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4 CHAPTER 1 A machine-learning odyssey

Have you ever wondered if there are limits to what computer programs can solve?
Nowadays, computers appear to do a lot more than unravel mathematical equa-
tions. In the last half-century, programming has become the ultimate tool to auto-
mate tasks and save time, but how much can we automate, and how do we go about
doing so?

 Can a computer observe a photograph and say, “Aha, I see a lovely couple walking
over a bridge under an umbrella in the rain”? Can software make medical decisions as
accurately as trained professionals can? Can software predictions about the stock mar-
ket perform better than human reasoning? The achievements of the past decade hint
that the answer to all these questions is a resounding yes, and the implementations
appear to share a common strategy. 

 Recent theoretical advances coupled with newly available technologies have
enabled anyone with access to a computer to attempt their own approach at solving
these incredibly hard problems. Okay, not just anyone, but that’s why you’re reading
this book, right? 

 A programmer no longer needs to know the intricate details of a problem to solve
it. Consider converting speech to text: a traditional approach may involve understand-
ing the biological structure of human vocal chords to decipher utterances by using
many hand-designed, domain-specific, un-generalizable pieces of code. Nowadays, it’s
possible to write code that looks at many examples and figures out how to solve the
problem, given enough time and examples. 

 Algorithms learn from data, similar to the way humans learn from experience.
Humans learn by reading books, observing situations, studying in school, exchang-
ing conversations, and browsing websites, among other means. How can a machine
possibly develop a brain capable of learning? There’s no definitive answer, but
world-class researchers have developed intelligent programs from different angles.
Among the implementations, scholars have noticed recurring patterns in solving
these kinds of problems that has led to a standardized field that we today label
machine learning (ML).

 As the study of ML matures, the tools have become more standardized, robust,
high-performing, and scalable. This is where TensorFlow comes in. This software

This chapter covers
 Machine-learning fundamentals

 Data representation, features, and vector norms

 Why TensorFlow
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5Machine-learning fundamentals

library has an intuitive interface that lets programmers dive into using complex ML
ideas. The next chapter presents the ins and outs of this library, and every chapter
thereafter explains how to use TensorFlow for each of the various ML applications.

1.1 Machine-learning fundamentals
Have you ever tried to explain to someone how to swim? Describing the rhythmic joint
movements and fluid patterns is overwhelming in its complexity. Similarly, some soft-
ware problems are too complicated for us to easily wrap our minds around. For this,
machine learning may be just the tool to use. 

 Handcrafting carefully tuned algorithms to get the job done was once the only way
of building software. From a simplistic point of view, traditional programming
assumes a deterministic output for each input. Machine learning, on the other hand,
can solve a class of problems for which the input-output correspondences aren’t well
understood.

Machine learning is characterized by software that learns from previous experiences.
Such a computer program improves performance as more and more examples are
available. The hope is that if you throw enough data at this machinery, it’ll learn pat-
terns and produce intelligent results for newly fed input.

 Another name for machine learning is inductive learning, because the code is trying
to infer structure from data alone. It’s like going on vacation in a foreign country, and
reading a local fashion magazine to mimic how to dress. You can develop an idea of

Trusting machine-learning output
Pattern detection is a trait that’s no longer unique to humans. The explosive growth
of computer clock speed and memory has led us to an unusual situation: computers
now can be used to make predictions, catch anomalies, rank items, and automati-
cally label images. This new set of tools provides intelligent answers to ill-defined
problems, but at the subtle cost of trust. Would you trust a computer algorithm to
dispense vital medical advice such as whether to perform heart surgery?

There’s no place for mediocre machine-learning solutions. Human trust is too fragile,
and our algorithms must be robust against doubt. Follow along closely and carefully
in this chapter.

Full speed ahead! 
Machine learning is a relatively young technology, so imagine you’re a geometer in
Euclid’s era, paving the way to a newly discovered field. Or consider yourself a phys-
icist during the time of Newton, possibly pondering something equivalent to general
relativity for the field of machine learning.
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6 CHAPTER 1 A machine-learning odyssey

the culture from images of people wearing local articles of clothing. You’re learning
inductively.

 You might never before have used such an approach when programming,
because inductive learning isn’t always necessary. Consider the task of determining
whether the sum of two arbitrary numbers is even or odd. Sure, you can imagine
training a machine-learning algorithm with millions of training examples (outlined
in figure 1.1), but you certainly know that’s overkill. A more direct approach can
easily do the trick.

