
M A N N I N G

Matt Bailey

Running applications on Container Linux

SAMPLE CHAPTER

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

CoreOS in Action
by Matt Bailey

Chapter 6

 Copyright 2017 Manning Publications

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

vii

brief contents

PART 1 GETTING TO KNOW COREOS.. 1
1 ■ Introduction to the CoreOS family 3
2 ■ Getting started on your workstation 17
3 ■ Expecting failure: fault tolerance in CoreOS 35

PART 2 APPLICATION ARCHITECTURE.. 51
4 ■ CoreOS in production 53
5 ■ Application architecture and workflow 70
6 ■ Web stack application example 78
7 ■ Big Data stack 102

PART 3 COREOS IN PRODUCTION... 121
8 ■ CoreOS on AWS 123
9 ■ Bringing it together: deployment 145

10 ■ System administration 158

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

78

Web stack
application example

In this chapter, you’ll begin fleshing out a full application stack on CoreOS. This
isn’t an application development book, so the example is a bit contrived, but it’s
similar to any complex stack you might see that contains a number of different ser-
vices with different purposes. This example will develop the information you’ve
already learned about CoreOS into a more real-world scenario. The application
you’ll build and deploy will be iterated on throughout the rest of the book, just as
you’d expect in the real world.

This chapter covers
 Deploying a multitier web application to a CoreOS

cluster

 Applying autodiscovery systems in application logic
and service unit files

 Testing failover of discrete layers

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

79Scope of the example

6.1 Scope of the example
This example will cover the setup of a full-stack web application with the following
components:

 Node.js back end (app.js) running
 Express HTTP server
 Socket.IO WebSocket server
 Node.js worker process for data acquisition (worker.js)
 Memcached for the express-session store
 Couchbase as the persistent database
 React for front-end view composition

By the end of this chapter, your infrastructure on CoreOS will look like figure 6.1.
You’ll have an instance of your web application (app.js) and a memcached service
running on all three machines, as well as one Couchbase instance and one instance of
your data-acquisition program (worker.js).

 This is intentionally a fairly complex application to set up, and it’s worth going into
a little detail about why I chose these components. First, avoiding what are known as
full-stack MVC frameworks like Ruby on Rails, MEAN.io, Meteor, and so on was a con-
scious choice—not because I think they’re bad in any way, but because there are quite
a few well-written and scripted guides for getting those frameworks running in CoreOS.
This is fantastic, but it leaves how the components interact with each other via CoreOS
a black box. The purpose of this book is to give you the tools to be successful in oper-
ating anything in CoreOS, because even if you’re using a popular stack with a commu-
nity of people forming best practices for deploying to CoreOS, you don’t want to get
stuck when someone adds a new component that doesn’t fit in. As I’m sure you know,
in the real world, components are added or changed for different features.

app.js

Application layers

CoreOS machine

memcached

Persistence layers

Couchbase

app.js

CoreOS machine

memcached

app.js

worker.js

CoreOS machine

memcached

Figure 6.1 Infrastructure of the example

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

80 CHAPTER 6 Web stack application example

A small caveat about Couchbase: this chapter won’t cover a high-availability (HA),
fault-tolerant deployment for Couchbase. You’ll deploy it in such a way that it won’t
cause downtime for this application, but you won’t persist the data after the applica-
tion is shut down. In chapter 7, you’ll expand on your knowledge from this chapter
and build out the Couchbase cluster for HA and fault tolerance when you extend the
example to cover a Big Data application example.

6.1.1 What does this app do?

The purpose of this application is to aggregate some information from Meetup.com’s
public WebSocket API, store it in Couchbase asynchronously, and serve it back up with
a high-availability web service via WebSockets. You’re also going to store sessions with
memcached. In short, the app collects, stores, and displays data, all while taking advan-
tage of CoreOS’s features for scalability and availability. You’ll need the following:

 Memcached instances you can scale horizontally
 A Couchbase node to store your critical data
 A single worker process to store data from Meetup.com
 The Express and Socket.IO Node.js app that you can scale horizontally

The express-connect sessions don’t serve any functional purpose in the example other
than adding a common component that relies on an ephemeral state mechanism
(memcached). Everything else is functionally designed to build this application stack,
which looks like any kind of web application designed to aggregate and display infor-
mation for a user. The example uses Meetup.com’s stream because it’s a convenient,
publicly available WebSocket API that has a lot of chatter so you can see it working.
You can read more about it at http://mng.bz/pEai, but those details aren’t particu-
larly important to this example.

 Everything that’s custom in this app is written in JavaScript. I’ve chosen this for a
few reasons:

 JS is arguably the most popular language right now, and most readers probably
have some familiarity with it.

Comment on learning
In college, I took an anthropology course in linguistics. In this course, we had to learn
a system called the International Phonetic Alphabet (IPA), which is a system of sym-
bols that represent all the sounds made by people’s mouths. The exams involved the
professor reciting a speech and us transcribing it in IPA. But the professor never gave
these exams in English, because it’s more difficult to transcribe into IPA a language
you already know: you end up parsing the information and not listening to the sounds.

The same concept applies here: these components aren’t part of any well-known full-
stack system as a whole, even though they may be well known individually. The focus
is on how the building blocks connect, not on how to move an entire building.

www.itbook.store/books/9781617293740

http://mng.bz/pEai
https://itbook.store/books/9781617293740

81Scope of the example

 The syntax is terse enough that I don’t have to make you read/copy pages of
code.

 There’s a ton of boilerplate you won’t have to write.
 There’s a high likelihood that you’ll encounter a requirement to deploy a

Node.js application in the real world.
 I know JS pretty well.

All that being said, JavaScript knowledge isn’t a prerequisite for readers of this book,
and you’ll see annotations throughout this example that explain what’s important as
takeaways for the applications in the context of CoreOS deployment, and also what
isn’t important. One thing that is important is what this architecture looks like, so you
understand what you’re deploying.

