
www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

Get Programming with Haskell
by Will Kurt

Lesson 27

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

v

Contents

Preface vii
Acknowledgments ix
About this book x
About the author xiv

Lesson 1 Getting started with Haskell 1

Unit 1

FOUNDATIONS OF FUNCTIONAL
PROGRAMMING

Lesson 2 Functions and functional
programming 13

Lesson 3 Lambda functions and lexical scope 23

Lesson 4 First-class functions 33

Lesson 5 Closures and partial application 43

Lesson 6 Lists 54

Lesson 7 Rules for recursion and pattern
matching 65

Lesson 8 Writing recursive functions 74

Lesson 9 Higher-order functions 83

Lesson 10 Capstone: Functional object-oriented pro-
gramming with robots! 92

Unit 2

INTRODUCING TYPES

Lesson 11 Type basics 107

Lesson 12 Creating your own types 120

Lesson 13 Type classes 132

Lesson 14 Using type classes 142

Lesson 15 Capstone: Secret messages! 155

Unit 3

PROGRAMMING IN TYPES

Lesson 16 Creating types with “and” and “or” 175

Lesson 17 Design by composition—Semigroups and
Monoids 187

Lesson 18 Parameterized types 201

Lesson 19 The Maybe type: dealing with missing
values 214

Lesson 20 Capstone: Time series 225

Unit 4

IO IN HASKELL

Lesson 21 Hello World!—introducing IO types 249

Lesson 22 Interacting with the command line and
lazy I/O 261

Lesson 23 Working with text and Unicode 271

Lesson 24 Working with files 282

Lesson 25 Working with binary data 294

Lesson 26 Capstone: Processing binary files and
book data 308

Unit 5

WORKING WITH TYPE IN A CONTEXT

Lesson 27 The Functor type class 331

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

vi Contents

Lesson 28 A peek at the Applicative type class: using
functions in a context 343

Lesson 29 Lists as context: a deeper look at the Ap-
plicative type class 357

Lesson 30 Introducing the Monad type class 372

Lesson 31 Making Monads easier with do-
notation 387

Lesson 32 The list monad and list
comprehensions 402

Lesson 33 Capstone: SQL-like queries in
Haskell 411

Unit 6

ORGANIZING CODE AND BUILDING
PROJECTS

Lesson 34 Organizing Haskell code with
modules 431

Lesson 35 Building projects with stack 442

Lesson 36 Property testing with QuickCheck 452

Lesson 37 Capstone: Building a prime-number
library 466

Unit 7

PRACTICAL HASKELL

Lesson 38 Errors in Haskell and
the Either type 483

Lesson 39 Making HTTP requests in Haskell 497

Lesson 40 Working with JSON data
by using Aeson 507

Lesson 41 Using databases in Haskell 524

Lesson 42 Efficient, stateful arrays in Haskell 544

Afterword What’s next? 561

Appendix Sample answers to exercises 566

Index 589

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

327

U
N

IT 5
Working with type in a
context

In this unit, you’ll take a look at three of Haskell’s
most powerful and often most confusing type
classes: Functor, Applicative, and Monad. These type
classes have funny names but a relatively straight-
forward purpose. Each one builds on the other to
allow you to work in contexts such as IO. In unit 4,
you made heavy use of the Monad type class to work
in IO. In this unit, you’ll get a much deeper under-
standing of how that works. To get a better feel for
what these abstract type classes are doing, you’ll
explore types as though they were shapes.

One way to understand functions is as a means of
transforming one type into another. Let’s visualize
two types as two shapes, a circle and a square, as
shown in figure 1.

These shapes can represent any two types, Int and
Double, String and Text, Name and FirstName, and so
forth. When you want to transform a circle into a
square, you use a function. You can visualize a func-
tion as a connector between two shapes, as shown
in figure 2.

Figure 1 A circle and square
visually representing two types

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

328 Unit 5 Working with type in a context

This connector can represent any function from one type to another. This shape could
represent (Int -> Double), (String -> Text), (Name -> FirstName), and so forth. When you want
to apply a transformation, you can visualize placing your connector between the initial
shape (in this case, a circle) and the desired shape (a square); see figure 3.

