
Functional Programming in C++
How to improve your C++ programs using functional techniques

Well-written code is easier to test and reuse, simpler to
parallelize, and less error prone. Mastering the functional
style of programming can help you tackle the demands of

modern apps and will lead to simpler expression of complex program
logic, graceful error handling, and elegant concurrency. C++ supports
FP with templates, lambdas, and other core language features, along
with many parts of the STL.

Functional Programming in C++ helps you unleash the
functional side of your brain, as you gain a powerful new perspective
on C++ coding. You’ll discover dozens of examples, diagrams, and
illustrations that break down the functional concepts you can apply
in C++, including lazy evaluation, function objects and invokables,
algebraic data types, and more. As you read, you’ll match FP
techniques with practical scenarios where they offer the most benefit.

What’s inside
• Writing safer code with no performance penalties
• Explicitly handling errors through the type system
• Extending C++ with new control structures
• Composing tasks with DSLs

Written for developers with two or more years of experience
coding in C++.

 is a core developer at KDE and has been coding in C++
since 1998. He teaches modern C++ and functional programming at
the Faculty of Mathematics at the University of Belgrade.

“Offers precise, easy-to-
understand, and engaging
explanations of functional
concepts.”

—Sumant Tambe, LinkedIn

“An excellent read. Comprehen-
sive code examples illustrate the
implementation of functional
programming patterns using
C++14/C++17 constructs.”

—Keerthi Shetty
FactSet Research Systems

“Provides elegant, easy-to-grasp,
ready-to-use examples that
will improve the way you think
about coding.”

—Nikos Athanasiou, BETA CAE Systems

“Presents a new way of writing
quality software and a new way
of thinking.”

—Gian Lorenzo Meocci, CommProve

“Particularly valuable for
intermediate/advanced C++
developers who want to embrace
reactive-style programming.”

—Marco Massenzio, Apple
To download their free eBook in PDF, ePub, and Kindle formats, owners of this book
should visit manning.com/books/functional-programming-in-c-plus-plus

US $49.99 / Can $65.99 [including eBook]

Free eBook

PROGRAMMING LANGUAGES/C++

Functional Program
m

ing in C++

SEE FIRST PAGE

MANNING MANNINGMANNING

Sample Chapter

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

Functional
Programming

in C++

by Ivan Cukic

Chapter 7

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

v

brief contents
1 ■ Introduction to functional programming 1
2 ■ Getting started with functional programming 21
3 ■ Function objects 45
4 ■ Creating new functions from the old ones 71
5 ■ Purity: Avoiding mutable state 100
6 ■ Lazy evaluation 122
7 ■ Ranges 142
8 ■ Functional data structures 158
9 ■ Algebraic data types and pattern matching 174

10 ■ Monads 199
11 ■ Template metaprogramming 226
12 ■ Functional design for concurrent systems 248
13 ■ Testing and debugging 274

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

142

This chapter covers
¡	The problems of passing iterator pairs

to algorithms

¡	What ranges are and how to use them

¡	Creating chained range transformations using
the pipe syntax

¡	Understanding range views and actions

¡	Writing succulent code without for loops

In chapter 2, you saw why you should avoid writing raw for loops and that you should
instead rely on using generic algorithms provided to you by the STL. Although this
approach has significant benefits, you’ve also seen its downsides. The algorithms
in the standard library were not designed to be easily composed with each other.
Instead, they’re mostly focused on providing a way to allow implementation of a
more advanced version of an algorithm by applying one algorithm multiple times.

A perfect example is std::partition, which moves all items in a collection that
satisfy a predicate to the beginning of the collection, and returns an iterator to the
first element in the resulting collection that doesn’t satisfy the predicate. This allows
you to create a function that does multigroup partitioning—not limited to predi-
cates that return true or false—by invoking std::partition multiple times.

7Ranges

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

 143Ranges

As an example, you’re going to implement a function that groups people in a
collection based on the team they belong to. It receives the collection of persons, a
function that gets the team name for a person, and a list of teams. You can perform
std::partition multiple times—once for each team name—and you’ll get a list of
people grouped by the team they belong to.

