
SAMPLE CHAPTER

www.itbook.store/books/9781617293788

https://itbook.store/books/9781617293788

Get Programming: Learn to code with Python
by Ana Bell

Lesson 30

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617293788

https://itbook.store/books/9781617293788

v

Contents

Preface vii
Acknowledgments viii
About this Book ix
About the author xii

Unit 0

LEARNING HOW TO PROGRAM

Lesson 1 Why should you learn how to
program? 3

Lesson 2 Basic principles of learning a program-
ming language 10

Unit 1

VARIABLES, TYPES, EXPRESSIONS, AND
STATEMENTS

Lesson 3 Introducing Python: a programming
language 25

Lesson 4 Variables and expressions: giving names
and values to things 36

Lesson 5 Object types and statements
of code 46

Lesson 6 Capstone project: your first Python pro-
gram—convert hours to minutes 55

Unit 2

STRINGS, TUPLES, AND INTERACTING WITH
THE USER

Lesson 7 Introducing string objects: sequences of
characters 65

Lesson 8 Advanced string operations 73

Lesson 9 Simple error messages 79

Lesson 10 Tuple objects: sequences of any kind of
object 82

Lesson 11 Interacting with the user 88

Lesson 12 Capstone project: name mashup 96

Unit 3

MAKING DECISIONS IN YOUR PROGRAMS

Lesson 13 Introducing decisions in programs 107

Lesson 14 Making more-complicated
decisions 120

Lesson 15 Capstone project: choose your own
adventure 135

Unit 4

REPEATING TASKS

Lesson 16 Repeating tasks with loops 143

Lesson 17 Customizing loops 152

Lesson 18 Repeating tasks while conditions
hold 158

Lesson 19 Capstone project: Scrabble, Art
Edition 170

www.itbook.store/books/9781617293788

https://itbook.store/books/9781617293788

vi Contents

Unit 5

ORGANIZING YOUR CODE INTO REUSABLE
BLOCKS

Lesson 20 Building programs to last 183

Lesson 21 Achieving modularity and abstraction with
functions 194

Lesson 22 Advanced operations with
functions 206

Lesson 23 Capstone project: analyze your
friends 219

Unit 6

WORKING WITH MUTABLE DATA TYPES

Lesson 24 Mutable and immutable objects 235

Lesson 25 Working with lists 242

Lesson 26 Advanced operations with lists 253

Lesson 27 Dictionaries as maps between
objects 261

Lesson 28 Aliasing and copying lists and
dictionaries 273

Lesson 29 Capstone project: document
similarity 284

Unit 7

MAKING YOUR OWN OBJECT TYPES BY
USING OBJECT-ORIENTED PROGRAMMING

Lesson 30 Making your own object types 297

Lesson 31 Creating a class for an object type 303

Lesson 32 Working with your own object
types 313

Lesson 33 Customizing classes 322

Lesson 34 Capstone project: card game 330

Unit 8

USING LIBRARIES TO ENHANCE YOUR
PROGRAMS

Lesson 35 Useful libraries 341

Lesson 36 Testing and debugging your
programs 352

Lesson 37 A library for graphical user
interfaces 362

Lesson 38 Capstone project: game of tag 371

Appendix A Answers to lesson exercises 381

Appendix B Python cheat sheet 427

Appendix C Interesting Python libraries 430

Index 433

GPPython.book Page vi Monday, March 19, 2018 4:48 PM

www.itbook.store/books/9781617293788

https://itbook.store/books/9781617293788

297

30 LESSON

MAKING YOUR OWN OBJECT TYPES

After reading lesson 30, you’ll be able to

 Understand that an object has properties
 Understand that an object has operations associated with it
 Understand what dot notation means when working with objects

You use objects all the time in your daily life. You use computers and phones, handle
boxes and envelopes, and interact with people and animals. Even numbers and words
are basic objects.

