on

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

64 CHAPTER 3 Pods: running containers in Kubernetes

tainer is accepting connections through a port bound to the 0.0.0.0 address, other
pods can always connect to it, even if the port isn’t listed in the pod spec explicitly. But
it makes sense to define the ports explicitly so that everyone using your cluster can
quickly see what ports each pod exposes. Explicitly defining ports also allows you to
assign a name to each port, which can come in handy, as you’ll see later in the book.

Using kubectl explain to discover possible API object fields
When preparing a manifest, you can either turn to the Kubernetes reference
documentation at http://kubernetes.io/docs/api to see which attributes are
supported by each API object, or you can use the kubectl explain command.

For example, when creating a pod manifest from scratch, you can start by asking
kubectl to explain pods:

$ kubectl explain pods
DESCRIPTION:
Pod is a collection of containers that can run on a host. This resource

is created by clients and scheduled onto hosts.

FIELDS:
 kind <string>
 Kind is a string value representing the REST resource this object
 represents...

 metadata <Object>
 Standard object's metadata...

 spec <Object>
 Specification of the desired behavior of the pod...

 status <Object>
 Most recently observed status of the pod. This data may not be up to
 date...

Kubectl prints out the explanation of the object and lists the attributes the object
can contain. You can then drill deeper to find out more about each attribute. For
example, you can examine the spec attribute like this:

$ kubectl explain pod.spec
RESOURCE: spec <Object>

DESCRIPTION:
 Specification of the desired behavior of the pod...
 podSpec is a description of a pod.

FIELDS:
 hostPID <boolean>
 Use the host's pid namespace. Optional: Default to false.

 ...

 volumes <[]Object>
 List of volumes that can be mounted by containers belonging to the
 pod.

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

65Creating pods from YAML or JSON descriptors

3.2.3 Using kubectl create to create the pod

To create the pod from your YAML file, use the kubectl create command:

$ kubectl create -f kubia-manual.yaml
pod "kubia-manual" created

The kubectl create -f command is used for creating any resource (not only pods)
from a YAML or JSON file.

RETRIEVING THE WHOLE DEFINITION OF A RUNNING POD

After creating the pod, you can ask Kubernetes for the full YAML of the pod. You’ll
see it’s similar to the YAML you saw earlier. You’ll learn about the additional fields
appearing in the returned definition in the next sections. Go ahead and use the fol-
lowing command to see the full descriptor of the pod:

$ kubectl get po kubia-manual -o yaml

If you’re more into JSON, you can also tell kubectl to return JSON instead of YAML
like this (this works even if you used YAML to create the pod):

$ kubectl get po kubia-manual -o json

SEEING YOUR NEWLY CREATED POD IN THE LIST OF PODS

Your pod has been created, but how do you know if it’s running? Let’s list pods to see
their statuses:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
kubia-manual 1/1 Running 0 32s
kubia-zxzij 1/1 Running 0 1d

There’s your kubia-manual pod. Its status shows that it’s running. If you’re like me,
you’ll probably want to confirm that’s true by talking to the pod. You’ll do that in a
minute. First, you’ll look at the app’s log to check for any errors.

3.2.4 Viewing application logs

Your little Node.js application logs to the process’s standard output. Containerized
applications usually log to the standard output and standard error stream instead of

 Containers <[]Object> -required-
 List of containers belonging to the pod. Containers cannot currently
 Be added or removed. There must be at least one container in a pod.
 Cannot be updated. More info:
 http://releases.k8s.io/release-1.4/docs/user-guide/containers.md

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

66 CHAPTER 3 Pods: running containers in Kubernetes

writing their logs to files. This is to allow users to view logs of different applications in
a simple, standard way.

 The container runtime (Docker in your case) redirects those streams to files and
allows you to get the container’s log by running

$ docker logs <container id>

You could use ssh to log into the node where your pod is running and retrieve its logs
with docker logs, but Kubernetes provides an easier way.

RETRIEVING A POD’S LOG WITH KUBECTL LOGS

To see your pod’s log (more precisely, the container’s log) you run the following com-
mand on your local machine (no need to ssh anywhere):

$ kubectl logs kubia-manual
Kubia server starting...

You haven’t sent any web requests to your Node.js app, so the log only shows a single
log statement about the server starting up. As you can see, retrieving logs of an appli-
cation running in Kubernetes is incredibly simple if the pod only contains a single
container.

NOTE Container logs are automatically rotated daily and every time the log file
reaches 10MB in size. The kubectl logs command only shows the log entries
from the last rotation.

SPECIFYING THE CONTAINER NAME WHEN GETTING LOGS OF A MULTI-CONTAINER POD

If your pod includes multiple containers, you have to explicitly specify the container
name by including the -c <container name> option when running kubectl logs. In
your kubia-manual pod, you set the container’s name to kubia, so if additional con-
tainers exist in the pod, you’d have to get its logs like this:

$ kubectl logs kubia-manual -c kubia
Kubia server starting...

