

 SAMPLE CHAPTER

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

Functional Programming in C#

by Enrico Buonanno

Chapter 1

Copyright 2017 Manning Publications

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

brief contents

PART 1 CORE CONCEPTS ...1

1 ■ Introducing functional programming 3

2 ■ Why function purity matters 31

3 ■ Designing function signatures and types 52

4 ■ Patterns in functional programming 80

5 ■ Designing programs with function composition 102

PART 2 BECOMING FUNCTIONAL ...121

6 ■ Functional error handling 123

7 ■ Structuring an application with functions 149

8 ■ Working effectively with multi-argument functions 177

9 ■ Thinking about data functionally 202

10 ■ Event sourcing: a functional approach to persistence 229

PART 3 ADVANCED TECHNIQUES..255

11 ■ Lazy computations, continuations, and the beauty

of monadic composition 257

12 ■ Stateful programs and stateful computations 279

vii

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

viii BRIEF CONTENTS

13 ■ Working with asynchronous computations 295

14 ■ Data streams and the Reactive Extensions 320

15 ■ An introduction to message-passing concurrency 345

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

Part 1

Core concepts

In this part we’ll cover the basic techniques and principles of functional pro
gramming.

 Chapter 1 starts by looking at what functional programming is, and how C#
supports programming in a functional style. It then delves deeper into higher-
order functions, a fundamental technique of FP.

 Chapter 2 explains what pure functions are, why purity has important impli
cations for a function’s testability, and why pure functions lend themselves well
to parallelization and other optimizations.

 Chapter 3 deals with principles for designing types and function signatures—
things you thought you knew but that receive a breath of fresh air when looked
at from a functional perspective.

 Chapter 4 introduces some of the core functions of FP: Map, Bind, ForEach,
and Where (filter). These functions provide the basic tools for interacting with
the most common data structures in FP.

 Chapter 5 shows how functions can be chained into pipelines that capture
the workflows of your program. It then widens the scope to developing a whole
use case in a functional style.

 By the end of part 1, you’ll have a good feel for what a program written in a
functional style looks like, and you’ll understand the benefits that this style has
to offer.

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

Introducing functional
programming

This chapter covers
 Benefits and tenets of functional programming

 Functional features of the C# language

 Representation of functions in C#

 Higher-order functions

Functional programming is a programming paradigm: a different way of thinking
about programs than the mainstream, imperative paradigm you’re probably used
to. For this reason, learning to think functionally is challenging but also very
enriching. My ambition is that after reading this book, you’ll never look at code
with the same eyes as before!

 The learning process can be a bumpy ride. You’re likely to go from frustration
at concepts that seem obscure or useless to exhilaration when something clicks in
your mind, and you’re able to replace a mess of imperative code with just a couple
of lines of elegant, functional code.

3

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

4 CHAPTER 1 Introducing functional programming

 This chapter will address some questions you may have as you start on this journey:
What exactly is functional programming? Why should I care? Can I code functionally
in C#? Is it worth the effort?

 We’ll start with a high-level overview of what functional programming (FP) is, and
how well the C# language supports programming in a functional style. We’ll then dis
cuss functions and how they’re represented in C#. Finally, we’ll dip our feet in the
water with higher-order functions, which I’ll illustrate with a practical example.

1.1 What is this thing called functional programming?
What exactly is functional programming? At a very high level, it’s a programming style
that emphasizes functions while avoiding state mutation. This definition is already
twofold, as it includes two fundamental concepts:

 Functions as first-class values
 Avoiding state mutation

Let’s see what these mean.

1.1.1 Functions as first-class values

In a language where functions are first-class values, you can use them as inputs or out
puts of other functions, you can assign them to variables, and you can store them in
collections. In other words, you can do with functions all the operations that you can
do with values of any other type.

 For example, type the following into the REPL:1

Func<int, int> triple = x => x * 3;

var range = Enumerable.Range(1, 3);

var triples = range.Select(triple);

triples // => [3, 6, 9]

In this example, you start by declaring a function that returns the triple of a given
integer and assigning it to the variable triple. You then use Range to create an IEnu
merable<int> with the values [1, 2, 3]. You then invoke Select (an extension
method on IEnumerable), giving it the range and the triple function as arguments;
this creates a new IEnumerable containing the elements obtained by applying the
triple function to each element in the input range.

 This short snippet demonstrates that functions are indeed first-class values in C#,
because you can assign the multiply-by-3 function to the variable triple, and give it as
an argument to Select. Throughout the book you’ll see that treating functions as val
ues allows you to write some very powerful and concise code.

1	 A REPL is a command-line interface allowing you to experiment with the language by typing in statements
and getting immediate feedback. If you use Visual Studio, you can start the REPL by going to View > Other
Windows > C# Interactive. On Mono, you can use the csharp command. There are also several other utilities
that allow you to run C# snippets interactively, some even in the browser.

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

5 What is this thing called functional programming?

1.1.2 Avoiding state mutation

If we follow the functional paradigm, we should refrain from state mutation alto
gether: once created, an object never changes, and variables should never be reas
signed. The term mutation indicates that a value is changed in-place—updating a value
stored somewhere in memory. For example, the following code creates and populates
an array, and then it updates one of the array’s values in place:

int[] nums = { 1, 2, 3 };

nums[0] = 7;

nums // => [7, 2, 3]

Such updates are also called destructive updates, because the value stored prior to the
update is destroyed. These should always be avoided when coding functionally.
(Purely functional languages don’t allow in-place updates at all.)

 Following this principle, sorting or filtering a list should not modify the list in
place but should create a new, suitably filtered or sorted list without affecting the orig
inal. Type the following into the REPL to see what happens when sorting or filtering a
list using LINQ’s Where and OrderBy functions.

Listing 1.1 Functional approach: Where and OrderBy don’t affect the original list

Func<int, bool> isOdd = x => x % 2 == 1;

int[] original = { 7, 6, 1 };

The var sorted = original.OrderBy(x => x);

original list var filtered = original.Where(isOdd);

hasn’t been

affected. original // => [7, 6, 1]
 Sorting and filtering
sorted // => [1, 6, 7]
 yielded new lists.
filtered // => [7, 1]

As you can see, the original list is unaffected by the sorting or filtering operations,
which yielded new IEnumerables.

 Let’s look at a counterexample. If you have a List<T>, you can sort it in place by
calling its Sort method.