6.1.2 App architecture overview

Figure 6.2 shows how this application is put together. It should be simple enough to
understand what’s going on between all the components, but complex enough to be
an interesting exercise in deployment that covers a lot of common patterns.

THE MEMCACHED “CLUSTER”
Memcached doesn’t really “cluster” in any sense other than that you’ll be running a
bunch of memcached processes. The nodes don’t need to know about each other, and
the processes don’t write to disk. The connect-memcached back-end library for
express-connect (the session library) just needs to know where all the memcached
nodes are. The library uses an internal hash to know where to find data (you don’t
have to worry about any of that). You’ll know express-connect is working if you get a
cookie when you visit the app in a browser.

Client browser

HTTP

WebSocket

Data in Data in

Data out

React single-page app

Meetup.com RSVP
public stream

web-1, web-2, or web-3
(node.js web server)

Worker
(node.js service) Couchbase

memcached-1

memcached-2

memcached-3

Figure 6.2 Example application architecture

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

82 CHAPTER 6 Web stack application example

THE COUCHBASE SERVER

Couchbase is a little more involved in the setup. As I mentioned earlier, you won’t be
persisting the data (yet), but you’ll have to do some setup automation so that you can
connect to your Couchbase server easily. Couchbase is a document store with robust
clustering capabilities; we’ll spend a lot more time in chapter 7 focusing on a custom
data-system deployment that uses it. For now, accept this HA “hole” in this deploy-
ment for the sake of staying focused. Couchbase is overkill for this application, but it’s
a good example to get started with, and its API is fairly easy to use.

THE WORKER

Many applications rely on an asynchronous worker to perform some task: in this case,
data aggregation. Like many APIs, Meetup’s RSVP WebSocket will rate-limit you if you
try to make too many connections to it. Assuming your network is behind some kind
of NAT, this means you’ll need no more than one worker to gather this data; the API
allows only one connection from an IP. Because it’s a WebSocket, you don’t gain any-
thing from having multiple workers gathering that data anyway. This is a great use case
for CoreOS, because once you get your service running, you don’t care which node
it’s running on; and it should require no state other than how to connect to Couch-
base, so it can be completely ephemeral.

THE WEB APP

You’ll be using a combination of Express.js (a popular Node.js web framework) and
Socket.IO (a popular WebSocket implementation in Node.js) to serve your applica-
tion. Express will handle the session with memcached as its session store and will serve
up the index.html file. In index.html is some very basic JavaScript to listen to the
socket.io WebSocket and update the page when a message is sent.

 The app contains an interval loop that fetches a view from Couchbase and sends a
message via Socket.IO to any clients listening. Socket.IO has the ability to react to Web-
Socket events on the same port on which Express is serving HTTP, so you only need to
worry about one port being exposed.

6.1.3 The target environment

Not surprisingly, you’ll use a Vagrant cluster of three nodes to go through this exam-
ple. We’ll approach each of these components individually, but we’ll start with Couch-
base because it may require some low-level changes to your Vagrant development
cluster.

 This architecture is a fairly common kind of layered web application you’ve likely
seen before. When you’re building out a system in CoreOS, these are the kinds of
details you’ll need to gather about the application in order to deploy it effectively.
Jumping into persistence layers next, you’ll see how to begin applying the architecture.

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

83Setting up persistence layers

6.2 Setting up persistence layers
You have two persistence layers (see figure 6.3) that represent state in the application:
Couchbase and memcached. As explained, in this example, both of these are some-
what ephemeral, but you’ll use Couchbase as if it weren’t.

When building out complex application stacks, especially in development, it’s a good
plan of attack to start with the persistence layer, because it’s usually the only compo-
nent you can’t wipe completely if you mess up. The other reason you’re starting with
Couchbase is that you may have to rebuild your Vagrant cluster if you didn’t provision
your instances with at least 1.5 GB of RAM. If you didn’t make this modification in
chapter 2, you can go back and look at how to change the RAM for your VMs, but the
quick version is as follows (config.rb in your vagrant directory):

Edit config.rb
so that you have this line:
//$vm_memory = 2048
$vm_cpus = 1
$ vagrant destroy -f
...
$ vagrant up
...

NOTE If you’re using fleetctl from your host workstation with the SSH
tunnel, creating new VMs creates a new SSH host key, so you’ll have to delete
the one in $HOME/.fleetctl/known_hosts.

Once you’re back up, you can move on to getting Couchbase initialized and running.

app.js

Application layers

CoreOS machine

memcached
Persistence layers

(you are here!)
Couchbase

app.js

CoreOS machine

memcached

app.js

worker.js

CoreOS machine

memcached

Figure 6.3 Persistence layers

Assigns 2 GB per VM.
You’ll need at least 1.5 GB.

You can bump this to two cores per
VM if you have the resources, but
doing so isn’t required.

Deletes your VMs

Re-creates your VMs

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

84 CHAPTER 6 Web stack application example

6.2.1 Couchbase setup

Now that your Vagrant cluster is ready, it’s time to set up Couchbase. First, you need to
create a new service-unit template.

[Unit]
Description=Couchbase Service %i
Requires=flanneld.service
After=flanneld.service

[Service]
TimeoutSec=0
Restart=always
RestartSec=20
ExecStartPre=-/usr/bin/docker kill couchbase-%i
ExecStartPre=/usr/bin/docker pull couchbase:community-4.0.0
ExecStartPre=-/usr/bin/docker rm -f couchbase-%i
ExecStart=/usr/bin/docker run \
--rm \
-p 8091:8091 \
--name couchbase-%i \
--ulimit nofile=40960:40960 \
couchbase:community-4.0.0

ExecStartPost=/usr/bin/bash -c 'sleep 5; \
FLANNELIP=`docker inspect couchbase-%i | jq -r .[].NetworkSettings.IPAddress`; \
echo "Started on $FLANNELIP"; sleep 2; \
until docker run --rm couchbase:community-4.0.0 \

couchbase-cli \
cluster-init \
-c $FLANNELIP:8091 \
--cluster-username=Administrator \
--cluster-password=Password1 \
--services=data,index,query \
--cluster-ramsize=500; \

Listing 6.1 code/ch6/couchbase@.service

You want Couchbase to
restart for any reason.

