
M A N N I N G

Matt Bailey

Running applications on Container Linux

SAMPLE CHAPTER

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

CoreOS in Action
by Matt Bailey

Chapter 3

 Copyright 2017 Manning Publications

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

vii

brief contents

PART 1 GETTING TO KNOW COREOS.. 1
1 ■ Introduction to the CoreOS family 3
2 ■ Getting started on your workstation 17
3 ■ Expecting failure: fault tolerance in CoreOS 35

PART 2 APPLICATION ARCHITECTURE.. 51
4 ■ CoreOS in production 53
5 ■ Application architecture and workflow 70
6 ■ Web stack application example 78
7 ■ Big Data stack 102

PART 3 COREOS IN PRODUCTION... 121
8 ■ CoreOS on AWS 123
9 ■ Bringing it together: deployment 145

10 ■ System administration 158

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

35

Expecting failure:
fault tolerance in CoreOS

If you work in infrastructure or operations in any capacity, you’ll understand the
importance of monitoring systems. When the alarms go off, it’s time to figure out
what’s happened. You might have also taken a crack at automating some of the
most common fixes to problems or mitigated situations with disaster-recovery
failover switches, multicasting, or a variety of other ways to react to failure. You
probably also have an understanding that technology always finds a way to break.
Hardware, software, connectivity, power grid—these are all things that wake us up
in the middle of the night. If you’ve been working in operations for a while, you
probably have the sense that although automating fault tolerance is possible, it’s
usually risky and difficult to maintain.

This chapter covers
 Monitoring and fault tolerance in CoreOS

 Getting your first complex service running

 Application architecture in the context of CoreOS

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

36 CHAPTER 3 Expecting failure: fault tolerance in CoreOS

 CoreOS tries to solve this problem; by providing generic abstractions for the state
of your application distributed over a cluster, the implementation details of automat-
ing fault tolerance become much clearer and reusable. The next logical benefit of
containers after abstracting the runtime from any particular machine is to allow that
runtime to be portable across a network, thus decoupling any container from the fail-
ure of its host.

 In this chapter, we’ll expand on what you learned in chapters 1 and 2 and dive into
more-complex examples of how to give your services greater resiliency and quicker
failure recovery. We’ll examine how to manage the ephemeral nature of application
stacks and explore some high-level concepts of systems architecture and design and
how they apply to CoreOS. By the end of this chapter, you’ll have a good understand-
ing of how to plan deployments of your applications to CoreOS; this will lead into
chapter 4, where we’ll move to production.

3.1 The current state of monitoring
If you’ve been in operations for any length of time, you’ve used some kind of monitor-
ing system. Usually such systems look like the typical monitoring architectures shown
in figures 3.1 and 3.2, or a combination.

 Your monitoring system can either send out probes to gather information about a
server and its services, as in figure 3.1, and/or an agent running on the server can
report status to a monitoring system, as in figure 3.2. You’ve probably experienced
the drawbacks of each approach. Probes are difficult to maintain, and they fire false
positives; and agents can be just as difficult to maintain, while also adding load to
your system and uncertainty around the agent’s reliability. With etcd, CoreOS
replaces much of the need for these systems by normalizing state information that’s
composed by the services.

 With traditional monitoring setups, you usually assume that your monitoring sys-
tem is at least as reliable as the thing it’s monitoring. Sometimes you rely on third-
party solutions for monitoring, and other times you end up monitoring your own
monitoring system. As your infrastructure and applications grow, your monitoring

Monitoring system
(Nagios, Sensu, and so on) Server

Other infrastructure or
service (issue trackers,
PagerDuty, and so on)

Service probe
sent by

monitoring

Response to
service probe

Automated actions based
on status (sometimes)

Other actions
(such as alerting)?

Figure 3.1 Monitoring with probes

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

37The current state of monitoring

solutions increase in complexity right along with them; at the end of the day, monitor-
ing tells you about the state of everything at once and usually doesn’t do a great job of
telling you why the state changed. If you’re using things like public clouds, sometimes
you can’t even find out or don’t care why it changed.