Listing 7.1 Grouping people by the team they belong to

template <typename Persons, typename F>
void group_by_team(Persons& persons,
 F team_for_person,
 const std::vector<std::string>& teams)
{
 auto begin = std::begin(persons);
 const auto end = std::end(persons);

 for (const auto& team : teams) {
 begin = std::partition(begin, end,
 [&](const auto& person) {
 return team == team_for_person(person);
 });
 }
}

Although this way to compose algorithms is useful, a more common use case is to have
a resulting collection of one operation passed to another. Recall the example from
chapter 2: you had a collection of people, and you wanted to extract the names of
female employees only. Writing a for loop that does this is trivial:

std::vector<std::string> names;

for (const auto& person : people) {
 if (is_female(person)) {
 names.push_back(name(person));
 }
}

If you wanted to solve the same problem by using the STL algorithms, you’d need to
create an intermediary collection to copy the persons that satisfy the predicate (is_
female) and then use std::transform to extract the names for all persons in that col-
lection. This would be suboptimal in terms of both performance and memory.

The main issue is that STL algorithms take iterators to the beginning and end of a
collection as separate arguments instead of taking the collection itself. This has a few
implications:

¡	The algorithms can’t return a collection as a result.
¡	Even if you had a function that returned a collection, you wouldn’t be able to

pass it directly to the algorithm: you’d need to create a temporary variable so you
could call begin and end on it.

¡	For the previous reasons, most algorithms mutate their arguments instead of
leaving them immutable and just returning the modified collection as the result.

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

144 chapter 7 Ranges

These factors make it difficult to implement program logic without having at least local
mutable variables.

7.1 Introducing ranges
There have been a few attempts to fix these problems, but the concept that proved to
be most versatile was ranges. For the time being, let’s think of ranges as a simple struc-
ture that contains two iterators—one pointing to the first element in a collection, and
one pointing to the element after the last one.

NOTE Ranges haven’t become part of the standard library yet, but an ongoing
effort exists for their inclusion into the standard, currently planned for C++20.
The proposal to add ranges into C++ standard is based on the range-v3 library
by Eric Niebler, which we’ll use for the code examples in this chapter. An
older but more battle-tested library is Boost.Range. It’s not as full of features
as range-v3, but it’s still useful, and it supports older compilers. The syntax is
mostly the same, and the concepts we’ll cover apply to it as well.

What are the benefits of keeping two iterators in the same structure instead of having
them as two separate values? The main benefit is that you can return a complete range
as a result of a function and pass it directly to another function without creating local
variables to hold the intermediary results.

Passing pairs of iterators is also error prone. It’s possible to pass iterators belonging
to two separate collections to an algorithm that operates on a single collection, or to
pass the iterators in in incorrect order—to have the first iterator point to an element
that comes after the second iterator. In both cases, the algorithm would try to iterate
through all elements from the starting iterator until it reached the end iterator, which
would produce undefined behavior.

By using ranges, the previous example becomes a simple composition of filter and
transform functions:

std::vector<std::string> names =
 transform(
 filter(people, is_female),
 name
);

The filter function will return a range containing elements from the people collec-
tion that satisfy the is_female predicate. The transform function will then take this
result and return the range of names of everybody in the filtered range.

You can nest as many range transformations such as filter and transform as you
want. The problem is that the syntax becomes cumbersome to reason about when you
have more than a few composed transformations.

For this reason, the range libraries usually provide a special pipe syntax that overloads
the | operator, inspired by the UNIX shell pipe operator. So, instead of nesting the func-
tion calls, you can pipe the original collection through a series of transformations like this:

std::vector<std::string> names = people | filter(is_female)
 | transform(name);

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

 145Creating read-only views over data

As in the previous example, you’re filtering the collection of persons on the is_
female predicate and then extracting the names from the result. The main difference
here is, after you get accustomed to seeing the operator | as meaning pass through a
transformation instead of bitwise or, this becomes easier to write and reason about than
the original example.

7.2 Creating read-only views over data
A question that comes to mind when seeing code like that in the previous section is
how efficient it is, compared to writing a for loop that does the same thing. You saw in
chapter 2 that using STL algorithms incurs performance penalties because you need
to create a new vector of persons to hold the copies of all females from the people col-
lection in order to be able to call std::transform on it. From reading the solution that
uses ranges, you may get the impression that nothing has changed but the syntax. This
section explains why that’s not the case.

7.2.1 Filter function for ranges

The filter transformation still needs to return a collection of people so you can
call transform on it. This is where the magic of ranges comes into play. A range is an
abstraction that represents a collection of items, but nobody said it’s a collection—it
just needs to behave like one. It needs to have a start, to know its end, and to allow you
to get to each of its elements.