Gives a 20-second restart buffer because
Couchbase can take some time to cleanly
shut down and start

For now, cleans
up data on exit

Optional: opens a web
admin panel for

Couchbase to the host IP

ulimit specifically needed for Couchbase.
You can read more about what these do

in the Docker documentation.

Official Couchbase
Community Edition image

Same line used in chapter 4 when we
discussed using flannel to get the internal IP

Loops until this
succeeds: sets up the
server’s initial
configuration

Sets the initial cluster password. You can
choose whatever you want, but this is for
administration, not connecting. You’ll use
this again in chapter 7.

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

85Setting up persistence layers

do echo "Retrying init..."; sleep 2; done \
docker run --rm couchbase:community-4.0.0 \
couchbase-cli \
bucket-create \
-c $FLANNELIP:8091 \
-u Administrator \
-p Password1 \
--bucket=default \
--bucket-type=couchbase \
--bucket-ramsize=500 \
--bucket-replica=1 \
--cluster-ramsize=500'

ExecStop=-/usr/bin/docker kill --signal=SIGTERM couchbase-%i

Notice that you do quite a bit of initialization with magic numbers and strings. Later
in this chapter, we’ll talk about adding more configuration abstraction to the project
as a whole. Next, here’s the sidekick for the service.

[Unit]
Description=Couchbase Service Sidekick %i
BindsTo=couchbase@%i.service
After=couchbase@%i.service

[Service]
TimeoutStartSec=0
RestartSec=1
Restart=always
ExecStartPre=-/usr/bin/etcdctl rm /services/couchbase/%i
ExecStart=/usr/bin/bash -c ' \

while true; do \
sleep 5; \
FLANNELIP=`docker inspect couchbase-%i

➥| jq -r .[].NetworkSettings.IPAddress`; \
etcdctl update --ttl 8 /services/couchbase/%i $FLANNELIP || \
etcdctl set --ttl 8 /services/couchbase/%i $FLANNELIP; \

done'
ExecStop=-/usr/bin/etcdctl rm /services/couchbase/%i'

[X-Fleet]
MachineOf=couchbase@%i.service

This mostly looks like previous sidekick units you’ve seen, with one difference: you use
logic to either update or set the etcd key. This distinction is important, and the logic
works like this: if you’re refreshing the key so it doesn’t expire, you want to fire an
update event; but if this is a new location for the node, you want to fire a set event.
Later in this chapter, when we look at the application, you’ll see that you restart the web
service on set but not on update, so you’re not restarting the app every 5 seconds.

 Now let’s get Couchbase and the sidekick running:

$ fleetctl start code/ch6/couchbase@1.service code/ch6/couchbase-
sidekick@1.service

Listing 6.2 code/ch6/couchbase-sidekick@.service

Sets up an initial bucket, which
is the top-level Couchbase
namespace for you to use

Makes sure you start with a
clean slate, in case this

service switched hosts too
quickly for the TTL

Updates this value if it
exists, or sets it if it doesn’t,

with a TTL of 8 seconds

Explicitly cleans
up if you Stop

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

86 CHAPTER 6 Web stack application example

After waiting a few seconds, you should be able to look at the Couchbase admin con-
sole on http://172.17.8.101:8091 and log in with “Administrator” and “Password1”.
Notice that you start only one instance of Couchbase with the template. (You didn’t
have to make this a template, but you’ll build on this example in the following chapter
when you take this install and make it high availability.) Next, let’s move on to the
other piece of state: memcached.

NOTE Couchbase may start on a different machine, so you can either
check with fleetctl list-units or try http://172.17.8.102:8091 or
http://172.17.8.103:8091.

6.2.2 Setting up memcached

Setting up memcached is simple and follows a pattern similar to Couchbase, except that
you don’t need to deal with any bootstrapping or login information. As with Couch-
base, you also need a main unit template (listing 6.3) and a sidekick (listing 6.4). Unlike
Couchbase, you can (and should) start more than one instance.

[Unit]
Description=Memcached Instance %i
Requires=flanneld.service
After=flanneld.service

[Service]
TimeoutStartSec=0
RestartSec=1
Restart=always
ExecStartPre=-/usr/bin/docker rm -f memcached-%i
ExecStartPre=/usr/bin/docker pull memcached:1
ExecStart=/usr/bin/docker run --rm --name memcached-%i memcached:1
ExecStop=-/usr/bin/docker rm -f memcached-%i

This should look pretty familiar by now: it’s a simple service template that also cleans
up after itself. Now you’ll make an equally familiar sidekick.

[Unit]
Description=Register memcached %i
BindsTo=memcached@%i.service
After=memcached@%i.service

[Service]
TimeoutStartSec=0
RestartSec=1
Restart=always
ExecStartPre=-/usr/bin/etcdctl rm /services/memcached/%i
ExecStart=/usr/bin/bash -c ' \

while true; do \
sleep 5; \

Listing 6.3 code/ch6/memcached@.service

Listing 6.4 code/ch6/memcached-sidekick@.service

Makes sure you
start from

scratch Official
memcached

Docker image

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

87Setting up persistence layers

FLANNELIP=`docker inspect memcached-%i | jq -
r .[].NetworkSettings.IPAddress`; \

etcdctl update --ttl 8 /services/memcached/%i $FLANNELIP || \
etcdctl set --ttl 8 /services/memcached/%i $FLANNELIP; \

done'
ExecStop=-/usr/bin/etcdctl rm /services/memcached/%i'

[X-Fleet]
MachineOf=memcached@%i.service

Much like the Couchbase sidekick, you grab the flannel IP, update or set it to a key in
etcd with a TTL of 8 seconds, and attach it to the memcached unit. You can run as
many of these as you want.