 CoreOS lets you take a different approach to retaining observation of your live sys-
tems. To be clear, CoreOS doesn’t do anything to preclude monitoring. What it does
do is free your time to allow you to focus on monitoring what’s important (your appli-
cation), and not what isn’t. (You’re not in the business of maintaining operating sys-
tems, right?)

3.1.1 What’s lacking

Consider this scenario. Your company runs a business-critical Rails application, and a
cluster of Debian servers keeps it running. Maybe you’ve even got Chef keeping all the
configurations in line. You’ve spent hours ensuring that log files are shipped off to a
third-party log consumer.

 One night, you get an alert from your monitoring system that that disks are full
and your application isn’t responding. Root-cause analysis time! Did the update you
ran last month overwrite some of your log configs and begin writing logs to disk
again? Did that new developer decide to write a new log file and not let you know? Did
you miss something in your Chef config a year ago that slowly leaked data to disk
where it shouldn’t be? Is it a false positive? (Don’t lie: you know the first thing you’d
do is run df to see if the monitoring system was playing a trick on you.)

 Finally, you find out you weren’t purging your .deb files out of /var/cache often
enough after you added a little automation around OS upgrades. A very small log file
was being written to every day from a short cron job you added six months ago, and
the combination brought everything down. At this point, you ask yourself, “What does
any of this have to do with the application I’m supporting?” and “Why am I still solving
the same system administration problems I was solving 10 years ago?”

 Monitoring has become the tip of the iceberg—or maybe a better metaphor is a
canary in a coal mine, reminding you that you missed an edge case. Can you keep up
with edge cases as fast as they’re created?

Monitoring system
(Nagios, Sensu, and so on)

Server

Agent

Other infrastructure or
service (issue trackers,
PagerDuty, and so on)

Automated actions based
on status (sometimes)

Status sent
by agent

Other actions
(such as alerting)?

Figure 3.2 Monitoring with an agent

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

38 CHAPTER 3 Expecting failure: fault tolerance in CoreOS

3.1.2 What CoreOS does differently

CoreOS takes back the responsibility of not letting your OS or its configuration be the
downfall of your application:

 It’s stripped down to eliminate a lot of configuration and administration prob-
lems out of the box.

 As we discussed in chapter 1, CoreOS takes advantage of containerization’s abil-
ity to abstract your application from the OS, as well as as abstract it from the
machine with fleet, to empower you to focus on your application and not OS
internals.

 Application failures are contained, and machine failures are mitigated so that
they can be handled outside of a maintenance window (or ignored in some
public cloud scenarios).

 Maintenance of the OS is also done without the need for interaction.

You can forget the fear of OS upgrades for two reasons. First, the behavior of a
CoreOS operating system upgrade from the perspective of your application is the
same as the behavior of a machine outage: that downtime is avoided by fleet shifting
around containers across the cluster to meet your specifications, regardless of the
state of the cluster. And second, because everything is abstracted by containers, nothing
in your application depends on anything in the base OS being available other than the
handful of CoreOS services.

 With these benefits in mind, see how figure 3.3 shows a CoreOS upgrade in prog-
ress. Although this level of OS automation might seem dangerous, the abstraction
afforded by containers and fleet significantly reduces the impact. Essentially, this is
CoreOS dogfooding its approach to providing fault tolerance for your applications
onto the OS. The upgrade process is part of the equation of how CoreOS reduces the
need for complex monitoring systems; the cluster-wide scheduling and discovery sys-
tems reveal a much more generic interface for gathering important data.

 The default setting for upgrade-locking (etcd-lock) is to have only one machine
upgrade in the cluster at a time. If the etcd cluster is in a problematic state, it won’t
upgrade any nodes. If you have a larger cluster, you can increase the number of nodes
that can upgrade and reboot simultaneously with locksmithctl:

core@core-01 $ locksmithctl set-max 2
Old: 1
New: 2

NOTE Don’t actually do this on your local three-node cluster! If two out of
three nodes reboot at the same time, you’ll lose the quorum in etcd. A quo-
rum in etcd can tolerate up to (N -1)/2 failures, where N is the number of
cluster members (machines).