As long as each shape matches correctly, you can achieve your desired transformation.

In this unit, you’ll look at working with types in context. The two best examples of types
in context that you’ve seen are Maybe types and IO types. Maybe types represent a context in
which a value might be missing, and IO types represent a context in which the value has
interacted with I/O. Keeping with our visual language, you can imagine types in a con-
text as shown in figure 4.

These shapes can represent types such as IO Int and IO Double, Maybe String and Maybe Text,
or Maybe Name and Maybe FirstName. Because these types are in a context, you can’t simply use
your old connector to make the transformation. So far in this book, you’ve relied on
using functions that have both their input and output in a context as well. To perform the
transformation of your types in a context, you need a connector that looks like figure 5.

This connector represents functions with type signatures such as (Maybe Int -> Maybe Dou-
ble), (IO String -> IO Text), and (IO Name -> IO FirstName). With this connector, you can easily
transform types in a context, as shown in figure 6.

Figure 2 A function can transform
a circle to a square.

Figure 3 Visualizing a function as a way
of connecting one shape to another

Figure 4 The shape around the shape
represents a context, such as Maybe or IO.

Figure 5 A function that
connects two types in a context

Figure 6 As long as your connector matches,
you can make the transformation you want.

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

329Unit 5 Working with type in a context

This may seem like a perfect solution, but there’s a problem. Let’s look at a function
halve, which is of the type Int -> Double, and as expected halves the Int argument.

halve :: Int -> Double
halve n = fromIntegral n / 2.0

This is a straightforward function, but suppose you want to halve a Maybe Int. Given the
tools you have, you have to write a wrapper for this that works with Maybe types.

halveMaybe :: Maybe Int -> Maybe Double
halveMaybe (Just n) = Just (halve n)
halveMaybe Nothing = Nothing

For this one example, it’s not a big deal to write a simple wrapper. But consider the wide
range of existing functions from a -> b. To use any of these with Maybe types would
require nearly identical wrappers. Even worse is that you have no way of writing these
wrappers for IO types!

This is where Functor, Applicative, and Monad come in. You can think of these type classes
as adapters that allow you to work with different connectors so long as the underlying
types (circle and square) are the same. In the halve example, you worried about trans-
forming your basic Int-to-Double adapter to work with types in context. This is the job of
the Functor type class, illustrated in figure 7.

But you can have three other types of mismatches. The Applicative type class solves two
of these. The first occurs when the first part of your connector is in a context, but not its
result, as shown in figure 8.

Listing 1 A halve function from Int -> Double

Listing 2 halveMaybe wraps halve function to work with Maybe types

Figure 7 The Functor type class solves this mismatch
between types in a context and a connector.

Figure 8 This is one of the
mismatches that Applicative solves.

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

330 Unit 5 Working with type in a context

The other problem occurs when an entire function is in a context. For example, a func-
tion of the type Maybe (Int -> Double) means you have a function that might itself be miss-
ing. This may sound strange, but it can easily happen when using partial application
with Maybe or IO types. Figure 9 illustrates this interesting case.

There’s only one possible mismatch between a function and types in a context left. This
occurs when the argument to a function isn’t in a context, but the result is. This is more
common than you may think. Both Map.lookup and putStrLn have type signatures like this.
This problem is solved by the Monad type class, illustrated in figure 10.

When you combine all three of these type classes, there’s no function that you can’t use
in a context such as Maybe or IO, so long as the underlying types match. This is a big deal
because it means that you can perform any computation you’d like in a context and have
the tools to reuse large amounts of existing code between different contexts.

Figure 9 Sometimes the connector itself is trapped
in a context; Applicative solves this problem as well.

Figure 10 The Monad type class provides an
adapter for this final possible mismatch.