 Notice that you did not give a Conflicts= line for memcached. Because you’re
using flannel, you can run multiple instances of memcached without having to step on
ports, because the instances will be running on their own IPs within the flannel net-
work. Go ahead and start the memcached cluster and sidekick:

$ fleetctl start \
code/ch6/memcached@{1..3}.service \
code/ch6/memcached-sidekick@{1..3}.service

...

With all these systems running, you can verify that things look good with fleetctl
list-units as usual, and check your etcd keys to make sure everything was set correctly:

$ fleetctl list-units
UNIT MACHINE ACTIVE SUB
couchbase-sidekick@1.service 72476ea6.../172.17.8.101 active running
couchbase@1.service 72476ea6.../172.17.8.101 active running
memcached-sidekick@1.service ac6b3188.../172.17.8.101 active running
memcached-sidekick@2.service b598f557.../172.17.8.102 active running
memcached-sidekick@3.service ac6b3188.../172.17.8.103 active running
memcached@1.service ac6b3188.../172.17.8.101 active running
memcached@2.service b598f557.../172.17.8.102 active running
memcached@3.service ac6b3188.../172.17.8.103 active running
$ etcdctl ls --recursive /services
/services/couchbase
/services/couchbase/1
/services/memcached
/services/memcached/3
/services/memcached/1
/services/memcached/2
$ etcdctl get /services/memcached/1
10.1.35.2
$ etcdctl get /services/couchbase/1
10.1.1.2

Next, let’s move on to setting up the custom software application.

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

88 CHAPTER 6 Web stack application example

6.3 Application layer
The application for this example has two parts (see figure 6.4):

 A worker you’ll run only one of, which will watch the Meetup WebSocket for
any changes and write them to the Couchbase document store

 A cluster of many web servers running the custom back-end HTTP service with
Express

You’ll follow a single-process model for the web service, so each container will spawn
only one Node.js process. It’s possible to spawn multiple Node.js processes, but that’s
beyond the scope of this book. You do have the ability to spawn many within the same
container, or you can spawn one per container and add another load-balancer layer
(for example, with HAProxy) on each machine.

Earlier in the book, I mentioned that you have a choice when it comes to interacting
with etcd: you can do most of the interactions from your unit file; or your application
can communicate with etcd, which opens up a little more programmability for what
you’re trying to accomplish that might be painful in Bash. Because you’re deploying
custom software here, this example provides an opportunity to show that approach; so
your unit files will be simple, and the complexity of interacting with etcd will be built
into the application.

6.3.1 The worker

The worker pattern is common in software development today, especially in any sys-
tem that either processes or aggregates data in quantity. Anything that isn’t needed
for real-time consumption by a user and that you can do asynchronously can use a
worker.

app.js
Application layers

(you are here!)

CoreOS machine

memcached

Persistence layers

Couchbase

app.js

CoreOS machine

memcached

app.js

worker.js

CoreOS machine

memcached

Figure 6.4 Application layers

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

89Application layer

 By the end of this section, you’ll see your data start to populate the Couchbase
server you’ve set up (see figure 6.5). In this case, the worker gathers data from a Web-
Socket that emits RSVPs provided by Meetup.com and dumps the data into Couch-
base. You might want to do this because you can’t query Meetup.com’s historical
RSVPs and can only consume them in real time; so this is essentially archiving that
stream as it emits events. Let’s begin with the service unit file, because it’s extremely
simple.

Figure 6.5 Couchbase with data

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

90 CHAPTER 6 Web stack application example

[Unit]
Description=Worker Service
Requires=flanneld.service
After=flanneld.service

[Service]
TimeoutStartSec=0
RestartSec=10
Restart=always
ExecStartPre=-/usr/bin/docker rm -f worker
ExecStartPre=/usr/bin/docker pull mattbailey/ch6-worker:latest
ExecStart=/usr/bin/docker run --rm --name worker
 ➥-e NODE_ENV=production mattbailey/ch6-worker:latest
ExecStop=-/usr/bin/docker rm -f worker

The Dockerfile for the worker is also simple and is almost the same as the helloworld
example, except you don’t even have to expose a port.

FROM library/node:onbuild

Also, create the package.json file for the worker, with a few dependencies.

{
"name": "ch6-worker",
"version": "1.0.0",
"description": "Example Worker Process",
"main": "worker.js",
"scripts": { "start" : "node worker.js" },
"dependencies": {

"couchbase": "^2.1.6",
"node-etcd": "^4.2.1",
"websocket": "^1.0.23"

},
"author": "m@mdb.io",
"license": "ISC"

}

Listing 6.5 code/ch6/worker/worker.service

Listing 6.6 code/ch6/worker/Dockerfile

Listing 6.7 code/ch6/worker/package.json

The worker will always exit if it
can’t find a Couchbase server.
Here you give it a little time
between startups.

This will remain available on your public Docker Hub
account if you want to use it instead of building the app
yourself. You use :latest here so you’re automatically
always using the latest published version.

Passes an env var NODE_ENV=production.
This is a general convention for Node.js

apps, but you’ll use it to configure the app
depending on the environment.

