
M A N N I N G

Mark Tielens Thomas

IN ACTION

S A M P L E C H A P T E R

www.itbook.store/books/9781617293856

https://itbook.store/books/9781617293856

React in Action

by Mark Tielens Thomas

 Chapter 9

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617293856

https://itbook.store/books/9781617293856

vii

brief contents
PART 1 MEET REACT...1

1 ■ Meet React 3

2 ■ <Hello World />: our first component 22

PART 2 COMPONENTS AND DATA IN REACT57
3 ■ Data and data flow in React 59

4 ■ Rendering and lifecycle methods in React 77

5 ■ Working with forms in React 111

6 ■ Integrating third-party libraries with React 129

7 ■ Routing in React 151

8 ■ More routing and integrating Firebase 170

9 ■ Testing React components 192

PART 3 REACT APPLICATION ARCHITECTURE..........................219
10 ■ Redux application architecture 221

11 ■ More Redux and integrating Redux with React 251

12 ■ React on the server and integrating React Router 277

13 ■ An introduction to React Native 313

www.itbook.store/books/9781617293856

https://itbook.store/books/9781617293856

192

Testing React components

In the last chapter, you added some significant functionality to your application. It
now has routing and user state, and you’ve broken it up into smaller pieces. You
even added some basic authentication so users could log in using their GitHub pro-
file. Your application is starting to look more robust, even if it’s probably not going
to worry anyone at Facebook or Twitter. You can do lots more with React than you
could when we first started. But as we’ve focused on learning the basics, we’ve omit-
ted an important part of the development process: testing.

 I didn’t cover testing from the start to spare you the mental overload of learning
React and testing fundamentals at the same time. But that doesn’t mean it’s an
unimportant part of either learning or web development. In this chapter, we’ll
focus on testing because it’s a fundamental part of developing high-quality software
solutions. Instead of demonstrating tests for every single one of your components,
though, we’ll go through a representative sample so you’ll understand the import-
ant principles at work and be able to write your own tests.

This chapter covers
 Testing front-end applications

 Setting up testing for React

 Testing React components

 Setting up test coverage

www.itbook.store/books/9781617293856

https://itbook.store/books/9781617293856

193

 By the end of this chapter, you’ll understand some of the basic principles of testing
web applications. You’ll also have set up tests and a test runner, worked with Jest,
Enzyme, and the React test renderer, and learned to use and understand test coverage
tools. You’ll be equipped to start testing your applications, which will add another
level of confidence to your React development skills.

Testing in software development is the process of validating assumptions. For exam-
ple, say you’re building an application (like Medium, Ghost, or WordPress) that lets
users write and create blog posts. Users pay a monthly fee and get the hosting and the
tools to run their own blog. When creating the front-end of the application, there are
several key things it must do (among others), including correctly displaying those
posts and letting users edit them.

 How can you be sure your app is doing what it needs to do? You can try it out
yourself and see if it works. Click around, edit things, and use the application in as
many ways as you can think of. This manual process works reasonably well and is a
first line of defense against bugs and regressions. You should always take care to
inspect what you’re working on, but you can’t test things quickly and or in a per-
fectly consistent manner.

 Also, as your application grows, the number of situations and features you’ll need
to manually test increases at an incredible rate. I’ve worked on applications with thou-
sands of tests, but there are many applications where that number would be easily

How do I get the code for this chapter?
As with every chapter, you can check out the source code for this chapter by going to
the GitHub repository at https://github.com/react-in-action/letters-social. If you want
to start this chapter with a clean slate and follow along, you can use your existing
code from chapters 7 and 8 (if you followed along and built out the examples yourself)
or check out the chapter-specific branch (chapter-9).

Remember, each branch corresponds to the code at the end of the chapter (for exam-
ple, the branch chapter-7 corresponds to the code as it will be at the end of this chap-
ter). You can execute one of the following terminal commands in the directory of your
choice to get the code for the current chapter.

If you don’t have the repository at all, type the following:

 git clone git@github.com:react-in-action/letters-social.git

If you already have the repository cloned:

 git checkout chapter-9

You may have come here from another chapter, so it’s always a good idea to ensure
you have all the right dependencies installed:

 npm install

www.itbook.store/books/9781617293856

https://itbook.store/books/9781617293856

194 CHAPTER 9 Testing React components

dwarfed. The React library itself has 4,855 tests at the time of writing. There’s no
chance someone wanting to test React would be able to validate by hand the assump-
tions involved in all those tests.

 Fortunately, instead of testing everything by hand, you can use software to test soft-
ware. Computers excel where we fail in at least two important areas: speed and consis-
tency. We can use software to test our code in ways that we never could by hand, even
with an army of people trying things out in every possible way. You may be thinking,
“My project is small and really straightforward—there’s not much that could go
wrong.” But even as great as your coding skills may be, bugs are inevitable. Your apps
will break and work in unpredictable ways when you change things (and sometimes
even when you don’t).

 But instead of despairing about the inevitability of bugs, we can accept that they’ll
happen and take steps to minimize their impact and frequency. That’s where testing
comes in. You may have some general idea about what testing is, but to get started
we’ll need to explore some different types of testing. Bear in mind that the world of
testing is huge, and I can’t cover even close to everything here. I won’t be doing any
in-depth coverage of testing as a domain. I also won’t be deeply covering several types
of testing, including integration testing, regression testing, testing automation, and
others. But by the end of the chapter, you should be familiar enough to get started
testing React components in a few different ways.

9.1 Types of testing
As I said, testing software is the process of using software to validate your assumptions.
Because you’re using software to test software, you’ll ultimately be using the same
primitives you use when building software: Booleans, numbers, strings, functions,
objects, and the like. It’s important to remember that there’s no magic here—just
more code.

 There are different types of testing, and you’ll use a few to test your React applica-
tion. They encompass different aspects of an application, and when used together and
in the right proportions, they should give you a significant degree of confidence in
your application. Different types of tests address different parts and scopes of an appli-
cation. A well-tested app will test the individual units of functionality that make up the
basic parts of the app. It will also test the collections of these units of functionality
and, at the highest level, the points at which everything comes together (such as the
user interface).

 Here are a few types of testing:

 Unit—Unit tests focus on individual units of functionality. For example, say you
have a utility method for fetching new posts from the server. A unit test will
focus only on that one function. It doesn’t care about anything else. Like com-
ponents, these tests allow for refactoring and promote modularity.