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

331

27 LESSON

THE FUNCTOR TYPE CLASS

After reading lesson 27, you’ll be able to

 Use the Functor type class
 Solve problems with fmap and <$>
 Understand kinds for Functors

So far in this book, you’ve seen quite a few parameterized types (types that take another
type as an argument). You’ve looked at types that represent containers, such as List and
Map. You’ve also seen parameterized types that represent a context, such as Maybe for miss-
ing values and IO for values that come from the complex world of I/O. In this lesson,
you’ll explore the powerful Functor type class. The Functor type class provides a generic
interface for applying functions to values in a container or context. To get a sense of this,
suppose you have the following types:

 [Int]

 Map String Int

 Maybe Int

 IO Int

These are four different types, but they’re all parameterized by the same type: Int (Map is
a special case, but the values are type Int). Now suppose you have a function with the
following type signature:

Int -> String

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

332 Lesson 27 The Functor type class

This is a function that takes an Int and returns a String. In most programming languages,
you’d need to write a custom version for your Int -> String function for each of these
parameterized types. Because of the Functor type class, you have a uniform way to apply
your single function to all these cases.

27.1 An example: computing in a Maybe

Maybe has already proven a useful solution to your problem of potentially missing values.
But when you were introduced to Maybe in lesson 19, you still had to deal with the prob-
lem of handling the possibility of a missing value as soon as you encountered it in your
program. It turns out you can do computation on a potentially missing value without
having to worry about whether it’s actually missing.

Suppose you get a number from a database. There are plenty of reasons why a request
to a database would result in a null value. Here are two sample values of type Maybe Int:
failedRequest and successfulRequest.

successfulRequest :: Maybe Int
successfulRequest = Just 6

failedRequest :: Maybe Int
failedRequest = Nothing

Next imagine you need to increment the number you received from the database and
then write it back to the database. From a design standpoint, assume that the logic that
talks to the database handles the case of null values by not writing the value. Ideally,

Listing 27.1 Possibly null values: successfulRequest and failedRequest

Consider this You have a potentially missing Int (a Maybe Int). You want to square this
value, turn it into a string, and then add an ! to the end. The function that you want to
pass this value to, printInt, assumes that there might be missing values already:

printInt :: Maybe String -> IO ()
printInt Nothing = putStrLn "value missing"
printInt (Just val) = putStrLn val

How can you transform your Maybe Int into a Maybe String to be used by printInt?

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

333Using functions in context with the Functor type class

you’d like to keep your value in a Maybe. Given what you know so far, you could write a
special incMaybe function to handle this.

incMaybe :: Maybe Int -> Maybe Int
incMaybe (Just n) = Just (n + 1)
incMaybe Nothing = Nothing

In GHCi, this works just fine:

GHCi> incMaybe successfulRequest
Just 7
GHCi> incMaybe failedRequest
Nothing

The problem is that this solution scales horribly. The increment function is just (+ 1), but
in our example, you need to rewrite it for Maybe. This solution means that you’d have to
rewrite a special version of every existing function you want to use in a Maybe! This
greatly limits the usefulness of tools such as Maybe. It turns out Haskell has a type class
that solves this problem, called Functor.

27.2 Using functions in context with the Functor type class

Haskell has a wonderful solution to this problem. Maybe is a member of the Functor type
class. The Functor type class requires only one definition: fmap, as shown in figure 27.1.

Listing 27.2 Defining incMaybe to increment Maybe Int values

Quick check 27.1 Write the function reverseMaybe :: Maybe String -> Maybe String that
reverses a Maybe String and returns it as a Maybe String.

QC 27.1 answer

reverseMaybe :: Maybe String -> Maybe String
reverseMaybe Nothing = Nothing
reverseMaybe (Just string) = Just (reverse string)

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

334 Lesson 27 The Functor type class

Going back to your visual language from the introduction, fmap provides an adapter, as
shown in figure 27.2. Notice that we’re using <$>, which is a synonym for fmap (except it’s
a binary operator rather than a function).

You can define fmap as a generalization of your custom incMaybe function.

instance Functor Maybe where
 fmap func (Just n) = Just (func n)
 fmap func Nothing = Nothing

Listing 27.3 Making Maybe an instance of Functor

fmap :: Functor f => (a -> b) -> f a -> f b

This is a function from
type a to type b.

This f is confusing because you
often associate f with function.
Here it is a type class
constraint for a Functor.

