
www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

Get Programming with Haskell
by Will Kurt

Lesson 38

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

v

Contents

Preface vii
Acknowledgments ix
About this book x
About the author xiv

Lesson 1 Getting started with Haskell 1

Unit 1

FOUNDATIONS OF FUNCTIONAL
PROGRAMMING

Lesson 2 Functions and functional
programming 13

Lesson 3 Lambda functions and lexical scope 23

Lesson 4 First-class functions 33

Lesson 5 Closures and partial application 43

Lesson 6 Lists 54

Lesson 7 Rules for recursion and pattern
matching 65

Lesson 8 Writing recursive functions 74

Lesson 9 Higher-order functions 83

Lesson 10 Capstone: Functional object-oriented pro-
gramming with robots! 92

Unit 2

INTRODUCING TYPES

Lesson 11 Type basics 107

Lesson 12 Creating your own types 120

Lesson 13 Type classes 132

Lesson 14 Using type classes 142

Lesson 15 Capstone: Secret messages! 155

Unit 3

PROGRAMMING IN TYPES

Lesson 16 Creating types with “and” and “or” 175

Lesson 17 Design by composition—Semigroups and
Monoids 187

Lesson 18 Parameterized types 201

Lesson 19 The Maybe type: dealing with missing
values 214

Lesson 20 Capstone: Time series 225

Unit 4

IO IN HASKELL

Lesson 21 Hello World!—introducing IO types 249

Lesson 22 Interacting with the command line and
lazy I/O 261

Lesson 23 Working with text and Unicode 271

Lesson 24 Working with files 282

Lesson 25 Working with binary data 294

Lesson 26 Capstone: Processing binary files and
book data 308

Unit 5

WORKING WITH TYPE IN A CONTEXT

Lesson 27 The Functor type class 331

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

vi Contents

Lesson 28 A peek at the Applicative type class: using
functions in a context 343

Lesson 29 Lists as context: a deeper look at the Ap-
plicative type class 357

Lesson 30 Introducing the Monad type class 372

Lesson 31 Making Monads easier with do-
notation 387

Lesson 32 The list monad and list
comprehensions 402

Lesson 33 Capstone: SQL-like queries in
Haskell 411

Unit 6

ORGANIZING CODE AND BUILDING
PROJECTS

Lesson 34 Organizing Haskell code with
modules 431

Lesson 35 Building projects with stack 442

Lesson 36 Property testing with QuickCheck 452

Lesson 37 Capstone: Building a prime-number
library 466

Unit 7

PRACTICAL HASKELL

Lesson 38 Errors in Haskell and
the Either type 483

Lesson 39 Making HTTP requests in Haskell 497

Lesson 40 Working with JSON data
by using Aeson 507

Lesson 41 Using databases in Haskell 524

Lesson 42 Efficient, stateful arrays in Haskell 544

Afterword What’s next? 561

Appendix Sample answers to exercises 566

Index 589

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

483

38 LESSON

ERRORS IN HASKELL AND
THE EITHER TYPE

After reading lesson 38, you’ll be able to

 Throw errors by using the error function
 Understand the dangers of throwing errors
 Use Maybe as a method for handling errors
 Handle more sophisticated errors with the Either type

Most of what makes Haskell so powerful is based on the language being safe, predict-
able, and reliable. Although Haskell reduces or eliminates many problems, errors are an
unavoidable part of real-world programming. In this lesson, you’ll learn how to think
about handling errors in Haskell. The traditional approach of throwing an exception is
frowned upon in Haskell, as this makes it easy to have runtime errors the compiler can’t
catch. Although Haskell does allow you to throw errors, there are better ways to solve
many problems that come up in your programs. You’ve already spent a lot of time with
one of these methods: using the Maybe type. The trouble with Maybe is that you don’t have
a lot of options for communicating what went wrong. Haskell provides a more powerful
type, Either, that lets you use any value you’d like to provide information about an error.

In this lesson, you’ll use the error function, Maybe type, and Either type in Haskell to
resolve exceptions in your programs. You’ll start by exploring the head function. Though

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

484 Lesson 38 Errors in Haskell and the Either type

head is one of the first functions you learned, its implementation has a major issue: it’s
easy to use head and create runtime errors that can’t be captured by Haskell’s type sys-
tem. You’ll look at several alternative ways to handle the case where head fails. This
problem can be better solved by using the familiar Maybe type, and you can give more
informative errors by using a new type you’ll learn about, called Either. You’ll conclude
by building a simple command-line tool that checks whether a number is prime. You’ll
use the Either type and your own error data type to represent errors and display them to
the user.

