
Functional Programming in C++
How to improve your C++ programs using functional techniques

Well-written code is easier to test and reuse, simpler to
parallelize, and less error prone. Mastering the functional
style of programming can help you tackle the demands of

modern apps and will lead to simpler expression of complex program
logic, graceful error handling, and elegant concurrency. C++ supports
FP with templates, lambdas, and other core language features, along
with many parts of the STL.

Functional Programming in C++ helps you unleash the
functional side of your brain, as you gain a powerful new perspective
on C++ coding. You’ll discover dozens of examples, diagrams, and
illustrations that break down the functional concepts you can apply
in C++, including lazy evaluation, function objects and invokables,
algebraic data types, and more. As you read, you’ll match FP
techniques with practical scenarios where they offer the most benefit.

What’s inside
• Writing safer code with no performance penalties
• Explicitly handling errors through the type system
• Extending C++ with new control structures
• Composing tasks with DSLs

Written for developers with two or more years of experience
coding in C++.

 is a core developer at KDE and has been coding in C++
since 1998. He teaches modern C++ and functional programming at
the Faculty of Mathematics at the University of Belgrade.

“Offers precise, easy-to-
understand, and engaging
explanations of functional
concepts.”

—Sumant Tambe, LinkedIn

“An excellent read. Comprehen-
sive code examples illustrate the
implementation of functional
programming patterns using
C++14/C++17 constructs.”

—Keerthi Shetty
FactSet Research Systems

“Provides elegant, easy-to-grasp,
ready-to-use examples that
will improve the way you think
about coding.”

—Nikos Athanasiou, BETA CAE Systems

“Presents a new way of writing
quality software and a new way
of thinking.”

—Gian Lorenzo Meocci, CommProve

“Particularly valuable for
intermediate/advanced C++
developers who want to embrace
reactive-style programming.”

—Marco Massenzio, Apple
To download their free eBook in PDF, ePub, and Kindle formats, owners of this book
should visit manning.com/books/functional-programming-in-c-plus-plus

US $49.99 / Can $65.99 [including eBook]

Free eBook

PROGRAMMING LANGUAGES/C++

Functional Program
m

ing in C++

SEE FIRST PAGE

MANNING MANNINGMANNING

Sample Chapter

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

Functional
Programming

in C++

by Ivan Cukic

Chapter 1

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

v

brief contents
1	 ■	 Introduction to functional programming  1
2	 ■	 Getting started with functional programming  21
3	 ■	 Function objects  45
4	 ■	 Creating new functions from the old ones  71
5	 ■	 Purity: Avoiding mutable state  100
6	 ■	 Lazy evaluation  122
7	 ■	 Ranges  142
8	 ■	 Functional data structures  158
9	 ■	 Algebraic data types and pattern matching  174

10	 ■	 Monads  199
11	 ■	 Template metaprogramming  226
12	 ■	 Functional design for concurrent systems  248
13	 ■	 Testing and debugging  274

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

1

1Introduction to
functional programming

This chapter covers
¡	Understanding functional programming

¡	Thinking about intent instead of algorithm steps

¡	Understanding pure functions

¡	Benefits of functional programming

¡	C++’s evolution into a functional programming
language

As programmers, we’re required to learn more than a few programming languages
during our lifetime, and we usually end up focusing on two or three that we’re most
comfortable with. It’s common to hear somebody say that learning a new program-
ming language is easy—that the differences between languages are mainly in the
syntax, and that most languages provide roughly the same features. If we know C++,
it should be easy to learn Java or C#, and vice versa.

This claim does have some merit. But when learning a new language, we usually
end up trying to simulate the style of programming we used in the previous lan-
guage. When I first worked with a functional programming language at my univer-
sity, I began by learning how to use its features to simulate for and while loops and
if-then-else branching. That was the approach most of us took, just to be able to
pass the exam and never look back.

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

2 Chapter 1  Introduction to functional programming

There’s a saying that if the only tool you have is a hammer, you’ll be tempted to treat
every problem like a nail. This also applies the other way around: if you have a nail, you’ll
want to use whatever tool you’re given as a hammer. Many programmers who check out a
functional programming language decide that it isn’t worth learning, because they don’t
see the benefits; they try to use the new tool the same way they used the old one.

This book isn’t meant to teach you a new programming language, but it is meant to
teach you an alternative way of using a language (C++): a way that’s different enough
that it’ll often feel like you’re using a new language. With this new style of programming,
you can write more-concise programs and write code that’s safer, easier to read and rea-
son about, and, dare I say, more beautiful than the code usually written in C++.

1.1	 What is functional programming?
Functional programming is an old programming paradigm that was born in academia
during the 1950s; it stayed tied to that environment for a long time. Although it was always
a hot topic for scientific researchers, it was never popular in the “real world.” Instead,
imperative languages (first procedural, later object-oriented) became ubiquitous.

It has often been predicted that one day functional programming languages will rule
the world, but it hasn’t happened yet. Famous functional languages such as Haskell and
Lisp still aren’t on the top-10 lists of the most popular programming languages. Those
lists are reserved for traditionally imperative languages including C, Java, and C++. Like
most predictions, this one needs to be open to interpretation to be considered fulfilled.
Instead of functional programming languages becoming the most popular, something
else is happening: the most popular programming languages have started introducing
features inspired by functional programming languages.