Every object you use is made up of other objects. Except for the basic building blocks of
matter, every object you interact with can be decomposed into smaller objects. For
example, your calculator can be decomposed into a few basic components: the logic
chip, screen, and buttons (and each of these into smaller components). Even a sentence
can be decomposed into individual words arranged in a certain order.

Every object you interact with has certain behaviors. For example, a basic calculator can
do mathematical operations but can’t check email. The calculator has been programmed
to work in a certain way depending on which key or button is pressed. Words in different

GPPython.book Page 297 Monday, March 19, 2018 4:48 PM

www.itbook.store/books/9781617293788

https://itbook.store/books/9781617293788

298 Lesson 30 Making your own object types

languages can be arranged differently, according to the rules of the language, to form
sentences that make sense.

As you build complex systems, you can reuse objects you’ve already built without going
back to the basic building blocks of matter. For example, a computer may have the same
logic chip that a calculator already has, to do basic arithmetic. In addition to that, a com-
puter may also have components already built into it that allow it to access the internet
or to display color graphics.

The same idea can be applied to programming! You can create more-complex object
types to use in your programs, made up from other object types. In fact, you may have
noticed that lists and dictionaries are object types that are made up of other object types:
a list contains a set of objects, and a dictionary contains a set of pairs of objects.

Consider this Here are some properties and behaviors of two objects. Can you sepa-
rate properties from behaviors? What are the objects?

Two eyes
Sleeps on a keyboard
No eyes
Any color
Scratches
Bounces
Fur
Round
Rolls
Hides
Four limbs

Answer:

A cat.
Characteristics: Two eyes, fur, four limbs
Behaviors: Sleeps on a keyboard, scratches, hides

A ball.
Characteristics: No eyes, round, any color
Behaviors: Bounces, rolls

GPPython.book Page 298 Monday, March 19, 2018 4:48 PM

www.itbook.store/books/9781617293788

https://itbook.store/books/9781617293788

299Why do you need new object types?

30.1 Why do you need new object types?

You’ve been working with object types since you wrote your first line of code. Integers,
floats, strings, Booleans, tuples, lists, and dictionaries are all types of objects. They’re
objects that are built into the Python language, meaning that they’re available to use by
default when you start Python. As you were working with lists (and dictionaries), you
may have noticed that they’re object types made up of other object types. For example,
the list L = [1,2,3] is a list made up of integers.

Integers, floats, and Booleans are atomic objects because they can’t be separated into
smaller object types; these types are the basic building blocks of the Python language.
Strings, tuples, lists, and dictionaries are nonatomic objects because they can be decom-
posed into other objects.

Using different object types helps organize your code and make it more readable. Imag-
ine how confusing code would look if all you had to use were the atomic data types. If
you wanted to write code that contained your grocery list, you might have to create a
string variable for each of the list items. That would quickly make your program messy.
You’d have to make variables as you realize you have more items to add.

As you continue to build more complex programs, you’ll find that you want to create
your own object types. These object types “save” a set of properties and a set of behav-
iors under this new type of object. The properties and behaviors are things that you, as
the programmer, get to decide on and define. As you build programs, you can create
new object types from other types, even ones that you create yourself.

Quick check 30.1 For each of the following scenarios, would you need to create a new object
type or can you represent it with an object type you already know?

1 Someone’s age
2 Latitude and longitude of a group of map points
3 A person
4 A chair

GPPython.book Page 299 Monday, March 19, 2018 4:48 PM

www.itbook.store/books/9781617293788

https://itbook.store/books/9781617293788

300 Lesson 30 Making your own object types

30.2 What makes up an object?

An object type is defined by two things: a set of properties and a set of behaviors.

30.2.1 Object properties

Object type properties are data that define your object. What characteristics can be used
to explain the “look” of your object?

Let’s say you want to create an object type that represents a car. What data can describe
a generic car? As the creator of the car type, you get to decide on how much or how little
data defines the generic car. The data can be things like the length, width, height, or the
number of doors.

After you decide on the properties for a specific object type, these choices will define
your type and will be fixed. When you start adding behaviors to your type, you may
manipulate these properties.