For example, the sum of two odd numbers is always an even number. Convince your-
self: take any two odd numbers, add them, and check whether the sum is an even
number. Here’s how you can prove that fact directly:

 For any integer n, the formula 2n + 1 produces an odd number. Moreover, any
odd number can be written as 2n + 1 for some value n. The number 3 can be
written as 2(1) + 1. And the number 5 can be written as 2(2) + 1. 

 Let’s say we have two odd numbers, 2n + 1 and 2m + 1, where n and m are integers.
Adding two odd numbers yields (2n + 1) + (2m + 1) = 2n + 2m + 2 = 2(n + m + 1).
This is an even number because 2 times anything is even.

Likewise, we see that the sum of two even numbers is also an even number: 2m + 2n =
2(m + n). And lastly, we also deduce that the sum of an even with an odd is an odd
number: 2m + (2n + 1) = 2(m + n) + 1. Figure 1.2 presents this logic more clearly.

 That’s it! With absolutely no use of machine learning, you can solve this task on
any pair of integers someone throws at you. Directly applying mathematical rules can
solve this problem. But in ML algorithms, we can treat the inner logic as a black box,
meaning the logic happening inside might not be obvious to interpret, as depicted in
figure 1.3.

 

Input

x₁ = (2, 2) →

x₂ = (3, 2) →

x₃ = (2, 3) →

x₄ = (3, 3) →

...

Output

y₁ = Even

y₂ = Odd

y₃ = Odd

y₄ = Even

...

Figure 1.1 Each pair of integers, when summed, results in an 
even or odd number. The input and output correspondences 
listed are called the ground-truth dataset.
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7Machine-learning fundamentals

1.1.1 Parameters

Sometimes, the best way to devise an algorithm that transforms an input to its corre-
sponding output is too complicated. For example, if the input were a series of num-
bers representing a grayscale image, you can imagine the difficulty in writing an
algorithm to label every object in the image. Machine learning comes in handy
when the inner workings aren’t well understood. It provides us with a toolset to
write software without defining every detail of the algorithm. The programmer can
leave some values undecided and let the machine-learning system figure out the
best values by itself. 

 The undecided values are called parameters, and the description is referred to as
the model. Your job is to write an algorithm that observes existing examples to figure
out how to best tune parameters to achieve the best model. Wow, that’s a mouthful!
Don’t worry, this concept will be a  reoccurring motif.

 
 

2 + 2 =m n

2( + )m n

Even

2 + (2 + 1) =m n

2 + 2 + 1m n

Odd

Even

Even

n

Odd

(2 + 1) + 2 =m n

2 + 2 + 1m n

Odd

(2 + 1) + (2 + 1) =m n

2( + + 1)m n

Even

Odd

m

Figure 1.2 This table reveals the inner logic 
behind how the output response corresponds 
to the input pairs. 

Black box

2

3

? Figure 1.3 An ML approach to solving problems can be 
thought of as tuning the parameters of a black box until 
it produces satisfactory results.
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8 CHAPTER 1 A machine-learning odyssey

1.1.2 Learning and inference

Suppose you’re trying to bake desserts in an oven. If you’re new to the kitchen, it can
take days to come up with both the right combination and perfect ratio of ingredients
to make something that tastes great. By recording recipes, you can remember how to
quickly repeat the dessert if you happen to discover the ultimate tasty meal.

 Similarly, machine learning shares this idea of recipes. Typically, we examine an
algorithm in two stages: learning and inference. The objective of the learning stage is to
describe the data, which is called the feature vector, and summarize it in a model. The
model is our recipe. In effect, the model is a program with a couple of open interpre-
tations, and the data helps disambiguate it.

NOTE A feature vector is a practical simplification of data. You can think of it as
a sufficient summary of real-world objects into a list of attributes. The learn-
ing and inference steps rely on the feature vector instead of the data directly.

Similar to the way recipes can be shared and used by other people, the learned model
is reused by other software. The learning stage is the most time consuming. Running
an algorithm may take hours, if not days or weeks, to converge into a useful model.
Figure 1.4 outlines the learning pipeline.

Machine learning might solve a problem without much insight
By mastering the art of inductive problem solving, we wield a double-edged sword.
Although ML algorithms may perform well when solving specific tasks, tracing the
steps of deduction to understand why a result is produced may not be as immediate.
An elaborate machine-learning system learns thousands of parameters, but untan-
gling the meaning behind each parameter is sometimes not the prime directive. With
that in mind, I assure you there’s a world of magic to unfold.

EXERCISE 1.1
Suppose you’ve collected three months’ worth of stock market prices. You’d like to
predict future trends to outsmart the system for monetary gains. Without using ML,
how would you go about solving this problem? (As you’ll see in chapter 8, this prob-
lem becomes approachable with ML techniques.)

