
www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

Get Programming with Haskell
by Will Kurt

Lesson 5

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

v

Contents

Preface vii
Acknowledgments ix
About this book x
About the author xiv

Lesson 1 Getting started with Haskell 1

Unit 1

FOUNDATIONS OF FUNCTIONAL
PROGRAMMING

Lesson 2 Functions and functional
programming 13

Lesson 3 Lambda functions and lexical scope 23

Lesson 4 First-class functions 33

Lesson 5 Closures and partial application 43

Lesson 6 Lists 54

Lesson 7 Rules for recursion and pattern
matching 65

Lesson 8 Writing recursive functions 74

Lesson 9 Higher-order functions 83

Lesson 10 Capstone: Functional object-oriented pro-
gramming with robots! 92

Unit 2

INTRODUCING TYPES

Lesson 11 Type basics 107

Lesson 12 Creating your own types 120

Lesson 13 Type classes 132

Lesson 14 Using type classes 142

Lesson 15 Capstone: Secret messages! 155

Unit 3

PROGRAMMING IN TYPES

Lesson 16 Creating types with “and” and “or” 175

Lesson 17 Design by composition—Semigroups and
Monoids 187

Lesson 18 Parameterized types 201

Lesson 19 The Maybe type: dealing with missing
values 214

Lesson 20 Capstone: Time series 225

Unit 4

IO IN HASKELL

Lesson 21 Hello World!—introducing IO types 249

Lesson 22 Interacting with the command line and
lazy I/O 261

Lesson 23 Working with text and Unicode 271

Lesson 24 Working with files 282

Lesson 25 Working with binary data 294

Lesson 26 Capstone: Processing binary files and
book data 308

Unit 5

WORKING WITH TYPE IN A CONTEXT

Lesson 27 The Functor type class 331

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

vi Contents

Lesson 28 A peek at the Applicative type class: using
functions in a context 343

Lesson 29 Lists as context: a deeper look at the Ap-
plicative type class 357

Lesson 30 Introducing the Monad type class 372

Lesson 31 Making Monads easier with do-
notation 387

Lesson 32 The list monad and list
comprehensions 402

Lesson 33 Capstone: SQL-like queries in
Haskell 411

Unit 6

ORGANIZING CODE AND BUILDING
PROJECTS

Lesson 34 Organizing Haskell code with
modules 431

Lesson 35 Building projects with stack 442

Lesson 36 Property testing with QuickCheck 452

Lesson 37 Capstone: Building a prime-number
library 466

Unit 7

PRACTICAL HASKELL

Lesson 38 Errors in Haskell and
the Either type 483

Lesson 39 Making HTTP requests in Haskell 497

Lesson 40 Working with JSON data
by using Aeson 507

Lesson 41 Using databases in Haskell 524

Lesson 42 Efficient, stateful arrays in Haskell 544

Afterword What’s next? 561

Appendix Sample answers to exercises 566

Index 589

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

43

5 LESSON

CLOSURES AND PARTIAL APPLICATION

After reading lesson 5, you’ll be able to

 Capture values in a lambda expression
 Use closures to create new functions
 Simplify this process with partial application

In this lesson, you’ll learn the final key element of functional programming: closures.
Closures are the logical consequence of having lambda functions and first-class functions.
By combining these lambda functions and first-class functions to create closures, you can
dynamically create functions. This turns out to be an incredibly powerful abstraction,
though the one that takes the most getting used to. Haskell makes closures much easier
to work with by allowing for partial application. By the end of the lesson, you’ll see how
partial application makes otherwise confusing closures much easier to work with.

Consider this In the preceding lesson, you learned how to pass in programming logic
to other functions because of first-class functions. For example, you might have a get-
Price function that takes a URL and a website-specific price-extraction function:

getPrice amazonExtractor url

Although this is useful, what happens if you need to extract items from 1,000 URLs, but
all using amazonExtractor? Is there a way to capture this argument on the fly so you have
to pass in only the url parameter for future calls?

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

44 Lesson 5 Closures and partial application

5.1 Closures—creating functions with functions

In lesson 4, you defined a function named ifEven (listing 4.3). By using a function as an
argument to ifEven, you were able to abstract out a pattern of computation. You then cre-
ated the functions ifEvenInc, ifEvenDouble, and ifEvenSquare.

ifEvenInc n = ifEven inc n
ifEvenDouble n = ifEven double n
ifEvenSquare n = ifEven square n

Using functions as arguments helped to clean up your code. But you’ll notice you’re still
repeating a programming pattern! Each of these definitions is identical except for the
function you’re passing to ifEven. What you want is a function that builds ifEvenX func-
tions. To solve this, you can build a new function that returns functions, called genIfEven,
as shown in figure 5.1.