Instead of having filter return a collection like std::vector, it’ll return a range
structure whose begin iterator will be a smart proxy iterator that points to the first ele-
ment in the source collection that satisfies the given predicate. And the end iterator will
be a proxy for the original collection’s end iterator. The only thing the proxy iterator
needs to do differently than the iterator from the original collection is to point only at
the elements that satisfy the filtering predicate (see figure 7.1).

In a nutshell, every time the proxy iterator is incremented, it needs to find the next
element in the original collection that satisfies the predicate.

Listing 7.2 Increment operator for the filtering proxy iterator

auto& operator++()
{
 ++m_current_position;
 m_current_position =
 std::find_if(m_current_position,
 m_end,
 m_predicate);

 return *this;
}

With a proxy iterator for filtering, you don’t need to create a temporary collection con-
taining copies of the values in the source collection that satisfy the predicate. You’ve
created a new view of existing data.

Iterator to the collection you’re filtering. When the proxy
iterator is to be incremented, find the first element after
the current one that satisfies the predicate.

Starts the search from the next element

If no more elements satisfy the
predicate, returns an iterator pointing to
the end of the source collection, which is
also the end of the filtered range

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

146 chapter 7 Ranges

Peter Martha DavidTom Jane Rose

The proxy stores
an iterator to the
source collection.

End iterator
in the source
collection

On construction, or
when accessed for the
first time, the proxy will
move the source iterator
to the first element that
satisfies the predicate.

When the next element is
requested, the proxy will
move the source iterator
to the next element that
satisfies the predicate.

When there are no more
elements that satisfy the
predicate, the source
iterator will point to the
end of the collection.

Figure 7.1 The view created by filter stores an iterator to the source collection. The iterator
points to only the elements that satisfy the filtering predicate. The user of this view will be able to use
it as if it were a normal collection of people with only three elements in it: Martha, Jane, and Rose.

You can pass this view to the transform algorithm, and it’ll work just as well as it would
on a real collection. Every time it requires a new value, it requests the proxy iterator
to be moved one place to the right, and it moves to the next element that satisfies the
predicate in the source collection. The transform algorithm goes through the original
collection of people but can’t see any person who isn’t female.

7.2.2 Transform function for ranges

In a manner similar to filter, the transform function doesn’t need to return a new
collection. It also can return a view over the existing data. Unlike filter (which
returns a new view that contains the same items as the original collection, just not all of
them), transform needs to return the same number of elements found in the source
collection, but it doesn’t give access to the elements directly. It returns each element
from the source collection, but transformed.

The increment operator doesn’t need to be special; it just needs to increment the
iterator to the source collection. This time, the operator to dereference the iterator will
be different. Instead of returning the value in the source collection, you first apply the
transformation function to it (see figure 7.2).

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

 147Creating read-only views over data

Listing 7.3 Dereference operator for the transformation proxy iterator

auto operator*() const
{
 return m_function(
 *m_current_position
);
}

Peter Martha DavidTom

"Tom"

Tom

name()

Jane Rose

The proxy stores
an iterator to the
source collection.

When an element is requested
from the proxy, it returns the
result of the transformation
function applied to the element
from the source collection.

Figure 7.2 The view created by transform stores an iterator to the source collection. The
iterator accesses all the elements in the source collection, but the view doesn’t return them
directly; it first applies the transformation function to the element and returns its result.

This way, just as with filter, you avoid creating a new collection that holds the trans-
formed elements. You’re creating a view that instead of showing original elements as
they are, shows them transformed. Now you can pass the resulting range to another
transformation, or you can assign it to a proper collection as in the example.

7.2.3 Lazy evaluation of range values

Even if you have two range transformations in the example—one filter and one
transform—the calculation of the resulting collection takes only a single pass through
the source collection, just as in the case of a handwritten for loop. Range views are
evaluated lazily: when you call filter or transform on a collection, it defines a view; it
doesn’t evaluate a single element in that range.