Note that you can only retrieve container logs of pods that are still in existence. When
a pod is deleted, its logs are also deleted. To make a pod’s logs available even after the
pod is deleted, you need to set up centralized, cluster-wide logging, which stores all
the logs into a central store. Chapter 17 explains how centralized logging works.

3.2.5 Sending requests to the pod

The pod is now running—at least that’s what kubectl get and your app’s log say. But
how do you see it in action? In the previous chapter, you used the kubectl expose
command to create a service to gain access to the pod externally. You’re not going to
do that now, because a whole chapter is dedicated to services, and you have other ways
of connecting to a pod for testing and debugging purposes. One of them is through
port forwarding.

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

67Organizing pods with labels

FORWARDING A LOCAL NETWORK PORT TO A PORT IN THE POD

When you want to talk to a specific pod without going through a service (for debug-
ging or other reasons), Kubernetes allows you to configure port forwarding to the
pod. This is done through the kubectl port-forward command. The following
command will forward your machine’s local port 8888 to port 8080 of your kubia-
manual pod:

$ kubectl port-forward kubia-manual 8888:8080
... Forwarding from 127.0.0.1:8888 -> 8080
... Forwarding from [::1]:8888 -> 8080

The port forwarder is running and you can now connect to your pod through the
local port.

CONNECTING TO THE POD THROUGH THE PORT FORWARDER

In a different terminal, you can now use curl to send an HTTP request to your pod
through the kubectl port-forward proxy running on localhost:8888:

$ curl localhost:8888
You’ve hit kubia-manual

Figure 3.5 shows an overly simplified view of what happens when you send the request.
In reality, a couple of additional components sit between the kubectl process and the
pod, but they aren’t relevant right now.

Using port forwarding like this is an effective way to test an individual pod. You’ll
learn about other similar methods throughout the book.

3.3 Organizing pods with labels
At this point, you have two pods running in your cluster. When deploying actual
applications, most users will end up running many more pods. As the number of
pods increases, the need for categorizing them into subsets becomes more and
more evident.

 For example, with microservices architectures, the number of deployed microser-
vices can easily exceed 20 or more. Those components will probably be replicated

Kubernetes cluster

Port

8080

Local machine

kubectl
port-forward

process

curl

Port

8888

Pod:

kubia-manual

Figure 3.5 A simplified view of what happens when you use curl with kubectl port-forward

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

68 CHAPTER 3 Pods: running containers in Kubernetes

(multiple copies of the same component will be deployed) and multiple versions or
releases (stable, beta, canary, and so on) will run concurrently. This can lead to hun-
dreds of pods in the system. Without a mechanism for organizing them, you end up
with a big, incomprehensible mess, such as the one shown in figure 3.6. The figure
shows pods of multiple microservices, with several running multiple replicas, and others
running different releases of the same microservice.

It’s evident you need a way of organizing them into smaller groups based on arbitrary
criteria, so every developer and system administrator dealing with your system can eas-
ily see which pod is which. And you’ll want to operate on every pod belonging to a cer-
tain group with a single action instead of having to perform the action for each pod
individually.

 Organizing pods and all other Kubernetes objects is done through labels.

3.3.1 Introducing labels

Labels are a simple, yet incredibly powerful, Kubernetes feature for organizing not
only pods, but all other Kubernetes resources. A label is an arbitrary key-value pair you
attach to a resource, which is then utilized when selecting resources using label selectors
(resources are filtered based on whether they include the label specified in the selec-
tor). A resource can have more than one label, as long as the keys of those labels are
unique within that resource. You usually attach labels to resources when you create
them, but you can also add additional labels or even modify the values of existing
labels later without having to recreate the resource.

UI pod

UI pod

UI pod

Account

Service

pod

Product

Catalog

pod

Product

Catalog

pod

Product

Catalog

pod

Shopping

Cart

pod

Shopping

Cart

pod

Order

Service

pod

UI pod

UI pod

Product

Catalog

pod

Product

Catalog

pod

Order

Service

pod

Account

Service

pod

Product

Catalog

pod Product

Catalog

pod

Order

Service

pod

Figure 3.6 Uncategorized pods in a microservices architecture

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

69Organizing pods with labels

 Let’s turn back to the microservices example from figure 3.6. By adding labels to
those pods, you get a much-better-organized system that everyone can easily make
sense of. Each pod is labeled with two labels:

 app, which specifies which app, component, or microservice the pod belongs to.
 rel, which shows whether the application running in the pod is a stable, beta,

or a canary release.

DEFINITION A canary release is when you deploy a new version of an applica-
tion next to the stable version, and only let a small fraction of users hit the
new version to see how it behaves before rolling it out to all users. This pre-
vents bad releases from being exposed to too many users.

By adding these two labels, you’ve essentially organized your pods into two dimen-
sions (horizontally by app and vertically by release), as shown in figure 3.7.

Every developer or ops person with access to your cluster can now easily see the sys-
tem’s structure and where each pod fits in by looking at the pod’s labels.