What is functional programming (FP)? This question is difficult to answer because no
widely accepted definition exists. There’s a saying that if you ask two functional program-
mers what FP is, you’ll get (at least) three different answers. People tend to define FP
through related concepts including pure functions, lazy evaluation, pattern matching,
and such. And usually, they list the features of their favorite language.

In order not to alienate anyone, we’ll start with an overly mathematical definition
from the functional programming Usenet group:

Functional programming is a style of programming that emphasizes the evaluation of
expressions, rather than execution of commands. The expressions in these languages are
formed by using functions to combine basic values. A functional language is a language
that supports and encourages programming in a functional style.

—FAQ for comp.lang.functional

Over the course of this book, we’ll cover various concepts related to FP. I’ll leave it up to
you to pick your favorites that you consider essential for a language to be called functional.

Broadly speaking, FP is a style of programming in which the main program building
blocks are functions as opposed to objects and procedures. A program written in the
functional style doesn’t specify the commands that should be performed to achieve the
result, but rather defines what the result is.

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

	 3What is functional programming?

Consider a small example: calculating the sum of a list of numbers. In the imperative
world, you implement this by iterating over the list and adding the numbers to the accu-
mulator variable. You explain the step-by-step process of how to sum a list of numbers.
On the other hand, in the functional style, you need to define only what a sum of a list of
numbers is. The computer knows what to do when it’s required to calculate a sum. One
way you can do this is to say that the sum of a list of numbers equals the first element of
the list added to the sum of the rest of the list, and that the sum is zero if the list is empty.
You define what the sum is without explaining how to calculate it.

This difference is the origin of the terms imperative and declarative programming.
Imperative means you command the computer to do something by explicitly stating each
step it needs to perform in order to calculate the result. Declarative means you state what
should be done, and the programming language has the task of figuring out how to do
it. You define what a sum of a list of numbers is, and the language uses that definition to
calculate the sum of a given list of numbers.

1.1.1	 Relationship with object-oriented programming

It isn’t possible to say which is better: the most popular imperative paradigm,
object-oriented programming (OOP); or the most commonly used declarative one,
the FP paradigm. Both have advantages and weaknesses.

The object-oriented paradigm is based on creating abstractions for data. It allows the
programmer to hide the inner representation inside an object and provide only a view
of it to the rest of the world via the object’s API.

The FP style creates abstractions on the functions. This lets you create more-complex
control structures than the underlying language provides. When C++11 introduced the
range-based for loop (sometimes called foreach), it had to be implemented in every
C++ compiler (and there are many of them). Using FP techniques, it was possible to do
this without changing the compiler. Many third-party libraries implemented their own
versions of the range-based for loop over the years. When we use FP idioms, we can cre-
ate new language constructs like the range-based for loop and other, more advanced
ones; these will be useful even when writing programs in the imperative style.

In some cases, one paradigm is more suitable than the other, and vice versa. Often,
a combination of the two hits the sweet spot. This is evident from the fact that many old
and new programming languages have become multiparadigm instead of sticking to
their primary paradigm.

1.1.2	 A concrete example of imperative vs. declarative programming

To demonstrate the difference between these two styles of programming, let’s start
with a simple program implemented in the imperative style, and convert it to its func-
tional equivalent. One of the ways often used to measure the complexity of software is
counting its lines of code (LOC). Although it’s debatable whether this is a good met-
ric, it’s a perfect way to demonstrate the differences between imperative and FP styles.

Imagine that you want to write a function that takes a list of files and calculates the
number of lines in each (see figure 1.1). To keep this example as simple as possible,

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

4 Chapter 1  Introduction to functional programming

you’ll count only the number of newline characters in the file—assume that the last line
in the file also ends with a newline character.

75
171

193
92

>_

You’re given a list
of filenames.

You need to return
the number of lines
each file has.

debug.cpp

manager.h

info.cpp

version.h

Thinking imperatively, you might analyze the steps in solving the problem as follows:

1	 Open each file.

2	 Define a counter to store the number of lines.

3	 Read the file one character at a time, and increase the counter every time the
newline character (\n) occurs.

4	 At the end of a file, store the number of lines calculated.

The following listing reads files character by character and counts the number of
newlines.

Listing 1.1   Calculating the number of lines the imperative way

std::vector<int>
count_lines_in_files(const std::vector<std::string>& files)
{
 std::vector<int> results;
 char c = 0;

 for (const auto& file : files) {
 int line_count = 0;

 std::ifstream in(file);

 while (in.get(c)) {
 if (c == '\n') {
 line_count++;
 }
 }

 results.push_back(line_count);
 }

 return results;
}

Figure 1.1   The program input is
a list of files. The program needs
to return the number of newlines in
each file as its output.

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

	 5What is functional programming?

You end up with two nested loops and a few variables to keep the current state of the
process. Although the example is simple, it has a few places where you might make an
error—an uninitialized (or badly initialized) variable, an improperly updated state, or
a wrong loop condition. The compiler will report some of these mistakes as warnings,
but the mistakes that get through are usually hard to find because our brains are hard-
wired to ignore them, just like spelling errors. You should try to write your code in a
way that minimizes the possibility of making mistakes like these.

More C++-savvy readers may have noticed that you could use the standard std::count
algorithm instead of counting the number of newlines manually. C++ provides con-
venient abstractions such as stream iterators that allow you to treat the I/O streams
similarly to ordinary collections like lists and vectors, so you might as well use them.