ANSWER

Believe it or not, hard-designed rules are a common way to define stock market trad-
ing strategies. For example, an algorithm as simple as “if the price drops 5%, buy
some stocks” is often used. Notice that there’s no machine learning involved, just
traditional logic.
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9Data representation and features

The inference stage uses the model to make intelligent remarks about never-before-
seen data. It’s like using a recipe you found online. The process of inference typically
takes orders of magnitude less time than learning; inference can be fast enough to
work on real-time data. Inference is all about testing the model on new data and
observing performance in the process, as shown in figure 1.5.

1.2 Data representation and features
Data is a first-class citizen of machine learning. Computers are nothing more than
sophisticated calculators, and so the data we feed our machine-learning systems must
be mathematical objects such as vectors, matrices, or graphs. 

 The basic theme in all forms of representation is the concept of features, which are
observable properties of an object: 

 Vectors have a flat and simple structure and are the typical embodiment of data
in most real-world machine-learning applications. They have two attributes: a
natural number representing the dimension of the vector, and a type (such as
real numbers, integers, and so on). Just as a refresher, some examples of two-
dimensional vectors of integers are (1, 2) and (–6, 0). Some examples of
three-dimensional vectors of real numbers are (1.1, 2.0, 3.9) and (п, п/2, п/3).

Training data Feature vector Learning algorithm Model

Figure 1.4 The learning approach generally follows a structured recipe. First, the 
dataset needs to be transformed into a representation, most often a list of features, 
which can be used by the learning algorithm. The learning algorithm chooses a 
model and efficiently searches for the model’s parameters.

Test data Feature vector PredictionModel

Figure 1.5 The inference approach generally uses a model that has already been 
either learned or given. After converting data into a usable representation, such as 
a feature vector, it uses the model to produce intended output.
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10 CHAPTER 1 A machine-learning odyssey

You get the idea: a collection of numbers of the same type. In a program that
uses machine learning, a vector measures a property of the data, such as color,
density, loudness, or proximity—anything you can describe with a series of
numbers, one for each thing being measured.

 Moreover, a vector of vectors is a matrix. If each feature vector describes the fea-
tures of one object in your dataset, the matrix describes all the objects; each
item in the outer vector is a node that’s a list of features of one object.

 Graphs, on the other hand, are more expressive. A graph is a collection of
objects (nodes) that can be linked together with edges to represent a network. A
graphical structure enables representing relationships between objects, such as
in a friendship network or a navigation route of a subway system. Consequently,
they’re tremendously harder to manage in machine-learning applications. In
this book, our input data will rarely involve a graphical structure.

Feature vectors are practical simplifications of real-world data, which can be too com-
plicated to deal with. Instead of attending to every little detail of a data item, a feature
vector is a practical simplification. For example, a car in the real world is much more
than the text used to describe it. A car salesman is trying to sell you the car, not the
intangible words spoken or written. Those words are just abstract concepts, similar to
the way feature vectors are just summaries of the data.

 The following scenario will explain this further. When you’re in the market for a
new car, keeping tabs on every minor detail of different makes and models is essential.
After all, if you’re about to spend thousands of dollars, you may as well do so dili-
gently. You’d likely record a list of features about each car and compare them back
and forth. This ordered list of features is the feature vector.

 When shopping for cars, you might find comparing mileage to be more lucrative
than comparing something less relevant to your interest, such as weight. The num-
ber of features to track also must be just right: not too few, or you’ll lose informa-
tion you care about, and not too many, or they’ll be unwieldy and time consuming
to keep track of. This tremendous effort to select both the number of measure-
ments and which measurements to compare is called feature engineering. Depending
on which features you examine, the performance of your system can fluctuate dra-
matically. Selecting the right features to track can make up for a weak learning
algorithm. 

 For example, when training a model to detect cars in an image, you’ll gain an
enormous performance and speed improvement if you first convert the image to
grayscale. By providing some of your own bias when preprocessing the data, you
end up helping the algorithm, because it won’t need to learn that colors don’t mat-
ter when detecting cars. The algorithm can instead focus on identifying shapes and
textures, which will lead to much faster learning than trying to process colors
as well.

 The general rule of thumb in ML is that more data produces better results. But the
same isn’t always true of having more features. Perhaps counterintuitively, if the number
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11Data representation and features

of features you’re tracking is too high, performance may suffer. Populating the space
of all data with representative samples requires exponentially more data as the dimen-
sion of the feature vector increases. As a result, feature engineering, as depicted in fig-
ure 1.6, is one of the most significant problems in ML.

