
M A N N I N G

Nishant Shukla
with Kenneth Fricklas

S A M P L E C H A P T E R

www.itbook.store/books/9781617293870

https://itbook.store/books/9781617293870

Machine Learning with TensorFlow

by Nishant Shukla
Kenneth Fricklas, Senior Technical Editor

 Chapter 10

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617293870

https://itbook.store/books/9781617293870

v

brief contents
PART 1 YOUR MACHINE-LEARNING RIG.......................................1

1 ■ A machine-learning odyssey 3

2 ■ TensorFlow essentials 25

PART 2 CORE LEARNING ALGORITHMS51

3 ■ Linear regression and beyond 53

4 ■ A gentle introduction to classification 71

5 ■ Automatically clustering data 99

6 ■ Hidden Markov models 119

PART 3 THE NEURAL NETWORK PARADIGM133

7 ■ A peek into autoencoders 135

8 ■ Reinforcement learning 153

9 ■ Convolutional neural networks 169

10 ■ Recurrent neural networks 189

11 ■ Sequence-to-sequence models for chatbots 201

12 ■ Utility landscape 223

www.itbook.store/books/9781617293870

https://itbook.store/books/9781617293870

189

Recurrent
neural networks

www.itbook.store/books/9781617293870

https://itbook.store/books/9781617293870

190 CHAPTER 10 Recurrent neural networks

10.1 Contextual information
Back in school, I remember my sigh of relief when one of my midterm exams con-
sisted of only true-or-false questions. I can’t be the only one who assumed that half the
answers would be True and the other half would be False.

 I figured out answers to most of the questions and left the rest to random guessing.
But that guessing was based on something clever, a strategy that you might have
employed as well. After counting my number of True answers, I realized that a dispro-
portionate number of False answers were lacking. So, a majority of my guesses were
False to balance the distribution.

 It worked. I sure felt sly in the moment. What exactly is this feeling of craftiness
that makes us feel so confident in our decisions, and how can we give a neural net-
work the same power?

 One answer is to use context to answer questions. Contextual cues are important
signals that can improve the performance of machine-learning algorithms. For exam-
ple, imagine you want to examine an English sentence and tag the part of speech of
each word.

 The naïve approach is to individually classify each word as a noun, an adjective,
and so on, without acknowledging its neighboring words. Consider trying that tech-
nique on the words in this sentence. The word trying is used as a verb, but depending
on the context, you can also use it as an adjective, making parts-of-speech tagging a try-
ing problem.

 A better approach considers the context. To bestow neural networks with contex-
tual cues, you’ll study an architecture called a recurrent neural network. Instead of natu-
ral language data, you’ll be dealing with continuous time-series data, such as the stock
market prices covered in previous chapters. By the end of the chapter, you’ll be able
to model the patterns in time-series data to predict future values.

10.2 Introduction to recurrent neural networks
To understand recurrent neural networks, let’s first look at the simple architecture in
figure 10.1. It takes as input a vector X(t) and generates as output a vector Y(t), at
some time (t). The circle in the middle represents the hidden layer of the network.

This chapter covers
 Understanding the components of a recurrent

neural network

 Designing a predictive model of time-series data

 Using the time-series predictor on real-world data

www.itbook.store/books/9781617293870

https://itbook.store/books/9781617293870

191Introduction to recurrent neural networks

With enough input/output examples, you can learn the parameters of the network in
TensorFlow. For instance, let’s refer to the input weights as a matrix Win and the out-
put weights as a matrix Wout. Assume there’s just one hidden layer, referred to as a vec-
tor Z(t).

 As shown in figure 10.2, the first half of the neural network is characterized by the
function Z(t) = X(t) × Win, and the second half of the neural network takes the form
Y(t) = Z(t) × Wout. Equivalently, if you prefer, the whole neural network is the function
Y(t) = (X(t) × Win) × Wout.

After spending nights fine-tuning the network, you probably want to start using your
learned model in a real-world scenario. Typically, that implies calling the model multi-
ple times, maybe even repeatedly, as depicted in figure 10.3.