Listing 1.2 Nonfunctional approach: List<T>.Sort sorts the list in place

var original = new List<int> { 5, 7, 1 };

original.Sort();

original // => [1, 5, 7]

In this case, after sorting, the original ordering is destroyed. You’ll see why this is prob
lematic right away.

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

6 CHAPTER 1 Introducing functional programming

NOTE The reason you see both the functional and nonfunctional approaches
in the framework is historical: List<T>.Sort predates LINQ, which marked a
decisive turn in a functional direction.

1.1.3 Writing programs with strong guarantees

Of the two concepts we just discussed, functions as first-class values initially seems
more exciting, and we’ll concentrate on it in the latter part of this chapter. But before
we move on, I’d like to briefly demonstrate why avoiding state mutation is also hugely
beneficial, as it eliminates many complexities caused by mutable state.

 Let’s look at an example. (We’ll revisit these topics in more detail, so don’t worry if
not everything is clear at this point.) Type the following code into the REPL.

Listing 1.3 Mutating state from concurrent processes yields unpredictable results

This allows you to call
Range and WriteLine

using static System.Linq.Enumerable;
 without full qualification.
using static System.Console;

var nums = Range(-10000, 20001).Reverse().ToList();

// => [10000, 9999, ... , -9999, -10000]

Action task1 = () => WriteLine(nums.Sum());

Action task2 = () => { nums.Sort(); WriteLine(nums.Sum()); };

Parallel.Invoke(task1, task2);
 Executes both
// prints: 92332970
 tasks in parallel
// 0

Here you define nums to be a list of all integers between 10,000 and -10,000; their sum
should obviously be 0. You then create two tasks: task1 computes and prints out the
sum; task2 first sorts the list and then computes and prints the sum. Each of these
tasks will correctly compute the sum if run independently. When you run both tasks in
parallel, however, task1 comes up with an incorrect and unpredictable result.

 It’s easy to see why: as task1 reads the numbers in the list to compute the sum,
task2 is reordering that very same list. That’s somewhat like trying to read a book
while somebody else flips the pages: you’d be reading some well-mangled sentences!
Graphically, this can be illustrated as shown in figure 1.1.

 What if we use LINQ’s OrderBy method, instead of sorting the list in place?

Action task3 = () => WriteLine(nums.OrderBy(x => x).Sum());

Parallel.Invoke(task1, task3);

// prints: 0

// 0

As you can see, using LINQ’s functional implementation gives you a predictable result,
even when you execute the tasks in parallel. This is because task3 isn’t modifying the

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

7 What is this thing called functional programming?

task1 is traversing a list
and reading its values.

task2 is concurrently sorting
the list, thus interfering with
task1’s view of the data.

Figure 1.1 Modifying data in place can give concurrent threads an incorrect view of the data

original list but rather creating a completely new “view” of the data, which is sorted—
task1 and task3 read from the original list concurrently, but concurrent reads don’t
cause any inconsistencies, as shown in figure 1.2.

 This simple example illustrates a wider truth: when developers write an application
in the imperative style (explicitly mutating the program state) and later introduce

task1 is traversing a list

and reading its values.

task3 concurrently creates a sorted
view of the list, so it doesn’t interfere
with task1’s view of the data.

Figure 1.2 The functional approach: creating a new, modified version of the original structure

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

8 CHAPTER 1 Introducing functional programming

concurrency (due to new requirements, or a need to improve performance), they
inevitably face a lot of work and potentially some difficult bugs. When a program is
written in a functional style from the outset, concurrency can often be added for free,
or with substantially less effort. We’ll discuss state mutation and concurrency more in
chapters 2 and 9. For now, let’s go back to our overview of FP.

 Although most people will agree that treating functions as first-class values and
avoiding state mutation are fundamental tenets of FP, their application gives rise to a
series of practices and techniques, so it’s debatable which techniques should be con
sidered essential and included in a book like this.

 I encourage you to take a pragmatic approach to the subject and try to understand
FP as a set of tools that you can use to address your programming tasks. As you learn
these techniques, you’ll start to look at problems from a different perspective: you’ll
start to think functionally.

 Now that we have a working definition of FP, let’s look at the C# language itself,
and at its support for FP techniques.

Functional vs. object-oriented?
I’m often asked to compare and contrast FP with object-oriented programming (OOP).
This isn’t simple, mainly because there are many incorrect assumptions about what
OOP should look like.

In theory, the fundamental principles of OOP (encapsulation, data abstraction, and
so on) are orthogonal to the principles of FP, so there’s no reason why the two para
digms can’t be combined.

In practice, however, most object-oriented (OO) developers heavily rely on the imper
ative style in their method implementations, mutating state in place and using explicit
control flow: they use OO design in the large, and imperative programming in the
small. So the real question is that of imperative vs. functional programming, and I’ll
summarize the benefits of FP at the end of this chapter.

Another question that often arises is how FP differs from OOP in terms of structuring
a large, complex application. The difficult art of structuring a complex application
relies on several principles:

 Modularity (dividing software into reusable components)
 Separation of concerns (each component should only do one thing)
 Layering (high-level components can depend on low-level components, but not

vice versa)
 Loose coupling (changes to a component shouldn’t affect components that

depend on it)

These principles are generally valid, regardless of whether the component in question
is a function, a class, or an application.

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

2

9 How functional a language is C#?

(continued)
They’re also in no way specific to OOP, so the same principles can be used to struc
ture an application written in the functional style—the difference will be in what the
components are, and what APIs they expose.

In practice, the functional emphasis on pure functions (which we’ll discuss in chapter 2)
and composability (chapter 5) make it significantly easier to achieve some of these design
goals.2

1.2 How functional a language is C#?
Functions are indeed first-class values in C#, as demonstrated in the previous listings.
In fact, C# had support for functions as first-class values from the earliest version of
the language through the Delegate type, and the subsequent introduction of lambda
expressions made the syntactic support even better—we’ll review these language fea
tures in the next section.

 There are some quirks and limitations, such as when it comes to type inference;
we’ll discuss these in chapter 8. But overall, the support for functions as first-class val
ues is pretty good.

 As for supporting a programming model that avoids in-place updates, the funda
mental requirement in this area is that a language have garbage collection. Because
you create modified versions, rather than updating existing values in place, you want
old versions to be garbage collected as needed. Again, C# satisfies this requirement.