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

39Service scheduling and discovery

3.2 Service scheduling and discovery
In chapters 1 and 2, you learned a bit about etcd and fleet and how they provide ser-
vice scheduling and discovery for your application. Together, they provide fault toler-
ance and composability for monitoring data within your application runtime, rather
than from outside of it. We’ll go a little deeper here and consider a more realistic
example to illustrate how these things can fit together. We’ll expand on the NGINX

CoreOS public
managed-upgrade

service

CoreOS machine 0

etcd
/coreos.com/updateengine/rebootlock/semaphore

fleetd

Move all services off of
machine 0 and onto other
machines as appropriate.

Is any other
machine rebooting?
I’m going to upgrade.

CoreOS
machine
n …

Partition A Partition B

1. Install new version on partition B.
2. Tell cluster I’m upgrading.
3. Reboot into partition B.

Yes!
Do I need

to upgrade?

Figure 3.3 CoreOS
upgrade process

Cluster upgrades
CoreOS operating system upgrades require some level of public internet access to
*.release.core-os.net by default, via either an HTTP proxy or NAT. If you want more
control over upgrades beyond the three release channels, CoreOS, Inc. (the company)
provides a premium managed service to assist you.

Additionally, how you plan the capacity of your services should go hand in hand with
how you plan your cluster and upgrade configuration. Upgrades will occur only when
etcd has an available lock and has no errors (for example, another machine is down
or rebooting for some reason other than an upgrade). If your services can’t all live on
a cluster with the performance you expect while missing two nodes, don’t increase
your etcd-lock max. But at a minimum you should plan for one machine outage.
This isn’t much different from scaling mass storage: the more redundant units, the
higher your fault tolerance to some kinds of failure.

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

40 CHAPTER 3 Expecting failure: fault tolerance in CoreOS

example with an upstream Express example application, and we’ll look at how to fur-
ther use etcd in this application stack. In this example, NGINX will monitor the state
of the Express application and act accordingly without the need for an outside moni-
toring system.

 To observe how CoreOS can hedge your services against failure, you’ll build out an
application environment with fault tolerance built in. Then, you’ll try to break it with
partial failures in the cluster and observe how the fault tolerance reacts.

3.2.1 Deploying production NGINX and Express

A real-world example would involve at least a couple of tiers. We won’t get into the com-
plexities of database tiers yet (we will later!), but an application stack isn’t really a stack
unless some internal communication is going on. Say, for example, that you want to
deploy an application that consists of some Express node services behind an instance of
NGINX. Ultimately, you want your system to look like figure 3.4, which shows the simple
network topology between NGINX and the Express applications behind it.

In this scenario, NGINX acts like a load balancer but could be performing any number
of jobs (SSL termination, external reverse proxies, and so on). The next few sections
set up this architecture; it’s crucial for you to take away that the failure of any node
becomes a non-concern as you build toward a fault-tolerant application instead of a
monitoring-dependent one.

3.2.2 Using etcd for configuration

For this application stack, you’ll use what you learned in chapter 2: you’ll set up
NGINX in a CoreOS cluster and add a fairly common back-end service. The example
uses Node.js/Express mostly for simplicity, but it could be any HTTP service you want
to distribute across your cluster.

CoreOS machine
(core01)

Node.js/Express
(as your application)

NGINX (as your
load balancer)

CoreOS machine
(core02)

Node.js/Express
(as your application)

CoreOS machine
(core03)

Node.js/Express
(as your application)

etcd and fleet (to orchestrate this architecture)

Upstream proxy_pass

Figure 3.4 NGINX and Express stack

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

41Service scheduling and discovery

 I’ve added some significant complexity to the previous example, in the form of a
new requirement to modify and deploy containers that are different from the publicly
available Docker images. But I’ll assume that you have a repository to which to upload
custom built containers and that you’re using the public, official Docker registry at
https://hub.docker.com.