Listing 1.2   Using std::count to count newline characters

int count_lines(const std::string& filename)
{
 std::ifstream in(filename);

 return std::count(
 std::istreambuf_iterator<char>(in),
 std::istreambuf_iterator<char>(),
 '\n');
}

std::vector<int>
count_lines_in_files(const std::vector<std::string>& files)
{
 std::vector<int> results;

 for (const auto& file : files) {
 results.push_back(count_lines(file));
 }

 return results;
}

With this solution, you’re no longer concerned about exactly how the counting is
implemented; you’re just declaring that you want to count the number of newlines
that appear in the given input stream. This is always the main idea when writing pro-
grams in the functional style—use abstractions that let you define the intent instead
of specifying how to do something—and is the aim of most techniques covered in this
book. This is the reason FP goes hand in hand with generic programming (especially
in C++): both let you think on a higher level of abstraction compared to the down-to-
earth view of the imperative programming style.

Counts newlines from the
current position in the stream
until the end of the file

Saves the result

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

6 Chapter 1  Introduction to functional programming

Object-oriented?
I’ve always been amused that most developers say C++ is an object-oriented language.
The reason this is amusing is that barely any parts of the standard library of the C++
programming language (commonly referred to as the Standard Template Library, or STL)
use inheritance-based polymorphism, which is at the heart of the OOP paradigm.

The STL was created by Alexander Stepanov, a vocal critic of OOP. He wanted to create a
generic programming library, and he did so by using the C++ template system combined
with a few FP techniques.

This is one of the reasons I rely a lot on STL in this book—even if it isn’t a proper FP library,
it models a lot of FP concepts, which makes it a great starting point to enter the world of
functional programming.

The benefit of this solution is that you have fewer state variables to worry about, and
you can begin to express the higher-level intent of a program instead of specifying
the exact steps it needs to take to find the result. You no longer care how the count-
ing is implemented. The only task of the count_lines function is to convert its
input (the filename) to the type that std::count can understand (a pair of stream
iterators).

Let’s take this even further and define the entire algorithm in the functional
style—what should be done, instead of how it should be done. You’re left with a range-
based for loop that applies a function to all elements in a collection and collects the
results. This is a common pattern, and it’s to be expected that the programming lan-
guage has support for it in its standard library. In C++, this is what the std::transform
algorithm is for (in other languages, this is usually called map or fmap). The imple-
mentation of the same logic with the std::transform algorithm is shown in the next
listing. std::transform traverses the items in the files collection one by one, trans-
forms them using the count_lines function, and stores the resulting values in the
results vector.

Listing 1.3   Mapping files to line counts by using std::transform

std::vector<int>
count_lines_in_files(const std::vector<std::string>& files)
{
 std::vector<int> results(files.size());

 std::transform(files.cbegin(), files.cend(),
 results.begin(),
 count_lines);

 return results;
}

Specifies which items
to transform

Where to store the results

Transformation function

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

	 7What is functional programming?

This code no longer specifies the algorithm steps that need to be taken, but rather how
the input should be transformed in order to get the desired output. It can be argued that
removing the state variables, and relying on the standard library implementation of the
counting algorithm instead of rolling your own, makes the code less prone to errors.

The problem is that the listing includes too much boilerplate code to be considered
more readable than the original example. This function has only three important words:

¡	transform—What the code does
¡	files—Input
¡	count_lines—Transformation function

The rest is noise.
The function would be much more readable if you could write the important bits

and skip everything else. In chapter 7, you’ll see that this is achievable with the help of
the ranges library. Here, I’m going to show what this function looks like when imple-
mented with ranges and range transformations. Ranges use the | (pipe) operator to
denote pushing a collection through a transformation.

Listing 1.4   Transformation using ranges

std::vector<int>
count_lines_in_files(const std::vector<std::string>& files)
{
 return files | transform(count_lines);
}

This code does the same thing as listing 1.3, but the meaning is more obvious. You take
the input list, pass it through the transformation, and return the result.

Notation for specifying the function type
C++ doesn’t have a single type to represent a function (you’ll see all the things that C++
considers to be function-like in chapter 3). To specify just the argument types and return
type of a function without specifying exactly what type it’ll have in C++, we need to intro-
duce a new language-independent notation.

When we write f: (arg1_t, arg2_t, ..., argn_t) → result_t, it means f
accepts n arguments, where arg1_t is the type of the first argument, arg2_t is the type
of the second, and so on; and f returns a value of type result_t. If the function takes
only one argument, we omit the parentheses around the argument type. We also avoid
using const references in this notation, for simplicity.

For example, if we say that the function repeat has a type of (char, int) →
std::string, it means the function takes two arguments—one character and one inte-
ger—and returns a string. In C++, it would be written like this (the second version is avail-
able since C++11):

std::string repeat(char c, int count);
auto repeat(char c, int count) -> std::string;

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

8 Chapter 1  Introduction to functional programming

This form also increases the maintainability of the code. You may have noticed that
the count_lines function has a design flaw. If you were to look at just its name and type
(count_lines: std::string → int), you’d see that the function takes a string, but it
wouldn’t be clear that this string represents a filename. It would be normal to expect
that the function counts the number of lines in the passed string instead. To fix this
issue, you can separate the function into two: open_file: std::string → std::if-
stream, which takes the filename and returns the file stream; and count_lines:
std::ifstream → int, which counts the number of lines in the given stream. With
this change, it’s obvious what the functions do from their names and involved types.
Changing the range-based count_lines_in_files function involves just one addi-
tional transformation.