Now you’re passing in a function and returning a lambda function. The function f that
you passed in is captured inside the lambda function! When you capture a value inside
a lambda function, this is referred to as a closure.

Even in this small example, it can be difficult to understand exactly what’s happening.
To see this better, let’s see how to create your ifEvenInc function by using genIfEven, as
shown in figure 5.2.

Listing 5.1 ifEvenInc, ifEvenDouble, ifEvenSquare

You're returning
this entire lambda
function.

The f argument is captured
in the lambda function.

Your new function is still
waiting for an argument.

The argument f is
the function you want
to use in ifEven.

genIfEven f = (\x -> ifEven f x)

Figure 5.1 The genIfEven function lets you build ifEvenX
functions simply.

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

45Example: Generating URLs for an API

Now let’s move on to a real-world example of using closures to help build URLs to use
with an API.

5.2 Example: Generating URLs for an API

One of the most common ways to get data is to make calls to a RESTful API by using an
HTTP request. The simplest type of request is a GET request, in which all of the parame-
ters you need to send to another server are encoded in the URL. In this example, the
data you need for each request is as follows:

 The hostname
 The name of the resource you’re requesting
 The ID of the resource
 Your API key

Figure 5.3 shows an example URL.

 ifEvenInc = genIfEven inc

 (\x -> ifEven f x)

 (\x -> ifEven inc x)

ifEvenInc = (\x -> ifEven inc x) Figure 5.2 ifEvenInc with closure

Quick check 5.1 Write a function genIfXEven that creates a closure with x and returns a new
function that allows the user to pass in a function to apply to x if x is even.

QC 5.1 answer
ifEven f x = if even x
 then f x
 else x

genIfXEven x = (\f -> ifEven f x)

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

46 Lesson 5 Closures and partial application

Building a URL from these parts is straightforward. Here’s your basic getRequestURL
builder.

getRequestURL host apiKey resource id = host ++
 "/" ++
 resource ++
 "/" ++
 id ++
 "?token=" ++
 apiKey

One thing that might strike you as odd about this function is that the order of your argu-
ments isn’t the same as the order you use them or that they appear in the URL itself.
Anytime you might want to use a closure (which in Haskell is pretty much anytime), you want
to order your arguments from most to least general. In this case, each host can have multiple
API keys, each API key is going to use different resources, and each resource is going to
have many IDs associated with it. The same is true when you define ifEven; the function
you pass will work with a huge range of inputs, so it’s more general and should appear
first in the argument list.

Now that you have the basic request-generating function down, you can see how it
works:

GHCi> getRequestURL "http://example.com" "1337hAsk3ll" "book" "1234"

"http://example.com/book/1234?token=1337hAsk3ll"

Great! This is a nice, general solution, and because your team as a whole will be query-
ing many hosts, it’s important not to be too specific. Nearly every programmer on the
team will be focusing on data from just a few hosts. It seems silly, not to mention error-
prone, to have programmers manually type in http://example.com every time they need
to make a request. What you need is a function that everyone can use to generate a
request URL builder just for them. The answer to this is a closure. Your generator will
look like figure 5.4.

Listing 5.2 getRequestUrl

Host

http://example.com/book/1234?token=1337hAsk3ll

API keyID

Resource Figure 5.3 Parts of a URL

www.itbook.store/books/9781617293764

http://example.com/
https://itbook.store/books/9781617293764

47Example: Generating URLs for an API

exampleUrlBuilder = genHostRequestBuilder "http://example.com"

When you pass the value example.com, you create a new, unnamed function that captures
the host and needs only the three remaining arguments. When you define exampleUrl-
Builder, you give a name to the anonymous function. Anytime you have a new URL that
you want to make requests to, you now have an easy way to create a custom function for
this. Load this function into GHCi and see how it simplifies your code:

GHCi> exampleUrlBuilder "1337hAsk3ll" "book" "1234"
"http://example.com/book/1234?token=1337hAsk3ll"

It’s clear you run into the same problem again when you look at apiKey. Passing your API
key in each time you call exampleUrlBuilder is still tedious because you’ll likely be using
only one or two API keys. Of course, you can use another closure to fix this! This time,
you’ll have to pass both your exampleUrlBuilder function and your apiKey to your generator.

genApiRequestBuilder hostBuilder apiKey = (\resource id ->
 hostBuilder apiKey resource id)

What’s interesting here is that you’re combining both functions as arguments and func-
tions as return values. Inside your closure is a copy of the specific function that you’re
going to need, as well as the API key you need to capture. Finally, you can build a func-
tion that makes creating a request URL much easier.