You may not appreciate it right away, but something consequential happens when you
decide which features are worth observing. For centuries, philosophers have pon-
dered the meaning of identity; you may not immediately realize this, but you’ve come
up with a definition of identity by your choice of specific features.

 Imagine writing a machine-learning system to detect faces in an image. Let’s say
one of the necessary features for something to be a face is the presence of two eyes.
Implicitly, a face is now defined as something with eyes. Do you realize the kind of
trouble this can get you into? If a photo of a person shows them blinking, your detector

Curse of dimensionality
To accurately model real-world data, we clearly need more than one or two data
points. But how much data depends on a variety of things, including the number of
dimensions in the feature vector. Adding too many features causes the number of
data points required to describe the space to increase exponentially. That’s why we
can’t just design a 1,000,000-dimension feature vector to exhaust all possible fac-
tors and then expect the algorithm to learn a model. This phenomenon is called the
curse of dimensionality. 

Color

Horsepower

Price

Number
of seats

Figure 1.6 Feature engineering is the process of selecting relevant features for the task. 
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12 CHAPTER 1 A machine-learning odyssey

won’t find a face, because it can’t find two eyes. The algorithm would fail to detect a
face when a person is blinking. The definition of a face was inaccurate to begin with,
and it’s apparent from the poor detection results. 

 The identity of an object is decomposed into the features from which it’s com-
posed. For example, if the features you’re tracking of one car exactly match the corre-
sponding features of another car, they may as well be indistinguishable from your
perspective. You’d need to add another feature to the system in order to tell them
apart, or you’ll think they’re the same item. When handcrafting features, you must
take great care not to fall into this philosophical predicament of identity.

EXERCISE 1.2 
Let’s say you’re teaching a robot how to fold clothes. The perception system sees a
shirt lying on a table, as shown in the following figure. You’d like to represent the shirt
as a vector of features so you can compare it with different clothes. Decide which
features would be most useful to track. (Hint: What types of words do retailers use
to describe their clothing online?)

ANSWER

The width, height, x-symmetry score, y-symmetry score, and flatness are good fea-
tures to observe when folding clothes. Color, cloth texture, and material are mostly
irrelevant. 

A robot is trying to fold a shirt. What are good features of the shirt 
to track?
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13Data representation and features

Feature engineering is a refreshingly philosophical pursuit. For those who enjoy
thought-provoking escapades into the meaning of self, we invite you to meditate on
feature selection, because it’s still an open problem. Fortunately for the rest of you, to
alleviate extensive debates, recent advances have made it possible to automatically
determine which features to track. You’ll be able to try it out for yourself in chapter 7.

EXERCISE 1.3
Now, instead of detecting clothes, you ambitiously decide to detect arbitrary objects;
the following figure shows some examples. What are some salient features that can
easily differentiate objects?

ANSWER

Observing brightness and reflection may help differentiate the lamp from the other
two objects. The shape of pants often follows a predictable template, so shape would
be another good feature to track. Lastly, texture may be a salient feature to differen-
tiate the picture of a dog from the other two classes.

Feature vectors are used in both learning and inference
The interplay between learning and inference provides a complete picture of a
machine-learning system, as shown in the following figure. The first step is to repre-
sent real-world data in a feature vector. For example, we can represent images by a
vector of numbers corresponding to pixel intensities. (We’ll explore how to represent
images in greater detail in future chapters.) We can show our learning algorithm the
ground-truth labels (such as Bird or Dog) along with each feature vector. With enough
data, the algorithm generates a learned model. We can use this model on other real-
world data to uncover previously unknown labels.

Here are images of three objects: a lamp, a pair of pants, and a dog. What are 
some good features that you should record to compare and differentiate objects?

www.itbook.store/books/9781617293870

https://itbook.store/books/9781617293870


14 CHAPTER 1 A machine-learning odyssey

(continued)

Real-world data
Feature vectors

(23, 1, 100, 32, ...)

Learning

algorithm

Labels

Inference model

HELLO
my name is

(88, 31, 1, 4, ...)

HELLO
my name is

(20, 3, 81, 10, ...)

HELLO
my name is

(90, 40, 0, 0, ...)

HELLO
my name is

Test data
Feature vector

(94, 30, 10, 0, ...)