Listing 1.5   Transformation using ranges, modified

std::vector<int>
count_lines_in_files(const std::vector<std::string>& files)
{
 return files | transform(open_file)
 | transform(count_lines);
}

This solution is much less verbose than the imperative solution in listing 1.1 and much
more obvious. You start with a collection of filenames—it doesn’t even matter which
collection type you’re using—and perform two transformations on each element in
that collection. First you take the filename and create a stream from it, and then you go
through that stream to count the newline characters. This is exactly what the preced-
ing code says—without any excess syntax, and without any boilerplate.

1.2	 Pure functions
One of the most significant sources of software bugs is the program state. It’s difficult
to keep track of all possible states a program can be in. The OOP paradigm gives you
the option to group parts of the state into objects, thus making it easier to manage. But
it doesn’t significantly reduce the number of possible states.

Suppose you’re making a text editor, and you’re storing the text the user has written
in a variable. The user clicks the Save button and continues typing. The program saves
the text by writing one character at a time to storage (this is a bit oversimplified, but
bear with me). What happens if the user changes part of the text while the program is
saving it? Will the program save the text as it was when the user clicked Save, or save the
current version, or do something else?

The problem is that all three cases are possible—and the answer will depend on the
progress of the save operation and on which part of the text the user is changing. In the
case presented in figure 1.2, the program will save text that was never in the editor.

Some parts of the saved file will come from the text as it was before the change
occurred, and other parts will be from the text after it was changed. Parts of two differ-
ent states will be saved at the same time.

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

	 9Pure functions

On a withe
red branch
A crow has
alighted:
Nightfall
in autumn.

You’ve saved this block
of text before the user
starts modifying it.

Then the user starts
changing the selected
text.

If you continue saving the file as if nothing has happened,
you’ll create a file that contains some chunks from the old
version along with chunks from the new one, effectively
creating a file that contains text that was never actually
entered in the editor.

This issue wouldn’t exist if the saving function had its own immutable copy of the data
that it should write (see figure 1.3). This is the biggest problem of mutable state: it
creates dependencies between parts of the program that don’t need to have anything
in common. This example involves two clearly separate user actions: saving the typed
text and typing the text. These should be able to be performed independently of one
another. Having multiple actions that might be executed at the same time and that
share a mutable state creates a dependency between them, opening you to issues like
the ones just described.

When the user triggers the action to save the
file, the saving process will get an immutable
version of the current text.

Because both processes have their own data, you
can continue saving the file uninterrupted even if
the user starts changing the text.

On a withe
red branch
A crow has
alighted:
Nightfall
in autumn.

On a withe
red branch
A crow has
alighted:
Nightfall
in autumn.

Figure 1.3   If you either create a full copy or use a structure that can
remember multiple versions of data at the same time, you can decouple
the processes of saving the file and changing the text in the text editor.

Figure 1.2   If you allow the user
to modify the text while you’re
saving it, incomplete or invalid data
could be saved, thus creating a
corrupted file.

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

10 Chapter 1  Introduction to functional programming

Michael Feathers, author of Working Effectively with Legacy Code (Prentice Hall, 2004),
said, “OO makes code understandable by encapsulating moving parts. FP makes code
understandable by minimizing moving parts.” Even local mutable variables can be con-
sidered bad for the same reason. They create dependencies between different parts
of the function, making it difficult to factor out parts of the function into a separate
function.

One of FP’s most powerful ideas is pure functions: functions that only use (but don’t
modify) the arguments passed to them in order to calculate the result. If a pure func-
tion is called multiple times with the same arguments, it must return the same result
every time and leave no trace that it was ever invoked (no side effects). This all implies
that pure functions are unable to alter the state of the program.

This is great, because you don’t have to think about the program state. But, unfor-
tunately, it also implies that pure functions can’t read from the standard input, write
to the standard output, create or delete files, insert rows into a database, and so on.
If we wanted to be overly dedicated to immutability, we’d even have to forbid pure
functions from changing the processor registers, memory, or anything else on the
hardware level.

This makes this definition of pure functions unusable. The CPU executes instruc-
tions one by one, and it needs to track which instruction should be executed next. You
can’t execute anything on the computer without mutating at least the internal state of
the CPU. In addition, you couldn’t write useful programs if you couldn’t communicate
with the user or another software system.

Because of this, we’re going to relax the requirements and refine our definition:
a pure function is any function that doesn’t have observable (at a higher level) side
effects. The function caller shouldn’t be able to see any trace that the function was
executed, other than getting the result of the call. We won’t limit ourselves to using
and writing only pure functions, but we’ll try to limit the number of nonpure ones
we use.

1.2.1	 Avoiding mutable state

We started talking about FP style by considering an imperative implementation of an
algorithm that counts newlines in a collection of files. The function that counts new-
lines should always return the same array of integers when invoked over the same list
of files (provided the files weren’t changed by an external entity). This means the func-
tion could be implemented as a pure function.

Looking at our initial implementation of this function from listing 1.1, you can see
quite a few statements that are impure:

for (const auto& file: files) {
 int line_count = 0;

 std::ifstream in(file);

 while (in.get(c)) {
 if (c == '\n') {

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

	 11Pure functions

 line_count++;
 }
 }

 results.push_back(line_count);
}

Calling .get on an input stream changes the stream and the value stored in the vari-
able c. The code changes the results array by appending new values to it and modi-
fies line_count by incrementing it (figure 1.4 shows the state changes for processing a
single file). This function definitely isn’t implemented in a pure way.

line_count
You’re mutating the line_count every
time c becomes a newline character.