Gets the value from the original collection, applies the
transformation function to it, and returns it as the
value the proxy iterator points to

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

148 chapter 7 Ranges

Let’s modify the example to fetch the names of the first three females in the collec-
tion. You can use the take(n) range transformation, which creates a new view over the
source range that shows only the first n items in that range (or fewer if the source range
has fewer than n elements):

std::vector<std::string> names = people | filter(is_female)
 | transform(name)
 | take(3);

Let’s analyze this snippet part by part:

1 When people | filter(is_female) is evaluated, nothing happens other than
a new view being created. You haven’t accessed a single person from the people
collection, except potentially to initialize the iterator to the source collection to
point to the first item that satisfies the is_female predicate.

2 You pass that view to | transform(name). The only thing that happens is that a
new view is created. You still haven’t accessed a single person or called the name
function on any of them.

3 You apply | take(3) to that result. Again, is creates a new view and nothing else.

4 You need to construct a vector of strings from the view you got as the result of the
| take(3) transformation.

To create a vector, you must know the values you want to put in it. This step goes
through the view and accesses each of its elements.

When you try to construct the vector of names from the range, all the values in the
range have to be evaluated. For each element added to the vector, the following things
happen (see figure 7.3):

1 You call the dereference operator on the proxy iterator that belongs to the range
view returned by take.

2 The proxy iterator created by take passes the request to the proxy iterator created
by transform. This iterator passes on the request.

3 You try to dereference the proxy iterator defined by the filter transformation.
It goes through the source collection and finds and returns the first person that
satisfies the is_female predicate. This is the first time you access any of the per-
sons in the collection, and the first time the is_female function is called.

4 The person retrieved by dereferencing the filter proxy iterator is passed to the
name function, and the result is returned to the take proxy iterator, which passes
it on to be inserted into the names vector.

When an element is inserted, you go to the next one, and then the next one, until you
reach the end. Now, because you’ve limited your view to three elements, you don’t
need to access a single person in the people collection after you find the third female.

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

 149Mutating values through ranges

This is lazy evaluation at work. Even though the code is shorter and more generic
than the equivalent handwritten for loop, it does exactly the same thing and has no
performance penalties.

take(3)

Martha

The user tries
to access an
element from

the view.
If the element is

one of the first three,
the take view passes

the request to the
next view.

Filter returns the first
item that satisfies

the predicate.

The transform view
asks the next view

for the value.

The transform view
applies the function

to the value and
returns it.

transform(name) filter(is_female) collection

"Martha"

The take view passes
on the result.

"Martha"

If the element isn’t
one of the first three,

you have nothing
to access.

"Martha"

Figure 7.3 When accessing an element from the view, the view proxies the request to the next
view in the composite transformation, or to the collection. Depending on the type of the view, it may
transform the result, skip elements, traverse them in a different order, and so on.

7.3 Mutating values through ranges
Although many useful transformations can be implemented as simple views, some
require changing the original collection. We’ll call these transformations actions as
opposed to views.

One common example for the action transformation is sorting. To be able to sort
a collection, you need to access all of its elements and reorder them. You need to
change the original collection, or create and keep a sorted copy of the whole collec-
tion. The latter is especially important when the original collection isn’t randomly
accessible (a linked list, for example) and can’t be sorted efficiently; you need to
copy its elements into a new collection that’s randomly accessible and sort that one
instead.

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

150 chapter 7 Ranges

Views and actions in the range-v3 library
As mentioned earlier, because the range-v3 library is used as the base for the proposal
for extending the STL with ranges, we’ll use it in the code examples, and we’ll use its
nomenclature. The range transformations that create views such as filter, trans-
form, and take live in the ranges::v3::view namespace, whereas the actions live in
ranges::v3::action. It’s important to differentiate between these two, so we’ll spec-
ify the namespaces view and action from now on.

Imagine you have a function read_text that returns text represented as a vector of
words, and you want to collect all the words in it. The easiest way to do this is to sort
the words and then remove consecutive duplicates. (We’ll consider all words to be low-
ercase in this example, for the sake of simplicity.)

You can get the list of all words that appear in given text by piping the result of the
read_text function through sort and unique actions, as illustrated in figure 7.4 and
shown here:

std::vector<std::string> words =
 read_text() | action::sort
 | action::unique;

Because you’re passing a temporary to the sort action, it doesn’t need to create a
copy to work on; it can reuse the vector returned by the read_text function and do
the sorting in place. The same goes for unique—it can operate directly on the result
of the sort action. If you wanted to keep the intermediary result, you would use
view::unique instead, which doesn’t operate on a real collection, but creates a view
that skips all repeated consecutive occurrences of a value.