Unknown label

HELLO
my name is

HELLO
my name is

Feature vectors are a representation of real-world data used by both the learning and inference 
components of machine learning. The input to the algorithm isn’t the real-world image directly, 
but instead its feature vector.
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15Distance metrics

1.3 Distance metrics
If you have feature vectors of cars you may potentially want to buy, you can figure
out which two are most similar by defining a distance function on the feature vec-
tors. Comparing similarities between objects is an essential component of machine
learning. Feature vectors allow us to represent objects so that we may compare
them in a variety of ways. A standard approach is to use the Euclidian distance, which
is the geometric interpretation you may find most intuitive when thinking about
points in space.

 Let’s say we have two feature vectors, x = (x1, x2, …, xn) and y = (y1, y2, …, yn). The
Euclidian distance ||x – y|| is calculated by

For example, the Euclidian distance between (0, 1) and (1, 0) is

Scholars call this the L2 norm. But that’s just one of many possible distance functions.
The L0, L1, and L-infinity norms also exist. All these norms are valid ways to measure
distance. Here they are in more detail:

 The L0 norm counts the total number of nonzero elements of a vector. For
example, the distance between the origin (0, 0) and vector (0, 5) is 1, because
there’s only one nonzero element. The L0 distance between (1, 1) and (2, 2) is
2, because neither dimension matches up. Imagine that the first and second
dimensions represent username and password, respectively. If the L0 distance
between a login attempt and the true credentials is 0, the login is successful. If
the distance is 1, then either the username or password is incorrect, but not
both. Lastly, if the distance is 2, both username and password aren’t found in
the database.

 The L1 norm, shown in figure 1.7, is defined as |xn|. The distance between two
vectors under the L1 norm is also referred to as the Manhattan distance. Imagine
living in a downtown area like Manhattan, New York, where the streets form a
grid. The shortest distance from one intersection to another is along the blocks.
Similarly, the L1 distance between two vectors is along the orthogonal directions.

x1 y1– 2 x2 y2– 2  xn yn– 2+ + +

0 1( , ) 1 0( , )–

1– 1( , )=

1– 2 12
+=

2= 1.414=
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16 CHAPTER 1 A machine-learning odyssey

The distance between (0, 1) and (1, 0) under the L1 norm is 2. Computing the
L1 distance between two vectors is the sum of absolute differences at each
dimension, which is a useful measure of similarity.

 The L2 norm, shown in figure 1.8, is the Euclidian length of a vector, ((xn)2)1/2.
It’s the most direct route you can possibly take on a geometric plane to get
from one point to another. For the mathematically inclined, this is the norm
that implements the least square estimation as predicted by the Gauss-Markov
theorem. For the rest of you, it’s the shortest distance between two points in
space.

 The L-N norm generalizes this pattern, resulting in (|xn|N)1/N. We rarely use
finite norms above L2, but it’s here for completeness.

 The L-infinity norm is (|xn|)1/. More naturally, it’s the largest magnitude
among each element. If the vector is (–1, –2, –3), the L-infinity norm is 3. If a
feature vector represents costs of various items, minimizing the L-infinity norm
of the vector is an attempt to reduce the cost of the most expensive item.

(0, 1)

(1, 0)

Figure 1.7 The L1 distance is also called the Manhattan 
distance (also referred to as the taxicab metric), because 
it resembles the route of a car in a grid-like neighborhood 
such as Manhattan. If a car is traveling from point (0,1) to 
point (1,0), the shortest route requires a length of 2 units.

Figure 1.8 The L2 norm between points (0,1) 
and (1,0) is the length of a single straight-line 
segment between both points.

(0, 1)

(1, 0)
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17Types of learning

1.4 Types of learning
Now that you can compare feature vectors, you have the tools necessary to use data for
practical algorithms. Machine learning is often split into three perspectives: super-
vised learning, unsupervised learning, and reinforcement learning. Let’s examine
each.

1.4.1 Supervised learning

By definition, a supervisor is someone higher up in the chain of command. When we’re
in doubt, our supervisor dictates what to do. Likewise, supervised learning is all about
learning from examples laid out by a supervisor (such as a teacher). 

 A supervised machine-learning system needs labeled data to develop a useful
understanding, which we call its model. For example, given many photographs of peo-
ple and their recorded corresponding ethnicity, we can train a model to classify the
ethnicity of a never-before-seen individual in an arbitrary photograph. Simply put, a
model is a function that assigns a label to data. It does so by using a collection of previ-
ous examples, called a training dataset, as reference.