3.3.2 Specifying labels when creating a pod

Now, you’ll see labels in action by creating a new pod with two labels. Create a new file
called kubia-manual-with-labels.yaml with the contents of the following listing.

apiVersion: v1
kind: Pod
metadata:
 name: kubia-manual-v2

Listing 3.3 A pod with labels: kubia-manual-with-labels.yaml

UI pod

app: ui

rel: stable

r
e
l
=
s
t
a
b
l
e

app=ui

Account

Service

pod

app: as

rel: stable

app=as

app: pc

rel: stable

app=pc

app: sc

rel: stable

app=sc

app: os

rel: stable

app=os

Product

Catalog

pod

Shopping

Cart

pod

Order

Service

pod

UI pod

app: ui

rel: beta

r
e
l
=
b
e
t
a

app: pc

rel: beta

app: os

rel: beta

Product

Catalog

pod

Order

Service

pod

r
e
l
=
c
a
n
a
r
y

Account

Service

pod

app: as

rel: canary

app: pc

rel: canary

app: os

rel: canary

Product

Catalog

pod

Order

Service

pod

Figure 3.7 Organizing pods in a microservices architecture with pod labels

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

70 CHAPTER 3 Pods: running containers in Kubernetes

 labels:
 creation_method: manual
 env: prod
spec:
 containers:
 - image: luksa/kubia
 name: kubia
 ports:
 - containerPort: 8080
 protocol: TCP

You’ve included the labels creation_method=manual and env=data.labels section.
You’ll create this pod now:

$ kubectl create -f kubia-manual-with-labels.yaml
pod "kubia-manual-v2" created

The kubectl get pods command doesn’t list any labels by default, but you can see
them by using the --show-labels switch:

$ kubectl get po --show-labels
NAME READY STATUS RESTARTS AGE LABELS
kubia-manual 1/1 Running 0 16m <none>
kubia-manual-v2 1/1 Running 0 2m creat_method=manual,env=prod
kubia-zxzij 1/1 Running 0 1d run=kubia

Instead of listing all labels, if you’re only interested in certain labels, you can specify
them with the -L switch and have each displayed in its own column. List pods again
and show the columns for the two labels you’ve attached to your kubia-manual-v2 pod:

$ kubectl get po -L creation_method,env
NAME READY STATUS RESTARTS AGE CREATION_METHOD ENV
kubia-manual 1/1 Running 0 16m <none> <none>
kubia-manual-v2 1/1 Running 0 2m manual prod
kubia-zxzij 1/1 Running 0 1d <none> <none>

3.3.3 Modifying labels of existing pods

Labels can also be added to and modified on existing pods. Because the kubia-man-
ual pod was also created manually, let’s add the creation_method=manual label to it:

$ kubectl label po kubia-manual creation_method=manual
pod "kubia-manual" labeled

Now, let’s also change the env=prod label to env=debug on the kubia-manual-v2 pod,
to see how existing labels can be changed.

NOTE You need to use the --overwrite option when changing existing labels.

$ kubectl label po kubia-manual-v2 env=debug --overwrite
pod "kubia-manual-v2" labeled

Two labels are
attached to the pod.

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

71Listing subsets of pods through label selectors

List the pods again to see the updated labels:

$ kubectl get po -L creation_method,env
NAME READY STATUS RESTARTS AGE CREATION_METHOD ENV
kubia-manual 1/1 Running 0 16m manual <none>
kubia-manual-v2 1/1 Running 0 2m manual debug
kubia-zxzij 1/1 Running 0 1d <none> <none>

As you can see, attaching labels to resources is trivial, and so is changing them on
existing resources. It may not be evident right now, but this is an incredibly powerful
feature, as you’ll see in the next chapter. But first, let’s see what you can do with these
labels, in addition to displaying them when listing pods.

3.4 Listing subsets of pods through label selectors
Attaching labels to resources so you can see the labels next to each resource when list-
ing them isn’t that interesting. But labels go hand in hand with label selectors. Label
selectors allow you to select a subset of pods tagged with certain labels and perform an
operation on those pods. A label selector is a criterion, which filters resources based
on whether they include a certain label with a certain value.

 A label selector can select resources based on whether the resource

 Contains (or doesn’t contain) a label with a certain key
 Contains a label with a certain key and value
 Contains a label with a certain key, but with a value not equal to the one you

specify

3.4.1 Listing pods using a label selector

Let’s use label selectors on the pods you’ve created so far. To see all pods you created
manually (you labeled them with creation_method=manual), do the following:

$ kubectl get po -l creation_method=manual
NAME READY STATUS RESTARTS AGE
kubia-manual 1/1 Running 0 51m
kubia-manual-v2 1/1 Running 0 37m

To list all pods that include the env label, whatever its value is:

$ kubectl get po -l env
NAME READY STATUS RESTARTS AGE
kubia-manual-v2 1/1 Running 0 37m

And those that don’t have the env label:

$ kubectl get po -l '!env'
NAME READY STATUS RESTARTS AGE
kubia-manual 1/1 Running 0 51m
kubia-zxzij 1/1 Running 0 10d

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

72 CHAPTER 3 Pods: running containers in Kubernetes

NOTE Make sure to use single quotes around !env, so the bash shell doesn’t
evaluate the exclamation mark.

