
SAMPLE CHAPTER

www.itbook.store/books/9781617293863

https://itbook.store/books/9781617293863

JavaScript on Things

by Lyza Danger Gardner

Chapter 1

Copyright 2018 Manning Publications

www.itbook.store/books/9781617293863

https://itbook.store/books/9781617293863

brief contents

PART 1 A JAVASCRIPTER’S INTRODUCTION TO HARDWARE...................1

1 ■ Bringing JavaScript and hardware together 3

2 ■ Embarking on hardware with Arduino 26

3 ■ How to build circuits 48

PART 2 PROJECT BASICS: INPUT AND OUTPUT WITH JOHNNY-FIVE79

4 ■ Sensors and input 81

5 ■ Output: making things happen 107

6 ■ Output: making things move 144

PART 3 MORE SOPHISTICATED PROJECTS179

7 ■ Serial communication 181

8 ■ Projects without wires 214

9 ■ Building your own thing 253

v

www.itbook.store/books/9781617293863

https://itbook.store/books/9781617293863

vi BRIEF CONTENTS

PART 4 USING JAVASCRIPT WITH HARDWARE IN

OTHER ENVIRONMENTS ..295

10 ■ JavaScript and constrained hardware 297

11 ■ Building with Node.js and tiny computers 332

12 ■ In the cloud, in the browser, and beyond 375

www.itbook.store/books/9781617293863

https://itbook.store/books/9781617293863

Part 1

A JavaScripter’s
 introduction to hardware

This part of the book will introduce you to the fundamentals of embedded
systems and electronic circuits. In chapter 1, you’ll learn what embedded systems
are and how to analyze their constituent components. We’ll spend some time
looking at what it means for JavaScript to “control” hardware, and we’ll examine
the different ways that JavaScript and electronics can work together.

 You’ll meet the Arduino Uno R3 development board in chapter 2, which
we’ll use with all of the experiments through chapter 7. You’ll learn what the
main parts of development boards do and how they interact with other software
and hardware components. You’ll try out some basic LED experiments with the
Uno using both the Arduino IDE and the Johnny-Five Node.js framework.

 Chapter 3 will teach you the key fundamentals of electronic circuitry, diving
into Ohm’s law and the relationships between voltage, current, and resistance.
You’ll work on a breadboard, constructing series and parallel circuits that con
tain multiple LEDs.

 When you’re finished with this part of the book, you’ll have grasp of the basic
embedded-system underpinnings and core circuit concepts. You’ll be ready to
start building small, JavaScript-controlled projects with different kinds of inputs
and outputs.

www.itbook.store/books/9781617293863

https://itbook.store/books/9781617293863

www.itbook.store/books/9781617293863

https://itbook.store/books/9781617293863

Bringing JavaScript
 and hardware together

This chapter covers
 Components and hardware involved in hobbyist

projects and the “internet of things”

 Common components of embedded systems

 Different methods for using JavaScript with
embedded systems

 Tools and supplies you’ll need to start building

As a JavaScript-savvy web developer, you make logical alchemy happen every day.
But now it’s possible to wield your software-development skills in a new way, to pro
gram and control things in the real world. In this chapter, you’ll learn about the
hardware involved in different kinds of projects and devices, and you’ll also see
how JavaScript and hardware can work together.

 We’re surrounded by little magical things that blend the physical world with the
realm of the logical, connected, and virtual (figure 1.1). A keychain that broadcasts
its location wirelessly so you can find it with an app on your smartphone. A plant
pot that makes whining noises when it needs to be watered, or, better yet, sends you

3

www.itbook.store/books/9781617293863

https://itbook.store/books/9781617293863

4 CHAPTER 1 Bringing JavaScript and hardware together

Figure 1.1 Oh, the magical things in our world!

a petulant text message. Billions of such objects blink, beep, tweet, automatically dim
the lights, make customized pots of tea, and otherwise perform their specialized
duties across the planet.

 It’s fun to build this stuff. The creativity involved when crafting with these kinds of
physical gadgets, the grassroots charm of inventive homebrew projects—these are the
kinds of things that hold appeal for web developers. We’re cut out for prototyping,
experimenting with new technologies, and blazing our own trails.

 But getting started can be intimidating. When we see all the wires and compo
nents, hear the jargon, stand on the outside looking in at hardware-hacking commu
nities, the kinds of skills involved can feel formidable, foreign. As a JavaScript
developer, you may be faced with some hurdles—perceived complexity, overabundant
and scattered information, conflation of hardware and software concepts—as you
make your tentative first forays into the world of physical hardware.