Y t()

X t()

Figure 10.1 A neural network with the input and
output layers labeled as X(t) and Y(t), respectively

Z t()

Y t()

X t()

Wout

Win
Figure 10.2 The hidden layer of a neural network can be thought of as
a hidden representation of the data, which is encoded by the input
weights and decoded by the output weights.

Z t()

Y t()

X t()

Wout

Win

Figure 10.3 Often you end up running the
same neural network multiple times, without
using knowledge about the hidden states of the
previous runs.

www.itbook.store/books/9781617293870

https://itbook.store/books/9781617293870

192 CHAPTER 10 Recurrent neural networks

At each time t, when calling the learned model, this architecture doesn’t take into
account knowledge about the previous runs. It’s like predicting stock market trends by
looking only at data from the current day. A better idea is to exploit overarching pat-
terns from a week’s worth or a month’s worth of data.

 A recurrent neural network (RNN) is different from a traditional neural network
because it introduces a transition weight W to transfer information over time. Fig-
ure 10.4 shows the three weight matrices that must be learned in an RNN. The intro-
duction of the transition weight means that the next state is now dependent on the
previous model, as well as the previous state. This means your model now has a “mem-
ory” of what it did!

Diagrams are nice, but you’re here to get your hands dirty. Let’s get right to it! The
next section shows how to use TensorFlow’s built-in RNN models. Then, you’ll use an
RNN on real-world time-series data to predict the future!

10.3 Implementing a recurrent neural network
As you implement the RNN, you’ll use TensorFlow to do much of the heavy lifting.
You won’t need to manually build up a network as shown earlier in figure 10.4,
because the TensorFlow library already supports some robust RNN models.

NOTE For TensorFlow library information on RNNs, see www.tensorflow.org/
tutorials/recurrent.

One type of RNN model is called Long Short-Term Memory (LSTM). I admit, it’s a fun
name. It means exactly what it sounds like, too: short-term patterns aren’t forgotten in
the long term.

 The precise implementation details of LSTM are beyond the scope of this book.
Trust me, a thorough inspection of the LSTM model would distract from the chapter,
because there’s no definite standard yet. That’s where TensorFlow comes to the res-
cue. It takes care of how the model is defined so you can use it out of the box. It also
means that as TensorFlow is updated in the future, you’ll be able to take advantage of
improvements to the LSTM model without modifying your code.

Z t()

Y t()

X t()

W

Wout

Win
Figure 10.4 A recurrent neural network
architecture can use the previous states of
the network to its advantage.

www.itbook.store/books/9781617293870

https://itbook.store/books/9781617293870

193Implementing a recurrent neural network

TIP To understand how to implement LSTM from scratch, I suggest the fol-
lowing explanation: https://apaszke.github.io/lstm-explained.html. The paper
that describes the implementation of regularization used in the following list-
ings is available at http://arxiv.org/abs/1409.2329.

Begin by writing your code in a new file called simple_regression.py. Import the rele-
vant libraries, as shown in the following listing.

import numpy as np
import tensorflow as tf
from tensorflow.contrib import rnn

Now, define a class called SeriesPredictor. The constructor, shown in the following
listing, will set up model hyperparameters, weights, and the cost function.

class SeriesPredictor:
 def __init__(self, input_dim, seq_size, hidden_dim=10):

 self.input_dim = input_dim
 self.seq_size = seq_size
 self.hidden_dim = hidden_dim

 self.W_out = tf.Variable(tf.random_normal([hidden_dim, 1]),
name='W_out')

 self.b_out = tf.Variable(tf.random_normal([1]), name='b_out')
 self.x = tf.placeholder(tf.float32, [None, seq_size, input_dim])
 self.y = tf.placeholder(tf.float32, [None, seq_size])

 self.cost = tf.reduce_mean(tf.square(self.model() - self.y))
 self.train_op = tf.train.AdamOptimizer().minimize(self.cost)

 self.saver = tf.train.Saver()

Next, let’s use TensorFlow’s built-in RNN model called BasicLSTMCell. The hidden
dimension of the cell passed into the BasicLSTMCell object is the dimension of the
hidden state that gets passed through time. You can run this cell with data by using
the rnn.dynamic_rnn function, to retrieve the output results. The following listing
details how to use TensorFlow to implement a predictive model using LSTM.