 A convenient way to talk about models is through mathematical notation. Let x be
an instance of data, such as a feature vector. The corresponding label associated with
x is f(x), often referred to as the ground truth of x. Usually, we use the variable y = f(x)
because it’s quicker to write. In the example of classifying the ethnicity of a person
through a photograph, x can be a 100-dimensional vector of various relevant features,
and y is one of a couple of values to represent the various ethnicities. Because y is

When do I use a metric other than the L2 norm in the real world?
Let’s say you’re working for a new search-engine startup trying to compete with Goo-
gle. Your boss assigns you the task of using machine learning to personalize the
search results for each user. 

A good goal might be that users shouldn’t see five or more incorrect search results
per month. A year’s worth of user data is a 12-dimensional vector (each month of the
year is a dimension), indicating the number of incorrect results shown per month.
You’re trying to satisfy the condition that the L-infinity norm of this vector must be
less than 5. 

Suppose instead that your boss changes the requirements, saying that fewer than
five erroneous search results are allowed for the entire year. In this case, you’re try-
ing to achieve an L1 norm below 5, because the sum of all errors in the entire space
should be less than 5.

Now, your boss changes the requirements again: the number of months with errone-
ous search results should be fewer than 5. In that case, you’re trying to achieve an
L0 norm less than 5, because the number of months with a nonzero error should be
fewer than 5.
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18 CHAPTER 1 A machine-learning odyssey

discrete with few values, the model is called a classifier. If y can result in many values,
and the values have a natural ordering, then the model is called a regressor. 

 Let’s denote a model’s prediction of x as g(x). Sometimes you can tweak a model
to change its performance drastically. Models have parameters that can be tuned
either by a human or automatically. We use the vector  to represent the parameters.
Putting it all together, g(x|) more completely represents the model, read “g of x
given .” 

NOTE Models may also have hyperparameters, which are extra ad hoc proper-
ties about a model. The term hyper in hyperparameter seems a bit strange at first.
If it helps, a better name could be metaparameter, because the parameter is
akin to metadata about the model. 

The success of a model’s prediction g(x|) depends on how well it agrees with the
ground truth y. We need a way to measure the distance between these two vectors. For
example, the L2 norm may be used to measure how close two vectors lie. The distance
between the ground truth and the prediction is called the cost.

 The essence of a supervised machine-learning algorithm is to figure out the
parameters of a model that result in the least cost. Mathematically put, we’re looking
for a * (Theta star) that minimizes the cost among all data points x  X. One way of
formalizing this optimization problem is the following:

 

where 

Clearly, brute forcing every possible combination of s (also known as a parameter
space) will eventually find the optimal solution, but at an unacceptable runtime. A
major area of research in machine learning is about writing algorithms that efficiently
search through this parameter space. Some of the early algorithms include gradient
descent, simulated annealing, and genetic algorithms. TensorFlow automatically takes care
of the low-level implementation details of these algorithms, so we won’t get into them
in too much detail. 

 After the parameters are learned one way or another, you can finally evaluate the
model to figure out how well the system captured patterns from the data. A rule of
thumb is to not evaluate your model on the same data you used to train it, because
you already know it works for the training data; you need to tell whether it works for
data that wasn’t part of the training set, to make sure your model is general purpose
and not biased to the data used to train it. Use the majority of the data for training, and
the remaining for testing. For example, if you have 100 labeled data points, randomly
select 70 of them to train a model, and reserve the other 30 to test it.

 minCost  Xarg =

Cost  X  g x   f x –
x X
=
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1.4.2 Unsupervised learning

Unsupervised learning is about modeling data that comes without corresponding labels
or responses. The fact that we can make any conclusions at all on raw data feels like
magic. With enough data, it may be possible to find patterns and structure. Two of the
most powerful tools that machine-learning practitioners use to learn from data alone
are clustering and dimensionality reduction. 

 Clustering is the process of splitting the data into individual buckets of similar
items. In a sense, clustering is like classification of data without knowing any corre-
sponding labels. For instance, when organizing your books on three shelves, you likely
place similar genres together, or maybe you group them by the authors’ last names.
You might have a Stephen King section, another for textbooks, and a third for “any-
thing else.” You don’t care that they’re all separated by the same feature, just that each
has something unique about it that allows you to break it into roughly equal, easily
identifiable groups. One of the most popular clustering algorithms is k-means, which is
a specific instance of a more powerful technique called the E-M algorithm.

 Dimensionality reduction is about manipulating the data to view it under a much sim-
pler perspective. It’s the ML equivalent of the phrase, “Keep it simple, stupid.” For
example, by getting rid of redundant features, we can explain the same data in a
lower-dimensional space and see which features matter. This simplification also helps
in data visualization or preprocessing for performance efficiency. One of the earliest
algorithms is principle component analysis (PCA), and a newer one is autoencoders, which
we cover in chapter 7. 