 We’re going to use your JavaScript know-how as an advantage, an aid to learning how
to design and build the kinds of things that make up the “internet of things” (IoT) and
inspire hardware hackers. You’ll be able to use your software-development skills to skip
past some distractions and get focused, quickly, on the new skills you need to learn.

 To get a feel for the journey we’re taking, let’s first take a look at the kinds of
things you’ll be learning to build. Let’s explore what we mean, exactly, when we say
things or hardware.

1.1 The anatomy of hardware projects
We could build a little gadget that would automatically turn a fan on when it gets
warm. This miniature, independent climate-control device would continuously moni
tor the temperature of the surrounding environment. When it gets too hot, the fan
comes on. When it’s nice and cool again, the fan turns off.

www.itbook.store/books/9781617293863

https://itbook.store/books/9781617293863

5 The anatomy of hardware projects

 While we wouldn’t win any prestigious awards for the invention of this admittedly
pedestrian contrivance, its basic ingredients are common to the other—more inspir
ing—things you’ll learn to build.

1.1.1 Inputs and outputs

The most important thing—really the only thing—our temperature-triggered device
needs to do is turn a fan on when it’s too toasty and turn it back off again when the
area around it has cooled off. The motor-driven fan is an example of an output device.

 To get continuous information about the temperature of the immediate environ
ment—so that the device can make decisions about when to turn the fan on or off—
we need data from an input, in this case a temperature sensor (figure 1.2).

Inputs provide incoming data to the system, and sensors are a type of input that pro
vides data about the physical environment. There are all kinds of sensors you can use
in projects: sensors for light, heat, noise, vibration, vapors, humidity, smells, motion,
flames—you name it. Some, like our fan’s temperature sensor, provide simple data—
just a single value representing temperature—whereas others, like GPS or accelerome
ters, produce more elaborate data.

 A project’s outputs represent its net functionality to someone using it. Blinking
lights, irritating beeping sounds, status readouts on LCD screens, a robotic arm mov
ing sideways—all these are kinds of outputs. For this project, the fan is the sole output.

 Not all inputs and outputs necessarily manifest in the physical world. A customer
encountering an error when trying to order a product online (virtual input) might
cause a red light to go on (physical output) on a device sitting on a support technician’s
desk. Conversely, a change in soil humidity (physical sensor input) might cause a plant
pot to send a demanding text message (virtual output).

Figure 1.2 The automatic fan system needs to take input from a temperature sensor and
manage the output of a motorized fan.

www.itbook.store/books/9781617293863

https://itbook.store/books/9781617293863

6 CHAPTER 1 Bringing JavaScript and hardware together

1.1.2 Processing

Our automatic fan also needs a brain, something that can pay attention to the tem
perature sensor’s readings and turn the fan on when it gets too warm. The kind of
brain it needs is in fact a tiny computer: a processor, some memory, and the ability to
process inputs and control outputs. When processor, memory, and I/O functionality
are contained in a single physical package, we call the resulting chip a microcontroller
(figure 1.3).

Figure 1.3 The automatic fan needs a brain. A popular option is a microcontroller, which combines
a processor, memory, and I/O capabilities in a single package.

Microcontrollers (MCUs) aren’t as powerful as the general-purpose processors in lap
tops. Most can’t run a full operating system (most, not all, as you’ll see), but they’re
cheap, reliable, small, and consume minimal power—that’s why they’re positively
ubiquitous in hardware projects and products like our apocryphal automatic fan.

1.1.3 Power, circuits, and systems

We’ve now got input, output, and a brain—time to pull the bits together into a system.
We’ll need to connect the components using one or more electronic circuits and pro
vide some power. Constructing a system involves both circuit design and the manipu
lation of components in physical space (figure 1.4).

 Connecting wires directly to a microcontroller’s tiny pins would require solder and
a very steady hand. Not to mention that we’d end up with a lot of loose parts awk
wardly floating around. To aid hardware developers, microcontrollers are often
mounted onto physical development boards (figure 1.5). Among other things, boards
make it easier to connect I/O devices to the microcontroller.

www.itbook.store/books/9781617293863

https://itbook.store/books/9781617293863

7 The anatomy of hardware projects

Figure 1.4 A rough schematic drawing showing how the fan’s inputs, outputs, and microcontroller
are connected in a system with power and circuitry. Don’t stress out if the symbols are new to you—
you’ll be learning about circuitry as we continue our journey.