Tells the node:onbuild
Docker container to run
this as its entry point

Library for communicating with Couchbase
Library for communicating with etcd
Library for general WebSocket use

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

91Application layer

That’s similar to the helloworld app as well, but with the new dependencies. Now,
let’s look at the worker.

const Etcd = require('node-etcd')
const W3CWebSocket = require('websocket').w3cwebsocket
const couchbase = require('couchbase')
const os = require('os')

const isProd = (process.env.NODE_ENV === 'production')

const thisIp = (isProd) ?
os.networkInterfaces().eth0
.filter(v => v.family === 'IPv4')[0].address
: '127.0.0.1'

const etcdAddress = (isProd) ?
thisIp
.split('.').slice(0,3).concat(['1'])
.join('.') : '127.0.0.1'

const etcd = new Etcd(etcdAddress, '2379')
const couchbaseWatcher = etcd

.watcher('services/couchbase', null, {recursive: true})

couchbaseWatcher.on('set', newCouchbase => {
console.log('new couchbase config',

newCouchbase.body.node.nodes)
process.exit(0)

})

const connection = (process.env.NODE_ENV === 'production') ?
`couchbase://${etcd.getSync('services/couchbase', {recursive: true})

.body.node.nodes.map(v => v.value).join(',')}` :
'couchbase://127.0.0.1'

console.log('current connection:', connection)
const client = new W3CWebSocket('ws://stream.meetup.com/2/rsvps')
const cluster = new couchbase.Cluster(connection)
const bucket = cluster.openBucket('default')
function store(data) {

bucket.upsert(Date.now().toString(),data || 'empty',() => {})
}
client.onmessage = data => { store(JSON.parse(data.data).event) }

Listing 6.8 code/ch6/worker/worker.js

Gets the IP address for eth0 in
the container (the flannel
address) if you’re in
production; localhost otherwise

If you’re in production,
figures out the IP on
which you can access etcd

Creates an event emitter for
watching this etcd endpoint (the
one the Couchbase sidekick sets)

Logging, so you can see in the journal that
the worker is going to restart, and why

If the watcher sees a set event on any
Couchbase etcd key, it will exit the
worker, causing systemd to restart it.

Assembles a connection-string URI for the
Couchbase connection from the contents of
keys under services/couchbase/

If you’re not in production, sets the connection
string to localhost (for development)

Logging, so you can see how
the worker is trying to connect

WebSocket client connection to
the Meetup.com RSVP stream

Pushes the data into Couchbase
when the client emits a message

Database insert function, using
a datestamp as the key

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

92 CHAPTER 6 Web stack application example

If this looks a little daunting, or you have little or no JavaScript experience, that’s
okay; we’ll go through the code step by step. There’s a lot here that isn’t important for
this book: to remove that from your cognitive load, the require() statements at the
top import libraries, and many of the unannotated lines at the end get set up to write
to the Couchbase server. I’ve used a lot of shorthand for the sake of page length, but
this is what you should take away as the program’s step-by-step process:

1 Determines its own IP address in flannel (only so you can figure out the etcd
IP); for example, 10.1.1.3

 2 Figures out the etcd IP; for example, 10.1.1.1
 3 Sets up a watch on the etcd keys for Couchbase
 4 Exits the program if there are any new keys in /services/couchbase/
 5 Puts together a connection string from etcd keys in /services/couchbase/ (for

example, couchbase://10.1.1.2)
6 Listens to the RSVP socket, and writes its messages to Couchbase

You’ll notice that most of this program deals with the context of the CoreOS environ-
ment. The functional worker part is only the last five lines. Of course, this is a simple
example; but you can see how sometimes, putting this kind of contextual logic outside
of a unit file can make it a little easier to do complex logic for services based on the
cluster state.

 Now, you can get your worker service running! But be warned: you’re connecting a
live service that will immediately start writing a stream to your database. This stream is
pretty slow—maybe four events per second—but if you forget to stop the worker,
you’ll fill up your VM’s hard drive. Also, be sure you’re going to run only one worker.
Fleet should prevent you from running multiple workers, but if you manage to do so,
Meetup.com will probably eventually blacklist your IP address for an unknown
amount of time. With that in mind, fire it up and begin looking at your log:

$ fleetctl start code/ch6/worker/worker.service
Unit worker.service launched on 72476ea6.../172.17.8.101
$ fleetctl journal -f worker
...
May 27 21:44:30 core-01 systemd[1]: Started Worker Service.
...
May 27 21:44:31 core-01 docker[14982]: current connection: couchbase://10.1.1.2

If you opened the web admin port for Couchbase when you started it, you can now go
visit it (http://172.17.8.101:8091/) and see data coming in. It should look something
like figure 6.5 at the beginning of this section: the main admin page should show one
bucket active, with a nice graph showing activity in operations per second.

 Congratulations! You now have a full data-aggregation system! This is the kind of
pattern you can follow for any worker-type program that you want to deploy on

You should see a
successful start …

... and a Couchbase URI
that makes sense.

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

93Application layer

CoreOS. Things like aggregators, crawlers, and scientific computing workers all fit well
in this model. Next, let’s move on to the web app, so you can look at some of the data.

6.3.2 The web application

Much like the worker, you’re going to do most of the complex context configuration
in the application logic, so the service unit is equally simple. The only difference is
that you’ll run multiple instances, so you need to make a template, shown in the next
listing. This is a simple app that just displays some data to prove that everything you’ve
set up is working properly; at the end of this chapter, you’ll have a site that looks some-
thing like figure 6.6.

[Unit]
Description=Express and Socket.io Web Service %i
Requires=flanneld.service
After=flanneld.service

[Service]
TimeoutStartSec=0
RestartSec=5
Restart=always
ExecStartPre=-/usr/bin/docker rm -f web-%i
ExecStartPre=/usr/bin/docker pull mattbailey/ch6-web:latest
ExecStart=/usr/bin/docker run \

--rm \
-p 3000:3000 \
-e NODE_ENV=production \
--name web-%i \
mattbailey/ch6-web:latest

Listing 6.9 code/ch6/webapp/web@.service

Figure 6.6 Exciting killer app

One small difference from the
worker is that you expose a port.

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

94 CHAPTER 6 Web stack application example

ExecStop=-/usr/bin/docker rm -f web-%i

[X-Fleet]
Conflicts=web@*.service

Like the mattbailey/ch6-worker image, I’ll leave this on the Docker Hub in case you
don’t want to build it from the Dockerfile yourself—which brings us to the simple
Dockerfile (it’s the same as the one from the helloworld examples).

