
M A N N I N G

Peter Sbarski
FOREWORDS BY
Patrick Debois
Donald F. Ferguson

SAMPLE CHAPTER

www.itbook.store/books/9781617293825

https://itbook.store/books/9781617293825

Serverless Architectures in AWS
by Peter Sbarski

Chapter 1

 Copyright 2017 Manning Publications

www.itbook.store/books/9781617293825

https://itbook.store/books/9781617293825

vii

brief contents
PART 1 FIRST STEPS.. 1

1 ■ Going serverless 3
2 ■ Architectures and patterns 16
3 ■ Building a serverless application 39
4 ■ Setting up your cloud 66

PART 2 CORE IDEAS ... 95
5 ■ Authentication and authorization 97
6 ■ Lambda the orchestrator 133
7 ■ API Gateway 168

PART 3 GROWING YOUR ARCHITECTURE................................... 199
8 ■ Storage 201
9 ■ Database 227

10 ■ Going the last mile 260

www.itbook.store/books/9781617293825

https://itbook.store/books/9781617293825

Part 1

First steps

You’re now taking the first steps toward mastery of serverless architectures.
The first part of this book takes you through the concepts and introduces you to
the five principles of serverless architectures. You’ll learn about several useful
designs and architectures, and you’ll begin building your own media-transcoding
pipeline using Lambda, S3, and the Elastic Transcoder. Beginning with the third
chapter and continuing thereafter, you’ll find fun exercises to try in your spare
time. These exercises are optional but highly recommended, because they’ll
reinforce your knowledge and understanding of serverless technologies and
architectures.

www.itbook.store/books/9781617293825

https://itbook.store/books/9781617293825

www.itbook.store/books/9781617293825

https://itbook.store/books/9781617293825

3

Going serverless

If you ask software developers what software architecture is, you might get answers
ranging from “it’s a blueprint or a plan” to “a conceptual model” to “the big pic-
ture.” It’s undoubtedly true that architecture, or lack thereof, can make or break
software. Good architecture may help to scale a web or mobile application, and
poor architecture may cause serious issues that necessitate a costly rewrite. Under-
standing the implication of choice regarding architecture and being able to plan
ahead is paramount to creating effective, high-performing, and ultimately success-
ful software systems.

 This book is about how to go beyond traditional back-end architectures that
require you to interact with a server in some shape or form. It describes how to create

This chapter covers
 Traditional system and application architectures

 Key characteristics of serverless architectures
and their benefits

 How serverless architectures and microservices
fit into the picture

 Considerations when transitioning from server to
serverless

www.itbook.store/books/9781617293825

https://itbook.store/books/9781617293825

4 CHAPTER 1 Going serverless

serverless back ends that rely entirely on a compute service such as Amazon Web Services
(AWS) Lambda and an assortment of useful third-party APIs, services, and products. It
shows how to build the next generation of systems that can scale and handle demand-
ing computational requirements without having to provision or manage a single server.
Importantly, this book describes techniques that can help developers quickly deliver
products to market while maintaining a high level of quality and performance by using
services and architectures that today’s cloud has to offer.

 The first chapter of this book is about why we think serverless is a game changer
for software developers and solution architects. This chapter introduces key services
such as AWS Lambda and describes the principles of serverless architecture to help
you understand what makes a true serverless system.

1.1 How we got to where we are
If you look at systems powering most of today’s web-enabled software, you’ll see back-
end servers performing various forms of computation and client-side front ends pro-
viding an interface for users to operate via their browser, mobile, or desktop device.

 In a typical web application, the server accepts HTTP requests from the front end
and processes requests. Data might travel through numerous application layers
before being saved to a database. The back end, finally, generates a response—it
could be in the form of JSON or fully rendered markup—which is sent back to the cli-
ent (figure 1.1). Naturally, most systems are more complex once elements such as
load balancing, transactions, clustering, caching, messaging, and data redundancy
are taken into account. Most of this software requires servers running in data centers
or in the cloud that need to be managed, maintained, patched, and backed up.

 Provisioning, managing, and patching of servers is a time-consuming task that
often requires dedicated operations people. A non-trivial environment is hard to set
up and operate effectively. Infrastructure and hardware are necessary components of
any IT system, but they’re often also a distraction from what should be the core
focus—solving the business problem.