Figure 1.5 Microcontroller-based development boards make it more convenient to connect input
and output devices.

www.itbook.store/books/9781617293863

https://itbook.store/books/9781617293863

8 CHAPTER 1 Bringing JavaScript and hardware together

A development board helps, but we’re still left with a number of loose wires and com
ponents. To help corral this, hardware developers use a prototyping tool called a
breadboard (figure 1.6) to lay out circuits in physical space.

Figure 1.6 A breadboard
provides an electrically
connected grid on which to
prototype electronic circuits.

1.1.4 Logic and firmware

Our hardware design is moving along, but you might be wondering how the microcon
troller knows what to do. There’s logic involved here, as shown in the following listing:
listening to the sensor, making decisions, sending instructions to turn the fan on or off.

Listing 1.1 Pseudo-code for temperature-triggered fan logic

initialize temperatureSensor

initialize outputFan

initialize fanThreshold to 30 (celsius temperature)

loop main

read temperatureSensor value into currentTemp

if currentTemp is greater than fanThreshold

if outputFan is off

turn outputFan on

www.itbook.store/books/9781617293863

https://itbook.store/books/9781617293863

9 The anatomy of hardware projects

else if currentTemp is less than or equal to fanThreshold

if outputFan is on

turn outputFan off

The dominant language for programming microcontrollers has long been C (or C-like
derivatives). Writing C for microcontrollers tends to be platform-specific and can be quite
low-level. References to specific memory addresses and bitwise operations are common.

The code is compiled to architecture-specific assembly code. To get the code into the
project, it is physically uploaded, or flashed, to the microcontroller’s program memory.

 This program memory is usually non-volatile memory—ROM, the kind of memory
that lets the microcontroller “remember” the program even if it’s powered off (in con
trast with RAM, which only retains its contents if it’s powered). The space available for
programs is constrained, often on the order of a few tens of kilobytes, meaning pro
grams that run on microcontrollers need to be carefully optimized.

 Once the program is flashed to the microcontroller, it functions as the microcon
troller’s firmware—when powered, the microcontroller runs the program continuously
until it’s programmed with something different (or otherwise reset).

 For JavaScript developers accustomed to higher-level logic, this lower-level specific
ity may feel off-putting. Fret not. This is where JavaScript can help us, allowing us to
write programs for microcontroller-based hardware without having to use C or tangling
ourselves up in the nitty-gritty of hexadecimal register addresses right off the bat.

The process of getting program firmware onto microcontrollers has also become a
lot easier thanks both to advances in chip technology and the wide availability of
hobbyist-friendly development boards (figure 1.7).

Figure 1.7 Non-volatile program memory (EEPROM and Flash) and user-friendly boards have
made it easier to program microcontrollers with firmware.

www.itbook.store/books/9781617293863

https://itbook.store/books/9781617293863

10 CHAPTER 1 Bringing JavaScript and hardware together

EEPROM (electrically erasable programmable ROM), exemplified by the well-known
flash memory medium, is commonly used in microcontrollers. This kind of rewritable
memory makes it feasible to reprogram microcontrollers over and over again with dif
ferent logic.

Development boards, in addition to making I/O connections easier, also aid hard
ware hackers by providing convenient interfaces for programming the board’s micro
controller (USB is quite common). This alleviates the need for specialized hardware
programming devices. These days, programming microcontrollers is often as easy as
plugging in a USB cable and clicking a button in an IDE.

1.1.5 Enclosures and packaging

Our fan’s design is almost done. But we can take it to the next level by packaging the
auto-fan inside a nice enclosure—embedding our system inside of something, where its
wires and circuits will be hidden from view (figure 1.8). Ta-da!

1.1.6 Embedded systems

Though the term embedded system can sound a bit formal or forbidding, it’s not really
too complicated. A tiny computer combining processor, memory, and I/O forms the
brain. As you saw with our automatic fan, connecting the inputs, outputs, and micro
computer together and giving them power creates an independent system. We say it’s
embedded because it’s often squirreled away inside of something—an enclosure, a teddy
bear, a washing machine’s control panel, an umbrella.