 def model(self):
 """
 :param x: inputs of size [T, batch_size, input_size]
 :param W: matrix of fully-connected output layer weights
 :param b: vector of fully-connected output layer biases
 """

Listing 10.1 Importing relevant libraries

Listing 10.2 Defining a class and its constructor

Listing 10.3 Defining the RNN model

Hyperparameters

Weight
variables

and input
placeholders

Cost
optimizer

Auxiliary ops

www.itbook.store/books/9781617293870

https://itbook.store/books/9781617293870

194 CHAPTER 10 Recurrent neural networks

 cell = rnn.BasicLSTMCell(self.hidden_dim)
 outputs, states = tf.nn.dynamic_rnn(cell, self.x, dtype=tf.float32)
 num_examples = tf.shape(self.x)[0]
 W_repeated = tf.tile(tf.expand_dims(self.W_out, 0), [num_examples, 1, 1])
 out = tf.matmul(outputs, W_repeated) + self.b_out
 out = tf.squeeze(out)
 return out

With a model and cost function defined, you can now implement the training function,
which will learn the LSTM weights, given example input/output pairs. As listing 10.4
shows, you open a session and repeatedly run the optimizer on the training data.

NOTE You can use cross-validation to figure out how many iterations you
need to train the model. In this case, you assume a fixed number of epochs.
Some good insights and answers can be found through online Q&A sites such
as ResearchGate: http://mng.bz/lB92.

After training, save the model to a file so you can load it later.

 def train(self, train_x, train_y):
 with tf.Session() as sess:
 tf.get_variable_scope().reuse_variables()
 sess.run(tf.global_variables_initializer())
 for i in range(1000):
 _, mse = sess.run([self.train_op, self.cost],

feed_dict={self.x: train_x, self.y: train_y})
 if i % 100 == 0:
 print(i, mse)
 save_path = self.saver.save(sess, 'model.ckpt')
 print('Model saved to {}'.format(save_path))

Let’s say all went well, and your model has successfully learned parameters. Next,
you’d like to evaluate the predictive model on other data. The following listing loads
the saved model and runs the model in a session by feeding in test data. If a learned
model doesn’t perform well on testing data, you can try tweaking the number of hid-
den dimensions of the LSTM cell.

 def test(self, test_x):
 with tf.Session() as sess:
 tf.get_variable_scope().reuse_variables()
 self.saver.restore(sess, './model.ckpt')
 output = sess.run(self.model(), feed_dict={self.x: test_x})
 print(output)

Listing 10.4 Training the model on a dataset

Listing 10.5 Testing the learned model

Creates an LSTM cell

Runs the cell on the input to obtain
tensors for outputs and states

Computes the output
layer as a fully connected

linear function

Runs the train
op 1,000 times

www.itbook.store/books/9781617293870

https://itbook.store/books/9781617293870

195A predictive model for time-series data

It’s done! But just to convince yourself that it works, let’s make up some data and try to
train the predictive model. In the next listing, you’ll create input sequences, train_x,
and corresponding output sequences, train_y.

if __name__ == '__main__':
 predictor = SeriesPredictor(input_dim=1, seq_size=4, hidden_dim=10)
 train_x = [[[1], [2], [5], [6]],
 [[5], [7], [7], [8]],
 [[3], [4], [5], [7]]]
 train_y = [[1, 3, 7, 11],
 [5, 12, 14, 15],
 [3, 7, 9, 12]]
 predictor.train(train_x, train_y)

 test_x = [[[1], [2], [3], [4]],
 [[4], [5], [6], [7]]]
 predictor.test(test_x)

You can treat this predictive model as a black box and train it using real-world time-
series data for prediction. In the next section, you’ll get data to work with.

10.4 A predictive model for time-series data
Time-series data is abundantly available online. For this example, you’ll use data about
international airline passengers for a specific period. You can obtain this data from
http://mng.bz/5UWL. Clicking that link will take you to a nice plot of the time-series
data, as shown in figure 10.5.