You’re mutating the c variable each
time we process a new character.

You’re also changing the state of
the stream we are reading from.

c

in o l d \n p o n d \n f r o g ...

Figure 1.4   This example needs to modify a couple of independent variables while counting the
number of newlines in a single file. Some changes depend on each other, and others don’t.

But this isn’t the only question you need to ask. The other important consideration is
whether the function’s impurities are observable from the outside. All mutable vari-
ables in this function are local—not even shared between possible concurrent invoca-
tions of the function—and aren’t visible to the caller or to any external entity. Users of
this function can consider it to be pure, even if the implementation isn’t. This benefits
the callers because they can rely on you not changing their state, but you still have to
manage your own. And while doing so, you must ensure that you aren’t changing any-
thing that doesn’t belong to you. Naturally, it would be better if you also limited your
state and tried to make the function implementation as pure as possible. If you make
sure you’re using only pure functions in your implementation, you won’t need to think
about whether you’re leaking any state changes, because you aren’t mutating anything.

The second solution (listing 1.2) separates the counting into a function named
count_lines. This function is also pure-looking from the outside, even if it internally
declares an input stream and modifies it. Unfortunately, because of the API of std::if-
stream, this is the best you can get:

int count_lines(const std::string& filename)
{
 std::ifstream in(filename);

 return std::count(
 std::istreambuf_iterator<char>(in),

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

12 Chapter 1  Introduction to functional programming

 std::istreambuf_iterator<char>(),
 '\n');
}

This step doesn’t improve the count_lines_in_files function in any significant man-
ner. It moves some of the impurities to a different place but keeps the two mutable
variables. Unlike count_lines, the count_lines_in_files function doesn’t need
I/O, and it’s implemented only in terms of the count_lines function, which you (as a
caller) can consider to be pure. There’s no reason it would contain any impure parts.
The following version of the code, which uses the range notation, implements the
count_lines_in_files function without any local state—mutable or not. It defines
the entire function in terms of other function calls on the given input:

std::vector<int>
count_lines_in_files(const std::vector<std::string>& files)
{
 return files | transform(count_lines);
}

This solution is a perfect example of what FP style looks like. It’s short and concise, and
what it does is obvious. What’s more, it obviously doesn’t do anything else—it has no
visible side effects. It just gives the desired output for the given input.

1.3	 Thinking functionally
It would be inefficient and counterproductive to write code in the imperative style first
and then change it bit by bit until it became functional. Instead, you should think
about problems differently. Instead of thinking of the algorithm steps, you should con-
sider what the input is, what the output is, and which transformations you should per-
form to map one to the other.

In the example in figure 1.5, you’re given a list of filenames and need to calculate the
number of lines in each file. The first thing to notice is that you can simplify this problem
by considering a single file at a time. You have a list of filenames, but you can process
each of them independently of the rest. If you can find a way to solve this problem for a
single file, you can easily solve the original problem as well (figure 1.6).

?

vector<string> vector<int>

Think of how to transform the input data
to get the desired result.

75
171

193
92

debug.cpp

manager.h

info.cpp

version.h

Figure 1.5   When thinking functionally, you
consider the transformations you need to
apply to the given input to get the desired
output as the result.

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

	 13Thinking functionally

171?manager.h

string int

Simplifying the problem by analyzing
the needed transformation only for a
single item from the given collection

Now, the main problem is to define a function that takes a filename and calculates the
number of lines in the file represented by that filename. From this definition, it’s clear
that you’re given one thing (the filename), but you need something else (the file’s
contents, so that you can count the newline characters). Therefore, you need a func-
tion that can give the contents of a file when provided with a filename. Whether the
contents should be returned as a string, a file stream, or something else is up to you to
decide. The code just needs to be able to provide one character at a time, so that you
can pass it to the function that counts the newlines.

When you have the function that gives the contents of a file (std::string →
std::ifstream), you can call the function that counts the lines on its result (std::if-
stream → int). Composing these two functions by passing the ifstream created by the
first as the input to the second gives the function you want (see figure 1.7).

171manager.h

string int

You have one function that
takes the name of a file and
gives the contents.

The second function
just counts the number
of lines in its input.

open_file count_lines

Figure 1.7   You can decompose a bigger problem of counting
the number of lines in a file whose name you have into two
smaller problems: opening a file, given its name; and counting
the number of lines in a given file.

With this, you’ve solved the problem. You need to lift these two functions to be able to
work not just on a single value, but on a collection of values. This is conceptually what
std::transform does (with a more complicated API): it takes a function that can be
applied to a single value and creates a transformation that can work on an entire col-
lection of values (see figure 1.8). For the time being, think of lifting as a generic way to
convert functions that operate on simple values of some type, to functions that work on
more-complex data structures containing values of that type. Chapter 4 covers lifting
in more detail.

Figure 1.6   You can perform the same transformation
on each element in a collection. This allows you to
look at the simpler problem of transforming a single
item instead of a collection of items.