 For the sake of the example, assume that it’s okay to publish your containers to
Docker’s public repository. In the real world, of course, this might not be possible.
There are many options for publishing private Docker images, using software-as-a-
service (SaaS) products or hosting your own repository, but that’s beyond the scope of
this book. For further reading, check out Docker in Action by Jeff Nickoloff (Manning,
2016, www.manning.com/books/docker-in-action).

THE EXPRESS APPLICATION

Let’s start with your Express instance. First you need to create a “Hello World” Express
app. You don’t need any experience with Node.js for this; you can paste the code from
listings 3.1, 3.2, and 3.3 into files in a new directory.

const app = require('express')()
app.get('/', (req, res) => { res.send('hello world').end() })
app.listen(3000)

FROM node:5-onbuild
EXPOSE 3000

{
"name": "helloworld",
"scripts": {

"start": "node app.js"
},
"dependencies": {

"express": "^4"
}

}

Next, build the image and push it to the Docker hub. You can do all this on a CoreOS
instance (because it has Docker running) or anywhere else you may be running
Docker, such as your workstation:

$ cd code/ch3/helloworld
$ docker build -t mattbailey/helloworld .
Sending build context to Docker daemon 1.166 MB
...
Successfully built f8945e023a8c

$ docker login # IF NECESSARY
$ docker push mattbailey/helloworld

Listing 3.1 code/ch3/helloworld/app.js

Listing 3.2 code/ch3/helloworld/Dockerfile

Listing 3.3 code/ch3/helloworld/package.json

www.itbook.store/books/9781617293740

https://hub.docker.com
www.manning.com/books/docker-in-action
https://itbook.store/books/9781617293740

42 CHAPTER 3 Expecting failure: fault tolerance in CoreOS

The push refers to a repository [docker.io/mattbailey/helloworld]
...
latest: digest: sha256:e803[...]190e size: 12374

You can drop your .service files in this directory as well. It’s somewhat common to
keep these service files under the same source control as the project. You’ll have a
main service file and a sidekick.

 The first service file looks at lot like what you saw with NGINX, but you reference
the Docker image you published earlier.

[Unit]
Description=Hello World Service
Requires=docker.service
After=docker.service

[Service]
TimeoutStartSec=0
ExecStartPre=-/usr/bin/docker kill helloworld
ExecStartPre=-/usr/bin/docker rm -f helloworld
ExecStartPre=/usr/bin/docker pull mattbailey/helloworld:latest
ExecStart=/usr/bin/docker run --name helloworld \

-p 3000:3000 mattbailey/helloworld:latest
ExecStop=-/usr/bin/docker stop helloworld

[X-Fleet]
Conflicts=helloworld@*

The sidekick also looks similar: it announces the presence of the helloworld service
in /services/helloworld/.

[Unit]
Description=Register Hello World %i
BindsTo=helloworld@%i.service
After=helloworld@%i.service

[Service]
TimeoutStartSec=0

Listing 3.4 code/ch3/helloworld/helloworld@.service

Listing 3.5 code/ch3/helloworld/helloworld-sidekick@.service

What is TimeoutStartSec?
Notice that you use TimeoutStartSec=0 in listing 3.4, to indicate that you don’t
want a timeout for this service. This can be helpful on slower connections or with
larger Docker images that may take a while to pull, especially if you’re pulling them
all at the same time in three VMs on a single workstation.

You may want to tune this setting in the future depending on your use cases (you
could, for example, set it from etcd), but it’s easier to have no timeout while you’re
testing and developing services.

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

43Service scheduling and discovery

EnvironmentFile=/etc/environment
ExecStartPre=/usr/bin/etcdctl set /services/changed/helloworld 1
ExecStart=/bin/bash -c 'while true; \

do \
["`etcdctl get /services/helloworld/${COREOS_PUBLIC_IPV4}`" \

!= "server ${COREOS_PUBLIC_IPV4}:3000;"] && \
etcdctl set /services/changed/helloworld 1; \
etcdctl set /services/helloworld/${COREOS_PUBLIC_IPV4} \

\'server ${COREOS_PUBLIC_IPV4}:3000;\' \
--ttl 60;sleep 45;done'