 Over the past few years, technologies such as platform as a service (PaaS) and contain-
ers have appeared as potential solutions to the headache of inconsistent infrastructure

What’s in a name?
Before we start, we should mention that the word serverless is a bit of a misnomer.
Whether you use a compute service such as AWS Lambda to execute your code, or
interact with an API, there are still servers running in the background. The difference
is that these servers are hidden from you. There’s no infrastructure for you to think
about and no way to tweak the underlying operating system. Someone else takes
care of the nitty-gritty details of infrastructure management, freeing your time for
other things. Serverless is about running code in a compute service and interacting
with services and APIs to get the job done.

www.itbook.store/books/9781617293825

https://itbook.store/books/9781617293825

5How we got to where we are

environments, conflicts, and server management overheard. PaaS is a form of cloud
computing that provides a platform for users to run their software while hiding some
of the underlying infrastructure. To make effective use of PaaS, developers need to
write software that targets the features and capabilities of the platform. Moving a legacy
application designed to run on a standalone server to a PaaS service often leads to
additional development effort because of the ephemeral nature of most PaaS imple-
mentations. Still, given a choice, many developers would understandably choose to use
PaaS rather than more traditional, more manual solutions thanks to reduced mainte-
nance and platform support requirements.

 Containerization is a way of isolating an application with its own environment. It’s
a lightweight alternative to full-blown virtualization. Containers are isolated and light-
weight but they need to be deployed to a server—whether in a public or private cloud
or onsite. They’re an excellent solution when dependencies are in play, but they have
their own housekeeping challenges and complexities. They’re not as easy as being
able to run code directly in the cloud.

 Finally, we make our way to Lambda, which is a compute service from Amazon Web
Services. Lambda can execute code in a massively parallelized way in response to
events. Lambda takes your code and runs it without any need to provision servers,
install software, deploy containers, or worry about low-level detail. AWS takes care of
provisioning and management of their Elastic Compute Cloud (EC2) servers that run
the actual code and provides a high-availability compute infrastructure—including
capacity provisioning and automated scaling—that the developer doesn’t need to
think about. The words serverless architectures refer to these new kinds of software archi-
tectures that don’t rely on direct access to a server to work. By taking Lambda and
making use of various powerful single-purpose APIs and web services, developers can
build loosely coupled, scalable, and efficient architectures quickly. Moving away from
servers and infrastructure concerns, as well as allowing the developer to primarily focus on code,
is the ultimate goal behind serverless.

1. User performs an action
that requires data from a
database to be displayed.

2. A request is formed
and sent from the client
to the web server.

3. The request is
processed and the
database is queried.

4. Data is retrieved.5. An appropriate response
is generated and sent back.

6. Information is displayed
to the user.

Application user Web client
(presentation tier)

Web server
(application tier)

Database
(data tier)

Figure 1.1 This is a basic request-response (client-server) message exchange pattern that most
developers are familiar with. There’s only one web server and one database in this figure. Most systems
are much more complex.

www.itbook.store/books/9781617293825

https://itbook.store/books/9781617293825

6 CHAPTER 1 Going serverless

1.1.1 Service-oriented architecture and microservices

Among system and application architectures, service-oriented architecture (SOA) has
a lot of name recognition among software developers. It’s an architecture that clearly
conceptualized the idea that a system can be composed of many independent services.
Much has been written about SOA, but it remains controversial and misunderstood
because developers often confuse design philosophy with specific implementation
and attributes.

 SOA doesn’t dictate the use of any particular technology. Instead, it encourages an
architectural approach in which developers create autonomous services that commu-
nicate via message passing and often have a schema or a contract that defines how
messages are created or exchanged. Service reusability and autonomy, composability,
granularity, and discoverability are all important principles associated with SOA.

 Microservices and serverless architectures are spiritual descendants of service-
oriented architecture. They retain many of the aforementioned principles and
ideas while attempting to address the complexity of old-fashioned service-oriented
architectures.

ON MICROSERVICES

There has been a recent trend to implement systems with microservices. Developers
tend to think of microservices as small, standalone, fully independent services built
around a particular business purpose or capability.

 Ideally, microservices should be easy to replace, with each service written in an
appropriate framework and language. The mere fact that microservices can be written
in different general-purpose or domain-specific languages (DSL) is a drawing card for
many developers. Benefits can be gained from using the right language or a special-
ized set of libraries for the job. Nevertheless, it can often be a trap, too. Having a mix
of languages and frameworks can be hard to support, and, without strict discipline,
can lead to confusion down the road.