Sorting the
vector of words

Mr.
Jones
of
the
Manor
Farm
...

a
a
a
a
and
and
...

Sort

Forgetting the
repeated values

a
and
animal
animals
...

Unique

This is an important distinction between views and actions. A view transformation cre-
ates a lazy view over the original data, whereas an action works on an existing collection
and performs its transformation eagerly.

Actions don’t have to be performed on temporaries. You can also act on lvalues by
using the operator |=, like so:

std::vector<std::string> words = read_text();
words |= action::sort | action::unique;

This combination of views and actions gives you the power to choose when you want
something to be done lazily and when you want it to be done eagerly. The benefits

Figure 7.4 To get a list of words that appear
in text, it’s sufficient to sort them and then
remove the consecutive repeated values.

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

 151Using delimited and infinite ranges

of having this choice are that you can be lazy when you don’t expect all items in the
source collection to need processing, and when items don’t need to be processed more
than once; and you can be eager to calculate all elements of the resulting collection if
you know they’ll be accessed often.

7.4 Using delimited and infinite ranges
We started this chapter with the premise that a range is a structure that holds one
iterator to the beginning and one to the end—exactly what STL algorithms take, but
in a single structure. The end iterator is a strange thing. You can never dereference
it, because it points to an element after the last element in the collection. You usu-
ally don’t even move it. It’s mainly used to test whether you’ve reached the end of a
collection:

auto i = std::begin(collection);
const auto end = std::end(collection);
for (; i != end; i++) {
 // ...
}

It doesn’t really need to be an iterator—it just needs to be something you can use to
test whether you’re at the end. This special value is called a sentinel, and it gives you
more freedom when implementing a test for whether you’ve reached the end of a
range. Although this functionality doesn’t add much when you’re working with ordi-
nary collections, it allows you to create delimited and infinite ranges.

7.4.1 Using delimited ranges to optimize handling input ranges

A delimited range is one whose end you don’t know in advance—but you have a predicate
function that can tell you when you’ve reached the end. Examples are null-terminated
strings: you need to traverse the string until you reach the '\0' character, or traverse
the input streams and read one token at a time until the stream becomes invalid—until
you fail to extract a new token. In both cases, you know the beginning of the range, but
in order to know where the end is, you must traverse the range item by item until the
end test returns true.

Let’s consider the input streams and analyze the code that calculates the sum of the
numbers it reads from the standard input:

std::accumulate(std::istream_iterator<double>(std::cin),
 std::istream_iterator<double>(),
 0);

You’re creating two iterators in this snippet: one proper iterator, which represents the
start of the collection of doubles read from std::cin, and one special iterator that doesn’t
belong to any input stream. This iterator is a special value that the std::accumulate algo-
rithm will use to test whether you’ve reached the end of the collection; it’s an iterator that
behaves like a sentinel.

The std::accumulate algorithm will read values until its traversal iterator becomes
equal to the end iterator. You need to implement operator== and operator!= for

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

152 chapter 7 Ranges

std::istream_iterator. The equality operator must work with both the proper itera-
tors and special sentinel values. The implementation has a form like this:

template <typename T>
bool operator==(const std::istream_iterator<T>& left,
 const std::istream_iterator<T>& right)
{
 if (left.is_sentinel() && right.is_sentinel()) {
 return true;

 } else if (left.is_sentinel()) {
 // Test whether sentinel predicate is
 // true for the right iterator

 } else if (right.is_sentinel()) {
 // Test whether sentinel predicate is
 // true for the left iterator

 } else {
 // Both iterators are normal iterators,
 // test whether they are pointing to the
 // same location in the collection
 }
}

You need to cover all the cases—whether the left iterator is a sentinel, and the same for
the right iterator. These are checked in each step of an algorithm.

This approach is inefficient. It would be much easier if the compiler knew something
was a sentinel at compile time. This is possible if you lift the requirement that the end of
a collection has to be an iterator—if you allow it to be anything that can be equally com-
pared to a proper iterator. This way, the four cases in the previous code become separate
functions, and the compiler will know which one to call based on the involved types. If it
gets two iterators, it’ll call operator== for two iterators; if it gets an iterator and a sentinel,
it’ll call operator== for an iterator and a sentinel; and so on.