This is a Functor of
type a. For example,
Maybe Int.

This is the transformed
Functor of type b. For
example, Maybe Double.

Figure 27.1 The type signature for the fmap function

fmap allows you to connect these
and get your square in a context.

<$>

Figure 27.2 Visualizing how fmap, also <$>,
works as an adapter, allowing you to work with
types in a context.

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

335Using functions in context with the Functor type class

With fmap, you no longer need a special function for keeping your value in a Maybe:

GHCi> fmap (+ 1) successfulRequest
Just 7
GHCi> fmap (+ 1) failedRequest
Nothing

Though fmap is the official function name, in practice the binary operator <$> is used
much more frequently:

GHCi> (+ 1) <$> successfulRequest
Just 7
GHCi> (+ 1) <$> failedRequest
Nothing

In this example, (+ 1) adds 1 into the Maybe Int and returns a Maybe Int as well. But it’s
important to realize that the type signature of the function in fmap is (a -> b), meaning
that the Maybe returned doesn’t need to be parameterized by the same type. Here are two
examples of going from a Maybe Int to a Maybe String.

successStr :: Maybe String
successStr = show <$> successfulRequest

failStr :: Maybe String
failStr = show <$> failedRequest

This ability to transform the types of values inside a Maybe is the true power of the Functor
type class.

Listing 27.4 Examples of using fmaps from one type to another

Quick check 27.2 Use fmap or <$> to reverse a Maybe String.

QC 27.2 answer

GHCi> reverse <$> Just "cat"
Just "tac"

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

336 Lesson 27 The Functor type class

27.3 Functors are everywhere!

To understand instances of Functor, you’ll run through some examples. Recall from les-
son 18 that kinds are the types of types. Types of a kind * -> * are parameterized types
that take just one type parameter. All Functors must be of kind * ->*. It also turns out that
many parameterized types of kind * -> * are instances of Functor.

Members of Functor that you’ve seen so far in this book include List, Map, Maybe, and IO. To
demonstrate how Functor allows you to generalize by solving a single problem the same
way in multiple parameterized types, you’ll explore how working with the same data
type in multiple contexts can represent different problems. Then you’ll see how Functor’s
<$> makes it easy to solve each of these problems in the same way. Rather than work
with simple types such as Int or String, you’ll work with something more complicated: a
RobotPart data type.

27.3.1 One interface for four problems

In this example, you’re going to assume that you’re in the business of manufacturing
robot parts. Here’s the basic data type for your robot part.

data RobotPart = RobotPart
 { name :: String
 , description :: String

Listing 27.5 RobotPart defined using record syntax

Strange type class names?
Semigroup, Monoid, and now Functor! What’s up with these weird type class names? All
these names come from fields of mathematics called abstract algebra and category the-
ory. You absolutely don’t need to know any advanced mathematics to use them. All of
these type classes represent the design patterns of functional programming. If you’ve
used Java, C#, or any enterprise programming language, you’re likely familiar with
object-oriented design patterns such as the Singleton, Observer, and Factory patterns.
These names are more reasonable-sounding only because they’ve become part of the
everyday vocabulary of OOP. Both OOP design patterns and category theoretic type
classes abstract out common programming patterns. The only difference is that Has-
kell’s are based on mathematical foundations, rather than ad hoc patterns discovered
in code. Just as Haskell’s functions derive power from their mathematical basis, so do
Haskell’s design patterns.

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

337Functors are everywhere!

 , cost :: Double
 , count :: Int
 } deriving Show

Here are some example robot parts you’ll use in this section.

leftArm :: RobotPart
leftArm = RobotPart
 { name = "left arm"
 , description = "left arm for face punching!"
 , cost = 1000.00
 , count = 3
 }

rightArm :: RobotPart
rightArm = RobotPart
 { name = "right arm"
 , description = "right arm for kind hand gestures"
 , cost = 1025.00
 , count = 5
 }

robotHead :: RobotPart
robotHead = RobotPart
 { name = "robot head"
 , description = "this head looks mad"
 , cost = 5092.25
 , count = 2
 }

One of the most common things you’ll need to do is to render the information con-
tained in a RobotPart as HTML. Here’s code for rendering an individual RobotPart as an
HTML snippet.