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

14 Chapter 1  Introduction to functional programming

You’ve created functions that are able to process one item
at a time. When you lift them with transform, you get
functions that can process whole collections of items.

open_file

transform(open_file) transform(count_lines)

count_lines

Figure 1.8   By using transform, you can create functions that can process collections of
items from functions that can process only one item at a time.

With this simple example, you’ve seen the functional approach to splitting bigger pro-
gramming problems into smaller, independent tasks that are easily composed. One
useful analogy for thinking about function composition and lifting is a moving assem-
bly line (see figure 1.9). At the beginning is the raw material from which the final
product will be made. This material goes through machines that transform it, and, in
the end, you get the final product. With an assembly line, you’re thinking about the
transformations the product is going through instead of the steps the machine needs
to perform.

In this case, the raw material is the input you receive, and the machines are the func-
tions applied to the input. Each function is highly specialized to do one simple task with-
out concerning itself about the rest of the assembly line. Each function requires only
valid input; it doesn’t care where that input comes from. The input items are placed on
the assembly line one by one (or you could have multiple assembly lines, which would
allow you to process multiple items in parallel). Each item is transformed, and you get a
collection of transformed items as a result.

1.4	 Benefits of functional programming
Different aspects of FP provide different benefits. We’ll cover them in due course, but
we’ll start with a few primary benefits that most of these concepts aim to achieve.

The most obvious thing that most people notice when they start to implement pro-
grams in the functional style is that the code is much shorter. Some projects even have
official code annotations like “could have been one line in Haskell.” This is because the
tools that FP provides are simple but highly expressive, and most functionality can be
implemented on a higher level without bothering with gritty details.

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

	 15Benefits of functional programming

You have different transformations to apply one by one to the given input.
This gives you a composition of all these transformation functions.

By placing multiple items onto the moving assembly line, you’re lifting the composed
transformation to work not only on a single value, but on a collection of values.

Figure 1.9   Function composition and lifting can be compared to a moving
assembly line. Different transformations work on single items. By lifting these
transformations to work on collections of items and composing them so that the
result of one transformation is passed on to the next transformation, you get an
assembly line that applies a series of transformations to as many items as you want.

This characteristic, combined with purity, has brought the FP style into the spotlight
in recent years. Purity improves the correctness of the code, and expressiveness allows
you to write less code (in which you might make mistakes).

1.4.1	 Code brevity and readability

Functional programmers claim it’s easier to understand programs written in the
functional style. This is subjective, and people who are used to writing and reading
imperative code may disagree. Objectively, it can be said that programs written in
the functional style tend to be shorter and more concise. This was apparent in the
earlier example: it started with 20 lines of code and ended up with a single line for
count_lines_in_files and about 5 lines for count_lines, which mainly consisted of
boilerplate imposed by C++ and STL. Achieving this was possible using higher-level
abstractions provided by the FP parts of STL.

One unfortunate truth is that many C++ programmers stay away from using higher-level
abstractions such as STL algorithms. They have various reasons, from being able to write
more-efficient code manually, to avoiding writing code that their colleagues can’t eas-
ily understand. These reasons are valid sometimes, but not in the majority of cases. Not
availing yourself of more-advanced features of the programming language you’re using
reduces the power and expressiveness of the language and makes your code more com-
plex and more difficult to maintain.

In 1987, Edsger Dijkstra published the paper “Go To Statement Considered Harm-
ful.” He advocated abandoning the GOTO statement, which was overused in that period,

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

16 Chapter 1  Introduction to functional programming

in favor of structured programming and using higher-level constructs including routines,
loops, and if-then-else branching:

The unbridled use of the go to statement has as an immediate consequence that it
becomes terribly hard to find a meaningful set of coordinates in which to describe the
process progress. … The go to statement as it stands is just too primitive; it’s too much an
invitation to make a mess of one’s program.1

In many cases, loops and branching are overly primitive. And just as with GOTO, loops
and branching can make programs harder to write and understand and can often be
replaced by higher-level FP constructs. We often write the same code in multiple places
without even noticing that it’s the same, because it works with different types or has
behavior differences that could easily be factored out.

By using existing abstractions provided by STL or a third-party library, and by creat-
ing your own, you can make your code safer and shorter. But you’ll also make it easier
to expose bugs in those abstractions, because the same code will end up being used in
multiple places.

1.4.2	 Concurrency and synchronization

The main problem when developing concurrent systems is the shared mutable state. It
requires you to pay extra attention to ensure that the components don’t interfere with
one another.

Parallelizing programs written with pure functions is trivial, because those functions
don’t mutate anything. There’s no need for explicit synchronization with atomics or
mutexes; you can run the code written for a single-threaded system on multiple threads
with almost no changes. Chapter 12 covers this in more depth.

Consider the following code snippet, which sums the square roots of values in the
xs vector:

std::vector<double> xs = {1.0, 2.0, ...};
auto result = sum(xs | transform(sqrt));

If the sqrt implementation is pure (there’s no reason for it not to be), the implemen-
tation of the sum algorithm might automatically split the input into chunks and calcu-
late partial sums for those chunks on separate threads. When all the threads finish, it
would just need to collect the results and sum them.

Unfortunately, C++ doesn’t (yet) have a notion of a pure function, so parallelization
can’t be performed automatically. Instead, you’d need to explicitly call the parallel ver-
sion of the sum algorithm. The sum function might even be able to detect the number
of CPU cores at runtime and use this information when deciding how many chunks to
split the xs vector into. If you wrote the previous code with a for loop, you couldn’t par-
allelize it as easily. You’d need to think about ensuring that variables weren’t changed by
different threads at the same time, and creating exactly the optimal number of threads

1	 Communications of the ACM 11, no. 3 (March 1968).

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

	 17Evolution of C++ as a functional programming language

for the system the program was running on, instead of leaving all that to the library pro-
viding the summing algorithm.