Range-based for loops and sentinels
The range-based for loop, as defined in C++11 and C++14, requires both the begin
and end to have the same type; they need to be iterators. The sentinel-based ranges
can’t be used with the range-based for loop in C++11 and C++14. This requirement was
removed in C++17. You can now have different types for the begin and end, which effec-
tively means the end can be a sentinel.

7.4.2 Creating infinite ranges with sentinels

The sentinel approach gives you optimizations for delimited ranges. But there’s more:
you’re now able to easily create infinite ranges as well. Infinite ranges don’t have an
end, like the range of all positive integers. You have a start—the number 0—but no end.

Although it’s not obvious why you’d need infinite data structures, they come in handy
from time to time. One of the most common examples for using a range of integers is

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

 153Using delimited and infinite ranges

enumerating items in another range. Imagine you have a range of movies sorted by
their scores, and you want to write out the first 10 to the standard output along with
their positions as shown in listing 7.4 (see example:top-movies).

To do this, you can use the view::zip function. It takes two ranges1 and pairs the items
from those ranges. The first element in the resulting range will be a pair of items: the first
item from the first range and the first item from the second range. The second element
will be a pair containing the second item from the first range and the second item from
the second range, and so on. The resulting range will end as soon as any of the source
ranges ends (see figure 7.5).

1 2 3 4 5 6 ...

You want to zip a range
of movies with an infinite
range of integers.

The result is a range of pairs
where each pair contains one
movie and one index.

1 2 3 4

Figure 7.5 The range doesn’t have a notion of an item index. If you want to have the indices for
the elements in a range, you can zip the range with the range of integers. You’ll get a range of
pairs, and each pair will contain an item from the original range along with its index.

Listing 7.4 Writing out the top 10 movies along with their positions

template <typename Range>
void write_top_10(const Range& xs)
{
 auto items =
 view::zip(xs, view::ints(1))
 | view::transform([](const auto& pair) {
 return std::to_string(pair.second) +
 " " + pair.first;
 })
 | view::take(10);

1 view::zip can also zip more than two ranges. The result will be a range of n-tuples instead of a range
of pairs.

Zips the range of movies with the range of
integers, starting with 1. This gives a range
of pairs: a movie name and the index.

The transform function
takes a pair and
generates a string
containing the rank of
the movie and the
movie name.

You’re interested in the first 10 movies.

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

154 chapter 7 Ranges

 for (const auto& item : items) {
 std::cout << item << std::endl;
 }
}

Instead of the infinite range of integers, you could use integers from 1 to xs.length()
to enumerate the items in xs. But that wouldn’t work as well. As you’ve seen, you could
have a range and not know its end, you probably couldn’t tell its size without travers-
ing it. You’d need to traverse it twice: once to get its size, and once for view::zip and
view::transform to do their magic. This is not only inefficient, but also impossible to
do with some range types. Ranges such as the input stream range can’t be traversed
more than once; after you read a value, you can’t read it again.

Another benefit of infinite ranges isn’t in using them, but in designing your code to
be able to work on them. This makes your code more generic. If you write an algorithm
that works on infinite ranges, it’ll work on a range of any size, including a range whose
size you don’t know.

7.5 Using ranges to calculate word frequencies
Let’s move on to a more complicated example to see how programs can be more ele-
gant if you use ranges instead of writing the code in the old style. You’ll reimplement
the example from chapter 4: calculating the frequencies of the words in a text file. To
recap, you’re given a text, and you want to write out the n most frequently occurring
words in it. We’ll break the problem into a composition of smaller transformations as
before, but we’re going to change a few things to better demonstrate how range views
and actions interact with each other.

The first thing you need to do is get a list of lowercase words without any special char-
acters in them. The data source is the input stream. You’ll use std::cin in this example.

The range-v3 library provides a class template called istream_range that creates a
stream of tokens from the input stream you pass to it:

std::vector<std::string> words =
 istream_range<std::string>(std::cin);

In this case, because the tokens you want are of std::string type, the range will read
word by word from the standard input stream. This isn’t enough, because you want all
the words to be lowercase and you don’t want punctuation characters included. You
need to transform each word to lowercase and remove any nonalphanumeric charac-
ters (see figure 7.6).

Listing 7.5 Getting a list of lowercase words that contain only letters or digits

std::vector<std::string> words =
 istream_range<std::string>(std::cin)
 | view::transform(string_to_lower)
 | view::transform(string_only_alnum)
 | view::remove_if(&std::string::empty);

Makes all words lowercase

Keeps only letters and digits

You may get empty strings as the result
when a token doesn’t contain a single

letter or a digit, so you need to skip those.