 Service—Service tests focus on bundles of functionality. This part of the “testing
spectrum” can include a variety of granularities and focuses. The point, though,

www.itbook.store/books/9781617293856

https://itbook.store/books/9781617293856

195Types of testing

is that you’re testing things that aren’t at the highest level (see integration tests,
next) or the lowest levels of functionality. An example of a service test might be
something like a tool that uses several units of functionality but is not itself at
the level of an integration test.

 Integration—Integration tests focus on an even higher level of testing: the inte-
gration of various parts of an application. They test the way that services and
lower-level functionality come together. Typically, these tests test an application
through its user interface, not through the individual code behind the user
interface. These tests may simulate clicks, user input, and other interactions
that drive the application.

You may be wondering what these tests will look like in code; we’ll get into that shortly,
but first we need to talk about how these tests work together in the overall testing
approach. If you’ve done testing before, you may have heard of the testing pyramid.
This pyramid, illustrated in figure 9.1, generally refers to the proportion of different
types of tests you should write. In this chapter, you’ll only be writing unit tests for your
components.

9.1.1 Why test?

There are some software development paradigms where testing is a “first-class citizen”
of the entire development process. That means testing is important, is considered at
the beginning and throughout the development process, and usually plays a role in
determining when something is considered complete. Granted, the consensus is that
testing is a good thing for software development, but there are certain paradigms

Service

Unit

Integration

- individual units of functionality

- numerous

- more “fundamental”

- promote modularity

- inexpensive to write

- short run-time

- collections of functionality

- more brittle than unit tests

- inexpensive to write

- shorter run-time

- UI

- complex

- brittle

- expensive

The Testing Pyramid

Figure 9.1 The testing pyramid is a way of guiding how many and which types of tests you
write as you test your applications. Notice that certain types of tests take longer and are thus
more “expensive” in terms of time (and therefore also financial cost).

www.itbook.store/books/9781617293856

https://itbook.store/books/9781617293856

196 CHAPTER 9 Testing React components

where it takes on a central role. For example, you may have heard of test-driven develop-
ment (TDD). When practicing TDD, as its name suggests, the very process of writing
software is driven by testing. When working, a developer will usually write a failing test
(a test that makes assertions that haven’t yet been met), write just enough code to get
it to pass, refactor any duplication, and then move on to the next feature, repeating
the process.

 Although you don’t have to be a strict practitioner of TDD to write great software,
consider some of the benefits before moving on. If you’re already wise to the upsides
of testing, feel free to move on to the next section where we get started with testing in
React. But I want to ask an important question: why do we test at all?

 First and foremost, we want to write software that works. There are so many inter-
connected parts of modern software that it would be foolish to assume that every part
of the software stack will reliably work all the time. Things will break, and it’s better
to assume things will fail than to assume they’ll work all the time. We can do our
part to minimize the ways that our own software can break by testing our assump-
tions. Testing forces you to visit (or revisit) your assumptions about your software.
You walk it through the different cases it can handle and ensure that it handles
them all appropriately.

 Secondly, the process of testing your software tends to help you write better
code. Going through the process of writing out your tests encourages you to think
through what your code does, especially if you do it beforehand (as in TDD). Though
it’s far less preferable, you can write tests after the fact, too, which is better than hav-
ing no tests at all. Going through the process of testing will help you better under-
stand the code you write and will validate assumptions you and others make about
how things work.

 Third, integrating testing into your software development workflow means you can
release code more frequently. You may have heard people in the tech industry men-
tion “shipping often” before. That usually means releasing software incrementally and
frequently. In the past, companies tended to only release software after an extensive
process and only several times a year (or at least relatively infrequently).

 Thinking has changed today, and people have realized that incremental iteration
leads to generally better results for software: you can get feedback from users and oth-
ers on it sooner, experiment more easily, and more. The confidence you can have in a
well-tested app is a key part of this process. Using continuous integration (CI) or continu-
ous deployment tools like Circle CI (https://circleci.com), Travis CI (https://travis-ci.org),
or others, you can make testing part of the deployment process for your software. The
idea is this: if the tests pass, it gets deployed. These tools usually run your tests in a pris-
tine environment and, if they pass, send the code off to whatever system runs your
application. Figure 9.2 shows the process that the Letters Social app uses to get
tested and deployed.

 Finally, tests also help you when going back and refactoring your code or moving it
around. Say, for example, your requirements change, and you need to move some

www.itbook.store/books/9781617293856

https://itbook.store/books/9781617293856

197Testing React components with Jest, Enzyme, and React-test-renderer

components around. If you’ve kept your components modular and they have good
tests, moving them should be easy. Untested code can be moved around, of course,
but you have much less of a firm idea of whether it broke other parts of your system
than you do when your code is tested.

 There’s more to be said about the benefits and theory of testing in software, but it’s
beyond the scope of this book. If you want to learn more, I recommend checking out
The Art of Unit Testing, Second Edition (Manning Publications, 2013) by Roy Osherove
and Growing Object-Oriented Software: Guided by Tests by Nat Pryce and Steve Freeman
(Addison-Wesley, 2009).

9.2 Testing React components with Jest, Enzyme, and
React-test-renderer
Testing software is just more software, made from the same primitives and basic ele-
ments that your normal programs are, though people have developed special tools to
aid in the testing process. You could try to create the necessary tools to run all your
tests, but the open source community has already put an incredible amount of work
into a huge number of powerful tools—so you’ll use those instead.

 You’ll need a few types of libraries to test your React applications:

 Test runner—You’ll need something to run your tests. Most tests could be exe-
cuted as regular JavaScript files, but you’ll want to take advantage of some of the
added features of test runners, such as running more than one test at a time
and reporting back error or success information in a nicer way.
For this book, you’ll use Jest for most aspects of your testing. Jest is a testing
library developed by engineers at Facebook. Some popular alternatives with fewer
features built in that you might consider include Mocha (https://mochajs.org)
and Jasmine (https://jasmine.github.io). Jest is often used for testing React
apps, but adapters are being created for other frameworks, too. The source
code includes a setup file (test/setup.js) that invokes the adapter for React.

Code is stored

Receives code from `git push`

Lets interested services know

Runs code in test environment

Runs all tests for every single commit

If tests pass, deploy to Heroku

If they fail, let me know and no deploy

Hosts and runs

application code

Figure 9.2 The Letters Social deploy pipeline. A CI build process is triggered when I (or anyone who
contributes to the repository) push code. The CI provider (Circle, in this case) uses Docker containers
to run your tests quickly and reliably. If the tests pass, the code will be deployed to whatever service
you use to run your code. In our case, that’s Now.

www.itbook.store/books/9781617293856

https://itbook.store/books/9781617293856

198 CHAPTER 9 Testing React components

 Test doubles—When writing tests, you want to avoid tying your tests to other frag-
ile or unpredictable parts of your infrastructure as much as possible; other tools
you rely on should be mocked out—replaced with a “fake” function that behaves
in an expected way. Testing this way promotes a focus on the code under test
and modularity because your tests aren’t tied to the exact structure of your code
at a given time. You’ll use Jest for mocking and test doubles, but there are other
libraries that also do this, such as Sinon (http://sinonjs.org).