38.1 Head, partial functions, and errors

One of the first functions you were introduced to was head. The head function gives you
the first element in the list, if there is one. The trouble with head is what to do when
there’s no first element in the list (an empty list). See figure 38.1.

Initially, head seems like an incredibly useful function. Many recursive functions you
write in Haskell use lists, and accessing the first item in a list is a common requirement.

Consider this You have a list representing employee ID numbers. Employee IDs can’t
be larger than 10000 or less than 0. You have an idInUse function that checks whether
a specific ID is being used. How can you write a function that lets a programmer using
idInUse distinguish between a user that isn’t in the database and a value that’s outside
the range of valid employee IDs?

head [1, 2, 3]

1

head []

??

This case is easy.

You just take the
first element.

What answer can
you give here?

Figure 38.1 How can you solve the case of calling head on
an empty list?

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

485Head, partial functions, and errors

But head has one big issue. When you call head on an empty list, you get an error:

GHCi> head [1]
1
GHCi> head []
*** Exception: Prelude.head: empty list

In most programming languages, throwing an exception like this is common practice. In
Haskell, this is a big problem, because throwing an exception makes your code unpre-
dictable. One of the key benefits of using Haskell is that your programs are safer and
more predictable. But nothing about the head function, or its type signature, gives you
any indication that it could suddenly blow up:

head :: [a] -> a

By this point in the book, you’ve seen firsthand that if a Haskell program compiles, it
likely runs as expected. But head violates this rule by making it easy to write code that
compiles but then causes an error at runtime.

For example, suppose you naively implement a recursive myTake function using head
and tail.

myTake :: Int -> [a] -> [a]
myTake 0 _ = []
myTake n xs = head xs : myTake (n-1) (tail xs)

Let’s compile this code, only this time you’ll set a compiler flag to warn of any potential
problems with the code. You can do this by using the -Wall flag. This can be done in
stack by adding -Wall to the ghc-options value in the executable section of the .cabal file.
As a refresher from lesson 35, open the headaches.cabal file in the projects root direc-
tory, find the executable section of the .cabal file, and append -Wall to the list of ghc-
options as shown here:

executable headaches-exe
 hs-source-dirs: app
 main-is: Main.hs
 ghc-options: -threaded -rtsopts -with-rtsopts=-N -Wall
 build-depends: base
 , headaches
 default-language: Haskell2010

Listing 38.1 A function that easily causes an error when used but compiles fine

The -Wall argument
sets all warnings to be
checked when the
program is compiled.

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

486 Lesson 38 Errors in Haskell and the Either type

After you change your file, you need to restart GHCi (which will automatically rebuild
your project). Now if you build your project, you’ll get no complaints from the compiler.
But it’s trivial to see that this code produces an error:

GHCi> myTake 2 [1,2,3] :: [Int]
[1,2]
GHCi> myTake 4 [1,2,3] :: [Int]
[1,2,3,*** Exception: Prelude.head: empty list

Imagine that this code is running and processing requests from a user. This kind of fail-
ure would be frustrating, especially given that you’re using Haskell.

To understand why head is so dangerous, let’s compare this to the exact same version
using pattern matching.

myTakePM :: Int -> [a] -> [a]
myTakePM 0 _ = []
myTakePM n (x:xs) = x : myTakePM (n-1) xs

This code is identical in behavior to myTake, but when you compile with -Wall, you get a
helpful error:

Pattern match(es) are non-exhaustive
 In an equation for 'myTakePM':

Patterns not matched: p [] where p is not one of {0}

This tells you that your function doesn’t have a pattern for the empty list! Even though
this is identical to the code using head, GHC can warn you about this.

NOTE If you don’t want to miss warnings on large projects, you can compile with -error,
which causes an error anytime a warning is found.

Listing 38.2 An identical function to myTake, which throws a compiler warning

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

487Head, partial functions, and errors

38.1.1 Head and partial functions

The head function is an example of a partial function. In lesson 2, you learned that every
function must take an argument and return a result. Partial functions don’t violate this
rule, but they have one significant failing. They aren’t defined on all inputs. The head
function is undefined on the empty list.