Similarly, you could also match pods with the following label selectors:

 creation_method!=manual to select pods with the creation_method label with
any value other than manual

 env in (prod,devel) to select pods with the env label set to either prod or
devel

 env notin (prod,devel) to select pods with the env label set to any value other
than prod or devel

Turning back to the pods in the microservices-oriented architecture example, you
could select all pods that are part of the product catalog microservice by using the
app=pc label selector (shown in the following figure).

3.4.2 Using multiple conditions in a label selector

A selector can also include multiple comma-separated criteria. Resources need to
match all of them to match the selector. If, for example, you want to select only pods
running the beta release of the product catalog microservice, you’d use the following
selector: app=pc,rel=beta (visualized in figure 3.9).

 Label selectors aren’t useful only for listing pods, but also for performing actions
on a subset of all pods. For example, later in the chapter, you’ll see how to use label
selectors to delete multiple pods at once. But label selectors aren’t used only by
kubectl. They’re also used internally, as you’ll see next.

UI pod

app: ui

rel: stable

r
e
l
=
s
t
a
b
l
e

app=ui

Account

Service

pod

app: as

rel: stable

app=as

app: pc

rel: stable

app=pc

app: sc

rel: stable

app=sc

app: os

rel: stable

app=os

Product

Catalog

pod

Shopping

Cart

pod

Order

Service

pod

UI pod

app: ui

rel: beta

r
e
l
=
b
e
t
a

app: pc

rel: beta

app: os

rel: beta

Product

Catalog

pod

Order

Service

pod

r
e
l
=
c
a
n
a
r
y

Account

Service

pod

app: as

rel: canary

app: pc

rel: canary

app: os

rel: canary

Product

Catalog

pod

Order

Service

pod

Figure 3.8 Selecting the product catalog microservice pods using the “app=pc” label selector

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

73Using labels and selectors to constrain pod scheduling

3.5 Using labels and selectors to constrain pod scheduling
All the pods you’ve created so far have been scheduled pretty much randomly across
your worker nodes. As I’ve mentioned in the previous chapter, this is the proper way
of working in a Kubernetes cluster. Because Kubernetes exposes all the nodes in the
cluster as a single, large deployment platform, it shouldn’t matter to you what node a
pod is scheduled to. Because each pod gets the exact amount of computational
resources it requests (CPU, memory, and so on) and its accessibility from other pods
isn’t at all affected by the node the pod is scheduled to, usually there shouldn’t be any
need for you to tell Kubernetes exactly where to schedule your pods.

 Certain cases exist, however, where you’ll want to have at least a little say in where
a pod should be scheduled. A good example is when your hardware infrastructure
isn’t homogenous. If part of your worker nodes have spinning hard drives, whereas
others have SSDs, you may want to schedule certain pods to one group of nodes and
the rest to the other. Another example is when you need to schedule pods perform-
ing intensive GPU-based computation only to nodes that provide the required GPU
acceleration.

 You never want to say specifically what node a pod should be scheduled to, because
that would couple the application to the infrastructure, whereas the whole idea of
Kubernetes is hiding the actual infrastructure from the apps that run on it. But if you
want to have a say in where a pod should be scheduled, instead of specifying an exact
node, you should describe the node requirements and then let Kubernetes select a
node that matches those requirements. This can be done through node labels and
node label selectors.

UI pod

app: ui

rel: stable

r
e
l
=
s
t
a
b
l
e

app=ui

Account

Service

pod

app: as

rel: stable

app=as

app: pc

rel: stable

app=pc

app: sc

rel: stable

app=sc

app: os

rel: stable

app=os

Product

Catalog

pod

Shopping

Cart

pod

Order

Service

pod

UI pod

app: ui

rel: beta

r
e
l
=
b
e
t
a

app: pc

rel: beta

app: os

rel: beta

Product

Catalog

pod

Order

Service

pod

r
e
l
=
c
a
n
a
r
y

Account

Service

pod

app: as

rel: canary

app: pc

rel: canary

app: os

rel: canary

Product

Catalog

pod

Order

Service

pod

Figure 3.9 Selecting pods with multiple label selectors

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

74 CHAPTER 3 Pods: running containers in Kubernetes

3.5.1 Using labels for categorizing worker nodes

As you learned earlier, pods aren’t the only Kubernetes resource type that you can
attach a label to. Labels can be attached to any Kubernetes object, including nodes.
Usually, when the ops team adds a new node to the cluster, they’ll categorize the node
by attaching labels specifying the type of hardware the node provides or anything else
that may come in handy when scheduling pods.