ExecStop=/usr/bin/etcdctl rm /services/helloworld/helloworld@%i
ExecStopPost=/usr/bin/etcdctl set /services/changed/helloworld 1

[X-Fleet]
MachineOf=helloworld@%i.service

Now, you can fire up helloworld on your cluster and verify that it has started:

$ fleetctl start code/ch3/helloworld/helloworld@{1..3}.service
Unit helloworld@1.service inactive
Unit helloworld@2.service inactive
Unit helloworld@3.service inactive
$ fleetctl start code/ch3/helloworld/helloworld-sidekick@{1..3}.service
Unit helloworld-sidekick@1.service inactive
Unit helloworld-sidekick@2.service inactive
Unit helloworld-sidekick@3.service inactive

Also, verify that helloworld is running:

$ fleetctl list-units
UNIT MACHINE ACTIVE SUB
helloworld-sidekick@1.service a12d26db.../172.17.8.102 active running
helloworld-sidekick@2.service c1fc6b79.../172.17.8.103 active running
helloworld-sidekick@3.service c37d052c.../172.17.8.101 active running
helloworld@1.service a12d26db.../172.17.8.102 active running
helloworld@2.service c1fc6b79.../172.17.8.103 active running
helloworld@3.service c37d052c.../172.17.8.101 active running
$ curl 172.17.8.101:3000
hello world
$ etcdctl ls /services/helloworld/
/services/helloworld/172.17.8.101
/services/helloworld/172.17.8.103
/services/helloworld/172.17.8.102

The next section moves on to the NGINX configuration.

Organizing etcd keys
There are no strict guidelines or preset structures for how to organize your etcd
keys—doing so is completely free-form.

You will, of course, want to plan this structure much as you’d plan your infrastructure,
to keep things appropriately namespaced and flexible enough to accommodate your
future needs.

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

44 CHAPTER 3 Expecting failure: fault tolerance in CoreOS

THE NGINX APPLICATION

Create a new directory for your NGINX build. You’ll have three files for configuring
NGINX, not including the service units. The first is a fairly simple Dockerfile using the
official NGINX image as its base.

FROM nginx

COPY helloworld.conf /tmp/helloworld.conf
COPY start.sh /tmp/start.sh
RUN chmod +x /tmp/start.sh

EXPOSE 80

CMD ["/tmp/start.sh"]

Next is a start script. You’ll using Bash as the dynamic runtime configuration for sim-
plicity, so you won’t add any more dependencies to the example. But many tools are
available to help you template your configuration files at runtime, such as confd
(www.confd.io).

#!/usr/bin/env bash

Write dynamic nginx config
echo "upstream helloworld { ${UPSTREAM} }" > /etc/nginx/conf.d/default.conf

Write rest of static config
cat /tmp/helloworld.conf >> /etc/nginx/conf.d/default.conf

Now start nginx
nginx -g 'daemon off;'

Finally, here’s the static NGINX config file for the reverse proxy.

server {
listen 80;
location / {

proxy_pass http://helloworld;
}

}

Build and push this image to your repository, just as you did the Express app:

$ cd code/ch3/nginx/
$ docker build -t mattbailey/helloworld-nginx .
Sending build context to Docker daemon 4.096 kB
...
Successfully built e9cfe4f5f144

$ docker push mattbailey/helloworld-nginx

Listing 3.6 code/ch3/nginx/Dockerfile

Listing 3.7 code/ch3/nginx/start.sh

Listing 3.8 code/ch3/nginx/helloworld.conf

www.itbook.store/books/9781617293740

www.confd.io
https://itbook.store/books/9781617293740

45Service scheduling and discovery

The push refers to a repository [docker.io/mattbailey/helloworld-nginx]
...
latest: digest: sha256:01e4[...]81f8 size: 7848

Now, you can write your service files, shown in listings 3.9 and 3.10.