 Ideally, the language should also discourage in-place updates. This is C#’s greatest
shortcoming: everything is mutable by default, and the programmer has to put in a
substantial amount of effort to achieve immutability. Fields and variables must explic
itly be marked readonly to prevent mutation. (Compare this to F#, where variables
are immutable by default and must explicitly be marked mutable to allow mutation.)

 What about types? There are a few immutable types in the framework, such as
string and DateTime, but language support for user-defined immutable types is poor
(although, as you’ll see next, it has improved in C# 6 and is likely to improve further
in future versions). Finally, collections in the framework are mutable, but a solid
library of immutable collections is available.

 In summary, C# has very good support for some functional techniques, but not
others. In its evolution, it has improved, and it will continue to improve its support for
functional techniques. In this book, you’ll learn which features can be harnessed, and
also how to work around its shortcomings.

 Next we’ll review some language features from past, present, and upcoming ver
sions of C# that are particularly relevant to FP.

2	 For a more thorough discussion on why imperatively flavored OOP is a cause of, rather than a solution to, pro
gram complexity, see Out of the Tar Pit by Ben Moseley and Peter Marks, 2006 (https://github.com/papers
we-love/papers-we-love/raw/master/design/out-of-the-tar-pit.pdf).

www.itbook.store/books/9781617293955

https://github.com/papers-we-love/papers-we-love/raw/master/design/out-of-the-tar-pit.pdf
https://github.com/papers-we-love/papers-we-love/raw/master/design/out-of-the-tar-pit.pdf
https://itbook.store/books/9781617293955

10	 CHAPTER 1 Introducing functional programming

1.2.1 The functional nature of LINQ

When C# 3 was released, along with version 3.5 of the .NET Framework, it included a
host of features inspired by functional languages, including the LINQ library
(System.Linq) and some new language features enabling or enhancing what you
could do with LINQ, such as extension methods and expression trees.

LINQ is indeed a functional library—as you probably noticed, I used LINQ earlier
to illustrate both tenets of FP—and the functional nature of LINQ will become even
more apparent as you progress through this book.

LINQ offers implementations for many common operations on lists (or, more gen
erally, on “sequences,” as instances of IEnumerable should technically be called), the
most common of which are mapping, sorting, and filtering (see the “Common opera
tions on sequences” sidebar). Here’s an example combining all three:

Enumerable.Range(1, 100).

 Where(i => i % 20 == 0).

 OrderBy(i => -i).

 Select(i => $"{i}%")

// => ["100%", "80%", "60%", "40%", "20%"]

Notice how Where, OrderBy, and Select all take functions as arguments and don’t
mutate the given IEnumerable, but return a new IEnumerable instead, illustrating
both tenets of FP you saw earlier.

LINQ facilitates querying not only objects in memory (LINQ to Objects), but vari
ous other data sources, like SQL tables and XML data. C# programmers have
embraced LINQ as the standard toolset for working with lists and relational data
(accounting for a substantial amount of a typical codebase). On the up side, this
means that you’ll already have some sense of what a functional library’s API feels like.

 On the other hand, when working with other types, C# programmers generally
stick to the imperative style of using flow-control statements to express the program’s
intended behavior. As a result, most C# codebases I’ve seen are a patchwork of func
tional style (when working with IEnumerables and IQueryables) and imperative style
(everything else).

 What this means is that although C# programmers are aware of the benefits of
using a functional library such as LINQ, they haven’t had enough exposure to the
design principles behind LINQ to leverage those techniques in their own designs.
That’s something this book aims to address.

Common operations on sequences
The LINQ library contains many methods for performing common operations on
sequences, such as the following:

 Mapping—Given a sequence and a function, mapping yields a new sequence
with the elements obtained by applying the given function to each element in
the given sequence (in LINQ, this is done with the Select method).

Enumerable.Range(1, 3).Select(i => i * 3) // => [3, 6, 9]

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

11 How functional a language is C#?

(continued)
 Filtering—Given a sequence and a predicate, filtering yields a new sequence

consisting of the elements from the given sequence that pass the predicate
(in LINQ, Where).

Enumerable.Range(1, 10).Where(i => i % 3 == 0) // => [3, 6, 9]

 Sorting—Given a sequence and a key-selector function, sorting yields a new
sequence ordered according to the key (in LINQ, OrderBy and OrderByDe
scending).

Enumerable.Range(1, 5).OrderBy(i => -i) // => [5, 4, 3, 2, 1]

1.2.2 Functional features in C# 6 and C# 7

C# 6 and C# 7 aren’t as revolutionary as C# 3, but they include many smaller language
features that, taken together, provide a much better experience and more idiomatic
syntax for coding functionally.

NOTE Most features introduced in C# 6 and C# 7 offer better syntax, not new
functionality. If you’re using an older version of C#, you can still apply all of
the techniques shown in this book (with a bit of extra typing). However, these
newer features significantly improve readability, making programming in a
functional style more attractive.

You can see these features in action in the following listing.

Listing 1.4 C# 6 and C# 7 features relevant for FP

using static System.Math;

public class Circle

{

public Circle(double radius)

 => Radius = radius;

public double Radius { get; }

public double Circumference

=> PI * 2 * Radius;

public double Area

{

get

 {

using static enables unqualified
access to the static members of
System.Math, like PI and Pow.

A getter-only auto-property can
be set only in the constructor.

An expression-bodied
property

double Square(double d) => Pow(d, 2);

return PI * Square(Radius);

 }

 }

public (double Circumference, double Area) Stats

=> (Circumference, Area);

}

A local function is a
method declared within
another method.

C# 7 tuple syntax with
named elements

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

12 CHAPTER 1 Introducing functional programming

IMPORTING STATIC MEMBERS WITH USING STATIC

The using static statement in C# 6 allows you to import the static members of a class
(in this example, the System.Math class). As a result, in this example you can invoke
the PI and Pow members of Math without further qualification:

using static System.Math;

public double Circumference

 => PI * 2 * Radius;

Why is this important? In FP, we prefer functions whose behavior relies only on their
input arguments because we can reason about and test these functions in isolation
(contrast this with instance methods, whose implementation typically interacts with
instance variables). These functions are implemented as static methods in C#, so a
functional library in C# will consist mainly of static methods.

using static allows you to more easily consume such libraries, and although overuse
can lead to namespace pollution, reasonable use can make for clean, readable code.