NOTE   C++ compilers can sometimes perform automatic vectorization or other
optimizations when they recognize that loop bodies are pure. This optimiza-
tion also affects code that uses standard algorithms, because the standard algo-
rithms are usually internally implemented with loops.

1.4.3	 Continuous optimization

Using higher-level programming abstractions from STL or other trusted libraries car-
ries another big benefit: your program will improve over time even if you don’t change
a single line. Every improvement in the programming language, the compiler imple-
mentation, or the implementation of the library you’re using will improve the pro-
gram as well. Although this is true for both functional and nonfunctional higher-level
abstractions, FP concepts significantly increase the amount of code you can cover with
those abstractions.

This seems like a no-brainer, but many programmers prefer to write low-level per-
formance-critical code manually, sometimes even in assembly language. This approach
can have benefits, but most of the time it just optimizes the code for a specific target
platform and makes it borderline impossible for the compiler to optimize the code for
another platform.

Let’s consider the sum function. You might optimize it for a system that prefetches
instructions by making the inner loop take two (or more) items in every iteration, instead
of summing the numbers one by one. This would reduce the number of jumps in the
code, so the CPU would prefetch the correct instructions more often. This would obvi-
ously improve performance for the target platform. But what if you ran the same pro-
gram on a different platform? For some platforms, the original loop might be optimal;
for others, it might be better to sum more items with every iteration of the loop. Some
systems might even provide a CPU instruction that does exactly what the function needs.

By manually optimizing code this way, you miss the mark on all platforms but one.
If you use higher-level abstractions, you’re relying on other people to write optimized
code. Most STL implementations provide specific optimizations for the platforms and
compilers they’re targeting.

1.5	 Evolution of C++ as a functional programming language
C++ was born as an extension of the C programming language to allow programmers
to write object-oriented code. (It was initially called “C with classes.”) Even after its first
standardized version (C++98), it was difficult to call the language object-oriented. With
the introduction of templates into the language and the creation of STL, which only
sparsely uses inheritance and virtual member functions, C++ became a proper multi-
paradigm language.

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

18 Chapter 1  Introduction to functional programming

Considering the design and implementation of STL, it can even be argued that C++
isn’t primarily an object-oriented language, but a generic programming language.
Generic programming is based on the idea that you can write code that uses general con-
cepts and then apply it to any structure that fits those concepts. For example, STL pro-
vides the vector template that you can use over different types including ints, strings,
and user types that satisfy certain preconditions. The compiler then generates opti-
mized code for each of the specified types. This is usually called static or compile-time
polymorphism, as opposed to the dynamic or runtime polymorphism provided by inheritance
and virtual member functions.

For FP in C++, the importance of templates isn’t (mainly) in the creation of container
classes such as vectors, but in the fact that it allowed creation of STL algorithms—a set of
common algorithm patterns such as sorting and counting. Most of these algorithms let
you pass custom functions to customize the algorithms’ behavior without resorting to
function pointers and void*. This way, for example, you can change the sorting order,
define which items should be included when counting, and so on.

The capability to pass functions as arguments to another function, and to have func-
tions that return new functions (or, more precisely, things that look like functions, as
we’ll discuss in chapter 3), made even the first standardized version of C++ an FP lan-
guage. C++11, C++14, and C++17 introduced quite a few features that make writing pro-
grams in the functional style much easier. The additional features are mostly syntactic
sugar—but important syntactic sugar, in the form of the auto keyword and lambdas
(discussed in chapter 3). These features also brought significant improvements to the
set of standard algorithms. The next revision of the standard is planned for 2020, and
it’s expected to introduce even more FP-inspired features such as ranges, concepts, and
coroutines, which are currently Technical Specifications.

ISO C++ standard evolution
The C++ programming language is an ISO standard. Every new version goes through a
rigorous process before being released. The core language and the standard library are
developed by a committee, so each new feature is discussed thoroughly and voted on
before it becomes part of the final proposal for the new standard version. In the end,
when all changes have been incorporated into the definition of the standard, it has to
pass another vote—the final vote that happens for any new ISO standard.

Since 2012, the committee has separated its work into subgroups. Each group works
on a specific language feature, and when the group deems it ready, it’s delivered as a
Technical Specification (TS). TSs are separate from the main standard and can later be
incorporated into the standard.

The purpose of TSs is for developers to test new features and uncover kinks and bugs
before the features are included in the main standard. The compiler vendors aren’t
required to implement TSs, but they usually do. You can find more information at
https://isocpp.org/std/status.

www.itbook.store/books/9781617293818

https://isocpp.org/std/status
https://itbook.store/books/9781617293818

	 19What you’ll learn in this book

Although most of the concepts we’ll cover in this book can be used with older C++ ver-
sions, we’ll mostly focus on C++14 and C++17.

1.6	 What you’ll learn in this book
This book is mainly aimed at experienced developers who use C++ every day and who
want to add more-powerful tools to their toolbox. To get the most out of this book,
you should be familiar with basic C++ features such as the C++ type system, references,
const-ness, templates, operator overloading, and so on. You don’t need to be familiar
with the features introduced in C++14/17, which are covered in more detail in the
book; these features aren’t yet widely used, and it’s likely that many readers won’t be
conversant with them.