 Though an automatic fan, an umbrella that lights up when it rains, and a tweeting
teddy bear don’t seem immediately similar, they have more in common than you
might think. These examples, along with the majority of hardware projects and
devices that form the IoT, can be described as embedded systems.

 Now let’s see how JavaScript fits into the picture.

Figure 1.8 The completed, packaged,
automatic fan is an example of an
embedded system. Inputs and outputs
are processed by a microcontroller-based
microcomputer and supported by power
and circuitry. And the whole thing is
hidden inside a pretty fancy box,
because, why not?

www.itbook.store/books/9781617293863

https://itbook.store/books/9781617293863

11 How JavaScript and hardware work together

1.2 How JavaScript and hardware work together
When combining JavaScript with embedded systems, we still build electronic circuits
in the same way as we would for other types of hardware projects. There are still inputs
and outputs, wires and components. However, instead of using assembly code or C to
define what the project’s microcontroller or processor does, we use JavaScript.

 There are several ways to do this, different methods for using JavaScript to provide
the logic for hardware projects. These methods are categorized based on where the
JavaScript logic itself executes: on a host computer separate from the embedded sys
tem, on the embedded system’s microcontroller, or somewhere else entirely.

1.2.1 Host-client method

To get around the constraints of certain microcontrollers, the host-client method allows
you to execute JavaScript on a more powerful host computer. As the host runs the
code, it exchanges instructions and data with the embedded hardware, which behaves
like a client (figure 1.9).

 Many microcontrollers have limitations that impact their ability to run JavaScript.
Program memory is constrained, meaning that complex programs either won’t fit or

Figure 1.9 The host-client method of controlling hardware with JavaScript

www.itbook.store/books/9781617293863

https://itbook.store/books/9781617293863

12 CHAPTER 1 Bringing JavaScript and hardware together

have to be greatly optimized. Also, many inexpensive microcontrollers are built with 8
or 16-bit architectures running at clock speeds that are low relative to, say, desktop
computers. Most wouldn’t be up to the task of running an operating system, ruling
out the ability to run a Node.js or other JavaScript runtime directly on the chip.

 Instead, the host-client method involves executing JavaScript logic on a host com
puter, such as your laptop, which does have the brawn necessary to run a full OS. The
host machine is able to run Node.js and can make use of the worldwide JavaScript soft
ware ecosystem (including npm and the web).

 The trick to getting this setup to work is to make the client hardware (such as the
microcontroller) and host system (your laptop) communicate with each other using a
mutually intelligible “language”—a common API (figure 1.10).

To configure our automatic fan system to use this method, we’d first need to pre
pare the embedded hardware by uploading special firmware to the microcontroller’s
program memory. Instead of a specific, single-purpose program for controlling the
fan, this firmware program makes the microcontroller able to communicate back and
forth with other sources that speak the same “language” (the API). That is, it turns the
microcontroller-based hardware into a client, all ears and ready to do the bidding of
the host computer (figure 1.11).

Figure 1.10 For host computer and client hardware to communicate
in this method, they both need to use a common API.

www.itbook.store/books/9781617293863

https://itbook.store/books/9781617293863

13 How JavaScript and hardware work together

Figure 1.11 Specific firmware converts
the microcontroller into a client.

The hardware is now ready to communicate—the next step is to write software for the
fan, using the host computer. For the hardware and software to understand each
other, the host computer needs to bark out instructions in a language the microcon
troller can comprehend. To make this happen, we can write code using a library or
framework that implements the common API (figure 1.12).

Figure 1.12 The host also
needs to communicate
using the common API.

www.itbook.store/books/9781617293863

https://itbook.store/books/9781617293863

14 CHAPTER 1 Bringing JavaScript and hardware together

The host is connected to the client hardware, either with a physical, cabled connec
tion (often USB) or wirelessly (WiFi or Bluetooth).

 Then we execute the fan-controlling JavaScript on the host computer. The host
continuously communicates instructions for running the fan to the client. The client
can also send messages back to the host, such as data from the temperature sensor
(figure 1.13).

 Don’t panic, you won’t have to write low-level firmware protocol API software!
There are straightforward, open source options for firmware and Node.js frameworks
that implement those firmware protocols, so you can write your host-side JavaScript
logic with minimal fuss.

 The benefits of the host-client approach are that it’s easy to set up and it’s sup
ported on many platforms. What’s more, it gives you access to the entire Node.js eco
system, while avoiding the performance and memory constraints of inexpensive
microcontrollers. The downside is that the client hardware is helpless without the
host—it can only do its thing when the host computer is actively running the software.