Nearly all errors in software are the result of partial functions. Your program receives
input you don’t expect, and the program has no way of dealing with it. Throwing an
error is an obvious solution to this problem. Throwing errors in Haskell is simple: you
use the error function. Here’s myHead with an error.

myHead :: [a] -> a
myHead [] = error "empty list"
myHead (x:_) = x

In Haskell, throwing errors is considered bad practice. This is because, as you saw with
myTake, it’s easy to introduce bugs into code that the compiler can’t check. In practice, you
should never use head, and instead use pattern matching. If you replace any instance of using
head and tail in your code with pattern matching, the compiler can warn you of errors.

The real question is, what do you do about partial functions in general? Ideally, you
want a way to transform your partial function into one that works on all values. Another
common partial function is (/), which is undefined for 0. But Haskell avoids throwing
an error in this case by providing a different solution:

GHCi> 2 / 0
Infinity

Listing 38.3 myHead, an example of throwing an error

Quick check 38.1 Which of the following is the missing pattern that would fix myTakePM?

myTakePM _0 [] = []

myTakePM _ [] = []

myTakePM 0 (x:xs) = []

QC 38.1 answer You need to add the following pattern:

myTakePM _ [] = []

Throws an error whenever
myHead matches an empty list

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

488 Lesson 38 Errors in Haskell and the Either type

This is a nice solution to the problem of dividing by zero, but solutions like this exist for
only a few specific cases. What you want is a way to use types to capture when errors
might happen. Your compiler can help in writing more error-resistant code.

38.2 Handling partial functions with Maybe

It turns out you’ve already seen one of the most useful ways to handle partial functions:
Maybe. In many of the examples of Maybe that you’ve used, there would be a Null value in
other languages. But Maybe is a reasonable way to transform any partial function into a
complete function. Here’s your code for maybeHead.

maybeHead :: [a] -> Maybe a
maybeHead [] = Nothing
maybeHead (x:_) = Just x

With maybeHead, you can safely take the head of a list:

GHCi> maybeHead [1]
Just 1
GHCi> maybeHead []
Nothing

In unit 5, you learned that Maybe is an instance of Monad (and therefore Functor and Applicative),
which allows you to perform computation on values in a Maybe context. Recall that the

Listing 38.4 Using Maybe to make head a complete function

Quick check 38.2 The following are all partial functions included in Prelude. For what inputs
do they fail?

 maximum
 succ

 sum

QC 38.2 answer
 maximum—Fails on the empty list

 succ—Fails on maxBound for the type

 sum—Fails on infinite lists

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

489Handling partial functions with Maybe

Functor type class allows you to use <$> to apply a function to a Maybe value. Here’s an
example of using the maybeHead function, as well as using <$> to operate on the values it
produces:

GHCi> (+2) <$> maybeHead [1]
Just 3
GHCi> (+2) <$> maybeHead []
Nothing

The Applicative type class provides the <*> operator, so you can chain together functions
in a context, most commonly used for multi-argument functions. Here’s how to use <$>
with <*> to cons a result from maybeHead with a Just []:

GHCi> (:) <$> maybeHead [1,2,3] <*> Just []
Just [1]
GHCi> (:) <$> maybeHead [] <*> Just []
Nothing

You can combine maybeHead with <$> and <*> to write a new, safer version of myTake.

myTakeSafer :: Int -> Maybe [a] -> Maybe [a]
myTakeSafer 0 _ = Just []
myTakeSafer n (Just xs) = (:) <$> maybeHead xs
 <*> myTakeSafer (n-1) (Just (tail xs))

In GHCi, you can see that the myTakeSafer function works just fine with error-causing
inputs:

GHCi> myTakeSafer 3 (Just [1,2,3])
Just [1,2,3]
GHCi> myTakeSafer 6 (Just [1,2,3])
Nothing

As you can see, myTakeSafer works as you’d expect (though differently than take, which
would return the full list). Note that the reason you named it safer, not safe, is that,
unfortunately, tail is also a partial function.