 Let’s imagine one of the nodes in your cluster contains a GPU meant to be used
for general-purpose GPU computing. You want to add a label to the node showing this
feature. You’re going to add the label gpu=true to one of your nodes (pick one out of
the list returned by kubectl get nodes):

$ kubectl label node gke-kubia-85f6-node-0rrx gpu=true
node "gke-kubia-85f6-node-0rrx" labeled

Now you can use a label selector when listing the nodes, like you did before with pods.
List only nodes that include the label gpu=true:

$ kubectl get nodes -l gpu=true
NAME STATUS AGE
gke-kubia-85f6-node-0rrx Ready 1d

As expected, only one node has this label. You can also try listing all the nodes and tell
kubectl to display an additional column showing the values of each node’s gpu label
(kubectl get nodes -L gpu).

3.5.2 Scheduling pods to specific nodes

Now imagine you want to deploy a new pod that needs a GPU to perform its work.
To ask the scheduler to only choose among the nodes that provide a GPU, you’ll
add a node selector to the pod’s YAML. Create a file called kubia-gpu.yaml with the
following listing’s contents and then use kubectl create -f kubia-gpu.yaml to cre-
ate the pod.

apiVersion: v1
kind: Pod
metadata:
 name: kubia-gpu
spec:
 nodeSelector:
 gpu: "true"
 containers:
 - image: luksa/kubia
 name: kubia

Listing 3.4 Using a label selector to schedule a pod to a specific node: kubia-gpu.yaml

nodeSelector tells Kubernetes
to deploy this pod only to
nodes containing the
gpu=true label.

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

75Annotating pods

You’ve added a nodeSelector field under the spec section. When you create the pod,
the scheduler will only choose among the nodes that contain the gpu=true label
(which is only a single node in your case).

3.5.3 Scheduling to one specific node

Similarly, you could also schedule a pod to an exact node, because each node also has
a unique label with the key kubernetes.io/hostname and value set to the actual host-
name of the node. But setting the nodeSelector to a specific node by the hostname
label may lead to the pod being unschedulable if the node is offline. You shouldn’t
think in terms of individual nodes. Always think about logical groups of nodes that sat-
isfy certain criteria specified through label selectors.

 This was a quick demonstration of how labels and label selectors work and how
they can be used to influence the operation of Kubernetes. The importance and use-
fulness of label selectors will become even more evident when we talk about Replication-
Controllers and Services in the next two chapters.

NOTE Additional ways of influencing which node a pod is scheduled to are
covered in chapter 16.

3.6 Annotating pods
In addition to labels, pods and other objects can also contain annotations. Annotations
are also key-value pairs, so in essence, they’re similar to labels, but they aren’t meant to
hold identifying information. They can’t be used to group objects the way labels can.
While objects can be selected through label selectors, there’s no such thing as an
annotation selector.

 On the other hand, annotations can hold much larger pieces of information and
are primarily meant to be used by tools. Certain annotations are automatically added
to objects by Kubernetes, but others are added by users manually.

 Annotations are also commonly used when introducing new features to Kuberne-
tes. Usually, alpha and beta versions of new features don’t introduce any new fields to
API objects. Annotations are used instead of fields, and then once the required API
changes have become clear and been agreed upon by the Kubernetes developers, new
fields are introduced and the related annotations deprecated.

 A great use of annotations is adding descriptions for each pod or other API object,
so that everyone using the cluster can quickly look up information about each individ-
ual object. For example, an annotation used to specify the name of the person who
created the object can make collaboration between everyone working on the cluster
much easier.

3.6.1 Looking up an object’s annotations

Let’s see an example of an annotation that Kubernetes added automatically to the
pod you created in the previous chapter. To see the annotations, you’ll need to

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

76 CHAPTER 3 Pods: running containers in Kubernetes

request the full YAML of the pod or use the kubectl describe command. You’ll use the
first option in the following listing.

$ kubectl get po kubia-zxzij -o yaml
apiVersion: v1
kind: pod
metadata:
 annotations:
 kubernetes.io/created-by: |
 {"kind":"SerializedReference", "apiVersion":"v1",
 "reference":{"kind":"ReplicationController", "namespace":"default", ...

Without going into too many details, as you can see, the kubernetes.io/created-by
annotation holds JSON data about the object that created the pod. That’s not some-
thing you’d want to put into a label. Labels should be short, whereas annotations can
contain relatively large blobs of data (up to 256 KB in total).

NOTE The kubernetes.io/created-by annotations was deprecated in ver-
sion 1.8 and will be removed in 1.9, so you will no longer see it in the YAML.

3.6.2 Adding and modifying annotations

Annotations can obviously be added to pods at creation time, the same way labels can.
They can also be added to or modified on existing pods later. The simplest way to add
an annotation to an existing object is through the kubectl annotate command.

 You’ll try adding an annotation to your kubia-manual pod now:

$ kubectl annotate pod kubia-manual mycompany.com/someannotation="foo bar"
pod "kubia-manual" annotated

You added the annotation mycompany.com/someannotation with the value foo bar.
It’s a good idea to use this format for annotation keys to prevent key collisions. When
different tools or libraries add annotations to objects, they may accidentally override
each other’s annotations if they don’t use unique prefixes like you did here.