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

 155Using ranges to calculate word frequencies

You’re creating
an input stream
range that will
return a range
of words.

You’re transforming
each word to lowercase—
view::transform(tolower).

Ignore characters that
aren’t letters or digits—
view::filter(isalnum).

You might get empty
strings when a token
did not contain any
letters or digits. You
want to skip those.

Now you have a clean
list of words that you
can pass to the rest
of the algorithm.

std::cin Mr.
Jones
-
of
the
Manor
Farm.
...

mr.
Jones
-
of
the
manor
farm.
...

mr
Jones

of
the
manor
farm
...

mr
Jones
of
the
Manor
farm
...

Figure 7.6 You have an input stream from which to read words. Before you can calculate the word frequencies,
you need a list of words converted to lowercase with all punctuation removed.

For the sake of completeness, you also need to implement string_to_lower and
string_only_alnum functions. The former is a transformation that converts each char-
acter in a string to lowercase, and the latter is a filter that skips characters that aren’t
alphanumeric. A std::string is a collection of characters, so you can manipulate it
like any other range:

std::string string_to_lower(const std::string& s)
{
 return s | view::transform(tolower);
}

std::string string_only_alnum(const std::string& s)
{
 return s | view::filter(isalnum);
}

You have all the words to process, and you need to sort them (see figure 7.7). The
action::sort transformation requires a randomly accessible collection, so it’s lucky
you declared words to be a std::vector of strings. You can request it to be sorted:

words |= action::sort;

Now that you have a sorted list, you can easily group the same words by using
view::group_by. It’ll create a range of word groups (the groups are, incidentally, also
ranges). Each group will contain the same word multiple times—as many times as it
appeared in the original text.

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

156 chapter 7 Ranges

Group all recurrences
of the same word with
view::group_by(std::equal_to<>()).
This gives you a range of ranges.

Now you’re left to sort the collection by
frequency—to_vector | action::sort.

You get a range sorted
by the word frequencies,
and the most frequent
words are at its end.

You’re interested only in the
word itself and the number
of occurences in the text; you
can easily transform a group
into a (count, word) pair.

a
a
a
a
a
an
an
...

a, a, a, ...
an, an, ...
and, ...
animal, ...
animals, ...
as, as, ...
...

(181, a)
(102, an)
(163, and)
(35, animal)
(42, animals)
(39, as)
...

...
(181, a)
(256, of)
(439, the)

Figure 7.7 You get a range of sorted words. You need to group the same words, count how many
words you have in each group, and then sort them all by the number of occurrences.

You can transform the range into pairs; the first item in the pair is the number of items
in a group, and the second is the word. This will give you a range containing all the
words in the original text along with the number of occurrences for each.

Because the frequency is the first item in a pair, you can pass this range through
action::sort. You can do so as in the previous code snippet, by using operator|=, or
you can do it inline by first converting the range to a vector, as shown next (see exam-
ple:word-frequency). This will allow you to declare the results variable as const.

Listing 7.6 Getting a sorted list of frequency-word pairs from a sorted list

const auto results =
 words | view::group_by(std::equal_to<>())
 | view::transform([](const auto& group) {
 const auto begin = std::begin(group);
 const auto end = std::end(group);
 const auto count = distance(begin, end);
 const auto word = *begin;

 return std::make_pair(count, word);
 })
 | to_vector | action::sort;

The last step is to write the n most frequent words to the standard output. Because the
results have been sorted in ascending order, and you need the most frequent words,

Groups multiple occurrences of
words from the words range

Gets the size of each
group, and returns a
pair consisting of the
word frequency and
the word

To sort the words by frequency, you first
need to convert the range into a vector.

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

 157Using ranges to calculate word frequencies

not the least frequent ones, you must first reverse the range and then take the first n
elements:

for (auto value: results | view::reverse
 | view::take(n)) {
 std::cout << value.first << " " << value.second << std::endl;
}

That’s it. In fewer than 30 lines, you’ve implemented the program that originally took
a dozen pages. You’ve created a set of easily composable, highly reusable components;
and, not counting the output, you haven’t used any for loops.