Listing 38.5 A safer version of myTake using maybeHead instead of head

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

490 Lesson 38 Errors in Haskell and the Either type

38.3 Introducing the Either type

We’ve spent a lot of time in this book talking about the power of Maybe, but it does have
one major limitation. As you write more sophisticated programs, the Nothing result
becomes harder to interpret. Recall that in our unit 6 capstone you had an isPrime func-
tion. Here’s a simplified version of isPrime:

primes :: [Int]
primes = [2,3,5,7]

maxN :: Int
maxN = 10

isPrime :: Int -> Maybe Bool
isPrime n
 | n < 2 = Nothing
 | n > maxN = Nothing
 | otherwise = Just (n `elem` primes)

You made this function of type Int -> Maybe Bool because you wanted to handle your
edge cases. The key issue is that you want a False value for isPrime to mean that a number
is composite. But there are two problems. Numbers such as 0 and 1 are neither compos-
ite nor prime. Additionally, the isPrime function limits how large a number can be, and
you don’t want to return False just because a value is too expensive to compute.

Now imagine you’re using isPrime in your own software. When you call isPrime 9997, you
get Nothing as a result. What in the world does this mean? You’d have to look up the doc-
umentation (hoping there is any) to find out. The nice thing about errors is that you get
an error message. Although Maybe does give you lots of safety, unless Nothing has an obvi-
ous interpretation, as in the case of Null values, it’s not useful. Fortunately, Haskell has
another type, similar to Maybe, that allows you to create much more expressive errors
while remaining safe.

The list of primes you’re
using to determine whether
a number is prime

The largest value you’ll
check for primality

If the number is less
than 2, you don’t
consider checking it.

If the number is greater
than your max, you can’t
know whether it’s prime.

If the number is a valid
candidate, check
whether it’s prime.

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

491Introducing the Either type

The type you’ll be looking at is called Either. Though only a bit more complicated than
Maybe, its definition can be confusing. Here’s the definition of Either:

data Either a b = Left a | Right b

Either has two confusingly named data constructors: Left and Right. For handling errors,
you can consider the Left constructor as the case of having an error, and the Right con-
structor for when things go as planned. A more user-friendly, but less general way to
define Either is as follows:

data Either a b = Fail a | Correct b

In practice, the Right constructor works exactly like Just for Maybe. The key difference
between the two is that Left allows you to have more information than Nothing. Also
notice that Either takes two type parameters. This allows you to have a type for sending
error messages and a type for your actual data. To demonstrate, here’s an example of
making a safer head function with Either.

eitherHead :: [a] -> Either String a
eitherHead [] = Left "There is no head because the list is empty"
eitherHead (x:xs) = Right x

Notice that the Left constructor takes a String, whereas the Right constructor returns the
value from the first item in your list. Here are some example lists you can test on:

intExample :: [Int]
intExample = [1,2,3]

intExampleEmpty :: [Int]
intExampleEmpty = []

Listing 38.6 A safer version of head written using Either

Quick check 38.3 Suppose you have this list:

oddList :: [Maybe Int]
oddList = [Nothing]

QC 38.3 answer
Maybe Int

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

492 Lesson 38 Errors in Haskell and the Either type

charExample :: [Char]
charExample = "cat"

charExampleEmpty :: [Char]
charExampleEmpty = ""

In GHCi, you can see how Either works, as well as the types you get back:

GHCi> eitherHead intExample
Right 1
GHCi> eitherHead intExampleEmpty
Left "There is no head because the list is empty"
GHCi> eitherHead charExample
Right 'c'
GHCi> eitherHead charExampleEmpty
Left "There is no head because the list is empty"

The Either type is also a member of Monad (and thus Functor and Applicative as well). Here’s
a simple example of using <$> to increment the head of your intExample:

GHCi> (+ 1) <$> (eitherHead intExample)
Right 2
GHCi> (+ 1) <$> (eitherHead intExampleEmpty)
Left "There is no head because the list is empty"

The Either type combines the safety of Maybe with the clarity that error messages provide.

38.3.1 Building a prime check with Either

To demonstrate working with Either, let’s see how to build a basic command-line tool to
check whether a number is prime. You’ll keep your isPrime function minimal, focusing
on using the Either type. You’ll begin by using a String for your error message. Then

Quick check 38.4 Use <$> and <*> to add the first and second numbers in intExample by
using eitherHead.

QC 38.4 answer
(+) <$> eitherHead intExample <*> eitherHead (tail intExample)

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

493Introducing the Either type

you’ll take advantage of the fact that Either lets you use any type you want to, allowing
you to create your own error types.