Listing 5.3 exampleUrlBuilder v.1

Listing 5.4 genApiRequestBuilder

Your new lambda function will
be waiting for three arguments.

genHostRequestBuilder host = (\apiKey resource id ->
 getRequestUrl host apikey resource id)

You're capturing the host
argument in this lambda function.

Figure 5.4 Capturing the host value in a closure

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

48 Lesson 5 Closures and partial application

myExampleUrlBuilder = genApiRequestBuilder exampleUrlBuilder "1337hAsk3ll"

And you can use this to quickly create URLs for different resource/ID combos:

GHCi> myExampleUrlBuilder "book" "1234"
"http://example.com/book/1234?token=1337hAsk3ll"

5.2.1 Partial application: making closures simple

Closures are both powerful and useful. But the use of a lambda function to create the
closure makes reading and reasoning about them more difficult than it should be. Addi-
tionally, all the closures you’ve written so far follow a nearly identical pattern: provide
some of the parameters that a function takes and create a new function awaiting the rest.
Suppose you have a function add4 that takes four variables and adds them:

add4 a b c d = a + b + c + d

Now you want to create a function addXto3, which takes an argument x and then returns a
closure awaiting the remaining three arguments:

addXto3 x = (\b c d ->
add4 x b c d)

The explicit lambda makes it relatively hard to reason about what’s happening. What if
you want to make an addXYto2?

addXYto2 x y = (\c d ->
add4 x y c d)

With four arguments to manage visually, even this trivial function isn’t easy to under-
stand. Lambda functions are powerful and useful, but can definitely clutter up other-
wise neat function definitions.

Listing 5.5 myExampleUrlBuilder v.1

Quick check 5.2 Write a version of genApiRequestBuilder that also takes the resource as an
argument.

QC 5.2 answer
genApiRequestBuilder hostBuilder apiKey resource = (\id ->

hostBuilder apiKey
resource id)

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

49Example: Generating URLs for an API

Haskell has an interesting feature that addresses this problem. What happens if you call
add4 with fewer than four arguments? This answer seems obvious: it should throw an
error. This isn’t what Haskell does. You can define a mystery value in GHCi by using Add4
and one argument:

GHCi> mystery = add4 3

If you run this code, you’ll find that it doesn’t cause an error. Haskell has created a
brand new function for you:

GHCi> mystery 2 3 4
12
GHCi> mystery 5 6 7
21

This mystery function adds 3 to the three remaining arguments you pass to it. When you
call any function with fewer than the required number of parameters in Haskell, you get
a new function that’s waiting for the remaining parameters. This language feature is
called partial application. The mystery function is the same thing as if you wrote addXto3
and then passed in the argument 3 to it. Not only has partial application saved you from
using a lambda function, but you don’t even need to define the awkwardly named
addXto3! You can also easily re-create the behavior of addXYto2:

GHCi> anotherMystery = add4 2 3
GHCi> anotherMystery 1 2
8
GHCi> anotherMystery 4 5
14

If you find using closures confusing so far, you’re in luck! Thanks to partial application,
you rarely have to write or think explicitly about closures in Haskell. All of the work of
genHostRequestBuilder and genApiRequestBuilder is built in and can be replaced by leaving out
the arguments you don’t need.

exampleUrlBuilder = getRequestUrl "http://example.com"
myExampleUrlBuilder = exampleUrlBuilder "1337hAsk3ll"

In some cases in Haskell, you’ll still want to use lambda functions to create a closure,
but using partial application is far more common. Figure 5.5 shows the process of par-
tial application.