Listing 10.6 Training and testing on dummy data

Predicted result
should be 1, 3, 5, 7

Predicted result should
be 4, 9, 11, 13

Figure 10.5 Raw data showing the number of international airline passengers throughout the years

www.itbook.store/books/9781617293870

https://itbook.store/books/9781617293870

196 CHAPTER 10 Recurrent neural networks

You can download the data by clicking the Export tab and then selecting CSV (,) in
the Export group. You’ll have to manually edit the CSV file to remove the header line
as well as the additional footer line.

 In a file called data_loader.py, add the following code.

import csv
import numpy as np
import matplotlib.pyplot as plt

def load_series(filename, series_idx=1):
 try:
 with open(filename) as csvfile:
 csvreader = csv.reader(csvfile)

 data = [float(row[series_idx]) for row in csvreader
 if len(row) > 0]
 normalized_data = (data - np.mean(data)) / np.std(data)
 return normalized_data
 except IOError:
 return None

def split_data(data, percent_train=0.80):
 num_rows = len(data) * percent_train
 return data[:num_rows], data[num_rows:]

Here, you define two functions, load_series and split_data. The first function
loads the time-series file on disk and normalizes it, and the other function divides the
dataset into two components, for training and testing.

 Because you’ll be evaluating the model multiple times to predict future values, let’s
modify the test function from SeriesPredictor. It now takes as an argument the ses-
sion, instead of initializing the session on every call. See the following listing for this
tweak.

def test(self, sess, test_x):
 tf.get_variable_scope().reuse_variables()
 self.saver.restore(sess, './model.ckpt')
 output = sess.run(self.model(), feed_dict={self.x: test_x})
 return output

You can now train the predictor by loading the data in the acceptable format. List-
ing 10.9 shows how to train the network and then use the trained model to predict

Listing 10.7 Loading data

Listing 10.8 Modifying the test function to pass in the session

Loops through the lines
of the file and converts to

a floating-point number

Preprocesses the data by mean-
centering and dividing by

standard deviation

Calculates training
data samples

Splits the dataset into
training and testing

www.itbook.store/books/9781617293870

https://itbook.store/books/9781617293870

197A predictive model for time-series data

future values. You’ll generate the training data (train_x and train_y) to look like
those shown previously in listing 10.6.

if __name__ == '__main__':
 seq_size = 5
 predictor = SeriesPredictor(
 input_dim=1,
 seq_size=seq_size,
 hidden_dim=100)

 data = data_loader.load_series('international-airline-passengers.csv')
 train_data, actual_vals = data_loader.split_data(data)

 train_x, train_y = [], []
 for i in range(len(train_data) - seq_size - 1):
 train_x.append(np.expand_dims(train_data[i:i+seq_size],

axis=1).tolist())
 train_y.append(train_data[i+1:i+seq_size+1])

 test_x, test_y = [], []
 for i in range(len(actual_vals) - seq_size - 1):
 test_x.append(np.expand_dims(actual_vals[i:i+seq_size],

axis=1).tolist())
 test_y.append(actual_vals[i+1:i+seq_size+1])

 predictor.train(train_x, train_y, test_x, test_y)

 with tf.Session() as sess:
 predicted_vals = predictor.test(sess, test_x)[:,0]
 print('predicted_vals', np.shape(predicted_vals))
 plot_results(train_data, predicted_vals, actual_vals,

'predictions.png')

 prev_seq = train_x[-1]
 predicted_vals = []
 for i in range(20):
 next_seq = predictor.test(sess, [prev_seq])
 predicted_vals.append(next_seq[-1])
 prev_seq = np.vstack((prev_seq[1:], next_seq[-1]))
 plot_results(train_data, predicted_vals, actual_vals,

'hallucinations.png')

The predictor generates two graphs. The first is prediction results of the model, given
ground-truth values, as shown in figure 10.6.

 The other graph shows the prediction results when only the training data is given
(blue line) and nothing else (see figure 10.7). This procedure has less information
available, but it still did a good job matching trends of the data.

Listing 10.9 Generate training data

The dimension of each
element of the sequence is a
scalar (one-dimensional).