EASIER IMMUTABLE TYPES WITH GETTER-ONLY AUTO-PROPERTIES

When you declare a getter-only auto-property, such as Radius, the compiler implicitly
declares a readonly backing field. As a result, these properties can only be assigned a
value in the constructor or inline:

public class Circle

{

public Circle(double radius)

 => Radius = radius;

public double Radius { get; }

}

Getter-only auto-properties facilitate the definition of immutable types, which you’ll
see in more detail in chapter 9. The Circle class demonstrates this: it only has one
field (the backing field of Radius), which is readonly, so once it’s created, a Circle
can never change.

MORE CONCISE FUNCTIONS WITH EXPRESSION-BODIED MEMBERS

The Circumference property is declared with an expression body introduced with =>,
rather than with the usual statement body in {}:

public double Circumference

 => PI * 2 * Radius;

Notice how much more concise this is compared to the Area property!
 In FP, we tend to write lots of simple functions, many of them one-liners, and then

compose them into more complex workflows. Expression-bodied methods allow you
to do this with minimal syntactic noise. This is particularly evident when you want to
write a function that returns a function—something you’ll do a lot in this book.

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

13 How functional a language is C#?

 The expression-bodied syntax was introduced in C# 6 for methods and properties, and
it was generalized in C# 7 to also apply to constructors, destructors, getters, and setters.

LOCAL FUNCTIONS

Writing lots of simple functions means that many functions are called from one loca
tion only. C# 7 allows you to make this explicit by declaring methods within the scope
of a method; for instance, the Square method is declared within the scope of the Area
getter:

get

{

double Square(double d) => Pow(d, 2);

return PI * Square(Radius);

}

BETTER SYNTAX FOR TUPLES

Better syntax for tuples is the most important feature of C# 7. It allows you to easily
create and consume tuples, and, most importantly, to assign meaningful names to
their elements. For example, the Stats property returns a tuple of type (double,
double), and specifies meaningful names by which its elements can be accessed:

public (double Circumference, double Area) Stats

 => (Circumference, Area);

Tuples are important in FP because of the tendency to break tasks down into very
small functions. You may end up with a data type whose only purpose is to capture the
information returned by one function, and that’s expected as input by another func
tion. It’s impractical to define dedicated types for such structures, which don’t corre
spond to meaningful domain abstractions. That’s where tuples come in.

1.2.3 A more functional future for C#?

As I was writing the first draft of this chapter, in early 2016, development of C# 7 was
in its early days, and it was interesting to see that all the features for which the lan
guage team had identified “strong interest” were features normally associated with
functional languages. They included the following:

 Record types (boilerplate-free immutable types)
 Algebraic data types (a powerful addition to the type system)
 Pattern matching (similar to a switch statement that works on the shape of the

data, such as its type, rather than just the values)
 Better syntax for tuples

On one hand, it was disappointing that only the last item could be delivered. C# 7 also
includes a limited implementation of pattern matching, but it’s a far cry from the kind
of pattern matching available in functional languages, and it’s generally inadequate
for the way we’d like to use pattern matching when programming functionally (see
section 10.2.4).

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

14 CHAPTER 1 Introducing functional programming

 On the other hand, these features are still on the table for future versions, and
work has been done on the respective proposals. This means we’re likely to see record
types and a more complete implementation of pattern matching in future versions of
C#. So C# is poised to continue in its evolution as a multi-paradigm language with an
increasingly strong functional component.

 This book will give you a good foundation for keeping up with the evolution of the
language and the industry. It’ll also give you a good understanding of the concepts
and motivations behind future versions of the language.

1.3 Thinking in functions
In this section, I’ll clarify what I mean by function. I’ll start with the mathematical use
of the word and then move on to the various language constructs that C# offers to rep
resent functions.

1.3.1 Functions as maps

In mathematics, a function is a map between two sets, respectively called the domain
and codomain. That is, given an element from its domain, a function yields an element
from its codomain. That’s all there is—it doesn’t matter whether the mapping is based
on some formula or is completely arbitrary.

 In this sense, a function is a completely abstract mathematical object, and the value
that a function yields is determined exclusively by its input. You’ll see that this isn’t
always the case with functions in programming.

 For example, imagine a function mapping lowercase letters to their uppercase
counterparts, as in figure 1.3. In this case, the domain is the set {a, b, c, ...}
and the codomain is the set {A, B, C, ...}.
(Naturally, there are functions for which the
domain and codomain are the same set; can you
think of an example?)

 How does this relate to programming func
tions? In statically typed languages like C#, the sets

(domain and codomain) are represented with

types. For example, if you coded the function

Domain

a
b
c
...

Codomain

A
B
C
...

Figure 1.3 A mathematical function above, you could use char to represent both the
is a mapping between the elements of

domain and the codomain. The type of your func two sets.
tion could then be written as

char char

That is, the function maps chars to chars, or, equivalently, given a char, it yields a char.
 The types for the domain and codomain constitute a function’s interface, also

called its type, or signature. You can think of this as a contract: a function signature
declares that, given an element from the domain, it will yield an element from the

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

15 Thinking in functions

codomain.3 This may sound pretty obvious, but you’ll see in chapter 3 that in reality,
violations of the signature contract abound.

 Next, let’s look at ways to encode the functions themselves.

1.3.2 Representing functions in C#

There are several language constructs in C# that you can use to represent functions:

 Methods
 Delegates
 Lambda expressions
 Dictionaries

If you’re well-versed in these, skip to the next section; otherwise, here’s a quick refresher.

METHODS

Methods are the most common and idiomatic representation for functions in C#. For
example, the System.Math class includes methods representing many common
mathematical functions. Methods can represent functions, but they also fit into the
object-oriented paradigm—they can be used to implement interfaces, they can be
overloaded, and so on.

 The constructs that really enable you to program in a functional style are delegates
and lambda expressions.

DELEGATES

Delegates are type-safe function pointers. Type-safe here means that a delegate is
strongly typed: the types of the input and output values of the function are known at
compile time, and consistency is enforced by the compiler.

 Creating a delegate is a two-step process: you first declare the delegate type and
then provide an implementation. (This is analogous to writing an interface and then
instantiating a class implementing that interface.)

 The first step is done by using the delegate keyword and providing the signa
ture for the delegate. For example, .NET includes the following definition of a
Comparison<T> delegate.

Listing 1.5 Declaring a delegate

namespace System

{

public delegate int Comparison<in T>(T x, T y);

}

As you can see, a Comparison<T> delegate can be given two T’s and will yield an int
indicating which is greater.