Here are a few more examples of properties for object types. If you have a circle type, its
data may be its radius. If you have a “point on map” type, the data may be the values of
the latitude and longitude. If you have a room type, its data may be its length, width,
height, number of items that are in it, and whether it has an occupant.

30.2.2 Object behaviors

Object type behaviors are operations that define your object. What are some ways that
someone can interact with your type?

Let’s go back to the generic car type. How can someone interact with a car? Once again,
as the creator of the car object, you get to decide the number of ways you’ll allow some-
one to interact with it. A car’s behaviors may be things like changing the color of the car,
getting the car to make a noise, or making the car’s wheels turn.

Quick check 30.2 What are some appropriate data you may use to represent each of the
following types?

1 Rectangle
2 TV
3 Chair
4 Person

GPPython.book Page 300 Monday, March 19, 2018 4:48 PM

www.itbook.store/books/9781617293788

https://itbook.store/books/9781617293788

301Using dot notation

These operations are actions that objects of this type, and only this type, can do. These
can be actions done by the objects themselves, or ways that an object can interact with
other objects.

How do other object types behave? For a circle, one action could be to get its area or its
circumference. For a point on a map, one action could be to get the country it’s in and
another action could be to get the distance between two points. For a room, one action
might be to add an item, which increases the item count by 1, or to remove an item to
decrease the item count, and another could be to get the volume of the room.

30.3 Using dot notation

You already have an idea of what an object type is. An object type has properties and
operations. Here are some object types that you’ve already worked with:

 An integer is a whole number. Its operations are addition, subtraction, multipli-
cation, division, casting to a float, and many more.

 A string is a sequence of characters. Its operations are addition, indexing, slicing,
finding a substring, replacing a substring by another, and many more.

 A dictionary has a key, a value, and a formula to map a key to a memory location
to put the value there. Its operations are getting all the keys, getting all the val-
ues, indexing using a key, and many more.

Properties and behaviors are defined for, and belong to, a particular object type; other
object types don’t know about them.

In lesson 7, you used dot notation on strings. Dot notation indicates that you’re accessing
data or behaviors for a particular object type. When you use dot notation, you indicate to
Python that you want to either run a particular operation on, or to access a particular
property of, an object type. Python knows how to infer the object type on which this
operation is being run because you use dot notation on an object. For example, when you

Quick check 30.3 What are some appropriate behaviors you may add for each of the follow-
ing object types?

1 Rectangle
2 TV
3 Chair
4 Person

GPPython.book Page 301 Monday, March 19, 2018 4:48 PM

www.itbook.store/books/9781617293788

https://itbook.store/books/9781617293788

302 Lesson 30 Making your own object types

created a list named L, you appended an item to the list with L.append(). The dot notation
leads Python to look at the object, L, that the operation, append, is being applied to. Python
knows that L is of type list and checks to make sure that the list object type has an oper-
ation named append defined.

Summary

In this lesson, my goal was to teach you that an object type is represented by two things:
its data properties and its behaviors. You’ve been using objects built into Python and
have even seen dot notation used on more-complex types including strings, lists, and
dictionaries. Here are the major takeaways:

 An object type has data properties: other objects that make up the type.
 An object type has behaviors: operations that allow interactions with objects of

this type.
 Objects of the same type know the properties and behaviors that define them.
 Dot notation is used to access properties and behaviors of an object.

Quick check 30.4 In the following examples of dot notation, on what object type is the opera-
tion being done?

1 "wow".replace("o", "a")
2 [1,2,3].append(4)
3 {1:1, 2:2}.keys()
4 len("lalala")

GPPython.book Page 302 Monday, March 19, 2018 4:48 PM

www.itbook.store/books/9781617293788

https://itbook.store/books/9781617293788

www.itbook.store/books/9781617293788

https://itbook.store/books/9781617293788

	Bell-Python_eBook_front
	Copyright
	TOC
	SampleCh30
	Bell-Python_eBook_back