Length of each
sequence

Size of the
RNN hidden

dimension

Loads
the data

Slides a window
through the time-
series data to
construct the
training dataset

Uses the same
window-sliding
strategy to
construct the
test dataset

Trains a
model
on the

training
dataset

Visualizes
the model’s
performance

www.itbook.store/books/9781617293870

https://itbook.store/books/9781617293870

198 CHAPTER 10 Recurrent neural networks

You can use time-series predictors to reproduce realistic fluctuations in data. Imagine
predicting market boom-and-bust cycles based on the tools you’ve learned so far.
What are you waiting for? Grab some market data, and learn your own predictive
model!

10.5 Application of recurrent neural networks
Recurrent neural networks are meant to be used with sequential data. Because audio
signals are a dimension lower than video (linear signal versus two-dimensional pixel

Figure 10.6 The predictions
match trends fairly well when
tested against ground-truth data.

Figure 10.7 If the algorithm
uses previously predicted results
to make further predictions, then
the general trend matches well,
but not specific bumps.

www.itbook.store/books/9781617293870

https://itbook.store/books/9781617293870

199Summary

array), it’s a lot easier to get started with audio time-series data. Consider how much
speech recognition has improved over the years: it’s becoming a tractable problem!

 Like the audio histogram analysis you conducted in chapter 5 on clustering audio
data, most speech recognition preprocessing involves representing the sound into a
chromagram of sorts. Specifically, a common technique is to use a feature called mel-
frequency cepstral coefficients (MFCCs). A good introduction is outlined in this blog post:
http://mng.bz/411F.

 Next, you’ll need a dataset to train your model. A few popular ones include the fol-
lowing:

 LibriSpeech: www.openslr.org/12
 TED-LIUM: www.openslr.org/7
 VoxForge: www.voxforge.org

An in-depth walkthrough of a simple speech-recognition implementation in Tensor-
Flow using these datasets is available online: https://svds.com/tensorflow-rnn-tutorial.

10.6 Summary
 A recurrent neural network (RNN) uses information from the past. That way, it

can make predictions using data with high temporal dependencies.
 TensorFlow comes with RNN models out of the box.
 Time-series prediction is a useful application for RNNs because of temporal

dependencies in the data.

www.itbook.store/books/9781617293870

https://itbook.store/books/9781617293870

Nishant Shukla

T
ensorFlow, Google’s library for large-scale machine learn-
ing, simplifi es often-complex computations by repres-
enting them as graphs and effi ciently mapping parts of

the graphs to machines in a cluster or to the processors of a
single machine.

Machine Learning with TensorFlow gives readers a solid founda-
tion in machine-learning concepts plus hands-on experience
coding TensorFlow with Python. You’ll learn the basics by
working with classic prediction, classifi cation, and clustering
algorithms. Then, you’ll move on to the money chapters: ex-
ploration of deep-learning concepts like autoencoders, recur-
rent neural networks, and reinforcement learning. Digest this
book and you will be ready to use TensorFlow for machine-
learning and deep-learning applications of your own.

What’s Inside
● Matching your tasks to the right machine-learning
 and deep-learning approaches
● Visualizing algorithms with TensorBoard
● Understanding and using neural networks

Written for developers experienced with Python and algebraic
concepts like vectors and matrices.

Nishant Shukla is a computer vision researcher focused on
applying machine-learning techniques in robotics.

Senior technical editor: Kenneth Fricklas

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/machine-learning-with-tensorflow

$44.99 / Can $59.99 [INCLUDING eBOOK]

Machine Learning with TensorFlow

DATA SCIENCE/PYTHON

M A N N I N G

“A great guide to machine
learning. It helped launch

 my third career!”
—William Wheeler

TEKsystems

“The many examples
provide excellent

 hands-on experience.”
—Mikaël Dautrey, ISITIX

“Helped me to jump-start
working with TensorFlow.”—Ursin Stauss, Swiss Post

“Learn how to use
TensorFlow to power your
machine-learning projects

with this fast-paced yet
 unintimidating book!”
—Arthur Zubarev, SERMO

Go to
manning.com/

freebook

www.itbook.store/books/9781617293870

https://itbook.store/books/9781617293870