We’ll start with basic concepts such as higher-order functions, which allow you to
increase the expressiveness of the language and make your programs shorter, and how
to design software without mutable state to avoid the problems of explicit synchroni-
zation in concurrent software systems. After this, we’ll switch to second gear and cover
more-advanced topics such as ranges (the truly composable alternative to standard
library algorithms) and algebraic data types (which you can use to reduce the number
of states a program can be in). Finally, we’ll discuss one of the most talked-about idioms
in FP—the infamous monad —and how you can use various monads to implement com-
plex, highly composable systems.

By the time you finish reading this book, you’ll be able to design and implement
safer concurrent systems that can scale horizontally without much effort, to implement
the program state in a way that minimizes or even removes the possibility for the pro-
gram to ever be in an invalid state due to an error or a bug, to think about software as a
data flow and use the next big C++ thing—ranges—to define this data flow, and so on.
With these skills, you’ll be able to write terser, less error-prone code, even when you’re
working on object-oriented software systems. And if you take the full dive into the func-
tional style, it’ll help you design software systems in a cleaner, more composable way, as
you’ll see in chapter 13 when you implement a simple web service.

TIP   For more information and resources about the topics covered in this
chapter, see https://forums.manning.com/posts/list/41680.page.

Summary

¡	The main philosophy of functional programming is that you shouldn’t concern
yourself with the way something should work, but rather with what it should do.

¡	Both approaches—functional programming and object-oriented programming—
have a lot to offer. You should know when to use one, when to use the other, and
when to combine them.

¡	C++ is a multiparadigm programming language you can use to write programs in
various styles—procedural, object-oriented, and functional—and combine those
styles with generic programming.

www.itbook.store/books/9781617293818

https://forums.manning.com/posts/list/41680.page
https://itbook.store/books/9781617293818

20 Chapter 1  Introduction to functional programming

¡	Functional programming goes hand-in-hand with generic programming, espe-
cially in C++. They both inspire programmers not to think at the hardware level,
but to move higher.

¡	Function lifting lets you create functions that operate on collections of values
from functions that operate only on single values. With function composition,
you can pass a value through a chain of transformations, and each transforma-
tion passes its result to the next.

¡	Avoiding mutable state improves the correctness of code and removes the need
for mutexes in multithreaded code.

¡	Thinking functionally means thinking about the input data and the transforma-
tions you need to perform to get the desired output.

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

Functional Programming in C++
How to improve your C++ programs using functional techniques

Well-written code is easier to test and reuse, simpler to
parallelize, and less error prone. Mastering the functional
style of programming can help you tackle the demands of

modern apps and will lead to simpler expression of complex program
logic, graceful error handling, and elegant concurrency. C++ supports
FP with templates, lambdas, and other core language features, along
with many parts of the STL.

Functional Programming in C++ helps you unleash the
functional side of your brain, as you gain a powerful new perspective
on C++ coding. You’ll discover dozens of examples, diagrams, and
illustrations that break down the functional concepts you can apply
in C++, including lazy evaluation, function objects and invokables,
algebraic data types, and more. As you read, you’ll match FP
techniques with practical scenarios where they offer the most benefit.

What’s inside
• Writing safer code with no performance penalties
• Explicitly handling errors through the type system
• Extending C++ with new control structures
• Composing tasks with DSLs

Written for developers with two or more years of experience
coding in C++.

 is a core developer at KDE and has been coding in C++
since 1998. He teaches modern C++ and functional programming at
the Faculty of Mathematics at the University of Belgrade.

“ Offers precise, easy-to-
understand, and engaging
explanations of functional
concepts.”

 —Sumant Tambe, LinkedIn

“ An excellent read. Comprehen-
sive code examples illustrate the
implementation of functional
programming patterns using
C++14/C++17 constructs.”

 — Keerthi Shetty
FactSet Research Systems

“ Provides elegant, easy-to-grasp,
ready-to-use examples that
will improve the way you think
about coding.”

 — Nikos Athanasiou, BETA CAE Systems

“ Presents a new way of writing
quality software and a new way
of thinking.”

 —Gian Lorenzo Meocci, CommProve

“ Particularly valuable for
intermediate/advanced C++
developers who want to embrace
reactive-style programming.”

 —Marco Massenzio, Apple
To download their free eBook in PDF, ePub, and Kindle formats, owners of this book
should visit manning.com/books/functional-programming-in-c-plus-plus

US $49.99 / Can $65.99 [including eBook]

Free eBook

PROGRAMMING LANGUAGES/C++

Functional Program
m

ing in C++

SEE FIRST PAGE

MANNING MANNINGMANNING

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

	Functional Programming in C++ Sample Chapter
	brief contents
	1 Introduction to functional programming
	1.1	What is functional programming?
	1.1.1	Relationship with object-oriented programming
	1.1.2	A concrete example of imperative vs. declarative programming

	1.2	Pure functions
	1.2.1	Avoiding mutable state

	1.3	Thinking functionally
	1.4	Benefits of functional programming
	1.4.1	Code brevity and readability
	1.4.2	Concurrency and synchronization
	1.4.3	Continuous optimization

	1.5	Evolution of C++ as a functional programming language
	1.6	What you’ll learn in this book