 Each microservice can maintain state and store data. And if microservices are cor-
rectly decoupled, development teams can work and deploy microservices inde-
pendently of one another. On the other hand, eventual consistency, transaction
management, and complex error recovery can make things more difficult (especially
without a sound plan).

 It can be argued that serverless architecture embodies many principles from
microservices too. After all, depending on how you design the system, every compute
function could be considered to be its own standalone service. But you don’t need to
fully embrace the microservices mantra if you don’t want to.

 Serverless architectures give you the freedom to apply as few or as many microservice
principles as you would like without forcing you down a single path. This book shows
examples of architectures where parts of a monolithic system are re-implemented as
serverless architecture without applying all of the microservices tenets. It’s then up to
you to decide how far to take your architecture based on your requirements and prefer-
ence (chapter 10 has more to say on the issue of microservices and design).

www.itbook.store/books/9781617293825

https://itbook.store/books/9781617293825

7How we got to where we are

1.1.2 Software design

Software design has evolved from the days of code running on a mainframe to multi-
tier systems where the presentation, data, and application/logic tiers feature promi-
nently in many designs. Within each tier there may be multiple logical layers that deal
with particular aspects of functionality or domain. There are also cross-cutting compo-
nents, such as logging or exception-handling systems, that can span numerous layers.
The preference for layering is understandable. Layering allows developers to decou-
ple concerns and have more maintainable applications.

 But the converse can also be true. Having too many layers can lead to inefficiencies.
A small change can often cascade and cause the developer to modify every layer through-
out the system, costing considerable time and energy in implementation and testing.
The more layers there are, the more complex and unwieldy the system might become
over time. Figure 1.2 shows an example of a tiered architecture with multiple layers.

 Serverless architectures can help with the problem of layering and having to
update too many things. There’s room for developers to remove or minimize layering
by breaking the system into functions and allowing the front end to securely commu-
nicate with services and even the database directly, as shown in figure 1.3. All of this
can be done in an organized way to prevent spaghetti implementations and depen-
dency nightmares by clearly defining service boundaries, allowing Lambda functions
to be autonomous, and planning how functions and services will interact.

Application user

User interface components
Layering helps to
segregate concerns, but
more layers can also
make changes harder
and slower to implement.

Cross-cutting concerns
span numerous layers.
A good example of this is
logging, which can happen
at every layer.

Application tier

Cross-cutting
concerns

Presentation
tier

Data tier

Presentation logic

Client-side model

Client-side service layer

Application programming interface

Server-side service layer

Business/domain layer

Business entities/model

Data access/persistence layer

Exception m
anagem

ent

C
aching

Logging

C
om

m
unications

Security

Database File storage

Figure 1.2 A typical three-tier application is usually made up of presentation, application, and data
tiers. A tier may have multiple layers with specific responsibilities.

www.itbook.store/books/9781617293825

https://itbook.store/books/9781617293825

8 CHAPTER 1 Going serverless

A serverless approach doesn’t solve all problems, nor does it remove the underlying
intricacies of the system. But when implemented correctly it can provide opportuni-
ties to reduce, organize, and manage complexity. A well-planned serverless architec-
ture can make future changes easier, which is an important factor for any long-term
application. The next section and later chapters discuss the organization and orches-
tration of services in more detail.

Application userLambda functions can
communicate with other
AWS products and make
calls to non-AWS services.

Presentation
tier

Database

Lambda
function

Search
service

Lambda
function

Payment
service

API
gateway

Lambda
function

Notification
service

Lambda
function

Log
service

File
storage

Lambda
function

Analytics
service

Authentication
service

Reporting

Figure 1.3 In a serverless architecture there’s no single traditional back end. The front end
of the application communicates directly with services, the database, or compute functions
via an API gateway. Some services, however, must be hidden behind compute service
functions, where additional security measures and validation can take place.

Tiers vs. layers
There is confusion among some developers about the difference between layers and
tiers. A tier is a module boundary that exists to provide isolation between major com-
ponents of a system. A presentation tier that’s visible to the user is separate from
the application tier, which encompasses business logic. In turn, the data tier is
another separate system that can manage, persist, and provide access to data. Com-
ponents grouped in a tier can physically reside on different infrastructures.

www.itbook.store/books/9781617293825

https://itbook.store/books/9781617293825

9Principles of serverless architectures

1.2 Principles of serverless architectures
Here we define five principles of serverless architectures that describe how an ideal
serverless system should be built. Use these principles to help guide your decisions
when building serverless applications:

1 Use a compute service to execute code on demand (no servers).
 2 Write single-purpose stateless functions.
 3 Design push-based, event-driven pipelines.
 4 Create thicker, more powerful front ends.
5 Embrace third-party services.