[Unit]
Description=Hello World Nginx
Requires=docker.service
After=docker.service

[Service]
TimeoutStartSec=0
ExecStartPre=-/usr/bin/docker kill helloworld-nginx
ExecStartPre=-/usr/bin/docker rm -f helloworld-nginx
ExecStartPre=/usr/bin/docker pull mattbailey/helloworld-nginx:latest
ExecStart=/bin/sh -c /for host in `etcdctl ls /services/helloworld`; \

do UPSTREAM=$UPSTREAM`etcdctl get $host`; \
done; \
docker run -t -e UPSTREAM="$UPSTREAM" \

--name helloworld-nginx -p 80:80 mattbailey/helloworld-nginx:latest'
ExecStop=-/usr/bin/docker stop helloworld-nginx

[Unit]
Description=Restart Nginx On Change

[Service]
ExecStart=/usr/bin/etcdctl exec-watch \

/services/changed/helloworld -- \
/bin/sh -c "fleetctl stop helloworld-nginx.service; \
fleetctl start helloworld-nginx.service"

Next, start your NGINX service units:

$ fleetctl start code/ch3/nginx/helloworld-nginx.service
Unit helloworld-nginx.service inactive
Unit helloworld-nginx.service launched on a12d26db.../172.17.8.102
$ fleetctl start code/ch3/nginx/helloworld-nginx-sidekick.service
Unit helloworld-nginx-sidekick.service inactive
Unit helloworld-nginx-sidekick.service launched on a12d26db.../172.17.8.102

Notice that you don’t care which machine the sidekick runs on for NGINX, because it’s
interacting with NGINX entirely via etcdctl and fleetctl.

 You should now have a setup that looks like figure 3.4. NGINX is effectively watch-
ing for changes in the topology of Express applications and is set up to adapt to those
changes. Further, you did this without implementing any complex monitoring sys-
tems. You expect failure to occur, and CoreOS lets you integrate that notion into the
composition of the service architecture. You need to test this notion; so, in the next
section, you’ll see what happens when a machine fails.

Listing 3.9 code/ch3/nginx/helloworld-nginx.service

Listing 3.10 code/ch3/nginx/helloworld-nginx-sidekick.service

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

46 CHAPTER 3 Expecting failure: fault tolerance in CoreOS

3.3 Breaking things
Now that you have a “production-like” deployment in place, it’s time to try to break it!
What you’ve built should stand up pretty well to a single machine failure. We’ll look at
how a machine failure affects your application and the how CoreOS can bring the
cluster back together when it’s restored. Simulating more complex scenarios is a little
difficult on a local cluster of three machines; but as a baseline, the CoreOS cluster
considers any inability to resolve a node in etcd as a machine failure and will react as if
a machine is down. As mentioned in section 3.1.2, etcd can survive (N-1)/2 machine
failures, where N is the number of machines; because etcd is the source of truth for
your cluster state, your deployment of CoreOS machines (virtual or physical) should
consider this rate of failure a baseline.

3.3.1 Simulating a machine failure

The most destructive kind of scenario you can simulate is a complete failure of a
CoreOS machine. This scenario includes loss of network connectivity, because that’s
functionally equivalent to the CoreOS cluster. To simulate this, you’ll have to shut
down one of your machines. To make things interesting, you’ll shut down the
machine that’s also running NGINX, which will result in an outage, but one that is mit-
igated by fleet. You may want to open another terminal to a machine you’re not shut-
ting down to watch what happens:

$ vagrant ssh core-01
core@core-01 ~ $ fleetctl journal -f helloworld-nginx.service
...
Feb 17 05:00:59 core-02 systemd[1]: Started Hello World Nginx.

In a different terminal from your host, have Vagrant shut down the machine where
helloworld-nginx.service is running:

$ vagrant halt core-02

Watch on core-01 or any other machine that wasn’t running helloworld-nginx.service:

...
Connection to 127.0.0.1 closed by remote host.
Error running remote command: wait: remote command exited without exit status

or exit signal

When failure isn’t “failure”
In some scenarios, losing a machine in your cluster is intentional and doesn’t repre-
sent a fault of any kind. For example, this happens if you have CoreOS automatic OS
updates enabled, or you need to shut down some infrastructure for maintenance, or
you want to rebuild your AWS EC2 instance for any number of reasons. If you consider
machine “faults” to be occurrences that are part of the normal lifecycle of your sys-
tems, you’ll have a much easier time gaining the benefits of CoreOS.