Range-based for loop and ranges
As previously mentioned, the range-based for loop started supporting sentinels in
C++17. The preceding code won’t compile on older compilers. If you’re using an older
compiler, the range-v3 library provides a convenient RANGES_FOR macro that can be
used as a replacement for the range-based for:

RANGES_FOR (auto value, results | view::reverse
 | view::take(n)) {
 std::cout << value.first << " " << value.second << std::endl;
}

Additionally, if you sorted the range of words the same way you sorted the list of results
(without operator|=), you’d have no mutable variables in your program.

TIP For more information and resources about the topics covered in this
chapter, see https://forums.manning.com/posts/list/43776.page.

Summary

¡	One frequent source of errors when using STL algorithms is passing incorrect
iterators to them—sometimes even iterators belonging to separate collections.

¡	Some collection-like structures don’t know where they end. For those, it’s cus-
tomary to provide sentinel-like iterators; these work but have unnecessary perfor-
mance overhead.

¡	The ranges concept is an abstraction over any type of iterable data. It can model
normal collections, input and output streams, database query result sets, and more.

¡	The ranges proposal is planned for inclusion in C++20, but libraries provide the
same functionality today.

¡	Range views don’t own the data, and they can’t change it. If you want to operate
on and change existing data, use actions instead.

¡	Infinite ranges are a nice measure of algorithm generality. If something works for
infinite ranges, it’ll work for finite ones as well.

¡	By using ranges and thinking of program logic in terms of range transforma-
tions, you can decompose the program into highly reusable components.

www.itbook.store/books/9781617293818

https://forums.manning.com/posts/list/43776.page
https://itbook.store/books/9781617293818

Functional Programming in C++
How to improve your C++ programs using functional techniques

Well-written code is easier to test and reuse, simpler to
parallelize, and less error prone. Mastering the functional
style of programming can help you tackle the demands of

modern apps and will lead to simpler expression of complex program
logic, graceful error handling, and elegant concurrency. C++ supports
FP with templates, lambdas, and other core language features, along
with many parts of the STL.

Functional Programming in C++ helps you unleash the
functional side of your brain, as you gain a powerful new perspective
on C++ coding. You’ll discover dozens of examples, diagrams, and
illustrations that break down the functional concepts you can apply
in C++, including lazy evaluation, function objects and invokables,
algebraic data types, and more. As you read, you’ll match FP
techniques with practical scenarios where they offer the most benefit.

What’s inside
• Writing safer code with no performance penalties
• Explicitly handling errors through the type system
• Extending C++ with new control structures
• Composing tasks with DSLs

Written for developers with two or more years of experience
coding in C++.

 is a core developer at KDE and has been coding in C++
since 1998. He teaches modern C++ and functional programming at
the Faculty of Mathematics at the University of Belgrade.

“ Offers precise, easy-to-
understand, and engaging
explanations of functional
concepts.”

 —Sumant Tambe, LinkedIn

“ An excellent read. Comprehen-
sive code examples illustrate the
implementation of functional
programming patterns using
C++14/C++17 constructs.”

 — Keerthi Shetty
FactSet Research Systems

“ Provides elegant, easy-to-grasp,
ready-to-use examples that
will improve the way you think
about coding.”

 — Nikos Athanasiou, BETA CAE Systems

“ Presents a new way of writing
quality software and a new way
of thinking.”

 —Gian Lorenzo Meocci, CommProve

“ Particularly valuable for
intermediate/advanced C++
developers who want to embrace
reactive-style programming.”

 —Marco Massenzio, Apple
To download their free eBook in PDF, ePub, and Kindle formats, owners of this book
should visit manning.com/books/functional-programming-in-c-plus-plus

US $49.99 / Can $65.99 [including eBook]

Free eBook

PROGRAMMING LANGUAGES/C++

Functional Program
m

ing in C++

SEE FIRST PAGE

MANNING MANNINGMANNING

www.itbook.store/books/9781617293818

https://itbook.store/books/9781617293818

	Functional Programming in C++ Sample Chapter
	brief contents
	7 Ranges
	7.1	Introducing ranges
	7.2	Creating read-only views over data
	7.2.1	Filter function for ranges
	7.2.2	Transform function for ranges
	7.2.3	Lazy evaluation of range values

	7.3	Mutating values through ranges
	7.4	Using delimited and infinite ranges
	7.4.1	Using delimited ranges to optimize handling input ranges
	7.4.2	Creating infinite ranges with sentinels

	7.5	Using ranges to calculate word frequencies