Let’s look at each of these principles in more detail.

1.2.1 Use a compute service to execute code on demand

Serverless architectures are a natural extension of ideas raised in SOA. In serverless
architecture all custom code is written and executed as isolated, independent, and
often granular functions that are run in a stateless compute service such as AWS
Lambda. Developers can write functions to carry out almost any common task, such
as reading and writing to a data source, calling out to other functions, and perform-
ing a calculation. In more complex cases, developers can set up more elaborate pipe-
lines and orchestrate invocations of multiple functions. There might be scenarios
where a server is still needed to do something. These cases, however, may be far and
few between, and as a developer you should avoid running and interacting with a
server if possible.

Layers are logical slices that carry out specific responsibilities in an application. Each
tier can have multiple layers within it that are responsible for different elements of
functionality such as domain services.

So, what is Lambda exactly?
AWS Lambda is a compute service that executes code written in JavaScript (node.js),
Python, C#, or Java on AWS infrastructure. Source code (JARs or DLLs in case of Java
or C#) is zipped up and deployed to an isolated container that has an allocation of
memory, disk space, and CPU. The combination of code, configuration, and depen-
dencies is typically referred to as a Lambda function. The Lambda runtime can invoke
a function multiple times in parallel. Lambda supports push and pull event models of
operation and integrates with a large number of AWS services. Chapter 6 covers
Lambda in more detail, including its event model, methods of invocation, and best
practice with regard to design. Note that Lambda isn’t the only game in town. Micro-
soft Azure Functions, IBM Bluemix, OpenWhisk, and Google Cloud Functions are other
compute services you might want to look at.

www.itbook.store/books/9781617293825

https://itbook.store/books/9781617293825

10 CHAPTER 1 Going serverless

1.2.2 Write single-purpose stateless functions

As a software engineer, you should try to design your functions with the single respon-
sibility principle (SRP) in mind. A function that does just one thing is more testable
and robust and leads to fewer bugs and unexpected side effects. By composing and
combining functions and services in a loose orchestration, you can build complex
back-end systems that are still understandable and easy to manage. A granular func-
tion with a well-defined interface is also more likely to be reused within a serverless
architecture.

 Code written for a compute service such as Lambda should be created in a stateless
style. It must not assume that local resources or processes will survive beyond the
immediate session (chapter 6 has more to say on this). Statelessness is powerful
because it allows the platform to quickly scale to handle an ever-changing number of
incoming events or requests.

1.2.3 Design push-based, event-driven pipelines

Serverless architectures can be built to serve any purpose. Systems can be built server-
less from scratch, or existing monolithic applications can be gradually reengineered
to take advantage of this architecture. The most flexible and powerful serverless
designs are event-driven. In chapter 3, for example, you’ll build an event-driven, push-
based pipeline to see how quickly you can put together a system to encode video to
different bitrates and formats. You’ll achieve this by connecting Amazon’s Simple
Storage Service (S3), Lambda, and Elastic Transcoder together (figure 1.4).

 Building event-driven, push-based systems will often reduce cost and complexity
(you won’t need to run extra code to poll for changes) and potentially make the over-
all user experience smoother. It goes without saying that although event-driven, push-
based models are a good goal, they might not be appropriate or achievable in all cir-
cumstances. Sometimes you’ll have to implement a Lambda function that polls the
event source or runs on a schedule. We’ll cover different event models and you’ll work
through examples in later chapters.

1.2.4 Create thicker, more powerful front ends

It’s important to remember that custom code running in Lambda should be quick to
execute. Functions that terminate sooner are cheaper because Lambda pricing is
based on the number of requests, the duration of execution, and the amount of allo-
cated memory. Having less to do in Lambda is cheaper. Moreover, building a rich
front end (in lieu of a complex back end) that can talk to third-party services directly
can be conducive to a better user experience. Fewer hops between online resources
and reduced latency will result in a better perception of performance and usability of
the application. In other words, you don’t have to route everything through a com-
pute service. Your front end may be able to communicate directly with a search pro-
vider, a database, or another useful API.

www.itbook.store/books/9781617293825

https://itbook.store/books/9781617293825

11Principles of serverless architectures

Digitally signed tokens can allow front ends to talk to disparate services, including
databases, in a secure manner. This is in contrast to traditional systems where all com-
munication flows through the back-end server.