FROM library/node:onbuild
EXPOSE 3000

The package.json file is also similar.

{
"name": "ch6-web",
"version": "1.0.0",
"description": "Example Web App",
"main": "app.js",
"scripts": { "start" : "node app.js" },
"dependencies": {

"connect-memcached": "^0.2.0",
"couchbase": "^2.1.6",
"express": "^4.13.4",
"express-session": "^1.13.0",
"node-etcd": "^4.2.1",
"socket.io": "^1.4.6"

},
"author": "m@mdb.io",
"license": "ISC"

}

This pulls in a few more libraries for Express, memcached, and Socket.IO. Before we
get into the back-end application, let’s look at the single index.html file you’ll serve a
user (see listing 6.11). This is essentially a single-page application, meaning the server
isn’t serving up any HTML in a dynamic way: it’s serving up a single document, and the
rest of the elements are dynamically created by JavaScript (well, JSX, to be specific)
within the page. This JavaScript only runs in the browser, and it also watches the
socket.io WebSocket for messages so it can update the page without requiring any
navigation. I’m using a UI framework called React for this, mostly because it’s currently
popular and, again, terse enough that it doesn’t take up too much room in the text.

Listing 6.10 code/ch6/webapp/Dockerfile

Listing 6.11 code/ch6/webapp/package.json

Because you expose a port, more than
one can’t run on the same machine.

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

95Application layer

<!DOCTYPE html>
<html>

<head>
<script src="https://cdnjs.cloudflare.com/ajax/libs

 ➥/react/15.1.0/react.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs

 ➥react/15.1.0/react-dom.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs

 ➥/babel-core/5.8.23/browser.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs

 ➥/nprogress/0.2.0/nprogress.min.js"></script>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs

 ➥/nprogress/0.2.0/nprogress.min.css">
<script src="/socket.io/socket.io.js"></script>

</head>
<body>

<div id="mount-point"></div>
<script type="text/babel">
const Rsvps = React.createClass({

_onMessage: function(data) {this.setState({items: data})},
getInitialState: function() { return { items: [] } },
render: function() {

const createItem = (item) =>
{ return { item.key } : { item.value } }

return { this.state.items.map(createItem) }
}

})
const rsvps = ReactDOM

.render(<Rsvps />, document.getElementById('mount-point'))
const meetupSocket = io()
meetupSocket.on('message', (data) => {

NProgress.start()
rsvps._onMessage(data)
NProgress.done()

})
</script>

</body>
</html>

Listing 6.12 code/ch6/webapp/index.html

This and the three scripts below it
are libraries that give you the
ability to write JSX within the page.

socket.io will serve up this script from the
web app to set up the WebSocket connection.

This and the CSS file below it are a simple YouTube-style
progress bar called NProgress to give you an indication

that things are working when you view the site.

Creates the dynamic unordered list
 element to display the RSVPs

Updates the state of the component
(with new data)

Every React component has a render
method that creates the page elements.

Mounts the Rsvps element to the <div
id="mount-point"></div> element

Sets up the socket.io
event emitter

In this listener, if a message is
seen on meetupSocket, you update
the element with the _onMessage

function in the Rsvps class.

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

96 CHAPTER 6 Web stack application example

If you don’t have much experience with client-side JavaScript programming, don’t
worry; most of this serves to build a dynamic element. Fundamentally, this code is sim-
ilar to the code in the worker! It listens to a WebSocket and updates the page when it
gets a new message, the same way the worker listens to a WebSocket and updates
Couchbase. Ultimately, this is just a view, and it’s not important for you to know about
it in depth for this example; but it’s the simplest way to show that your web app is
working, and it will absolutely be part of any complete web application.

 How do you serve this HTML and JavaScript? With more JavaScript, of course! The
following listing shows the application server.

const Etcd = require('node-etcd')
const path = require('path')
const app = require('express')()
const http = require('http').Server(app)
const session = require('express-session')
const MemcacheStore = require('connect-memcached')(session)
const couchbase = require('couchbase')
const io = require('socket.io')(http)
const os = require('os')

const isProd = (process.env.NODE_ENV === 'production')

const thisIp = (isProd) ?
os.networkInterfaces().eth0
.filter(v => v.family === 'IPv4')[0].address
: '127.0.0.1'

const etcdAddress = (isProd) ?
thisIp
.split('.').slice(0,3).concat(['1'])
.join('.') : '127.0.0.1'

const etcd = new Etcd(etcdAddress, '2379')
const memcacheWatcher = etcd

.watcher('services/memcached', null, {recursive: true})
const couchbaseWatcher = etcd

.watcher('services/couchbase', null, {recursive: true})

couchbaseWatcher.on('set', newCouchbase => {
console.log('new couchbase config', newCouchbase)
process.exit(0)

})
memcacheWatcher.on('set', newMemcache => {

console.log('new memcache config', newMemcache)
process.exit(0)

})

const config = (isProd) ?

{
couchbase: `couchbase://${etcd.getSync('services/couchbase',

 ➥{recursive: true})
.body.node.nodes.map(v => v.value).join(',')}`,

memcached: etcd.getSync('services/memcached', {recursive: true})

Listing 6.13 code/ch6/webapp/app.js

Event emitter for changes
to etcd keys in

services/memcached

Uses an object instead of a
string to set configuration,
so you can get the config for
Couchbase and memcached
at the same time

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

97Application layer

.body.node.nodes.map(v => `${v.value}:11211`)
} : {

couchbase: 'couchbase://127.0.0.1',
memcached: ['127.0.0.1:11211']

}

console.log('current config:', config)

const cluster = new couchbase.Cluster(config.couchbase)
const memStore = new MemcacheStore({ hosts: config.memcached })

const bucket = cluster.openBucket('default')
const bucketMgr = bucket.manager()
const ddocdata = {views:{by_id:{ map:'function (doc) {

 ➥emit(doc.event_id, doc.event_name) }'}}}
bucketMgr.upsertDesignDocument('ddocid', ddocdata, () => {})
const query = couchbase.ViewQuery

.from('ddocid', 'by_id').order(2).limit(10)
app.use(session({

saveUninitialized:true,
resave: false,store: memStore,
secret: 'coreosinaction' }))

app.get('/', (req, res) =>
res.sendFile('./index.html', {root: path.join(__dirname)}))

io.on('connection', socket =>
setInterval(() =>

bucket.query(query, (err, results) =>
io.emit('message', results)), 5000))

http.listen(3000)

This looks like a lot to take in, especially if you’re unfamiliar with Node.js. If you
didn’t read the section about the worker (section 6.3.1), be sure go to back, because a
lot of things are duplicated here.