Listing 5.6 exampleUrlBuilder v.2 and myExampleUrlBuilder v.2

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

50 Lesson 5 Closures and partial application

5.3 Putting it all together

Partial application is also the reason we created the rule that arguments should be
ordered from most to least general. When you use partial application, the arguments are
applied first to last. You violated this rule when you defined your addressLetter function
in lesson 4 (listing 4.6):

addressLetter name location = locationFunction name
 where locationFunction = getLocationFunction location

In addressLetter, the name argument comes before the location argument. It makes much
more sense that you’d want to create a function addressLetterNY that’s waiting for a name,

host apiKey id
resource

Your new lambda function will
be waiting for three arguments:

Now you supply
the apiKey.

Finally you end up with a function
waiting for two arguments.

exampleUrlBuilder = getRequestUrl "http://example.com" ? ? ?

myExampleUrlBuilder = exampleUrlBuilder "1337hAsk3ll" ? ?

 myExampleUrlBuilder resource id

Figure 5.5 Visualizing partial application

Quick check 5.3 Make a builder function that’s specifically for http://example.com, the
1337hAsk3ll API key, and the book resource. That’s a function that requires only the ID of a spe-
cific book and then generates the full URL.

QC 5.3 answer
exampleBuilder = getRequestUrl "http://example.com" "1337hAsk3ll" "books"

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

51Putting it all together

rather than an addressLetterBobSmith that will write letters to all the Bob Smiths of the
world. Rather than rewriting your function, which might not always be possible if
you’re using functions from another library, you can fix this by creating a partial-
application-friendly version, as follows.

addressLetterV2 location name = addressLetter name location

This is a fine solution for the one-time case of fixing your addressLetter function. What if
you inherited a code base in which many library functions had this same error in the
case of two arguments? It’d be nice to find a general solution to this problem rather than
individually writing out each case. Combining all the things you’ve learned so far, you
can do this in a simple function. You want to make a function called flipBinaryArgs that
will take a function, flip the order of its arguments, and then return it otherwise
untouched. To do this, you need a lambda function, first-class functions, and a closure.
You can put all these together in a single line of Haskell, as shown in figure 5.6.

Now you can rewrite addressLetterV2 by using flipBinaryArgs, and then create an addressLetterNY:

addressLetterV2 = flipBinaryArgs addressLetter
addressLetterNY = addressLetterV2 "ny"

And you can test this out in GHCi:

GHCi> addressLetterNY ("Bob","Smith")
Bob Smith: PO Box 789 - New York, NY, 10013

Your flipBinaryArgs function is useful for more than fixing code that didn’t follow our
generalization guidelines. Plenty of binary functions have a natural order, such as

Listing 5.7 addressLetterV2

Lambda function used to
create returning functionFunction as argument

flipBinaryArgs binaryFunction = (\x y -> binaryFunction y x)

Closure created with
function argument

Figure 5.6 The flipBinaryArgs function

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

52 Lesson 5 Closures and partial application

division. A useful trick in Haskell is that any infix operator (such as +, /, -, *) can be used
as a prefix function by putting parentheses around it:

GHCi> 2 + 3
5
GHCi> (+) 2 3
5
GHCi> 10 / 2
5.0
GHCi> (/) 10 2
5.0

In division and subtraction, the order of arguments is important. Despite there being a
natural order for the arguments, it’s easy to understand that you might want to create a
closure around the second argument. In these cases, you can use flipBinaryArgs to help
you. Because flipBinaryArgs is such a useful function, there’s an existing function named
flip that behaves the same.

Summary

In this lesson, our objective was to teach the important idea of a closure in functional
programming. With lambda functions, first-class functions, and closures, you have all
you need to perform functional programming. Closures combine lambda functions and
first-class functions to give you amazing power. With closures, you can easily create
new functions on the fly. You also learned how partial application makes working with
closures much easier. After you’re used to using partial application, you may sometimes
forget you’re working with closures at all! Let’s see if you got this.

Q5.1 Now that you know about partial application, you no longer need to use genIfEvenX.
Redefine ifEvenInc, ifEvenDouble, and ifEvenSquare by using ifEven and partial application.

Quick check 5.4 Use flip and partial application to create a function called subtract2 that
removes 2 from whatever number is passed in to it.

QC 5.4 answer
subtract2 = flip (-) 2

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

53Summary

Q5.2 Even if Haskell didn’t have partial application, you could hack together some
approximations. Following a similar pattern to flipBinaryArgs (figure 5.6), write a func-
tion binaryPartialApplication that takes a binary function and one argument and returns a
new function waiting for the missing argument.

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

www.itbook.store/books/9781617293764

https://itbook.store/books/9781617293764

	cover
	SampleLesson05
	coverB