Listing 27.6 Example robot parts: leftArm, rightArm, and robotHead

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

338 Lesson 27 The Functor type class

type Html = String

renderHtml :: RobotPart -> Html
renderHtml part = mconcat ["<h2>",partName, "</h2>"

,"<p><h3>desc</h3>",partDesc
,"</p><p><h3>cost</h3>"
,partCost
,"</p><p><h3>count</h3>"
,partCount,"</p>"]

 where partName = name part
partDesc = description part
partCost = show (cost part)
partCount = show (count part)

In many cases, you’ll want to convert a RobotPart into an HTML snippet. Next you’ll see
four scenarios of this, using different parametrized types.

You’ll start by using the Map type to create partsDB, which is your internal database of
RobotParts.

import qualified Data.Map as Map

partsDB :: Map.Map Int RobotPart
partsDB = Map.fromList keyVals
 where keys = [1,2,3]

vals = [leftArm,rightArm,robotHead]
keyVals = zip keys vals

Map is a useful type for this example because it naturally involves three instances of
Functor: it’s made from a List, returns Maybe values, and is itself a Functor.

27.3.2 Converting a Maybe RobotPart to Maybe Html

Now suppose you have a website driven by partsDB. It’s reasonable that you’d have a
request containing an ID for a part that you wish to insert into a web page. You’ll
assume that an insertSnippet IO action will take HTML and insert it into a page’s tem-
plate. It’s also reasonable to assume that many data models might be generating

Listing 27.7 Rendering a RobotPart as HTML

Listing 27.8 Your RobotPart “database”

Remember to include this
in the top of your file if
you’re using Map.

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

339Functors are everywhere!

snippets. Because any one of these models may have an error, you’ll assume that
insertSnippet accepts Maybe Html as its input, allowing the template engine to handle miss-
ing snippets as it sees fit. Here’s the type signature of your imaginary function:

insertSnippet :: Maybe Html -> IO ()

The problem you need to solve is looking up a part and passing that part as Maybe Html to
insertSnippet. Here’s an example of fetching a RobotPart from your partsDB.

partVal :: Maybe RobotPart
partVal = Map.lookup 1 partsDB

Because Maybe is a Functor, you can use <$> to transform your RobotPart into HTML while
remaining in a Maybe.

partHtml :: Maybe Html
partHtml = renderHtml <$> partVal

You can now pass partHtml to insertSnippet easily because of Functor.

27.3.3 Converting a list of RobotParts to a list of HTML

Next suppose you want to create an index page of all your parts. You can get a list of
parts from your partsDB like this.

allParts :: [RobotPart]
allParts = map snd (Map.toList partsDB)

List is also an instance of Functor. In fact, fmap for a List is the regular map function you’ve
been using since unit 1. Here’s how you can apply renderHtml to a list of values by using <$>.

allPartsHtml :: [Html]
allPartsHtml = renderHtml <$> allParts

Listing 27.9 partVal: a Maybe RobotPart value

Listing 27.10 Using <$> to transform RobotPart to HTML, remaining in Maybe

Listing 27.11 A list of RobotParts

Listing 27.12 Transforming a list of RobotParts to HTML with <$> instead of map

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

340 Lesson 27 The Functor type class

Because <$> is just fmap, and for lists fmap is just map, this code is identical to the following.

allPartsHtml :: [Html]
allPartsHtml = map renderHtml allParts

For lists, it’s more common to use map over <$>, but it’s important to realize these are iden-
tical. One way to think of the Functor type class is as “things that can be mapped over.”

27.3.4 Converting a Map of RobotParts to HTML

The partsDB Map has been useful, but it turns out all you need it for is converting RobotParts
to HTML. If that’s the case, wouldn’t it make more sense to have an htmlPartsDB so you
don’t have to continually convert? Because Map is an instance of Functor, you can do this
easily.

htmlPartsDB :: Map.Map Int Html
htmlPartsDB = renderHtml <$> partsDB

Now you can see that you’ve transformed your Map of RobotParts into a Map of Html snip-
pets!