 Assertion libraries—You can use JavaScript to make assertions about your code
(for example, does X equal Y?), but there are plenty of edge cases that you’ll
need to account for. Developers have created solutions to make writing asser-
tions about your code easier. Jest comes with assertion methods built in, so
you’ll rely on those.

 Environment helpers—Running tests on code that needs to run in a browser envi-
ronment places slightly different demands on you. The browser environment is
unique and includes things like the DOM, user events, and other normal parts
of web applications. These testing tools will help ensure that you can success-
fully emulate a browser environment. You’ll be using Enzyme and the React test
renderer to aid in testing your React components. Enzyme makes testing React
components easier. It provides a robust API that lets you query for different
types of components and HTML elements, set and get props of components,
inspect and set component state, and more. The React test renderer does simi-
lar things and can also generate snapshots of your components. We won’t go
into every aspect of Enzyme or the React test renderer APIs, but feel free to
explore more at http://airbnb.io/enzyme and www.npmjs.com/package/react-
test-renderer.

 Framework-specific libraries—There are libraries specifically made for React (or
other frameworks) that make writing tests for a particular framework easier.
These abstractions are usually developed to aid in the testing of a library or
framework and handle setting up anything needed by the framework. In React,
almost everything is “just JavaScript,” so there’s still little “magic” to be seen
even in these tools.

 Coverage tools—Thanks to the deterministic nature of code, people have figured
out ways to determine which parts of your code are “covered” by tests. That’s
great because you can get a metric that serves as a guideline in determining
how well tested your code is. It’s no substitute for logic and basic analysis (100%
code coverage doesn’t mean you can’t have bugs), but it can guide how you test
your code. You’ll use Jest’s built-in coverage tool, which utilizes a popular tool
called Istanbul (https://github.com/gotwarlost/istanbul).

Next, you’ll get started by installing the tools you’ll be using for your tests. If you
cloned the book repository from GitHub, these tools should already be installed.
Make sure to run npm install again when changing chapters to make sure you have
all the libraries for that chapter.

www.itbook.store/books/9781617293856

https://itbook.store/books/9781617293856

199Writing your first tests

9.3 Writing your first tests
Once you’ve installed the tools you’ll need, you’re ready to start writing some tests. In
this section, you’re going to set up commands to run your tests and start testing some
basic React components. You’ll make assertions about your components and look at
ways to test rendered output of components.

 But before diving in, I should note a few things about Jest and where the code for
your tests will run. Jest can be configured to run in different environments depending
on the sort of tests you’re writing. If you’re writing tests for React applications that run
in the browser, you’ll want to tell Jest that so it can provide the virtual browser environ-
ment you need to properly emulate a real browser. Jest uses another library, jsdom, to
accomplish that. If you’re writing tests for node.js applications, you don’t want the
extra memory and baggage of the jsdom environment—you just want to test your
server-side code. Jest is configured to run browser-oriented tests by default, so you
don’t need to override anything.

9.3.1 Getting started with Jest

To run your tests, as mentioned, you’ll use Jest. You can run Jest from the command
line, and it will execute your tests, so you’re going to add a script to your package.json
file so you can run it. The next listing shows how to add the custom script to your
package.json. If you cloned the repository from GitHub, this script should already
be available.

{
 //...
 "scripts": {

Exercise 9.1 Reviewing types of testing
There are a few different types of testing. To review, try matching the type with the
description of the type of testing.

1 Unit
2 Service
3 Integration

__ Complex, often brittle tests that take a long time to write and run. They test the
way different systems work together at a high level. There are often fewer of these
types of tests than others.

__ Less complex tests that test the way a particular system works, but without inter-
acting with other systems.

__ Low-level, focused tests that focus on testing small bits of functionality. These
should be the most numerous tests in a suite.

Listing 9.1 Setting up a custom npm script (package.json)

www.itbook.store/books/9781617293856

https://itbook.store/books/9781617293856

200 CHAPTER 9 Testing React components

 //...
 "test": "jest --coverage",
 "test:w": "jest –watch --coverage",
 "jest": {
 "testEnvironment": "jsdom",
 "setupFiles": ["raf/polyfill", "./test/setup.js"]
 },
 "repository": {
 "type": "git",
 "url": "git+ssh://git@github.com/react-in-action/letters-social.git"
 },
 "author": "Mark Thomas <hello@ifelse.io>",
// ...

Now that you have a command in place to run your tests (npm test), try it out. You
shouldn’t get any helpful info back yet because there are no tests to run (Jest should
warn you accordingly in your terminal). You can also run npm run test:w to run Jest in
watch mode. That’s helpful when you don’t want to manually run your tests every
time. Jest’s immersive watch mode makes it especially useful to work with—it will do
some work to run only tests that relate to changed files. That’s helpful if you have a
large test suite and don’t want to run every test every time. You can also provide regex
patterns or search by text string to run only particular tests.

Tooling matters
Testing libraries and even testing as a whole sometimes get last consideration
when it comes to evaluating libraries. That’s unfortunate for at least two reasons.
First, unusable testing libraries can make it more difficult for teams to buy into test-
ing their code, potentially causing them to forgo it altogether. That, in turn, gener-
ally results in code that’s harder to maintain, less stable, and more difficult to work
with overall.

Another downside is that if you or your team spends a lot of time writing tests, your
tools can have a substantial impact on your time. That can quickly translate to
money lost by the business because its engineers are taking longer to do the work
they need to do. I’ve seen both results firsthand. If testing wasn’t considered a top
priority from the beginning, it became more and more difficult over time and was
treated as a “one day” kind of thing. The result was code that could be more diffi-
cult to change with confidence because assumptions about functionality were no
longer backed by tests.

Another reason it pays to treat your testing tools as important is that if you do test
your code, a significant time investment will be involved. If you have flaky tests or a
testing setup that takes a long time to run, you can end up losing large chunks of
time on a daily basis. There’s no magic solution to this problem, but treating your
testing tools and setup as first-class issues will often help you greatly in the long run.

Run your tests and
output test coverage.

Run the tests in
watch mode.