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

47Breaking things

core@core-01 ~ $ fleetctl journal -f helloworld-nginx.service
...
Feb 17 05:16:32 core-01 systemd[1]: Started Hello World Nginx.

You can see that the service was shut down on core-02, and then fleet moved it to core-
01. You can also observe that NGINX has picked up the new upstream configuration:

core@core-01 ~ $ docker exec -it helloworld-
nginx cat /etc/nginx/conf.d/default.conf

upstream helloworld { server 172.17.8.101:3000;server 172.17.8.103:3000; }
server {

listen 80;
location / {

proxy_pass http://helloworld;
}

}

Now that you’ve seen your application stack adapt to a missing machine, in the next
section you’ll bring the machine back to see how the cluster deals with service resto-
ration.

3.3.2 Self-repair

Bring the machine back up, and watch everything go back to normal:

$ vagrant up core-02

Once it’s booted back up, wait about 45 seconds. Then you can confirm that the
machine is back in NGINX’s upstream:

core@core-01 ~ $ docker exec -it helloworld-
nginx cat /etc/nginx/conf.d/default.conf

upstream helloworld { server 172.17.8.101:3000;server 172.17.8.103:3000;
server 172.17.8.102:3000; }

server {
listen 80;
location / {

proxy_pass http://helloworld;
}

}

The upstream is again pointing to all three of your Express applications. It took rela-
tively little engineering to add fault tolerance to a system completely unfamiliar with
that concept. Additionally, you didn’t need to employ any additional tools to accom-
plish this, other than what is provided by CoreOS. Ultimately, building robust, self-
repairing systems is always a hard problem, but CoreOS provides a generic tool set
with fleet and etcd that gives you a pattern for building it into many scenarios.

 Application architecture is still an important skill. And adapting your architecture
to CoreOS requires some planning, as we’ll discuss next.

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

48 CHAPTER 3 Expecting failure: fault tolerance in CoreOS

3.4 Application architectures and CoreOS
Application architecture is a topic that could fill many volumes. This won’t be the last
time we discuss it in this book; but it’s worth looking at it and at how it relates to the big
picture, now that you’ve simulated things that application architects try to plan for.

 First we’ll look at some common pitfalls with designing applications for failure,
and then we’ll follow up with a discussion of what parts of the architecture you
can control. Finally, we’ll touch on what all this means with respect to configuration
management.

3.4.1 Common pitfalls

There are some common pitfalls when it comes to running application stacks in envi-
ronments where faults are common or expected, or where the scale of what you’re
doing statistically demands that faults will occur at some regular interval. You can prob-
ably recognize in the chapter’s example that the host on which NGINX is running
becomes somewhat of a single point of failure. Even though you’ve designed the system
to tolerate that machine’s failure by starting up NGINX on another instance, you still
could have a gap in availability. You can resolve this in your architecture in a few ways:

 The NGINX sidekick can update a DNS entry with a short TTL if you can tolerate
a minute of downtime.

 You can rely on upstream content delivery network (CDN) caching to carry you
through an outage.

 You can run NGINX on two or all three machines and have a load-balancer
appliance or something like AWS Elastic Load Balancer (ELB) with a health
check in front of them.

Most commonly, the last option is used if you need that level of reliability. You’re
building enough vertical capacity into your machines to run both services at the same
time, so there’s little reason not to. But here’s where you have to be careful. Assume
that NGINX is doing something specific for a user’s session. This isn’t likely; but for the
sake of an example, if NGINX stored some kind of state locally, that state wouldn’t be
shared to the other NGINX service running on the other machine. Often, you accept
that users may be logged out if some part of a cluster fails, but you also wouldn’t want
them to be logged out by hitting a different node behind your load balancer.