 You can use kubectl describe to see the annotation you added:

$ kubectl describe pod kubia-manual
...
Annotations: mycompany.com/someannotation=foo bar
...

3.7 Using namespaces to group resources
Let’s turn back to labels for a moment. We’ve seen how they organize pods and other
objects into groups. Because each object can have multiple labels, those groups of
objects can overlap. Plus, when working with the cluster (through kubectl for example),
if you don’t explicitly specify a label selector, you’ll always see all objects.

Listing 3.5 A pod’s annotations

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

77Using namespaces to group resources

 But what about times when you want to split objects into separate, non-overlapping
groups? You may want to only operate inside one group at a time. For this and other
reasons, Kubernetes also groups objects into namespaces. These aren’t the Linux
namespaces we talked about in chapter 2, which are used to isolate processes from
each other. Kubernetes namespaces provide a scope for objects names. Instead of hav-
ing all your resources in one single namespace, you can split them into multiple name-
spaces, which also allows you to use the same resource names multiple times (across
different namespaces).

3.7.1 Understanding the need for namespaces

Using multiple namespaces allows you to split complex systems with numerous com-
ponents into smaller distinct groups. They can also be used for separating resources
in a multi-tenant environment, splitting up resources into production, development,
and QA environments, or in any other way you may need. Resource names only need
to be unique within a namespace. Two different namespaces can contain resources of
the same name. But, while most types of resources are namespaced, a few aren’t. One
of them is the Node resource, which is global and not tied to a single namespace.
You’ll learn about other cluster-level resources in later chapters.

 Let’s see how to use namespaces now.

3.7.2 Discovering other namespaces and their pods

First, let’s list all namespaces in your cluster:

$ kubectl get ns
NAME LABELS STATUS AGE
default <none> Active 1h
kube-public <none> Active 1h
kube-system <none> Active 1h

Up to this point, you’ve operated only in the default namespace. When listing resources
with the kubectl get command, you’ve never specified the namespace explicitly, so
kubectl always defaulted to the default namespace, showing you only the objects in
that namespace. But as you can see from the list, the kube-public and the kube-system
namespaces also exist. Let’s look at the pods that belong to the kube-system name-
space, by telling kubectl to list pods in that namespace only:

$ kubectl get po --namespace kube-system
NAME READY STATUS RESTARTS AGE
fluentd-cloud-kubia-e8fe-node-txje 1/1 Running 0 1h
heapster-v11-fz1ge 1/1 Running 0 1h
kube-dns-v9-p8a4t 0/4 Pending 0 1h
kube-ui-v4-kdlai 1/1 Running 0 1h
l7-lb-controller-v0.5.2-bue96 2/2 Running 92 1h

TIP You can also use -n instead of --namespace.

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

78 CHAPTER 3 Pods: running containers in Kubernetes

You’ll learn about these pods later in the book (don’t worry if the pods shown here
don’t match the ones on your system exactly). It’s clear from the name of the name-
space that these are resources related to the Kubernetes system itself. By having
them in this separate namespace, it keeps everything nicely organized. If they were
all in the default namespace, mixed in with the resources you create yourself, you’d
have a hard time seeing what belongs where, and you might inadvertently delete sys-
tem resources.

 Namespaces enable you to separate resources that don’t belong together into non-
overlapping groups. If several users or groups of users are using the same Kubernetes
cluster, and they each manage their own distinct set of resources, they should each use
their own namespace. This way, they don’t need to take any special care not to inad-
vertently modify or delete the other users’ resources and don’t need to concern them-
selves with name conflicts, because namespaces provide a scope for resource names,
as has already been mentioned.

 Besides isolating resources, namespaces are also used for allowing only certain users
access to particular resources and even for limiting the amount of computational
resources available to individual users. You’ll learn about this in chapters 12 through 14.

3.7.3 Creating a namespace

A namespace is a Kubernetes resource like any other, so you can create it by posting a
YAML file to the Kubernetes API server. Let’s see how to do this now.

CREATING A NAMESPACE FROM A YAML FILE

First, create a custom-namespace.yaml file with the following listing’s contents (you’ll
find the file in the book’s code archive).

apiVersion: v1
kind: Namespace
metadata:
 name: custom-namespace

Now, use kubectl to post the file to the Kubernetes API server:

$ kubectl create -f custom-namespace.yaml
namespace "custom-namespace" created

CREATING A NAMESPACE WITH KUBECTL CREATE NAMESPACE

Although writing a file like the previous one isn’t a big deal, it’s still a hassle. Luckily,
you can also create namespaces with the dedicated kubectl create namespace com-
mand, which is quicker than writing a YAML file. By having you create a YAML mani-
fest for the namespace, I wanted to reinforce the idea that everything in Kubernetes

Listing 3.6 A YAML definition of a namespace: custom-namespace.yaml

This says you’re
defining a namespace.

This is the name
of the namespace.

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

79Using namespaces to group resources

has a corresponding API object that you can create, read, update, and delete by post-
ing a YAML manifest to the API server.