Configure Jest; some testing helpers
and stubs are included with the
sample code.

www.itbook.store/books/9781617293856

https://itbook.store/books/9781617293856

201Writing your first tests

9.3.2 Testing a stateless functional component

Time to get started writing some tests. First, we’ll focus on a relatively straightforward
example of testing a component. You’re going to test the Content component. It
doesn’t do much; it just handles rendering a paragraph with content inside of it. The
next listing shows the structure of the component.

import React, { PropTypes } from 'react';

const Content = (props) => {
 const { post } = props;
 return (
 <p className="content">
 {post.content}
 </p>
);
};

Content.propTypes = {
 post: PropTypes.object,
};
export default Content;

One of the first things you can do when starting to write tests is to think about what
assumptions you want to validate. That is, once all the tests pass, they should confirm
certain things to you and act as a sort of guarantee. In fact, one of my favorite things
about tests is that I rely on them to fail when I’m making changes to a particular fea-
ture or part of a system. They back up my assumption that the changes I made repre-
sent a change to the application or system. This makes me much more comfortable
when writing my code because on the one hand I have a record of how things were
supposed to work beforehand, and on the other because I can get a sense of how my
changes affect the application as a whole.

 Let’s look at your component and think about how you might test it. There are a
few assumptions you want to validate about this component. For one, it needs to ren-
der some content that got passed in as a prop. It also needs to assign a class name to a
paragraph element. Aside from that, there’s not much to the component that you
need to focus on. These things should be enough to get you started writing a test.

 You may notice that “React works properly” isn’t one of the things you’re trying to
test here. We also excluded things like “A function can be executed,” “The JSX
transpiler will work,” and some other fundamental assumptions about the technolo-
gies you’re using. These things are important to test, but the tests you’re writing could
never adequately or accurately validate these assumption. These other projects are
responsible for writing their own tests and ensuring that they work. This underscores
the importance of choosing software that’s reliable, well-tested, and kept up-to-date. If
you have serious doubts about React’s reliability, those doubts may be unfounded.

Listing 9.2 Content component (src/components/post/Content.test.js)

Component takes in post props
object and uses content property of
post to render paragraph element

It assigns content
class to paragraph

Inner content of
paragraph element is
content from post

Component is exported—important
because you’ll need to import
component in your tests

www.itbook.store/books/9781617293856

https://itbook.store/books/9781617293856

202 CHAPTER 9 Testing React components

Although not perfect, React is used on some of the most popular web apps in the world,
including Facebook.com and Netflix.com, to name two. There are certainly bugs, but
it’s highly unlikely that you’d encounter them in our straightforward situation.

 You know a few things about the component you want to validate, but you could
have also gone about this the other way if you were starting from scratch and had
written the test first. You may have thought to yourself, “We need a component that
displays content, has a certain type, and has a certain class name so our CSS works.”
You may have then proceeded to write the test that would validate these conditions.
You’re going about it the other way due to how you’ve been learning about React,
but you can see how starting with a test can make things easy: you start out by having
to think through and plan your component. As mentioned, test-driven development
(TDD) is a school of thought that makes writing tests first a central part of software
development.

 Let’s see how to test this component. To do that, you’ll need to write a test suite,
which is a group of tests. Individual tests make assertions (statements about code that
can be true or false) to validate assumptions. For example, a test for your component
would assert that the right class name is set up. If any of your assertions fail, the test
fails. That’s how you know something has inadvertently changed or no longer works in
your app. Listing 9.3 shows how to set up the skeleton of the test.

 Notice that the file for the component ends with .test.js. That’s a convention that
you can choose to follow if you like. Jest will look for files that end in .spec.js or .test.js
and run those tests by default. If you choose to follow a different convention, you’ll
need to explicitly tell Jest about which files you want to run by adding them to the
command line invocation (jest --watch ./my.cool.test.file.js, for example).
You’ll follow the .test.js convention for all your tests.

 It’s also good to note where the test files are placed. Some people choose to place
all their tests in a “mirror” directory called test, usually located in the root directory of
their project. For every file that gets tested, they’ll create a corresponding file in the
test directory. That’s a fine way to structure things, but you can also locate your test
files right next to their source files. You’ll go with this method, but either way is per-
fectly fine.

import React from 'react';
import { shallow } from 'enzyme';
import renderer from 'react-test-renderer';

import { Content } from './Content';

describe('<Content/>', () => {
 test('should render correctly', () => {

 });
});

Listing 9.3 Test skeleton for Content component (src/components/post/Content.test.js)

Import React.
Import related
helper methods

Import component
to be tested

Jest uses Jasmine-style
(https://jasmine.github.io/)
methods like describe to
group tests.

An actual test—the it
function is also provided

globally by jest

www.itbook.store/books/9781617293856

https://itbook.store/books/9781617293856

203Writing your first tests

You may have noticed that there’s nothing special about the describe functions so far.
They’re primarily for organization and for ensuring that you can split your tests into the
appropriate chunks to test different parts of your code. It may not seem like a huge
need for such a small file, but I’ve worked with test files that are 2,000–3,000 lines long
(or more), and I can speak from experience: readable tests help make good tests.

Jest will look for files to test and then execute these different describe and it func-
tions, calling the callback functions you’ve provided to them. But what do you need
to put inside them? You need to set up assertions. To do that, you need something to
assert on. This is where Enzyme comes in; it lets you create a testable version of your
component that you can inspect and make assertions about. You’ll use Enzyme’s
shallow rendering, which will create a lightweight version of your component that
doesn’t perform full mounting or insertion into the DOM. You also need to provide
some mock (fake) data for the component to use. The next listing shows how to add
the test version of the component to your test suite. Before you start writing your
tests, make sure to run the npm run test:w command in your terminal to start the
test runner.

import React from 'react';
import { shallow } from 'enzyme';
import renderer from 'react-test-renderer';

import { Content } from './Content';

describe('<Content/>', () => {
 describe('render methods', () => {
 it('should render correctly', () => {
 const mockPost = {
 content: 'I am learning to test React components',
 };

Write clean tests!
Have you ever read test code that hasn’t gotten the same treatment as the code
that it’s testing? I’ve had this happen to me more than once. It can be confusing or
even frustrating to read through test code that isn’t clean. Tests are just more code,
so they still need to be clean and readable, right? I’ve already mentioned in this
chapter that testing can sometimes take second priority to writing application code.
Test code can be treated as a task that has to be done or even a barrier between
you and the application code, and so standards are lowered. This tendency can be
easy to slip into, but the reality is that poorly written tests can be as bad as poorly
written application code. Tests should serve as another form of documentation for
your code, and one that still has to be read by developers. Remember that test code
should still be clean code.