1.4.3 Reinforcement learning

Supervised and unsupervised learning seem to suggest that the existence of a teacher
is all or nothing. But in one well-studied branch of machine learning, the environ-
ment acts as a teacher, providing hints as opposed to definite answers. The learning
system receives feedback on its actions, with no concrete promise that it’s progressing
in the right direction, which might be to solve a maze or accomplish an explicit goal.

Why split the data?
If the 70-30 split seems odd to you, think about it like this. Let’s say your physics
teacher gives you a practice exam and tells you the real exam will be no different.
You might as well memorize the answers and earn a perfect score without under-
standing the concepts. Similarly, if you test your model on the training dataset, you’re
not doing yourself any favors. You risk a false sense of security, because the model
may merely be memorizing the results. Now, where’s the intelligence in that?

Instead of the 70-30 split, machine-learning practitioners typically divided their data-
set 60-20-20. Training consumes 60% of the dataset, and testing uses 20%, leaving
the other 20% for validation, which is explained in the next chapter.
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Unlike supervised learning, where training data is conveniently labeled by a “teacher,”
reinforcement learning trains on information gathered by observing how the environ-
ment reacts to actions. Reinforcement learning is a type of machine learning that
interacts with the environment to learn which combination of actions yields the most
favorable results. Because we’re already anthropomorphizing algorithms by using the
words environment and action, scholars typically refer to the system as an autonomous
agent. Therefore, this type of machine learning naturally manifests itself in the
domain of robotics. 

 To reason about agents in the environment, we introduce two new concepts: states
and actions. The status of the world frozen at a particular time is called a state. An
agent may perform one of many actions to change the current state. To drive an agent
to perform actions, each state yields a corresponding reward. An agent eventually dis-
covers the expected total reward of each state, called the value of a state.

 Like any other machine-learning system, performance improves with more data.
In this case, the data is a history of previous experiences. In reinforcement learning,
we don’t know the final cost or reward of a series of actions until it’s executed. These
situations render traditional supervised learning ineffective, because we don’t know
exactly which action in the history of action sequences is to blame for ending up in a
low-value state. The only information an agent knows for certain is the cost of a series
of actions that it has already taken, which is incomplete. The agent’s goal is to find a
sequence of actions that maximizes rewards.

Exploration vs. exploitation—the heart of reinforcement learning
Imagine playing a video game that you’ve never seen before. You click buttons on a
controller and discover that a particular combination of strokes gradually increases
your score. Brilliant—now you repeatedly exploit this finding in hopes of beating the
high score. In the back of your mind, you think that maybe there’s a better combina-
tion of button clicks that you’re missing out on. Should you exploit your current best
strategy, or risk exploring new options?

EXERCISE 1.4
Would you use supervised, unsupervised, or reinforcement learning to solve the fol-
lowing problems? (a) Organize various fruits in three baskets based on no other infor-
mation. (b) Predict the weather based on sensor data. (c) Learn to play chess well
after many trial-and-error attempts.

ANSWER 
(a) Unsupervised, (b) Supervised, (c) Reinforcement
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1.5 TensorFlow
Google open-sourced its machine-learning framework, TensorFlow, in late 2015 under
the Apache 2.0 license. Before that, it was used proprietarily by Google in its speech
recognition, Search, Photos, and Gmail, among other applications.

The library is implemented in C++ and has a convenient Python API, as well as a lesser
appreciated C++ API. Because of the simpler dependencies, TensorFlow can be
quickly deployed to various architectures. 

 Similar to Theano (a popular numerical computation library for Python you may
already be familiar with), computations are described as flowcharts, separating design
from implementation. With little-to-no hassle, this dichotomy allows the same design
to be implemented on not just large-scale training systems with thousands of proces-
sors, but also mobile devices. The single system spans a broad range of platforms.

 One of the fanciest properties of TensorFlow is its automatic differentiation capabil-
ities. You can experiment with new networks without having to redefine many key
calculations. 

NOTE Automatic differentiation makes it much easier to implement back-
propagation, which is a computationally heavy calculation used in a branch of
machine learning called neural networks. TensorFlow hides the nitty-gritty
details of back-propagation so you can focus on the bigger picture. Chapter 7
covers an introduction to neural networks with TensorFlow.

All the mathematics is abstracted away and unfolded under the hood. It’s like using
WolframAlpha for a calculus problem set. 