 You could have created the namespace like this:

$ kubectl create namespace custom-namespace
namespace "custom-namespace" created

NOTE Although most objects’ names must conform to the naming conven-
tions specified in RFC 1035 (Domain names), which means they may contain
only letters, digits, dashes, and dots, namespaces (and a few others) aren’t
allowed to contain dots.

3.7.4 Managing objects in other namespaces

To create resources in the namespace you’ve created, either add a namespace: custom-
namespace entry to the metadata section, or specify the namespace when creating the
resource with the kubectl create command:

$ kubectl create -f kubia-manual.yaml -n custom-namespace
pod "kubia-manual" created

You now have two pods with the same name (kubia-manual). One is in the default
namespace, and the other is in your custom-namespace.

 When listing, describing, modifying, or deleting objects in other namespaces, you
need to pass the --namespace (or -n) flag to kubectl. If you don’t specify the name-
space, kubectl performs the action in the default namespace configured in the cur-
rent kubectl context. The current context’s namespace and the current context itself
can be changed through kubectl config commands. To learn more about managing
kubectl contexts, refer to appendix A.

TIP To quickly switch to a different namespace, you can set up the following
alias: alias kcd='kubectl config set-context $(kubectl config current-
context) --namespace '. You can then switch between namespaces using kcd
some-namespace.

3.7.5 Understanding the isolation provided by namespaces

To wrap up this section about namespaces, let me explain what namespaces don’t pro-
vide—at least not out of the box. Although namespaces allow you to isolate objects
into distinct groups, which allows you to operate only on those belonging to the speci-
fied namespace, they don’t provide any kind of isolation of running objects.

 For example, you may think that when different users deploy pods across different
namespaces, those pods are isolated from each other and can’t communicate, but that’s
not necessarily the case. Whether namespaces provide network isolation depends on
which networking solution is deployed with Kubernetes. When the solution doesn’t
provide inter-namespace network isolation, if a pod in namespace foo knows the IP

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

80 CHAPTER 3 Pods: running containers in Kubernetes

address of a pod in namespace bar, there is nothing preventing it from sending traffic,
such as HTTP requests, to the other pod.

3.8 Stopping and removing pods
You’ve created a number of pods, which should all still be running. You have four
pods running in the default namespace and one pod in custom-namespace. You’re
going to stop all of them now, because you don’t need them anymore.

3.8.1 Deleting a pod by name

First, delete the kubia-gpu pod by name:

$ kubectl delete po kubia-gpu
pod "kubia-gpu" deleted

By deleting a pod, you’re instructing Kubernetes to terminate all the containers that are
part of that pod. Kubernetes sends a SIGTERM signal to the process and waits a certain
number of seconds (30 by default) for it to shut down gracefully. If it doesn’t shut down
in time, the process is then killed through SIGKILL. To make sure your processes are
always shut down gracefully, they need to handle the SIGTERM signal properly.

TIP You can also delete more than one pod by specifying multiple, space-sep-
arated names (for example, kubectl delete po pod1 pod2).

3.8.2 Deleting pods using label selectors

Instead of specifying each pod to delete by name, you’ll now use what you’ve learned
about label selectors to stop both the kubia-manual and the kubia-manual-v2 pod.
Both pods include the creation_method=manual label, so you can delete them by
using a label selector:

$ kubectl delete po -l creation_method=manual
pod "kubia-manual" deleted
pod "kubia-manual-v2" deleted

In the earlier microservices example, where you had tens (or possibly hundreds) of
pods, you could, for instance, delete all canary pods at once by specifying the
rel=canary label selector (visualized in figure 3.10):

$ kubectl delete po -l rel=canary

3.8.3 Deleting pods by deleting the whole namespace

Okay, back to your real pods. What about the pod in the custom-namespace? You no
longer need either the pods in that namespace, or the namespace itself. You can

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

81Stopping and removing pods

delete the whole namespace (the pods will be deleted along with the namespace auto-
matically), using the following command:

$ kubectl delete ns custom-namespace
namespace "custom-namespace" deleted

3.8.4 Deleting all pods in a namespace, while keeping the namespace

You’ve now cleaned up almost everything. But what about the pod you created with
the kubectl run command in chapter 2? That one is still running:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
kubia-zxzij 1/1 Running 0 1d

This time, instead of deleting the specific pod, tell Kubernetes to delete all pods in the
current namespace by using the --all option:

$ kubectl delete po --all
pod "kubia-zxzij" deleted

Now, double check that no pods were left running:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
kubia-09as0 1/1 Running 0 1d
kubia-zxzij 1/1 Terminating 0 1d