 Not everything, however, can or should be done in the front end. There are secrets
that cannot be trusted to the client device. Processing a credit card or sending emails
to subscribers must be done only by a service that runs outside the end user’s control.
In this case, a compute service must be used to coordinate action, validate data, and
enforce security.

 The other important point to consider is consistency. If the front end is responsi-
ble for writing to multiple services and fails midway through, it can leave the system in
an inconsistent state. In this scenario, a Lambda function should be used because it
can be designed to gracefully handle errors and retry failed operations.

Upload new
video file

Create
transcode

job

Transcode
video

Save new
videos

Update
metadata

Dispatch
notification

Create
notification

Save
metadata to

database

1. Simple Storage Service.
Uploading a video to an
S3 bucket triggers an
event in AWS. A Lambda
function is wired up to
respond to events.

2. Lambda Function.
A Lambda function responds
to the event and creates an
Elastic Transcoder job to create
new videos from the source file.

3. Elastic Transcoder.
Transcoding service
executes the job and
encodes new videos.

4. Simple Storage Service.
The newly encoded videos are
saved to a new S3 bucket by
the Elastic Transcoder.
This triggers another event.

6. Database.
Metadata is saved
to the database.

5. Lambda Function.
A Lambda function
responds to the event
and creates metadata
about the videos that is
pushed to the database.

7. Lambda Function.
A change to the
database automatically
triggers a Lambda
function that creates
an email notification.

8. Notification Service.
Notification service
sends an email to
the user.

Figure 1.4 A push-based pipeline style of design works well with serverless architectures. In this
example a user uploads a video, which is transcoded to a different format.

www.itbook.store/books/9781617293825

https://itbook.store/books/9781617293825

12 CHAPTER 1 Going serverless

1.2.5 Embrace third-party services

Third-party services are welcome to join the show if they can provide value and reduce
custom code. It goes without saying, however, that when a third-party service is consid-
ered, factors such as price, capability, availability, documentation, and support must
be assessed. It’s far more useful for developers to spend time solving a problem
unique to their domain than re-creating functionality already implemented by some-
one else. Don’t build for the sake of building if viable third-party services and APIs are
available. Stand on the shoulders of giants to reach new heights. Appendix A has a
short list of Amazon Web Services and non-Amazon Web Services we’ve found useful.
We’ll look at most of those services in more detail as we move through the book.

1.3 Transitioning from a server to services
One advantage of the serverless approach is that existing applications can be gradu-
ally converted to serverless architecture. If a developer is faced with a monolithic code
base, they can gradually tease it apart and create Lambda functions that the applica-
tion can communicate with.

 The best approach is to initially create a prototype to test developer assumptions
about how the system would function if it was going to be partly or fully serverless.
Legacy systems tend to have interesting constraints that require creative solutions; and
as with any architectural refactors at a large scale, there are inevitably going to be
compromises. The system may end up being a hybrid—see figure 1.5—but it may be
better to have some of its components use Lambda and third-party services rather
than remain with an unchanged legacy architecture that no longer scales or that
requires expensive infrastructure to run.

 The transition from a legacy, server-based application to a scalable serverless archi-
tecture may take time to get right. It needs to be approached carefully and slowly, and
developers need to have a good test plan and a great DevOps strategy in place before
they begin.

1.4 Serverless pros and cons
There are advantages to implementing a system as fully or partially serverless, includ-
ing reduced cost and accelerated time to market. But you need to carefully consider
the road to serverless architecture in the context of the application being created.

1.4.1 Decision drivers

Serverless is not a silver bullet in all circumstances. It may not be appropriate for
latency-sensitive applications or software with specific service-level agreements (SLA).
Vendor lock-in can be an issue for enterprise and government clients, and decentral-
ization of services can be a challenge.

NOT FOR EVERYONE

Lambda runs in a public cloud, so mission-critical applications shouldn’t necessarily
be based on it. A banking system that performs high-volume transactions or a patient

www.itbook.store/books/9781617293825

https://itbook.store/books/9781617293825

13Serverless pros and cons

life-support system requires a higher level of performance and reliability than a public
cloud system can provide. It’s possible that organizations could employ dedicated
hardware or run private or hybrid clouds with their own compute services that might
meet serviceability and reliability requirements. In that case, these architectures could
be adopted.