 Libraries are imported at the top, and then you have a lot of the same contextual
logic as in the worker, to generate a connection to memcached and Couchbase and
exit the program if they change. The only difference here is that you do it for both
memcached and Couchbase; you only had Couchbase to worry about in the worker.

 Once you get down into the (again, relatively small, compared to the context
code) application logic, a few more things are going on:

Similar to the Couchbase
config, returns an array or
your memcached instances

Initializes the memcached
session store

Housekeeping in Couchbase that gives
the app the ability to create views

To read data from Couchbase, you have to assemble a
map function as a view. This is a simple one that emits

the RSVP ID and Meetup event name.

Saves the view
to the bucket

Query that uses the
view, limiting it to
returning 10 results
in reverse-key order

Sets up express-
session to use the
memcached store
as its back end

Serves up the index.html
file at the / URL

Opens the HTTP listener
for clients to connect

Sets up socket.io to run, and
emits the results of the query
(bucket.query()) every 5
seconds (5000 ms) to any
connected client

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

98 CHAPTER 6 Web stack application example

1 You set up a view in Couchbase. It’s not important how this functions, just that
you need one to query data from Couchbase. You can think of it as a stored pro-
cedure, if you’re used to SQL.

 2 You set up a session that sets a cookie in the browser. It’s backed by your mem-
cached cluster but not used for anything.

 3 You serve up the single index.html file at /.
 4 For every connection to the WebSocket, you begin sending queried data back

to the client every 5 seconds.
5 For clarity, both the WebSocket and HTTP data are served over port 3000.

That’s it! Now you can deploy the client-facing web service. Start up three web units
with fleet, and (optionally) watch the journal output:

$ fleetctl start code/ch6/webapp/web@{1..3}.service
...
$ fleetctl journal -f web@1
...
May 27 23:29:12 core-02 systemd[1]:

 ➥Started Express and Socket.io Web Service 1.
...
May 27 23:29:13 core-02 docker[10696]:
 ➥current config: { couchbase: 'couchbase://10.1.1.2',
May 27 23:29:13 core-02 docker[10696]:
 ➥memcached: ['10.1.35.2:11211', '10.1.57.2:11211', '10.1.35.3:11211'] }

The web application started up successfully. Let’s look at all the services running now.

UNIT MACHINE ACTIVE SUB
couchbase-sidekick@1.service 72476ea6.../172.17.8.101 active running
couchbase@1.service 72476ea6.../172.17.8.101 active running
memcached-sidekick@1.service ac6b3188.../172.17.8.103 active running
memcached-sidekick@2.service b598f557.../172.17.8.102 active running
memcached-sidekick@3.service ac6b3188.../172.17.8.103 active running
memcached@1.service ac6b3188.../172.17.8.103 active running
memcached@2.service b598f557.../172.17.8.102 active running
memcached@3.service ac6b3188.../172.17.8.103 active running
web@1.service 72476ea6.../172.17.8.101 active running
web@2.service b598f557.../172.17.8.102 active running
web@3.service ac6b3188.../172.17.8.103 active running
worker.service 72476ea6.../172.17.8.101 active running

You should be able to visit any of those hosts on port 3000 (for example,
http://172.17.8.103:3000) and see your fantastic new web app! The page should
update itself every 5 seconds from the socket.io event and show new data. You’ve
successfully deployed your first custom, full-stack application to a CoreOS cluster, but
there’s still more work to do.

Listing 6.14 All units

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

99Where to from here?

6.4 Where to from here?
Now that you’ve built out your application stack on CoreOS, how do you test for fail-
ure, and what does the next iteration look like? This section works through both of
these items and leads into the next chapter. By the end of this section, you should be
able to test the resilience of your application and have an idea of how to improve
what you’ve started. I talk a lot about fault tolerance in this book, so let’s begin with
an outage.

6.4.1 Responding to failure

As with any complex deployed application, you want to be able to test failures in your
systems. With the caveat that data loss in the Couchbase database will happen (in this
chapter) if the machine the Couchbase server is running on goes down, your entire
application stack should survive the failure of one machine pretty gracefully. Remem-
ber, though, that in a three-machine cluster, etcd can’t re-achieve quorum with a single
node. In a real-world deployment, you’d always provision enough machines because
you’d expect cluster partitioning to occur, as previously discussed in section 4.3.

 To see what’s going on, you’ll need to open two terminals: one to run the com-
mands to break a machine, and one to follow the log of a machine you’re not break-
ing to see how the services respond. The maximum failure would be to kill the node
that Couchbase is running on. You know that will cause data loss, but the service
should still migrate to another machine in the cluster.