 The architectural choices you make, especially with respect to the software you use,
have an effect on your ability to make the architecture fault tolerant with CoreOS’s
tools. Even the complexity of applying fault tolerance to software that supports it can
be difficult. For example, before Redis 3.0 and the redis-cluster feature that comes
with it, clustering Redis involved a separate sentinel process to elect a write master and
realign the cluster. The Redis Sentinel system was designed to be applied in a fault-
tolerant system like CoreOS, but making it work was a complex task. The takeaway is
that you should always test your cluster configurations and fault scenarios in an envi-
ronment like a local Vagrant cluster, where you can control conditions.

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

49Summary

3.4.2 Greenfield and legacy systems

Sometimes you get to choose your architecture, and sometimes you don’t. Dealing
with legacy systems is part of every engineer’s career; obviously, it will be easier to
build fault tolerance into a greenfield project via CoreOS than to build it into a legacy
stack. You may find that it’s impossible to reach certain levels of reliability in some sys-
tems that you could with others. You can, however, mitigate some of the risk with the
patterns CoreOS provides.

 Mostly you’ll run into issues with legacy services that store some kind of state and
have no way to distribute it. Of those, the single most annoying problem is the “undis-
tributable” state being stored on the local filesystem. If the data that’s being stored
isn’t important, the only downside is that you can only run the service on one
machine; you can still rely on fleet to move it around. If the data is important, and you
can’t change how it works, you’ll have to implement distributed storage. We’ll go into
detail about your options in section 4.5.

3.4.3 Configuration management

If you’re dealing with greenfield applications, your approach to configuration man-
agement should assume that the application configuration is split between configura-
tion that needs to understand the runtime environment (such as database IPs) and
configuration that’s stateless (such as a database driver). The former should be man-
aged with etcd, and the latter should be managed with your container build process.
With that in mind, you’ll no longer need complex configuration-management
systems, and your software environment will become much more repeatable and
understandable.

3.5 Summary
 Follow the sidekick pattern to build complex application environments with

service discovery.
 Use service discovery to implement fault tolerance and self-healing capabilities.
 Design scenarios in which you can simulate failures that you might see in a pro-

duction environment, so you can test your cluster implementations.
 Application architectures are important in planning your CoreOS deployments

and always require review.

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

Matt Bailey

T
raditional Linux server distributions include every com-
ponent required for anything you might be hosting, most
of which you don’t need if you’ve containerized your apps

and services. CoreOS Container Linux is a bare-bones distro
with only the essential bits needed to run containers like
Docker. Container Linux is a fast, secure base layer for any
container-centric distributed application, including microser-
vices. And say goodbye to patch scheduling; when Container
Linux needs an update, you just hot-swap the whole OS.

CoreOS in Action is a clear tutorial for deploying container-
based systems on CoreOS Container Linux. Inside, you’ll
follow along with examples that teach you to set up CoreOS
on both private and cloud systems, and to practice common
sense monitoring and upgrade techniques with real code.
You’ll also explore important container-aware application
designs, including microservices, web, and Big Data examples
with real-world use cases to put your learning into perspective.

What’s Inside
● Handling scaling and failures gracefully
● Container-driven application designs
● Cloud, on-premises, and hybrid deployment
● Smart logging and backup practices

Written for readers familiar with Linux and the basics
of Docker.

Matt Bailey has 15 years of experience on everything from
large-scale computing cluster architecture to front-end
programming.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit www.manning.com/books/coreos-in-action

$44.99 / Can $59.99 [INCLUDING eBOOK]

CoreOS IN ACTION

LINUX/SOFTWARE DEVELOPMENT

M A N N I N G

“A useful compass to guide
you through the complex

paths of CoreOS
and microservices.”

—Marco Zuppone
Gemalto SafeNet

“A very practical
introduction with realistic
 deployment scenarios.”

—Michael Bright
Hewlett-Packard Enterprise

“Great source, carefully
crafted ... offers compelling,

in-depth insight.”—Antonis Tsaltas
Huawei Technologies

“Everything you need to
get started, from the basic

building blocks to advanced
architectures.”
—Thomas Peklak

Emakina CEE, Austria

SEE INSERT

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

	cover
	Copyright
	BriefContents
	Sample-Ch03
	coverB