 We’ll go wireless eventually, but we’ll be starting out with the simplest of host-client
options—USB tethering. That means that, for a while, your projects will be physically
attached to your computer.

Figure 1.13 As the host executes the JavaScript logic, instructions and data are continuously exchanged
between client and host, using a common API.

www.itbook.store/books/9781617293863

https://itbook.store/books/9781617293863

15 How JavaScript and hardware work together

1.2.2 Embedded JavaScript

With embedded JavaScript, the JavaScript logic to control the project runs directly on the
hardware’s microcontroller.

 Many microcontrollers aren’t up to running JavaScript natively, but some are. As
you’d expect with the march of technology, inexpensive microcontrollers are getting
more advanced. It has become possible to run JavaScript, or an optimized variant of
JavaScript, directly on certain embedded processors.

 Each embedded-JavaScript platform is a combination of hardware and software
ingredients working in tandem. On the hardware side, development boards up to the
task of running code natively are based on more capable (but still cheap) chips.

Most platforms also provide a suite of software tools to complement their hard
ware. There may be a library or framework to use for writing compatible JavaScript
code and a CLI (command-line interface) or other method for preparing the code
and uploading it to the microcontroller.

 Espruino (www.espruino.com) is an example of a JavaScript-based embedded plat
form. Espruino’s flavor of JavaScript combines optimized core JavaScript with an API
of hardware-relevant features. For example, you write code for the Espruino Pico
board in a web-based IDE and upload it to the board via USB (figure 1.14). To adapt
our automatic fan for an Espruino board, we’d need to write the logic using Espru
ino’s API.

 Another example of embedded JavaScript is the Tessel 2 (https://tessel.io/), a
Node.js-based development platform. You can control and deploy code to your Tessel

Figure 1.14 The Espruino platform combines small hardware boards with an IDE development environment.

www.itbook.store/books/9781617293863

https://tessel.io/
http://www.espruino.com
https://itbook.store/books/9781617293863

16 CHAPTER 1 Bringing JavaScript and hardware together

Figure 1.15 The Tessel 2 is an open source platform that runs Node.js natively.

using the tessel-cli npm module—wirelessly, if you like, because Tessel 2 has built-
in WiFi (figure 1.15).

 Being able to run JavaScript directly on embedded hardware can be power-
efficient and self-contained. Projects are independent systems that can run on their
own. Unlike the host-client setup, which requires firmware to translate from JavaScript
to machine code, there are (usually) fewer layers of abstraction between your
JavaScript and the hardware.

 This sounds great, and you might wonder why we wouldn’t use this approach
exclusively. There are a few downsides. For one, there are fewer hardware options at
the moment. Also, each platform has its own platform-specific techniques (software,
tools, methodology), which can muddy the waters when learning hardware basics.
Most also have certain limitations, either in JavaScript language feature support or in
the types of inputs and outputs supported. But it’s an inspiring method with a very
bright future.

1.2.3 Other hardware-JavaScript combinations

Aside from the host-client method and running embedded JavaScript, there are a few
other ways to combine JavaScript with hardware projects.

 Tiny, single-board computers (SBCs) blend the host and the client into one unit. Cloud-
based services make it possible to write JavaScript code online and deploy it wirelessly

www.itbook.store/books/9781617293863

https://itbook.store/books/9781617293863

17 How JavaScript and hardware work together

to hardware. And emerging, new, and experimental features in web browsers them
selves may offer a portal into the world of hardware for millions of web developers.

RUNNING JAVASCRIPT ON TINY COMPUTERS (SBCS)
Single-board computers (SBCs) like the Raspberry Pi family and BeagleBone Black
can run full OS environments (typically Linux), and, by extension, Node.js. Instead of
an 8- or 16-bit microcontroller, SBCs have higher-performance, general-purpose pro
cessors. But many SBCs also have I/O pins and capabilities built right into the same
board (figure 1.16).

 Using an SBC to control a hardware project blends aspects of both the host-client
method and running embedded JavaScript. The processor has to continuously run the
JavaScript logic for the project to work (as in the host-client model), but the whole pack
age is contained on one board and feels more like an independent, embedded setup.

 Unlike microcontrollers that run embedded JavaScript logic, though, the processor on
an SBC doesn’t run a single-purpose program—it can simultaneously run other processes.