 In one terminal, check to find a machine that Couchbase isn’t running on, and fol-
low the journal of the web service running on that machine:

$ fleetctl list-units | grep -E 'web|couchbase@'
couchbase@1.service 7c5009d9.../172.17.8.102 active running
web@1.service a54ea5bc.../172.17.8.103 active running
web@2.service 7c5009d9.../172.17.8.102 active running
web@3.service 9e08f1b2.../172.17.8.101 active running
$ fleetctl journal -lines 2 -f web@1
-- Logs begin at Sat 2016-05-28 04:13:47 UTC. --
May 28 04:29:46 core-03 docker[2964]:

 ➥current config: { couchbase: 'couchbase://10.1.15.2',
May 28 04:29:46 core-03 docker[2964]:

 ➥memcached: ['10.1.58.3:11211', '10.1.58.2:11211', '10.1.53.2:11211'] }

Now, you’re following the log for web@1. You can see the output of its log from the
initial configuration, connecting to your three memcached instances and Couchbase.
In a new terminal, kill core-02, where Couchbase and one memcached instance are
running (first, make sure you’re in the directory where your Vagrantfile is located):

$ vagrant halt core-02
==> core-02: Attempting graceful shutdown of VM...

Looks like web@1 is
running on a machine
that couchbase@1 isn’t,
so let’s follow its log.

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

100 CHAPTER 6 Web stack application example

Let’s look back at the terminal where you were following the journal of web@1:

May 28 04:40:38 core-03 docker[2964]: new couchbase config{ action: 'set',
May 28 04:40:38 core-03 docker[2964]: node:
May 28 04:40:38 core-03 docker[2964]: { key: '/services/couchbase/1',
May 28 04:40:38 core-03 docker[2964]: value: '10.1.53.5',
...
May 28 04:40:43 core-03 systemd[1]:

 ➥web@1.service: Service hold-off time over, scheduling restart.
May 28 04:40:43 core-03 systemd[1]:

 ➥Stopped Express and Socket.io Web Service 1.
...
May 28 04:40:45 core-03 systemd[1]:

 ➥Started Express and Socket.io Web Service 1.
...
May 28 04:40:46 core-03 docker[7141]:

 ➥current config: { couchbase: 'couchbase://10.1.53.5',
May 28 04:40:46 core-03 docker[7141]:

 ➥memcached: ['10.1.58.3:11211', '10.1.58.2:11211', '10.1.53.2:11211'] }

6.4.2 What’s missing?

A few things are missing from this example. First is the reliability of the data store,
which we’ll address in the next chapter.

 Second, you now have three servers running your edge service (the web app). At
some point, you’ll need to put a load balancer in front of them, and that may mean
adding some new sidekicks to your web services or extending the application to pro-
vide a health-check endpoint. How that’s implemented is up to you. Optionally, you
could also do some clever round-robin DNS setup; for example, AWS Route 53 has
health checks built in that can change the DNS, as long as you’re comfortable with a
downtime the length of the DNS TTL for some clients if one goes down.

 Finally, there are a lot of magic numbers in the application configuration of ports,
timeouts, and so on. Optimally, in a production environment, you’ll want to abstract
all these into etcd and use it as your central source of truth, so you can configure these
items when you need to.

halt vs. destroy
Note that you always use vagrant halt in these scenarios rather than the more
forceful vagrant destroy. The behavior would be the same for the cluster when it
goes down (you can try it yourself if you want: it’s more like pulling the power cord).

What’s different with vagrant destroy is that you can’t have that node rejoin the
cluster with vagrant up—not because it isn’t possible in CoreOS, but because the
Vagrant scripts do a number of bootstrapping things to brand-new nodes that they
don’t do to a node that’s just stopped, so you end up with a node all by itself. In the
real world, you wouldn’t do the bootstrapping things that Vagrant does, so you can
remove and add nodes at will.

Log from the
etcd.watch() emitter

Log from the app after it
starts up again and generates

a new configuration

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

101Summary

6.5 Summary
 Have a plan of attack in applying complex architectures to CoreOS.
 Figure out how to test each part of your stack in isolation.
 Determine which parts of your stack need to be redundant.
 Understand the order of events when parts fail.
 Try to identify the shortcomings of your implementations (in this case, data loss

if the Couchbase machine fails).

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

Matt Bailey

T
raditional Linux server distributions include every com-
ponent required for anything you might be hosting, most
of which you don’t need if you’ve containerized your apps

and services. CoreOS Container Linux is a bare-bones distro
with only the essential bits needed to run containers like
Docker. Container Linux is a fast, secure base layer for any
container-centric distributed application, including microser-
vices. And say goodbye to patch scheduling; when Container
Linux needs an update, you just hot-swap the whole OS.

CoreOS in Action is a clear tutorial for deploying container-
based systems on CoreOS Container Linux. Inside, you’ll
follow along with examples that teach you to set up CoreOS
on both private and cloud systems, and to practice common
sense monitoring and upgrade techniques with real code.
You’ll also explore important container-aware application
designs, including microservices, web, and Big Data examples
with real-world use cases to put your learning into perspective.

What’s Inside
● Handling scaling and failures gracefully
● Container-driven application designs
● Cloud, on-premises, and hybrid deployment
● Smart logging and backup practices

Written for readers familiar with Linux and the basics
of Docker.

Matt Bailey has 15 years of experience on everything from
large-scale computing cluster architecture to front-end
programming.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit www.manning.com/books/coreos-in-action

$44.99 / Can $59.99 [INCLUDING eBOOK]

CoreOS IN ACTION

LINUX/SOFTWARE DEVELOPMENT

M A N N I N G

“A useful compass to guide
you through the complex

paths of CoreOS
and microservices.”

—Marco Zuppone
Gemalto SafeNet

“A very practical
introduction with realistic
 deployment scenarios.”

—Michael Bright
Hewlett-Packard Enterprise

“Great source, carefully
crafted ... offers compelling,

in-depth insight.”—Antonis Tsaltas
Huawei Technologies

“Everything you need to
get started, from the basic

building blocks to advanced
architectures.”
—Thomas Peklak

Emakina CEE, Austria

SEE INSERT

www.itbook.store/books/9781617293740

https://itbook.store/books/9781617293740

	cover
	Copyright
	BriefContents
	Sample-Ch06
	coverB