Listing 9.4 Shallow rendering (src/components/post/Content.test.js)

Create dummy
post object that
component can use

www.itbook.store/books/9781617293856

https://itbook.store/books/9781617293856

204 CHAPTER 9 Testing React components

 const wrapper = shallow(<Content post={mockPost} />);
 });
 });
});

You now have a test component set up that you can make assertions about. To do this,
you’ll use the built-in expect() function from Jest. If you were using a different
assertion library, you might use something else. Remember from earlier that these
assertion libraries are for making assertions easier. For example, checking whether an
object is deeply equal (meaning equal in every one of its properties) can be an involved
task. When writing your tests, you shouldn’t be focusing on implementing tons of new
functionality just to write them—you should be focusing on the code under test.
Assertion helpers and open source libraries make that easier.

 To test the component at hand, you want to make a few assertions we mused about
earlier: class name, inner content, and element type. You’ll also create a snapshot test
using the React test renderer. Snapshot testing is a feature of Jest that allows you to test
the render output of your components in a unique way. Snapshot testing is closely
related to visual regression testing, a process where the visual output of an application
can be compared and checked for differences.

 If a difference in images is found, you know that your test failed and needs adjust-
ing or at least that the output snapshot needs to be updated. Rather than images, Jest
will create JSON outputs for tests and store them in specially named directories.
These should be added to version control along with all your other code. The follow-
ing listing shows how to use Jest, Enzyme, and the React test renderer to make those
assertions.

import React from 'react';
import { shallow } from 'enzyme';
import renderer from 'react-test-renderer';

import Content from '../../../src/components/post/Content';

describe('<Content/>', () => {
 test('should render correctly', () => {
 const mockPost = {
 content: 'I am learning to test React components'
 };
 const wrapper = shallow(<Content post={mockPost} />);
 expect(wrapper.find('p').length).toBe(1);
 expect(wrapper.find('p.content').length).toBe(1);
 expect(wrapper.find('.content').text()).toBe(mockPost.content);
 expect(wrapper.find('p').text()).toBe(mockPost.content);
 });

Listing 9.5 Making assertions (src/components/post/Content.test.js)

Perform shallow rendering of
component and save returned

wrapper for later use

Import enzyme and
react-test-renderer.

Import
component
you want
to test

Use Jasmine-style describe function
to group tests together

Create
mock
post

Use Enzyme’s
shallow method
to render
component

www.itbook.store/books/9781617293856

https://itbook.store/books/9781617293856

205Writing your first tests

 test('snapshot', () => {
 const mockPost = {
 content: 'I am learning to test React components'
 };
 const component = renderer.create(<Content post={mockPost} />);
 const tree = component.toJSON();
 expect(tree).toMatchSnapshot();
 });
});

If your test runner is running, you should see a passing result from Jest. The Jest com-
mand-line tools have greatly improved since the test runner came out, and you should
be able to see important information about your tests in the terminal.

9.3.3 Testing the CreatePost component without Enzyme

Now that you have your first test working, you can move on to testing more complex
components. For the most part, testing React components should be straightforward.
If you find yourself creating a component that has tons of functionality built into it and
subsequently huge tests associated with it, you may want to consider breaking it into
several components (although that’s not always possible).

 The next component you want to test, the CreatePost component, has more
functionality than the Content component did, and your tests will need to address
this added functionality. Listing 9.6 shows the CreatePost component so you can
review it before writing out tests for it. The CreatePost component is used by the
Home component to trigger the submission of new posts. It renders out a textarea
that gets updated when the user types in it and a button that submits the form with
data when a user clicks it. When the user clicks, it invokes a callback function passed
by a parent component. You can test all these assumptions and make sure that
things work as you expect.

import PropTypes from 'prop-types';
import React from 'react';
import Filter from 'bad-words';
import classnames from 'classnames';
import DisplayMap from '../map/DisplayMap';
import LocationTypeAhead from '../map/LocationTypeAhead';
class CreatePost extends React.Component {
 static propTypes = {
 onSubmit: PropTypes.func.isRequired
 };
 constructor(props) {
 super(props);
 this.initialState = {
 content: '',
 valid: false,
 showLocationPicker: false,

Listing 9.6 CreatePost component (src/components/post/Create.js)

Create
snapshot

test using
Jest and

react-test-
renderer

www.itbook.store/books/9781617293856

https://itbook.store/books/9781617293856

206 CHAPTER 9 Testing React components

 location: {
 lat: 34.1535641,
 lng: -118.1428115,
 name: null
 },
 locationSelected: false
 };
 this.state = this.initialState;
 this.filter = new Filter();
 this.handlePostChange = this.handlePostChange.bind(this);
 this.handleRemoveLocation = this.handleRemoveLocation.bind(this);
 this.handleSubmit = this.handleSubmit.bind(this);
 this.handleToggleLocation = this.handleToggleLocation.bind(this);
 this.onLocationSelect = this.onLocationSelect.bind(this);
 this.onLocationUpdate = this.onLocationUpdate.bind(this);
 this.renderLocationControls = this.renderLocationControls.bind(this);
 }
 handlePostChange(event) {
 const content = this.filter.clean(event.target.value);
 this.setState(() => {
 return {
 content,
 valid: content.length <= 300
 };
 });
 }
 handleRemoveLocation() {
 this.setState(() => ({
 locationSelected: false,
 location: this.initialState.location
 }));
 }
 handleSubmit(event) {
 event.preventDefault();
 if (!this.state.valid) {
 return;
 }
 const newPost = {
 content: this.state.content
 };
 if (this.state.locationSelected) {
 newPost.location = this.state.location;
 }
 this.props.onSubmit(newPost);
 this.setState(() => ({
 content: '',
 valid: false,
 showLocationPicker: false,
 location: this.defaultLocation,
 locationSelected: false
 }));
 }
 onLocationUpdate(location) {
 this.setState(() => ({ location }));
 }

www.itbook.store/books/9781617293856

https://itbook.store/books/9781617293856

207Writing your first tests

 onLocationSelect(location) {
 this.setState(() => ({
 location,
 showLocationPicker: false,
 locationSelected: true
 }));
 }
 handleToggleLocation(event) {
 event.preventDefault();
 this.setState(state => ({ showLocationPicker:

!state.showLocationPicker }));
 }
 renderLocationControls() {
 return (
 <div className="controls">
 <button onClick={this.handleSubmit}>Post</button>
 {this.state.location && this.state.locationSelected ? (
 <button onClick={this.handleRemoveLocation}

className="open location-indicator">
 <i className="fa-location-arrow fa" />
 <small>{this.state.location.name}</small>
 </button>
) : (
 <button onClick={this.handleToggleLocation}

className="open">
 {this.state.showLocationPicker ? 'Cancel' : 'Add

location'}{' '}
 <i
 className={classnames(`fa`, {
 'fa-map-o': !this.state.showLocationPicker,
 'fa-times': this.state.showLocationPicker
 })}
 />
 </button>
)}
 </div>
);
 }
 render() {
 return (
 <div className="create-post">
 <textarea
 value={this.state.content}
 onChange={this.handlePostChange}
 placeholder="What's on your mind?"
 />
 {this.renderLocationControls()}
 <div
 className="location-picker"
 style={{ display: this.state.showLocationPicker ? 'block'

: 'none' }}
 >
 {!this.state.locationSelected && (
 <LocationTypeAhead
 onLocationSelect={this.onLocationSelect}

www.itbook.store/books/9781617293856

https://itbook.store/books/9781617293856

208 CHAPTER 9 Testing React components

 onLocationUpdate={this.onLocationUpdate}
 />
)}
 <DisplayMap
 displayOnly={false}
 location={this.state.location}
 onLocationSelect={this.onLocationSelect}
 onLocationUpdate={this.onLocationUpdate}
 />
 </div>
 </div>
);
 }
}

export default CreatePost;

This was a slightly more complicated component than you created in previous chap-
ters. With it you can create posts and add a location to those posts. In my experience,
testing larger and more complex components further highlights the importance of
clean, readable tests. If you can’t read or reason through your test file, how is a future-
you or another developer going to?

 Listing 9.7 shows a suggested skeleton of tests for the CreatePost component. You
don’t have enough methods to make it difficult to read through the tests, but if a com-
ponent had more to it, you might even add nested describe blocks to make it easier
to reason about. The functions in listing 9.7 will be executed by the test runner (Jest
in this case), and within those tests you can make your assertions. Most tests follow this
same sort of pattern. You import the code under test, mock out any dependencies to
isolate your tests to one unit of functionality (hence unit tests), and then a test runner
and assertion library will work together to run your tests.

jest.mock('mapbox');
import React from 'react';
import renderer from 'react-test-renderer';

import CreatePost from '../../../src/components/post/Create';

describe('CreatePost', () => {
 test('snapshot', () => {

 });
 test('handlePostChange', () => {

 });
 test('handleRemoveLocation', () => {

 });
 test('handleSubmit', () => {

Listing 9.7 Testing the CreatePost component (src/components/post/Create.test.js)

Using one describe call here, but
in larger test files you can have
many and even nest them

Create a test for
each method in your
component, including
a snapshot to ensure
it renders correctly

www.itbook.store/books/9781617293856

https://itbook.store/books/9781617293856

209Writing your first tests

 });
 test('onLocationUpdate', () => {

 });
 test('handleToggleLocation', () => {

 });
 test('onLocationSelect', () => {

 });
 test('renderLocationControls', () => {

 });
});

If you follow a consistent pattern of considering each part of your component that
needs to be tested, you’ll be more thorough in developing and testing your compo-
nents. Feel free to follow whatever structure makes the most sense to you—this is just
one that has been helpful for me and for teams I’ve been on. I’ve also found it helpful
to start writing tests by writing out the different describe and test blocks for a com-
ponent or module before writing any other tests. I find that I can more easily think
through the cases I want to cover (with an error, without an error, with a condition,
and so on) if I’m doing that all at once.

With this skeleton setup in place, you can begin testing the CreatePost component,
starting with the constructor. Remember, the constructor is where initial state gets set

What about other types of testing?
You may be wondering about testing such things as user flows, cross-browser test-
ing, and other types of testing I’m not covering here. These other sorts of testing will
generally be focused on by an engineer or engineering team dedicated to specialized
forms of testing. QA teams and SETs (software engineers in test) will generally have
a host of specialized tools that allow them to take your application and simulate all
the complicated flows that might exist.

These types of testing (integration testing) may involve the interaction of one or more
disparate systems. If you remember the testing pyramid from figure 9.1, these tests
can take a lot of time to write, are hard to maintain, and tend to cost a lot of money.
When you think of “testing front-end applications,” you may think these sorts of tests
are what would be involved. We’ve seen that this isn’t the case (most tests that non-
QA engineers write are unit or low-level integration tests). If you’re interested in learn-
ing more about these sorts of tools, here are a few you could use as a springboard
to learn more about higher-level testing:

 Selenium—www.seleniumhq.org
 Puppeteer—https://github.com/GoogleChrome/puppeteer
 Protractor—www.protractortest.org/#/

www.itbook.store/books/9781617293856

https://itbook.store/books/9781617293856

210 CHAPTER 9 Testing React components

up, class methods get bound, and other setup can occur. To test this part of the
CreatePost component, we need to introduce another tool I mentioned earlier:
Sinon. You need some test functions that you can give to your component for use that
aren’t dependent on other modules. With Jest you can create mock functions for your
test that help keep your tests focused on the component itself and prevent you from
tying all your code together. Remember how I said tests should break when you
change your code? That’s true, but changing one test also shouldn’t break other tests.
As with regular code, your tests should be decoupled and only care about the slice of
code they’re testing.

 Jest’s mock functions not only help us isolate our code, they help us make more
assertions. You can make assertions about how your component used the mock func-
tion, whether it was called, what arguments it was called with, and more. The follow-
ing listing shows setting up the snapshot test for your component and mocking some
basic props your component needs using Jest.

jest.mock('mapbox');
import React from 'react';
import renderer from 'react-test-renderer';

import CreatePost from '../../../src/components/post/Create';

describe('CreatePost', () => {
 test('snapshot', () => {
 const props = { onSubmit: jest.fn() };
 const component = renderer.create(<CreatePost {...props} />);
 const tree = component.toJSON();
 expect(tree).toMatchSnapshot();
 });
 //...
});

Now that you have one test under your belt, you can test some other aspects of the
component. The component is primarily responsible for allowing users to create posts
and attach locations to them, so you need to test those areas of functionality. You’ll
start by testing post creation. The next listing shows how to test post creator methods
in your component.

jest.mock('mapbox');
import React from 'react';
import renderer from 'react-test-renderer';

import CreatePost from '../../../src/components/post/Create';

Listing 9.8 Writing your first test (src/components/post/Create.test.js)

Listing 9.9 Testing post creation (src/components/post/Create.test.js)

Use jest.mock function to tell
Jest to use a mock instead of the
module when running tests