SERVICE LEVELS

AWS has an SLA for some services but not for others, so that may be a factor in your
decision. For most systems, the reliability offered by AWS is sufficient, but some enter-
prise use cases may require additional guarantees. Non-AWS third-party services are in
the same boat. Some may have strong SLAs, whereas others may not have one at all.

CUSTOMIZATION

When it comes to Lambda, the efficiencies gained from having Amazon look after the
platform and scale functions come at the expense of being able to customize the oper-
ating system or tweak the underlying instance. You can modify the amount of RAM
allocated to a function and change timeouts, but that’s about it (see chapter 6 for
more information). Similarly, different third-party services will have varying levels of
customization and flexibility.

Lambda
function

Lambda
function

Lambda
function

IaaS

PaaS

Containers

Monolithic application
Lambda
function

Analytics
service

Payment
service

Notification
service

Search
service

A monolithic application
can be deconstructed
into Lambda functions,
third-party services, IaaS,
PaaS, and containers.

The combination of
technologies should depend
on your needs and constraints.
However, more technologies
require more overhead, time,
and energy.

Containers, PaaS, IaaS, Lambda functions, and services
can talk to one another. If you have designed a system
using a combination of the above technologies you must
consider how orchestration of events will take place.

Figure 1.5 Serverless architecture is not an all-or-nothing proposition. If you currently have
a monolithic application running on servers, you can begin to gradually extract components
and run them in isolated services or compute functions. You can decouple a monolithic
application into an assortment of infrastructure as a service (IaaS), PaaS, containers,
Lambda functions, and third-party services if it helps.

www.itbook.store/books/9781617293825

https://itbook.store/books/9781617293825

14 CHAPTER 1 Going serverless

VENDOR LOCK-IN
Vendor lock-in is another issue. If a developer decides to use third-party APIs and ser-
vices, including AWS, there’s a chance that architecture could become strongly coupled
to the platform being used. The implications of vendor lock-in and the risk of using
third-party services—including company viability, data sovereignty and privacy, cost,
support, documentation, and available feature set—need to be thoroughly considered.

DECENTRALIZATION

Moving from a monolithic approach to a more decentralized serverless approach
doesn’t automatically reduce the complexity of the underlying system either. The dis-
tributed nature of the solution can introduce its own challenges because of the need
to make remote rather than in-process calls and the need to handle failures and
latency across a network.

1.4.2 When to use serverless

Serverless architecture allows developers to focus on software design and code rather
than infrastructure. Scalability and high availability are easier to achieve, and the pric-
ing is often fairer because you pay only for what you use. Importantly with serverless,
you have a potential to reduce some of the complexity of the system by minimizing
the number of layers and amount of code you need.

NO MORE SERVERS

Tasks such as server configuration and management, patching, and maintenance are
taken care of by the vendor, which saves time and money. Amazon looks after the
health of its fleet of servers that power Lambda. If you don’t have specific require-
ments to manage or modify compute resources, then having Amazon or another ven-
dor look after them is a great solution. You’re responsible only for your own code,
leaving operational and administrative tasks to a different set of capable hands.

MANY USES

The statelessness and scalability of compute can be used to solve problems that bene-
fit from parallel processing. Back ends for CRUD applications, e-commerce, back-
office systems, complex web apps, and all kinds of mobile and desktop software can
be built quickly using serverless architectures. Tasks that used to take weeks can be
done in days or hours as long as the right combination of technologies is chosen. A
serverless approach can work exceptionally well for startups that want to innovate
and move quickly.

LOW COST

The traditional server-based architecture requires servers that don’t necessarily run at
full capacity all of the time. Scaling, even with automated systems, involves a new
server, which is often wasted until there’s a temporary upsurge in traffic or new data.
Serverless systems are much more granular with regard to scaling and are cost-
effective, especially when peak loads are uneven or unexpected. With Lambda you
only pay for what you use (chapter 4 shows how to calculate cost for Lambda and the
API Gateway).

www.itbook.store/books/9781617293825

https://itbook.store/books/9781617293825

15Summary

LESS CODE

We mentioned at the start of the chapter that serverless architecture provides an
opportunity to reduce some of the complexity and code in comparison to more tradi-
tional systems. There’s less need to have a multilayered back-end system, especially if
you allow the front end to do more work and talk to services (and the database)
directly.