The nice thing about Either is you don’t have to stick to a single error message. You can
have as many as you’d like. Your improved isPrime function will let you know whether a
value isn’t a valid candidate for primality checking, or whether the number is too large.

isPrime :: Int -> Either String Bool
isPrime n
 | n < 2 = Left "Numbers less than 2 are not candidates for primes"
 | n > maxN = Left "Value exceeds limits of prime checker"
 | otherwise = Right (n `elem` primes)

Here are a few tests of this function in GHCi:

GHCi> isPrime 5
Right True
GHCi> isPrime 6
Right False
GHCi> isPrime 100
Left "Value exceeds limits of prime checker"
GHCi> isPrime (-29)
Left "Numbers less than 2 are not candidates for primes"

So far, you haven’t taken advantage of Either being able to take two types; you’ve exclu-
sively used String for the Left constructor. In most programming languages, you can rep-
resent errors by using a class. This makes it easier to model specific types of errors. Either
allows you to do this as well. You’ll start by making your errors into a type of their own.

data PrimeError = TooLarge | InvalidValue

Now you can make this an instance of Show so you can easily print out these errors.

instance Show PrimeError where
 show TooLarge = "Value exceed max bound"
 show InvalidValue = "Value is not a valid candidate for prime checking"

Listing 38.7 isPrime refactors to use multiple messages when a number is invalid

Listing 38.8 The PrimeError types for representing your errors as types

Listing 38.9 Making PrimeError an instance of Show

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

494 Lesson 38 Errors in Haskell and the Either type

With your new PrimeError type, you can refactor your isPrime function to show off these
errors.

isPrime :: Int -> Either PrimeError Bool
isPrime n
 | n < 2 = Left InvalidValue
 | n > maxN = Left TooLarge
 | otherwise = Right (n `elem` primes)

This makes your code much more readable. Additionally, you now have an easily reus-
able data type that will work with your errors. Here are some examples of your new
function in GHCi:

GHCi> isPrime 99
Left Value exceed max bound
GHCi> isPrime 0:
Left Value is not a valid candidate for prime checking

Next you’ll create a displayResult function that will convert your Either response into a
String.

displayResult :: Either PrimeError Bool -> String
displayResult (Right True) = "It's prime"
displayResult (Right False) = "It's composite"
displayResult (Left primeError) = show primeError

Finally, you can put together a simple main IO action that reads as follows.

main :: IO ()
main = do
 print "Enter a number to test for primality:"
 n <- read <$> getLine
 let result = isPrime n
 print (displayResult result)

Listing 38.10 Refactoring isPrime to use PrimeError

Listing 38.11 Translating your isPrime result to be human-readable

Listing 38.12 The main to check for primes from user input

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

495Summary

Now you can build and run your program:

$ stack build
$ stack exec primechecker-exe
"Enter a number to test for primality:"
6
"It's composite"

$ stack exec headaches-exe
"Enter a number to test for primality:"
5
"It's prime"

$ stack exec headaches-exe
"Enter a number to test for primality:"
213
"Value exceed max bound"

$ stack exec headaches-exe
"Enter a number to test for primality:"
0
"Value is not a valid candidate for prime checking"

With your PrimeError type, you were able to replicate more sophisticated ways of model-
ing errors in OOP languages. The great thing about Either is that because the Left con-
structor can be any type, there’s no limit to how expressive you can be. If you wanted to,
you could return a function!

Summary

In this lesson, our objective was to teach you how to safely handle errors in Haskell. You
started by looking at the way head uses error to signal when you have an empty list with
no head. Neither your type checker nor GHC’s warnings let you know this is a problem.
This is ultimately caused by head being a partial function, a function that doesn’t return a
result for all possible inputs. This can be solved by using a Maybe type. Although Maybe
types do make your code safer, they can make errors hard to understand. Finally, you
saw that the Either type provides the best of both worlds, allowing you to safely handle
errors as well as providing detailed information about them.

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

496 Lesson 38 Errors in Haskell and the Either type

Q38.1 Make a function addStrInts that takes two Ints represented as Strings and adds
them. The function would return an Either String Int. The Right constructor should return
the result, provided that the two arguments can be parsed into Ints (use Data.Char isDigit
to check). Return a different Left result for the three possible cases:

 First value can’t be parsed.
 Second value can’t be parsed.
 Neither value can be parsed.

Q38.2 The following are all partial functions. Use the type specified to implement a
safer version of the function:

 succ—Maybe

 tail—[a] (Keep the type the same.)
 last—Either (last fails on empty lists and infinite lists; use an upper bound for the

infinite case.)

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