GHCi> Map.lookup 1 htmlPartsDB
Just "<h2>left arm</h2><p><h3>desc</h3>left ...

This example highlights just how powerful the simple interface that Functor provides can
be. You can now trivially perform any transformation that you can on a RobotPart to an
entire Map of robot parts.

Listing 27.13 The traditional way of transforming a list by using map

Listing 27.14 Turning your partsDB into a Map of HTML rather than RobotParts

Quick check 27.3 Rewrite the definition of all parts to use <$> instead of map.

QC 27.3 answer

allParts :: [RobotPart]
allParts = snd <$> Map.toList partsDB

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

341Functors are everywhere!

The careful reader may have noticed something strange about Map being a Functor. Map’s
kind is * -> * -> * because Map takes two type arguments, one for its keys and another for
its values. Earlier we said that Functors must be of kind * -> *, so how can this be? If you
look at the behavior of <$> on your partsDB, it becomes clear. Functor for Map is concerned
only about the Map’s values and not its keys. When Map is made an instance of Functor,
you’re concerned only about a single type variable, the one used for its values. So for the
purposes of Map being a member of Functor, you treat it as being of kind * -> *. When we
introduced kinds in lesson 18, they may have seemed overly abstract. But they can be
useful for catching issues that arise with more advanced type classes.

27.3.5 Transforming an IO RobotPart into IO Html

Finally, you might have a RobotPart that comes from IO. You’ll simulate this by using
return to create an IO type of a RobotPart.

leftArmIO :: IO RobotPart
leftArmIO = return leftArm

Suppose you want to turn this into HTML so that you can write the HTML snippet to a
file. By now, the pattern should start to be familiar.

htmlSnippet :: IO Html
htmlSnippet = renderHtml <$> leftArmIO

Let’s take a look at all of these transformations at once:

partHtml :: Maybe Html
partHtml = renderHtml <$> partVal

allPartsHtml :: [Html]
allPartsHtml = renderHtml <$> allParts

htmlPartsDB :: Map.Map Int Html
htmlPartsDB = renderHtml <$> partsDB

htmlSnippet :: IO Html
htmlSnippet = renderHtml <$> leftArmIO

Listing 27.15 Simulating a RobotPart coming from an IO context

Listing 27.16 Transforming

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

342 Lesson 27 The Functor type class

As you can see, Functor’s <$> provides a common interface to apply any function to a
value in a context. For types such as List and Map, this is a convenient way to update val-
ues in these containers. For IO, it’s essential to be able to change values in an IO context,
because you can’t take IO values out of their context.

Summary

In this lesson, our objective was to introduce you to the Functor type class. The Functor
type class allows you to apply an ordinary function to values inside a container (for
example, List) or a context (for example, IO or Maybe). If you have a function Int -> Double
and a value Maybe Int, you can use Functor’s fmap (or the <$> operator) to apply the Int ->
Double function to the Maybe Int value, resulting in a Maybe Double value. Functors are incredi-
bly useful because they allow you to reuse a single function with any type belonging to
the Functor type class. [Int], Maybe Int, and IO Int can all use the same core functions. Let’s
see if you got this.

Q27.1 When we introduced parameterized types in lesson 15, you used a minimal
type Box as the example:

data Box a = Box a deriving Show

Implement the Functor type class for Box. Then implement morePresents, which changes a
box from type Box a to one of type Box [a], which has n copies of the original value in the
box in a list. Make sure to use fmap to implement this.

QC27.2 Now suppose you have a simple box like this:

myBox :: Box Int
myBox = Box 1

Use fmap to put the value in your Box in another Box. Then define a function unwrap that
takes a value out of a box, and use fmap on that function to get your original box. Here’s
how your code should work in GHCi:

GHCi> wrapped = fmap ? myBox
GHCi> wrapped
Box (Box 1)
GHCi> fmap unwrap wrapped
Box 1

Q27.3 Write a command-line interface for partsDB that lets the user look up the cost of
an item, given an ID. Use the Maybe type to handle the case of the user entering missing
input.

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