Interfaces in the OO sense are an extension of this idea: a set of functions with their respective input and out
put types, or, more precisely, methods, which are essentially functions, that take this, the current instance, as
an implicit argument.

3

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

16	 CHAPTER 1 Introducing functional programming

 Once you have a delegate type, you can instantiate it by providing an implementa
tion, like this.

Listing 1.6 Instantiating and using a delegate

var list = Enumerable.Range(1, 10).Select(i => i * 3).ToList();

list // => [3, 6, 9, 12, 15, 18, 21, 24, 27, 30]

Comparison<int> alphabetically = (l, r)
 Provides an implementation
of Comparison=> l.ToString().CompareTo(r.ToString());

list.Sort(alphabetically);
 Uses the Comparison delegate
list // => [12, 15, 18, 21, 24, 27, 3, 30, 6, 9]
 as an argument to Sort

As you can see, a delegate is just an object (in the technical sense) that represents an
operation—in this case, a comparison. Just like any other object, you can use a dele
gate as an argument for another method, as in listing 1.6, so delegates are the lan
guage feature that makes functions first-class values in C#.

THE FUNC AND ACTION DELEGATES

The .NET framework includes a couple of delegate “families” that can represent pretty
much any function type:

 Func<R> represents a function that takes no arguments and returns a result of
type R.

 Func<T1, R> represents a function that takes an argument of type T1 and
returns a result of type R.

 Func<T1, T2, R> represents a function that takes a T1 and a T2 and returns an R.

And so on. There are delegates to represent functions of various “arities” (see the
“Function arity” sidebar).

 Since the introduction of Func, it has become rare to use custom delegates. For
example, instead of declaring a custom delegate like this,

delegate Greeting Greeter(Person p);

you can just use the type:

Func<Person, Greeting>

The type of Greeter in the preceding example is equivalent to, or “compatible with,”
Func<Person, Greeting>. In both cases it’s a function that takes a Person and returns
a Greeting.

 There’s a similar delegate family to represent actions—functions that have no
return value, such as void methods:

 Action represents an action with no input arguments.
 Action<T1> represents an action with an input argument of type T1.
 Action<T1, T2> and so on represent an action with several input arguments.

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

17 Thinking in functions

The evolution of .NET has been away from custom delegates, in favor of the more gen
eral Func and Action delegates. For instance, take the representation of a predicate :4

 In .NET 2, a Predicate<T> delegate was introduced, which is used, for instance,
in the FindAll method used to filter a List<T>.

 In .NET 3, the Where method, also used for filtering but defined on the more
general IEnumerable<T>, takes not a Predicate<T> but simply a Func<T, bool>.

Both function types are equivalent. Using Func is recommended to avoid a prolifera
tion of delegate types that represent the same function signature, but there’s still
something to be said in favor of the expressiveness of custom delegates: Predi
cate<T>, in my view, conveys intent more clearly than Func<T, bool> and is closer to
the spoken language.

Function arity
Arity is a funny word that refers to the number of arguments that a function accepts:

 A nullary function takes no arguments.
 A unary function takes one argument.
 A binary function takes two arguments.
 A ternary function takes three arguments.

And so on. In reality, all functions can be viewed as being unary, because passing n
arguments is equivalent to passing an n-tuple as the only argument. For example,
addition (like any other binary arithmetic operation) is a function whose domain is the
set of all pairs of numbers.

LAMBDA EXPRESSIONS

Lambda expressions, called lambdas for short, are used to declare a function inline. For
example, sorting a list of numbers alphabetically can be done with a lambda like so.

Listing 1.7 Declaring a function inline with a lambda

var list = Enumerable.Range(1, 10).Select(i => i * 3).ToList();

list // => [3, 6, 9, 12, 15, 18, 21, 24, 27, 30]

list.Sort((l, r) => l.ToString().CompareTo(r.ToString()));

list // => [12, 15, 18, 21, 24, 27, 3, 30, 6, 9]

If your function is short and you don’t need to reuse it elsewhere, lambdas offer the
most attractive notation. Also notice that in the preceding example, the compiler not
only infers the types of x and y to be int, it also converts the lambda to the delegate
type Comparison<int> expected by the Sort method, given that the provided lambda
is compatible with this type.

A predicate is a function that, given a value (say, an integer), tells you whether it satisfies some condition (say,
whether it’s even).

4

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

18 CHAPTER 1 Introducing functional programming

 Just like methods, delegates and lambdas have access to the variables in the scope
in which they’re declared. This is particularly useful when leveraging closures in
lambda expressions.5 Here’s an example.

Listing 1.8 Lambdas have access to variables in the enclosing scope

var days = Enum.GetValues(typeof(DayOfWeek)).Cast<DayOfWeek>();

// => [Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday]

IEnumerable<DayOfWeek> daysStartingWith(string pattern)

 => days.Where(d => d.ToString().StartsWith(pattern));

daysStartingWith("S") // => [Sunday, Saturday] The pattern variable is referenced
from within the lambda and is

therefore captured in a closure.

In this example, Where expects a function that takes a DayOfWeek and returns a bool.
In reality, the function expressed by the lambda expression also uses the value of pat
tern, which is captured in a closure, to calculate its result.

 This is interesting. If you were to look at the function expressed by the lambda
with a more mathematical eye, you might say that it’s actually a binary function that
takes a DayOfWeek and a string (the pattern) as inputs, and yields a bool. As program
mers, however, we’re usually mostly concerned about the function signature, so you
might be more likely to look at it as a unary function from DayOfWeek to bool. Both
perspectives are valid: the function must conform to its unary signature, but it
depends on two values to do its work.

DICTIONARIES

Dictionaries are fittingly also called maps (or hashtables); they’re data structures that
provide a very direct representation of a function. They literally contain the associa
tion of keys (elements from the domain) to values (the corresponding elements from
the codomain).

 We normally think of dictionaries as data, so it’s enriching to change perspectives
for a moment and consider them as functions. Dictionaries are appropriate for repre
senting functions that are completely arbitrary, where the mappings can’t be com
puted but must be stored exhaustively. For example, to map Boolean values to their
names in French, you could write the following.

Listing 1.9 A function can be exhaustively represented with a dictionary

var frenchFor = new Dictionary<bool, string>

{

 [true] = "Vrai",
 C# 6 dictionary
[false] = "Faux",
 initializer syntax

A closure is the combination of the lambda expression itself along with the context in which that lambda is
declared (that is, all the variables available in the scope where the lambda appears).