 These single-board computers are getting cheap. At this moment, there’s the $5
Raspberry Pi Zero (if you can get your hands on one—they’re notoriously out of stock)
and the WiFi-enabled Pi Zero W for just a tad more. There’s no longer such a large cost
differential between low-power microcontroller hardware and legitimate tiny comput
ers with processors that rival tablets and smartphones.

Figure 1.16 Several single-board computers (SBCs): Intel Galileo, Gen 2 (top),
Raspberry Pi 2 Model B (bottom left), and Raspberry Pi Zero (bottom right)

www.itbook.store/books/9781617293863

https://itbook.store/books/9781617293863

18 CHAPTER 1 Bringing JavaScript and hardware together

Although running JavaScript on single-board computers with GPIO (general-purpose
I/O) support gives you lots of options on one piece of packaged hardware, it has a few
drawbacks. SBCs aren’t as low-power as many microcontroller-based boards—the Rasp
berry Pi 2 Model B draws 4 watts. The SBCs we’ll look at do have GPIO support, but the
pin mappings and usage can be confusing and documentation sketchy or technical,
which can be challenging if you’re just learning about hardware hacking. You’ll also need
to be ready to face system administration hurdles, as the Linux distributions for SBCs,
especially when combined with Node.js, can require some debugging and patience.

CLOUD-BASED SERVICES AND THE BROWSER

This last catch-all category for hardware-JavaScript combinations is admittedly blurry.
Stuff’s changing. Fast. The current growth of commercial, cloud-based services for the
IoT has taken on the proverbial hockey-stick shape, and we’re just seeing the very van
guard of advances that will let us directly interface with hardware from the browser itself.

 Cloud-based services try to ease the complexity of managing fleets of IoT devices at
scale. Many of these are targeted at the enterprise. Resin.io (figure 1.17), for example,
builds, packages, and deploys containerized application code to provisioned devices,
taking care of some of the security and automation headaches for you.

 And then there’s the browser itself, where many of the most cutting-edge hardware-
JavaScript combinations are just starting to emerge. A few browsers already allow you to

Figure 1.17 The Resin.io service helps to streamline application deployment to and management of Linux-
capable SBCs.

www.itbook.store/books/9781617293863

http:Resin.io
http:Resin.io
https://itbook.store/books/9781617293863

19 Is JavaScript a good fit for hardware?

experiment with Web Bluetooth, an API that, while not currently on the standards track,
may be a harbinger of webby things to come. Web Bluetooth, as its name suggests, lets
you connect to and control Bluetooth Low Energy (BLE) hardware, using JavaScript,
from within the browser.

 Another open project coming out of Google, the Physical Web, proposes an
uncomplicated idea: give a small device the ability to broadcast a URL with Bluetooth
Low Energy (BLE). A beacon used like this could transform a bus stop sign into a real-
time arrivals tracker by broadcasting the URL to a web app with that information (fig
ure 1.18). A simple concept, but flexible.

Figure 1.18 In this example application of the Physical Web, a bus stop sign uses a BLE beacon to
broadcast a URL once per second (1); a human in the vicinity can scan for available beacons on their
device and select the one corresponding to the bus stop (2); the bus-rider’s device can now fetch the
URL broadcast by the beacon and display it in the browser (3).

Of all the marriages between JavaScript and hardware, this variant—the deeper inte
gration of the web with hardware—is the most volatile. It’s simultaneously intriguing
and unpredictable. It’s likely that the demand for more ways to build IoT products
with JavaScript will lead to head-spinning acceleration in this space.

1.3 Is JavaScript a good fit for hardware?
So maybe we can use JavaScript to hack on hardware in various ways, but should we? Is
there utility here or is it just a self-indulgent parlor trick?

 When the idea of using JavaScript with hardware first started surfacing a few years
ago, it wasn’t met with universal enthusiasm. It was seen by some as arbitrary and mis
placed cleverness—a do we really have to use JavaScript everywhere? weariness. Others

www.itbook.store/books/9781617293863

https://itbook.store/books/9781617293863

20 CHAPTER 1 Bringing JavaScript and hardware together

argued that the performance of JavaScript on constrained hardware would never be
acceptable for anything but hobby use. A certain amount of old-guard crustiness sur
faced, comment threads bogged down with passionate excoriations against anything
but C/C++, and naysayers warned that a higher-level language would obscure essential
low-level hardware nuances from newcomers.