Create test block within outer
describe block you created earlier

Create mock props object
and use Jest’s to create
mock function

Use React test renderer
to create your component

and pass in props

Call toJSON method to
generate a snapshot

Assert that
snapshot
matches

www.itbook.store/books/9781617293856

https://itbook.store/books/9781617293856

211Writing your first tests

describe('CreatePost', () => {
 test('snapshot', () => {
 const props = { onSubmit: jest.fn() };
 const component = renderer.create(<CreatePost {...props} />);
 const tree = component.toJSON();
 expect(tree).toMatchSnapshot();
 });
 test('handlePostChange', () => {
 const props = { onSubmit: jest.fn() };
 const mockEvent = { target: { value: 'value' } };
 CreatePost.prototype.setState = jest.fn(function(updater) {
 this.state = Object.assign(this.state, updater(this.state));
 });

 const component = new CreatePost(props);
 component.handlePostChange(mockEvent);
 expect(component.setState).toHaveBeenCalled();
 expect(component.setState.mock.calls.length).toEqual(1);
 expect(component.state).toEqual({
 valid: true,
 content: mockEvent.target.value,
 location: {
 lat: 34.1535641,
 lng: -118.1428115,
 name: null
 },
 locationSelected: false,
 showLocationPicker: false
 });

 });
 test('handleSubmit', () => {
 const props = { onSubmit: jest.fn() };
 const mockEvent = {
 target: { value: 'value' },
 preventDefault: jest.fn()
 };
 CreatePost.prototype.setState = jest.fn(function(updater) {
 this.state = Object.assign(this.state, updater(this.state));
 });

 const component = new CreatePost(props);
 component.setState(() => ({
 valid: true,
 content: 'cool stuff!'
 }));
 component.state = {
 valid: true,
 content: 'content',
 location: 'place',
 locationSelected: true
 };
 component.handleSubmit(mockEvent);
 expect(component.setState).toHaveBeenCalled();
 expect(props.onSubmit).toHaveBeenCalledWith({

Create mock set
of props to use

Mock setState
so you can

make sure your
component calls

it and that
updating post
updates state

in the right way.

Directly instantiate
component and
call its methods

Assert that your
component invokes

the right methods and
that method updated

state correctly

Create another mock
event to simulate what
your component will
receive from an event

Mock
setState

again.
Instantiate another
component and set state of
component to simulate user
entering post content

Directly modify
component’s state
(for testing purposes)

Handle post submission
with mock event you
created and assert that
mocks were called

www.itbook.store/books/9781617293856

https://itbook.store/books/9781617293856

212 CHAPTER 9 Testing React components

 content: 'content',
 location: 'place'
 });
 });
});

Finally, you want to test the remainder of the component’s functionality. Aside from let-
ting users create posts, the CreatePost component also handles the user picking a loca-
tion. Other components handle updating the location via callbacks passed as props, but
you still need to test the component methods on CreatePost related to this feature.

 Remember you implemented a subrender method on CreatePost, which you used
to make reading the render method’s output of CreatePost easier and to reduce clut-
ter. You can test this in a similar way that you’ve been testing components with Enzyme
or the React test renderer. The following listing shows the rest of the tests for the
CreatePost component.

jest.mock('mapbox');
import React from 'react';
import renderer from 'react-test-renderer';

import CreatePost from '../../../src/components/post/Create';

describe('CreatePost', () => {
 test('handleRemoveLocation', () => {
 const props = { onSubmit: jest.fn() };
 CreatePost.prototype.setState = jest.fn(function(updater) {
 this.state = Object.assign(this.state, updater(this.state));
 });
 const component = new CreatePost(props);
 component.handleRemoveLocation();
 expect(component.state.locationSelected).toEqual(false);
 });
 test('onLocationUpdate', () => {
 const props = { onSubmit: jest.fn() };
 CreatePost.prototype.setState = jest.fn(function(updater) {
 this.state = Object.assign(this.state, updater(this.state));
 });
 const component = new CreatePost(props);
 component.onLocationUpdate({
 lat: 1,
 lng: 2,
 name: 'name'
 });
 expect(component.setState).toHaveBeenCalled();
 expect(component.state.location).toEqual({
 lat: 1,
 lng: 2,
 name: 'name'
 });
 });

Listing 9.10 Testing post creation (src/components/post/Create.test.js)

Mock
setState

Invoke handleRemove-
Location function

Assert that
you updated

state in
correct
manner

Repeat same
process for rest of

your component
methods

www.itbook.store/books/9781617293856

https://itbook.store/books/9781617293856

213Writing your first tests

 test('handleToggleLocation', () => {
 const props = { onSubmit: jest.fn() };
 const mockEvent = {
 preventDefault: jest.fn()
 };
 CreatePost.prototype.setState = jest.fn(function(updater) {
 this.state = Object.assign(this.state, updater(this.state));
 });
 const component = new CreatePost(props);
 component.handleToggleLocation(mockEvent);
 expect(mockEvent.preventDefault).toHaveBeenCalled();
 expect(component.state.showLocationPicker).toEqual(true);
 });
 test('onLocationSelect', () => {
 const props = { onSubmit: jest.fn() };
 CreatePost.prototype.setState = jest.fn(function(updater) {
 this.state = Object.assign(this.state, updater(this.state));
 });
 const component = new CreatePost(props);
 component.onLocationSelect({
 lat: 1,
 lng: 2,
 name: 'name'
 });

 test('onLocationSelect', () => {
 const props = { onSubmit: jest.fn() };
 CreatePost.prototype.setState = jest.fn(function(updater) {
 this.state = Object.assign(this.state, updater(this.state));
 });
 const component = new CreatePost(props);
 component.onLocationSelect({
 lat: 1,
 lng: 2,
 name: 'name'
 });
 expect(component.setState).toHaveBeenCalled();
 expect(component.state.location).toEqual({
 lat: 1,
 lng: 2,
 name: 'name'
 });
 });

 test('renderLocationControls', () => {
 const props = { onSubmit: jest.fn() };
 const component = renderer.create(<CreatePost {...props} />);
 let tree = component.toJSON();
 expect(tree).toMatchSnapshot();
 });
});

9.3.4 Test coverage

Now that you’ve gotten your hands dirty testing some components, let’s look at test
coverage and see what progress you’ve made. In your terminal, stop the test runner

Repeat
same

process for
rest of your
component

methods

Create another snapshot
test for subrender
method you created

www.itbook.store/books/9781617293856

https://itbook.store/books/9781617293856

214 CHAPTER 9 Testing React components

and execute the command shown in the next listing. This command will turn on the
coverage option included in Jest.