5

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

19 Higher-order functions

};

Function application is
performed with a lookup.

frenchFor[true]

// => "Vrai"

The fact that functions can be represented with dictionaries also makes it possible to
optimize computationally expensive functions by storing their computed results in a
dictionary instead of recomputing them every time.

 For convenience, in the rest of the book, I’ll use the term function to indicate one
of the C# representations of a function, so keep in mind that this doesn’t quite match
the mathematical definition of the term. You’ll learn more about the differences
between mathematical and programming functions in chapter 2.

1.4 Higher-order functions
Now that you’ve got an understanding of what FP is and we’ve reviewed the functional
features of the language, it’s time to start exploring some concrete functional tech
niques. We’ll begin with the most important benefit of functions as first-class values: it
gives you the ability to define higher-order functions (HOFs).

HOFs are functions that take other functions as inputs or return a function as out
put, or both. I’ll assume that you’ve already used HOFs to some extent, such as with
LINQ. We’ll use HOFs a lot in this book, so this section should act as a refresher and
will possibly introduce some use cases for HOFs that you may be less familiar with.
HOFs are fun, and most of the examples in this section can be run in the REPL. Make
sure you try a few variations of your own along the way.

1.4.1 Functions that depend on other functions

Some HOFs take other functions as arguments and invoke them in order to do their
work, somewhat like a company may subcontract some of its work to another com
pany. You’ve seen some examples of such HOFs earlier in this chapter: Sort (an
instance method on List) and Where (an extension method on IEnumerable).

List.Sort, when called with a Comparison delegate, is a method that says: “OK, I’ll
sort myself, as long as you tell me how to compare any two elements that I contain.”
Sort does the job of sorting, but the caller can decide what logic to use for comparing.

 Similarly, Where does the job of filtering, and the caller decides what logic deter
mines whether an element should be included. You can represent the type of Where
graphically, as shown in figure 1.4.

Input

IEnumerable<T>

Func<T, bool>

Output

IEnumerable<T>Where

Figure 1.4 Where takes a predicate function as input.

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

f

20 CHAPTER 1 Introducing functional programming

Let’s look at an idealized implementation of Where.6

Listing 1.10 Where: a typical HOF that iteratively applies the given predicate

The Where method is responsible for the sorting logic, and the caller provides the pred
icate, which is the criterion based on which the IEnumerable should be filtered.

 As you can see, HOFs can help with the separation of concerns in cases where logic can’t
otherwise be easily separated. Where and Sort are examples of iterated applications—the

Listing 1.11 A HOF that optionally invokes the given function

class Cache<T> where T : class

{

public T Get(Guid id) => //...

public T Get(Guid id, Func<T> onMiss)

 => Get(id) ?? onMiss();

}

This implementation is functionally correct, but it lacks the error checking and optimizations in the LINQ
implementation.

The task of iterating
over the list is an

implementation
detail of Where.

HOF will apply the given function repeatedly
for every element in the collection.

 One very crude way of looking at this is
that you’re passing as the argument a func
tion whose code will ultimately be executed
inside the body of a loop within the HOF—
something you couldn’t do by only passing
static data. The general scheme is shown in
figure 1.5.

 Optional execution is another good can
didate for HOFs. This is useful when you
want to invoke a given function only in cer
tain conditions, as illustrated in figure 1.6.

 For example, imagine a method that looks
up an element from the cache. A delegate can
be provided and can be invoked in case of a
cache miss.

public static IEnumerable<T> Where<T>

 (this IEnumerable<T> ts, Func<T, bool> predicate)

{
foreach (T t in ts)

if (predicate(t))

The criterion determining which items
are included is decided by the caller.

yield return t;
}

f IterativelyApply(f, ...)
{

 for (...)
 f(...)

}

Figure 1.5 A HOF that iteratively applies
the function given as an argument

ConditionallyApply(f, ...)
{
 if (...)

 f(...)
}

Figure 1.6 A HOF that conditionally applies
the function given as an argument

6

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

21 Higher-order functions

The logic in onMiss could involve an expensive operation such as a database call, so
you wouldn’t want this to be executed unnecessarily.

 The preceding examples illustrate HOFs that take a function as input (often
referred to as a callback or a continuation) and use it to perform a task or to compute a
value.7 This is perhaps the most common pattern for HOFs, and it’s sometimes
referred to as inversion of control: the caller of the HOF decides what to do by supply
ing a function, and the callee decides when to do it by invoking the given function.

 Let’s look at some other scenarios in which HOFs come in handy.

1.4.2 Adapter functions

Some HOFs don’t apply the given function at all, but rather return a new function,
somehow related to the function given as an argument. For example, say you have a
function that performs integer division:

Func<int, int, int> divide = (x, y) => x / y;

divide(10, 2) // => 5

You want to change the order of the arguments so that the divisor comes first. This
could be seen as a particular case of a more general problem: changing the order of
the arguments.

 You can write a generic HOF that modifies any binary function by swapping the
order of its arguments:

static Func<T2, T1, R> SwapArgs<T1, T2, R>(this Func<T1, T2, R> f)

 => (t2, t1) => f(t1, t2);

Technically, it would be more correct to say that SwapArgs returns a new function that
invokes the given function with the arguments in the reverse order. But on an intuitive
level, I find it easier to think that I’m getting back a modified version of the original
function.

 You can now modify the original division function by applying SwapArgs:

var divideBy = divide.SwapArgs();

divideBy(2, 10) // => 5

Playing with this sort of HOF leads to the interesting idea that functions aren’t set in
stone: if you don’t like the interface of a function, you can call it via another function
that provides an interface that better suits your needs. That’s why I call these adapter
functions.8

7	 This is perhaps the most common pattern for HOFs, and it’s sometimes referred to as inversion of control: the
caller of the HOF decides what to do by supplying a function, and the function decides when to do it by invok
ing the given function.