 And yet, there were many who remained open-minded. Why use JavaScript when
C/C++ is good enough? had a curious echo of an earlier paradigm shift in hardware: Why
use C when assembly language is good enough?

 Whether it’s awesome or it sucks—and we’re not going to have that argument
now—JavaScript is the de facto programming language of the internet. People know
it, people use it, and it’s everywhere. JavaScript’s ubiquity gives it a unique potential to
serve as a gateway for millions of web developers who sure would love to get going on
the IoT.

 Certain aspects of JavaScript programming lend themselves well to hardware, espe
cially its proficiency at event handling and asynchronous processes. JavaScript is also a
good tool for prototyping, a boon for fast iteration.

 It’s going to be fascinating to see where we end up. The JavaScript train is pulling
out of the hardware station, and a lot of folks are jumping on for the ride.

1.4 Putting together a hardware toolkit
You’ve had a whirlwind tour of the ingredients that make up embedded systems and
the methods of combining hardware with JavaScript. Let’s now get more specific
about the types of physical hardware, accessories, and tools needed to concoct these
types of projects. Then we’ll be ready to stock up a basic toolkit to get you started.

 Our projects will combine a development board with input and output hardware.
To build circuits and connect the systems together, you’ll need supporting electronic
components, as well as wires, power, and accessories. Throw in a few basic tools and
you’re ready to go.

1.4.1 Development boards

Development boards, also called prototyping boards or just boards, are physical development
platforms that combine a microcontroller or other processing component with useful
supporting features (figure 1.19). They’re the bread and butter of the hardware-hacking
lifestyle. Boards range in cost from just a few bucks to over $100 for high-end SBCs.

 Boards are centered around their brain, a combination of processor, memory, and
I/O. 8- or 16-bit microcontrollers are at the center of straightforward, entry-level
prototyping boards like (most) Arduinos (figure 1.20). Boards with more sophisti
cated 32-bit microcontrollers may be able to run embedded JavaScript.

Not all boards are microcontroller-based. More powerful SBCs are powered by
components you’d normally find on a computer’s motherboard. The architecture of
these boards is accordingly more complex, involving one or more miniaturized sys
tems on a chip (SoCs) and additional interconnects like HDMI, audio, or Ethernet.

www.itbook.store/books/9781617293863

https://itbook.store/books/9781617293863

21 Putting together a hardware toolkit

Figure 1.19 Some typical
microcontroller-based
development boards, clockwise
from top left: a Tiva C-Series
LaunchPad from Texas
Instruments, an Arduino Uno R3,
an Adafruit Trinket (5V model),
and a Particle Photon

Figure 1.20 This Arduino
Uno board is powered by the
AVR ATmega 328-P, a 8-bit
microcontroller.

Although SBCs may have physical I/O interfaces on-board—Raspberry Pis do, for
instance—their general-purpose processors can as easily be put to use to power non
hardware-centric projects.

1.4.2 Input and output components

Oh, my, there are so many sensors and gizmos you can connect to your boards to
enhance your projects! This is all sorts of fun, but it can also feel overwhelming at first.
Lots of technical terms get thrown around, and there are lots of numbers, values, and
specifications to absorb. You’ll learn to find your bearings as you go through this book.

 Most of the input and output components we’ll work with are simple in design and
ready to be plugged into a breadboard (that is, they are breadboard-friendly). Some are
packaged as breakout boards. In the same way that development boards make I/O easier

www.itbook.store/books/9781617293863

https://itbook.store/books/9781617293863

22 CHAPTER 1 Bringing JavaScript and hardware together

Figure 1.21 An assortment of common input and output components

by wiring a microcontroller’s tiny pins to connections that are more convenient,
breakout boards make it easier to work with single-purpose sensors or output devices
by wiring their pins to more convenient connections (figure 1.21).

1.4.3 Other electronic components

Cobbling together electronic circuits requires a collection of supporting electronic
components.

 Although it can feel like there are a lot of little pieces, the basic components like
resistors, capacitors, diodes, and transistors are inexpensive and can be bought in con
venient starter kits (figure 1.22). We’ll take our time to get to know these parts—soon
they’ll feel like old pals.

Figure 1.22 Common
components like these will
help you build functional
electronic circuits.

www.itbook.store/books/9781617293863

https://itbook.store/books/9781617293863

23 Putting together a hardware toolkit

1.4.4 Power, wires, and accessories

One thing you’ll soon realize is that there are a whole lot of ways to power a project!
 Development boards can be powered over USB or by plugging them into a DC

adapter (wall wart). In many cases, other project components can take advantage of
that same power source (figure 1.23).