SCALABLE AND FLEXIBLE

As a developer you don’t need to use serverless architecture to replace your entire
back end if you don’t want to or are unable to do so. You can use Lambda to solve spe-
cific problems, especially if they stand to benefit from parallelization. It goes without
saying that serverless systems can scale more easily than traditional systems. For exam-
ple, consider the following solutions:

 ConnectWise, an IT services company, uses Lambda to process inbound logs,
which has reduced their server maintenance needs from weeks to hours
(https://aws.amazon.com/solutions/case-studies/connectwise/).

 Netflix uses Lambda to automate validation of backup completions and auto-
mate the encoding process of media files (https://aws.amazon.com/solutions/
case-studies/netflix-and-aws-lambda/).

You can use Lambda for extract, transform, and load (ETL) jobs, real-time file process-
ing, and virtually anything else without having to touch your existing codebase. Just
write a function and run it.

1.5 Summary
The cloud has been and continues to be a game changer for IT infrastructure and
software development. Software developers need to think about the ways they can
maximize use of cloud platforms to gain a competitive advantage.

 Serverless architectures are the latest advance for developers and organizations to
think about, study, and adopt. This exciting new shift in architecture will grow quickly
as software developers embrace compute services such as AWS Lambda. And, in many
cases, serverless applications will be cheaper to run and faster to implement.

 There’s also a need to reduce complexity and costs associated with running infra-
structure and carrying out development of traditional software systems. The reduction
in cost and time spent on infrastructure maintenance and the benefits of scalability are
good reasons for organizations and developers to consider serverless architectures.

 In this chapter you learned what serverless architecture is, looked at its principles,
and saw how it compares to traditional architectures. In the next chapter, we’ll
explore important architectures and patterns, and we’ll discuss specific use cases
where serverless architectures were used to solve a problem.

www.itbook.store/books/9781617293825

https://aws.amazon.com/solutions/case-studies/connectwise/
https://aws.amazon.com/solutions/case-studies/netflix-and-aws-lambda/
https://aws.amazon.com/solutions/case-studies/netflix-and-aws-lambda/
https://aws.amazon.com/solutions/case-studies/netflix-and-aws-lambda/
https://itbook.store/books/9781617293825

Peter Sbarski

T
here’s a shift underway toward serverless cloud architec-
tures. With the release of serverless computer technologies
such as AWS Lambda, developers are now building en-

tirely serverless platforms at scale. In these new architectures,
traditional back-end servers are replaced with cloud functions
acting as discrete single-purpose services. By composing and
combining these serverless cloud functions together in a loose
orchestration and adopting useful third-party services, devel-
opers can create powerful yet easy-to-understand applications.

Serverless Architectures on AWS teaches you how to build,
secure, and manage serverless architectures that can power
the most demanding web and mobile apps. You’ll get going
quickly with this book’s ready-made real-world examples, code
snippets, diagrams, and descriptions of architectures that can
be readily applied. By the end, you’ll be able to architect and
build your own serverless applications on AWS.

What’s Inside
● First steps with serverless computing
● Important patterns and architectures
● Writing AWS Lambda functions and using the
 API Gateway
● Composing serverless applications using key services
 like Auth0 and Firebase
● Securing, deploying, and managing serverless architectures

Peter Sbarski is a well-known AWS expert, VP of engineering
at A Cloud Guru, and head of Serverlessconf.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/serverless-architectures-on-aws

$44.99 / Can $59.99 [INCLUDING eBOOK]

Serverless Architectures on AWS

CLOUD/WEB DEVELOPMENT

M A N N I N G

“Written with clear passion,
an eye for detail, and a

treasure trove of
 knowledge to share.”—From the Foreword by

Patrick Debois
Founder of devopsdays

“A pivotal book that is
crucial to the exploitation of

cloud computing.”
—From the Foreword by
Dr. Donald F. Ferguson

Columbia University

“I wish every technical book
was as well written and

 easy to read!”
—Kent R. Spillner, DRW

“Don’t go serverless without
this book ... not only to
read once, but to have as

a reference for the future.”
—Diego Santiviago

Amazon Web Services

SEE INSERT

www.itbook.store/books/9781617293825

https://itbook.store/books/9781617293825

	cover
	Copyright
	BriefTOC
	SampleCh01
	coverB

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