8	 The well-known adapter pattern in OOP can be seen as applying the idea of adapter functions to an object’s
interface.

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

22 CHAPTER 1 Introducing functional programming

1.4.3 Functions that create other functions

Sometimes you’ll write functions whose primary purpose is to create other func
tions—you can think of them as function factories. The following example uses a
lambda to filter a sequence of numbers, keeping only those divisible by 2:

var range = Enumerable.Range(1, 20);

range.Where(i => i % 2 == 0)

// => [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

What if you wanted something more general, like being able to filter for numbers
divisible by any number, n? You could define a function that takes n and yields a suit
able predicate that will evaluate whether any given number is divisible by n:

Func<int, bool> isMod(int n) => i => i % n == 0;

We haven’t looked at a HOF like this before: it takes some static data and returns a
function. Let’s see how you can use it:

using static System.Linq.Enumerable;

Range(1, 20).Where(isMod(2)) // => [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

Range(1, 20).Where(isMod(3)) // => [3, 6, 9, 12, 15, 18]

Notice how you’ve gained not only in generality, but also in readability! In this exam
ple, you’re using the isMod HOF to produce a function, and then you’re feeding it as
input to another HOF, Where, as shown in figure 1.7.

 You’ll see many more uses of HOFs in the book. Eventually you’ll look at them as
regular functions, forgetting that they’re higher order. Let’s now look at how they can
be used in a scenario closer to everyday development.

IEnumerable<int>

IEnumerable<int>

Func<int, bool>isMod

Range

Where

isMod is a HOF that The obtained function

produces a function is supplied as input to

as output. another HOF: Where.

Figure 1.7 A HOF that produces a function that’s given as input to another HOF

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

23 Using HOFs to avoid duplication

1.5 Using HOFs to avoid duplication
Another common use case for HOFs is to encapsulate setup and teardown operations.
For example, interacting with a database requires some setup to acquire and open a
connection, and some cleaning up after the interaction to close the connection and
return it to the underlying connection pool. In code, it looks like the following.

Listing 1.12 Connecting to a DB requires some setup and teardown

string connString = "myDatabase";

var conn = new SqlConnection(connString));
 Setup: acquire and
open a connection.conn.Open();

// interact with the database...

conn.Close();
 Teardown: close and
conn.Dispose();
 release the connection.

The setup and teardown are always identical, regardless of whether you’re reading or
writing to the database, or performing one or many actions. The preceding code is
usually written with a using block, like this:

using (var conn = new SqlConnection(connString))

{

 conn.Open();

// interact with the database...

}

This is both shorter and better,9 but it’s still essentially the same. Consider the follow
ing example of a simple DbLogger class with a couple of methods that interact with the
database: Log inserts a given log message, and GetLogs retrieves all logs since a given
date.

Listing 1.13 Duplication of setup/teardown logic

using Dapper;
 Exposes Execute and Query as
// ...
 extension methods on the connection

public class DbLogger

{

string connString;
 Assume this is set
in the constructor.

public void Log(LogMessage msg)

 {

using (var conn = new SqlConnection(connString))
 Setup

It’s shorter because Dispose will be called as you exit the using block, and it will in turn call Close; it’s bet
ter because the interaction will be wrapped in a try/finally, so that the connection will be disposed even
if an exception is thrown in the body of the using block.

9

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

24	 CHAPTER 1 Introducing functional programming

Teardown is
performed
as part of
Dispose.

Persists the
LogMessage to the DB

{

int affectedRows = conn.Execute("sp_create_log"

 , msg, commandType: CommandType.StoredProcedure);

}

}

public IEnumerable<LogMessage> GetLogs(DateTime since)

 {

var sqlGetLogs = "SELECT * FROM [Logs] WHERE [Timestamp] > @since";

using (var conn = new SqlConnection(connString))
 Setup
{

return conn.Query<LogMessage>(sqlGetLogs

, new {since = since});
 Queries the DB and

deserializes the resultsTeardown }

}

}

Notice that the two methods have some duplication, namely the setup and teardown
logic. Can we get rid of the duplication?

 The specifics of the interaction with the database are irrelevant for this discussion,
but if you’re interested, the code uses the Dapper library (documented on GitHub:
https://github.com/StackExchange/dapper-dot-net), which is a thin layer on top of
ADO.NET allowing you to interact with the database through a very simple API:

 Query queries the database and returns the deserialized LogMessages.
 Execute runs the stored procedure and returns the number of affected rows

(which we’re disregarding).

Both methods are defined as extension methods on the connection. More impor
tantly, notice how in both cases, the database interaction depends on the acquired
connection and returns some data. This will allow you to represent the database inter
action as a function from IDbConnection to “something.”

ASYNCHRONOUS I/O OPERATIONS In a real-world scenario, I’d recommend you
always perform I/O operations asynchronously (so, in this example, GetLogs
should really call QueryAsync and return a Task<IEnumerable<LogMes
sage>>). But asynchrony adds a level of complexity that’s not helpful while
you’re trying to learn the already challenging ideas of FP. For pedagogical
purposes, I’ll wait until chapter 13 to discuss asynchrony.

As you can see, Dapper exposes a pleasant API, and it will even open the connection if
necessary. But you’re still required to create the connection, and you should dispose it
as soon as possible, once you’re done with it. As a result, the meat of your database
calls ends up sandwiched between identical pieces of code that perform setup and
teardown. Let’s look at how you can avoid this duplication by extracting the setup and
teardown logic into a HOF.

www.itbook.store/books/9781617293955

https://github.com/StackExchange/dapper-dot-net
https://itbook.store/books/9781617293955

25 Using HOFs to avoid duplication

1.5.1 Encapsulating setup and teardown into a HOF

You’re looking to write a function that performs
setup and teardown and that’s parameterized on
what to do in between. This is a perfect scenario
for a HOF, because you can represent the logic in
between with a function.10 Graphically, it looks
like figure 1.8.

 Because connection setup and teardown are
much more general than DbLogger, they can be
extracted to a new ConnectionHelper class.

f SetupTeardown(f, ...)
{

 Setup()
 f(...)