UI pod

app: ui

rel: stable

r
e
l
=
s
t
a
b
l
e

app=ui

Account

Service

pod

app: as

rel: stable

app=as

app: pc

rel: stable

app=pc

app: sc

rel: stable

app=sc

app: os

rel: stable

app=os

Product

Catalog

pod

Shopping

Cart

pod

Order

Service

pod

UI pod

app: ui

rel: beta

r
e
l
=
b
e
t
a

app: pc

rel: beta

app: os

rel: beta

Product

Catalog

pod

Order

Service

pod

r
e
l
=
c
a
n
a
r
y

Account

Service

pod

app: as

rel: canary

app: pc

rel: canary

app: os

rel: canary

Product

Catalog

pod

Order

Service

pod

Figure 3.10 Selecting and deleting all canary pods through the rel=canary label selector

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

82 CHAPTER 3 Pods: running containers in Kubernetes

Wait, what!?! The kubia-zxzij pod is terminating, but a new pod called kubia-09as0,
which wasn’t there before, has appeared. No matter how many times you delete all
pods, a new pod called kubia-something will emerge.

 You may remember you created your first pod with the kubectl run command. In
chapter 2, I mentioned that this doesn’t create a pod directly, but instead creates a
ReplicationController, which then creates the pod. As soon as you delete a pod cre-
ated by the ReplicationController, it immediately creates a new one. To delete the
pod, you also need to delete the ReplicationController.

3.8.5 Deleting (almost) all resources in a namespace

You can delete the ReplicationController and the pods, as well as all the Services
you’ve created, by deleting all resources in the current namespace with a single
command:

$ kubectl delete all --all
pod "kubia-09as0" deleted
replicationcontroller "kubia" deleted
service "kubernetes" deleted
service "kubia-http" deleted

The first all in the command specifies that you’re deleting resources of all types, and
the --all option specifies that you’re deleting all resource instances instead of speci-
fying them by name (you already used this option when you ran the previous delete
command).

NOTE Deleting everything with the all keyword doesn’t delete absolutely
everything. Certain resources (like Secrets, which we’ll introduce in chapter 7)
are preserved and need to be deleted explicitly.

As it deletes resources, kubectl will print the name of every resource it deletes. In the
list, you should see the kubia ReplicationController and the kubia-http Service you
created in chapter 2.

NOTE The kubectl delete all --all command also deletes the kubernetes
Service, but it should be recreated automatically in a few moments.

3.9 Summary
After reading this chapter, you should now have a decent knowledge of the central
building block in Kubernetes. Every other concept you’ll learn about in the next few
chapters is directly related to pods.

 In this chapter, you’ve learned

 How to decide whether certain containers should be grouped together in a pod
or not.

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

83Summary

 Pods can run multiple processes and are similar to physical hosts in the non-
container world.

 YAML or JSON descriptors can be written and used to create pods and then
examined to see the specification of a pod and its current state.

 Labels and label selectors should be used to organize pods and easily perform
operations on multiple pods at once.

 You can use node labels and selectors to schedule pods only to nodes that have
certain features.

 Annotations allow attaching larger blobs of data to pods either by people or
tools and libraries.

 Namespaces can be used to allow different teams to use the same cluster as
though they were using separate Kubernetes clusters.

 How to use the kubectl explain command to quickly look up the information
on any Kubernetes resource.

In the next chapter, you’ll learn about ReplicationControllers and other resources
that manage pods.

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

Marko Lukša

K
ubernetes is Greek for “helmsman,” your guide through
unknown waters. The Kubernetes container orchestra-
tion system safely manages the structure and fl ow of a

distributed application, organizing containers and services for
maximum effi ciency. Kubernetes serves as an operating system
for your clusters, eliminating the need to factor the underlying
network and server infrastructure into your designs.

Kubernetes in Action teaches you to use Kubernetes to deploy
container-based distributed applications. You’ll start with an
overview of Docker and Kubernetes before building your fi rst
Kubernetes cluster. You’ll gradually expand your initial
application, adding features and deepening your knowledge
of Kubernetes architecture and operation. As you navigate
this comprehensive guide, you’ll explore high-value topics
like monitoring, tuning, and scaling.

What’s Inside
● Kubernetes’ internals
● Deploying containers across a cluster
● Securing clusters
● Updating applications with zero downtime

Written for intermediate software developers with little or no
familiarity with Docker or container orchestration systems.

Marko Lukša is an engineer at Red Hat working on Kubernetes
and OpenShift.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/kubernetes-in-action

$59.99 / Can $79.99 [INCLUDING eBOOK]

Kubernetes IN ACTION

SOFTWARE DEVELOPMENT/OPERATIONS

M A N N I N G

“Authoritative and
exhaustive. In a hands-on

style, the author teaches how
to manage the complete

lifecycle of any distributed
 and scalable application.”
—Antonio Magnaghi, System1

“The best parts are the real-
world examples. They don’t

just apply the concepts,
they road test them.”
—Paolo Antinori, Red Hat

“An in-depth discussion
of Kubernetes and related

 technologies. A must-have!”—Al Krinker, USPTO

“The full path to becoming
a professional Kubernaut.
 Fundamental reading.”

—Csaba Sári
Chimera Entertainment

SEE INSERT

www.itbook.store/books/9781617293726

https://itbook.store/books/9781617293726