 Another feature of this library is its interactive visualization environment called
TensorBoard. This tool shows a flowchart of the way data transforms, displays summary
logs over time, and traces performance. Figure 1.9 shows an example of what Tensor-
Board looks like when in use. The next chapter covers using it in greater detail.

 Prototyping in TensorFlow is much faster than in Theano (code initiates in a mat-
ter of seconds as opposed to minutes) because many of the operations come precom-
piled. It becomes easy to debug code due to subgraph execution; an entire segment of
computation can be reused without recalculation.

 
 

A bit of history
A former scalable distributed training and learning system called DistBelief is the pri-
mary influence on TensorFlow’s current implementation. Ever written a messy piece
of code and wished you could start all over again? That’s the dynamic between Dist-
Belief and TensorFlow. 
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Because TensorFlow isn’t only about neural networks, it also has out-of-the-box matrix
computation and manipulation tools. Most libraries such as Torch and Caffe are
designed solely for deep neural networks, but TensorFlow is more flexible as well as
scalable.

 The library is well documented and officially supported by Google. Machine learn-
ing is a sophisticated topic, so having an exceptionally well-reputed company behind
TensorFlow is comforting. 

1.6 Overview of future chapters
Chapter 2 demonstrates how to use various components of TensorFlow (see figure 1.10).
Chapters 3–6 show how to implement classic machine-learning algorithms in Tensor-
Flow, and chapters 7–12 cover algorithms based on neural networks. The algorithms
solve a wide variety of problems such as prediction, classification, clustering, dimen-
sionality reduction, and planning.

Figure 1.9 Example of TensorBoard in action
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Many algorithms can solve the same real-world problem, and many real-world prob-
lems can be solved by the same algorithm. Table 1.1 covers the ones laid out in this
book.

Table 1.1 Many real-world problems can be solved using the corresponding algorithm found in its
respective chapter.

Real-world problem Algorithm Chapter

Predicting trends, fitting a curve to data points, describing 
relationships between variables

Linear regression 3

Classifying data into two categories, finding the best way 
to split a dataset

Logistic regression 4

Classifying data into multiple categories Softmax regression 4

Revealing hidden causes of observations, finding the 
most likely hidden reason for a series of outcomes

Hidden Markov model (Viterbi) 5

Clustering data into a fixed number of categories, auto-
matically partitioning data points into separate classes

K-means 6

Clustering data into arbitrary categories, visualizing high-
dimensional data into a lower-dimensional embedding

Self-organizing map 6

Machine learning

TensorFlow

Theano

Caffe Torch

CGT

Chapter 1

Chapter 2

Machine learning

Figure 1.10 This chapter introduced fundamental machine-
learning concepts, and the next chapter begins your journey 
into TensorFlow. Other tools to apply machine-learning 
algorithms (such as Caffe, Theano, and Torch) are available, 
but you’ll see in chapter 2 why TensorFlow is the way to go.
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TIP If you’re interested in the intricate architecture details of TensorFlow,
the best available source is the official documentation at www.tensorflow.org/
extend/architecture. This book will sprint ahead and use TensorFlow without
slowing down for the breadth of low-level performance tuning. For those
interested in cloud services, you may consider Google’s solution for profes-
sional-grade scale and speed: https://cloud.google.com/products/machine-
learning/. 

1.7 Summary
 TensorFlow has become the tool of choice among professionals and researchers

to implement machine-learning solutions. 
 Machine learning uses examples to develop an expert system that can make

useful statements about new inputs. 
 A key property of ML is that performance tends to improve with more training

data. 
 Over the years, scholars have crafted three major archetypes that most problems

fit: supervised learning, unsupervised learning, and reinforcement learning. 
 After a real-world problem is formulated in a machine-learning perspective, sev-

eral algorithms become available. Out of the many software libraries and frame-
works to accomplish an implementation, we chose TensorFlow as our silver
bullet. Developed by Google and supported by its flourishing community, Tensor-
Flow gives us a way to easily implement industry-standard code.

Reducing dimensionality of data, learning latent variables 
responsible for high-dimensional data

Autoencoder 7

Planning actions in an environment using neural networks 
(reinforcement learning)

Q-policy neural network 8

Classifying data using supervised neural networks Perceptron 9

Classifying real-world images using supervised neural net-
works

Convolution neural network 9

Producing patterns that match observations using neural 
networks

Recurrent neural network 10

Predicting natural language responses to natural language 
queries

Seq2seq model 11

Learning to rank items by learning their utility Ranking 12

Table 1.1 Many real-world problems can be solved using the corresponding algorithm found in its
respective chapter. (continued)

Real-world problem Algorithm Chapter
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