> npm run test:w

Once your test runner finishes executing tests, it should output a colored table that
should look something like figure 9.3 (with less coverage). The figure shows the Jest

Listing 9.11 Enabling test coverage (project root)

Total % lines of
the file covered

% of functions
covered by tests

% of logical branches
covered by tests

Source files

% of statements
covered by tests

Lines of source files that tests
don’t run through at all

Figure 9.3 Test coverage output from Jest shows coverage stats for the different files in your project. Each
column reflects a different aspect of coverage. For each type of coverage, Jest shows a percentage covered.
Statements and functions are simply JavaScript statements and functions, whereas branches are logical branches.
If your test doesn’t address one part of an if statement, that should be reflected in the code coverage both in the
uncovered lines column and in the percent-covered stat for branches.

www.itbook.store/books/9781617293856

https://itbook.store/books/9781617293856

215Writing your first tests

coverage output with annotations about each of the columns. There are different
forms of readable code coverage reports (HTML, for example), but the terminal out-
put is most useful during development because it provides immediate feedback.

 Istanbul is the tool generating the stats in figure 9.3. If you want to see more detailed
coverage information, open the coverage directory that should have been generated by
the jest command that included the coverage option. In this directory, Istanbul should
have created a few files. If you open ./coverage/lcov-report/index.html in a browser,
you should see something like figure 9.4.

The Istanbul output is useful, but you can also drill down into different files and get
more in-depth information about individual files. Each file should display information
about how many times different lines were covered and which ones weren’t. Most of the
time the top-level summary is good enough, but sometimes you may want to inspect
individual reports, like the one in figure 9.5. When I’m writing tests, I like to take at
least one look at these files once I’ve covered all my cases to make sure I didn’t miss
any edge cases or logical branches.

 Test coverage is an important and useful tool for software development, but don’t
treat it as a magical guarantee that your code works. You can get to 100% coverage
and still have code that breaks. You can technically also have code that works with 0%
code coverage. Coverage is about making sure your tests are executing all the different
parts of your code—not guaranteeing a lack of errors or things like performance—
but it’s useful for that and should be treated as an important data point when consid-
ering how “complete” your code is. I’ve been on teams where our definition of success
for a particular user story or task included, among other things, code coverage above

Figure 9.4 Istanbul generates coverage metadata in computer-readable and human-readable formats. The
coverage report shown here is useful for more detailed exploration of code coverage. You can even sort by different
columns and prioritize files with low coverage. Note that there are columns for statements, branches (if/else
statements), functions (which functions were called), and lines (lines of code).

www.itbook.store/books/9781617293856

https://itbook.store/books/9781617293856

216 CHAPTER 9 Testing React components

80% and no decreased coverage overall. Use coverage as a guideline for which parts of
your code you have or haven’t tested and to check your testing progress.

9.4 Summary
In this chapter, you learned about some of the principles behind testing and how to
test React applications:

 Testing is the process of validating assumptions made about software. It helps
you better plan your components, prevents breakage in the future, and helps
increase confidence in your code. It also plays an important role in a rapid
development process.

 Manual testing doesn’t scale well because no number of people could ever
quickly or adequately test complex software well.

 We use a variety of tools in the software testing process, ranging from tools that
run our tests to tools that determine how much of our code is covered by tests.

 Different types of tests should occur in different proportions. Unit tests should
be the most common and are easy, cheap, and quick to write. Integration tests
test the interaction of many different parts of the system and can be brittle and
take longer to write. They should be less common.

 You can test React components using a variety of tools. Because they’re just
functions, you could test them strictly as such. But tools like Enzyme make test-
ing React components easier.

Exercise 9.2 Considering coverage
We talked about test coverage in this chapter. Does 100% test coverage mean that
your code is perfect? What role should code coverage play in your testing?

Figure 9.5 Individual file coverage report generated by Istanbul. You can see how many times different lines were
or weren’t covered and get a sense for exactly which parts of your code were covered.

www.itbook.store/books/9781617293856

https://itbook.store/books/9781617293856

217Summary

 Clean tests, like any clean code, are easy to read and well organized and use
appropriate proportions of unit, service, and integration tests. They should pro-
vide meaningful assurance that things function in a particular manner and
should guarantee that changes to your component can be evaluated.

In the next chapter, we’ll look at a more robust implementation of the Letters Social
app and explore the Redux architectural pattern. Before moving on, see if you can
keep honing your testing skills and get test coverage for the app up above 90%!

www.itbook.store/books/9781617293856

https://itbook.store/books/9781617293856

Mark Tielens Thomas

F
acebook created React to help deliver amazing user experi-
ences on a website with thousands of components and an
incomprehensible amount of traffi c. The same powerful

tools are available to you too! The key is a clever design for
managing state, data fl ow, and rendering, so your application
is easy to think about and runs smoothly. Add an incredibly
rich ecosystem of components and libraries, and you’ve got a
recipe for building web apps that will delight both developers
and users.

React in Action teaches you to think like a pro about user
interfaces and building them with React. This practical book
gets you up and running quickly with hands-on examples in
every chapter. You’ll master core topics like rendering, lifecycle
methods, JSX, data fl ow, forms, routing, integrating with
third-party libraries, and testing. And the included application
design ideas will help make your apps pop. As you learn to
integrate React into full-stack applications, you’ll explore state
management with Redux and server-side rendering, and even
dabble in React Native for mobile UIs.

What’s Inside
● React from the ground up
● Implementing a routing system with components
● Server-side rendering in Node.js
● Working with third-party libraries
● Testing React components

Written for developers familiar with HTML, CSS, and
JavaScript.

Mark Thomas is an experienced software engineer who works
daily with React, JavaScript, and Node.js. He loves clean code,
beautiful systems, and good coffee.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit www.manning.com/books/react-in-action

$44.99 / Can $59.99 [INCLUDING eBOOK]

React IN ACTION

JAVASCRIPT/WEB DEVELOPMENT

M A N N I N G

“Read this. Work with
 React. Never look back.”

—Michal Paszkiewicz
Transport for London

“One stop—for concepts
as well as for real-world

 examples and integrations.”
—Phaneendra Bommareddy

Openlogix

“A must-have for anyone
wanting to create applications

using React and Redux!”—Andrew Courter, Pivotal

“Easy to follow, clearly
demonstrates all necessary

steps, includes plenty of code
examples, and never leaves

you in the dark.”
—Olivier Ducatteeuw
University of Leuven

See first page

www.itbook.store/books/9781617293856

https://itbook.store/books/9781617293856