Figure 1.23 A sampling of wires and accessories for power and circuitry

Batteries are useful for making projects wire-free, as well as for providing additional
power at different voltages. There are many kinds of battery snaps and holders for con
necting batteries to projects.

 To connect stuff together, you’ll need wires. Jumper wires are precut wires. One par
ticularly handy variety has pins on each end that slide easily into breadboards and the
I/O pins on many boards. Jumper wires are great for quick prototyping. Alternately,
hookup wire usually comes on a spool and can be cut to specific lengths as needed.

1.4.5 Tools

A pair of needle-nose pliers and a precision screwdriver or two are useful companions
when building projects. You’ll want a pair of wire strippers—which usually have built-in

www.itbook.store/books/9781617293863

https://itbook.store/books/9781617293863

24 CHAPTER 1 Bringing JavaScript and hardware together

wire cutters—if you’re cutting or stripping hookup wire (precut jumper wires don’t
need to be cut or stripped). As you progress, you might want to get your hands on a
multimeter, a tool for measuring voltage, current, and resistance.

STORING YOUR ELECTRONIC COMPONENTS As you start building projects, you’ll
end up with a lot of small parts. You can find compartmentalized storage
boxes or drawer units at hardware and hobby stores. Boxes and cases
designed for fishing lures can make especially handy containers for electronic
parts because their compartments are small and their dividers fit snugly (fig
ure 1.24).

It’s time to start our journey. Hacking with low-power embedded hardware can be fun,
creative, and exciting—and it’s increasingly useful in the commercial world. Web

Figure 1.24 This compact tackle box has space in the top for tools, and storage for
components in stacking, removable containers.

www.itbook.store/books/9781617293863

https://itbook.store/books/9781617293863

Summary	 25

developers (like you) already have skills that can be great stepping stones on your
path. You can use the ubiquitous language of the web, JavaScript, to get you going and
reduce roadside distractions.

 On our adventure, you’ll get a fundamental understanding of the few basic rela
tionships that make electronic circuits work. Not mathy? Don’t fret, neither am I.
You’ll meet some helpful characters on the way: components and modules, different
kinds of boards and software. We’ll try out different combinations of things and learn
how to dust ourselves off and try again when we blow up an LED.

 The road goes on forever, the horizons are infinite. We won’t be able to visit it all,
but by the end of this book you’ll be prepared to assess and use future technologies
that haven’t yet dawned. By the time you’re midway through your travels, it’s likely the
road you set out on will have changed remarkably. But by relying on some constants as
your compass—hardware basics, the application of JavaScript, web technologies—
you’ll be able to find your way.

Summary
 Starting from scratch on an embedded-electronics hobby can feel intimidating,

but your existing JavaScript skills can give you a boost.
 Embedded systems combine a brain—a microcontroller or power-efficient pro

cessor—with inputs and outputs in a small package.
 A microcontroller combines a processor, memory, and I/O in a single chip.

Logic defining the behavior of a microcontroller—the firmware—is typically
flashed to the MCU’s program memory.

 There are several ways JavaScript can control hardware: host-client, embedded
JavaScript, Node.js on SBCs, and even from within a browser.

 In a host-client setup, Node.js executes on a host computer, and instructions
and data are exchanged with the microcontroller using a messaging protocol
(API). The project can’t function without the host computer.

 Some constrained microcontrollers are optimized to run JavaScript (or a subset
of JavaScript) directly on the chip (embedded JavaScript).

 Single-board computers (SBCs) have more sophisticated processors and addi
tional features, like USB ports or audio connections. These devices can usually
run full-fledged OSs and often behave like tiny computers. Many give you the
option of controlling I/O and behavior with higher-level languages like python,
C++, or JavaScript.

 Development boards are platforms combining a microcontroller (or other pro
cessing component) with handy supporting features. They provide convenient
connections to I/O pins, allowing for quick prototyping of projects.

 Building projects involves a certain amount of electronic gear: development
boards, input and output components, basic electronic components like resis
tors and diodes, power connections, and basic tools.

www.itbook.store/books/9781617293863

https://itbook.store/books/9781617293863

www.itbook.store/books/9781617293863

https://itbook.store/books/9781617293863