 Teardown(
}

A HOF that wraps a given Figure 1.8
function between setup and teardown
logic

Listing 1.14 Encapsulating setup and teardown of the database connection into a HOF

using System;

using System.Data;

using System.Data.SqlClient;

public static class ConnectionHelper

{

public static R Connect<R>(string connString

 , Func<IDbConnection, R> f)

{ What happens
using (var conn = new SqlConnection(connString)) in between

Setup {
 conn.Open();

is now
parameterized.

return f(conn);

Teardown }
}

}

The Connect function performs the setup and teardown, and it’s parameterized by
what it should do in between. The signature of the body is interesting; it takes an IDb-
Connection (through which it will interact with the database), and returns a generic
object R. In the use cases we’ve seen, R will be IEnumerable<LogMessage> in the case
of the query and int in the case of the insert. You can now use the Connect function
in DbLogger as follows:

using Dapper;

using static ConnectionHelper;

public class DbLogger

{

string connString;

public void Log(LogMessage message)

 => Connect(connString, c => c.Execute("sp_create_log"

 , message, commandType: CommandType.StoredProcedure));

10 For this reason, you may hear this pattern inelegantly called “hole in the middle.”

www.itbook.store/books/9781617293955

http:function.10
https://itbook.store/books/9781617293955

26	 CHAPTER 1 Introducing functional programming

public IEnumerable<LogMessage> GetLogs(DateTime since)

 => Connect(connString, c => c.Query<LogMessage>(@"SELECT *

 FROM [Logs] WHERE [Timestamp] > @since", new {since = since}));

}

You got rid of the duplication in DbLogger, and DbLogger no longer needs to know the
details about creating, opening, or disposing of the connection.

1.5.2 Turning the using statement into a HOF

The previous result is satisfactory. But to take the idea of HOFs a bit further, let’s be a
bit more radical. Isn’t the using statement itself an example of setup/teardown? After
all, a using block always does the following:

 Setup—Acquires an IDisposable resource by evaluating a given declaration or
expression

 Body—Executes what’s inside the block
 Teardown—Exits the block, causing Dispose to be called on the object acquired

in the setup

So...Yes, it is! At least sort of. The setup isn’t always the same, so it too needs to be
parameterized. We can then write a more generic setup/teardown HOF that performs
the using ceremony.

 This is the kind of widely reusable function that belongs in a library. Throughout
the book, I’ll show you many such reusable constructs that have gone into my
LaYumba.Functional library, enabling a better experience when coding functionally.

Listing 1.15 A HOF that can be used instead of the using statement

using System;

namespace LaYumba.Functional

{

public static class F

 {

public static R Using<TDisp, R>(TDisp disposable

 , Func<TDisp, R> f) where TDisp : IDisposable

 {

using (disposable) return f(disposable);

 }

 }

}

The preceding listing defines a class called F that will contain the core functions of
our functional library. The idea is that these functions should be made available with
out qualification with using static, as shown in the next code sample.

www.itbook.store/books/9781617293955

mailto:c.Query<LogMessage>(@"SELECT
https://itbook.store/books/9781617293955

27 Using HOFs to avoid duplication

 This Using function takes two arguments: the first is the disposable resource, and
the second is the function to be executed before the resource is disposed. With this in
place, you can rewrite the Connect function more concisely:

using static LaYumba.Functional.F;

public static class ConnectionHelper

{

public static R Connect<R>(string connStr, Func<IDbConnection, R> f)

 => Using(new SqlConnection(connStr)

 , conn => { conn.Open(); return f(conn); });

}

The using static on the first line enables you to invoke the Using function as a sort
of global replacement for the using statement. Notice that unlike the using statement,
calling the Using function is an expression.11 This has a couple of benefits:

 It allows you to use the more compact expression-bodied method syntax.
 An expression has a value, so the Using function can be composed with other

functions.

We’ll dig deeper into the ideas of composition and statements vs. expressions in sec
tion 5.5.1.

1.5.3 Tradeoffs of HOFs

Let’s look at what you’ve achieved by comparing the initial and the refactored versions
of one of the methods in DbLogger:

// initial implementation

public void Log(LogMessage msg)

{

using (var conn = new SqlConnection(connString))

 {

int affectedRows = conn.Execute("sp_create_log"

 , msg, commandType: CommandType.StoredProcedure);

 }

}

// refactored implementation

public void Log(LogMessage message)

 => Connect(connString, c => c.Execute("sp_create_log"

 , message, commandType: CommandType.StoredProcedure));

This is a good illustration of the benefits you can get from using HOFs that take a func
tion as an argument:

 Conciseness—The new version is obviously more concise. Generally speaking,
the more intricate the setup/teardown and the more widely it’s required, the
more benefit you get by abstracting it into a HOF.

11 Here’s a quick refresher on the difference: expressions return a value; statements don’t.

www.itbook.store/books/9781617293955

http:expression.11
https://itbook.store/books/9781617293955

28	 CHAPTER 1 Introducing functional programming

public void Log(LogMessage message)
 => Connect(connString, c => c.Execute("sp_create_log",

 , message, commandType: CommandType.StoredProcedure));
}

public static class ConnectionHelper
{

public static R Connect<R>(string connStr, Func<IDbConnection, R> f)
 => Using(new SqlConnection(connStr)

 , conn => { conn.Open(); return f(conn); });
}

public static class F
{

public static R Using<TDisp, R>(TDisp disposable
 , Func<TDisp, R> f) where TDisp : IDisposable

 {
using (var disp = disposable) return f(disp);

 Avoid duplication—The whole setup/teardown logic is now performed in a sin
gle place.

 Separation of concerns—You’ve managed to isolate connection management into
the ConnectionHelper class, so DbLogger need only concern itself with logging-
specific logic.

Let’s look at how the call stack has changed. Whereas in the original implementation
the call to Execute happened on the stack frame of Log, in the new implementation
they’re four stack frames apart (see figure 1.9).

class DbLogger

{

}

}

Figure 1.9 HOFs call back into the calling function.

When Log executes, the code calls Connect, passing it the callback function to invoke
when the connection is ready. Connect in turn repackages the callback into a new call
back, and passes it to Using.

 So, HOFs also have some drawbacks:

 You’ve increased stack use. There’s a performance impact, but it’s negligible.
 Debugging the application will be a bit more complex because of the callbacks.

Overall, the improvements made to DbLogger make it a worthy tradeoff.
 You probably agree by now that HOFs are very powerful tools, although overuse

can make it difficult to understand what the code is doing. Use HOFs when appropri
ate, but be mindful of readability: use short lambdas, clear naming, and meaningful
indentation.

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

Exercises	 29

1.6 Benefits of functional programming
The previous section demonstrated how you can use HOFs to avoid duplication and
achieve better separation of concerns. Indeed, one of the advantages of FP is its con
ciseness: you can achieve the same results with fewer lines of code. Multiply that by the
tens of thousands of lines of code in a typical application, and conciseness also has a
positive effect on the maintainability of the application.

 There are many more benefits to be reaped by applying the functional techniques
you’ll learn in this book, and they roughly fall into three categories:

 Cleaner code—Apart from the previously mentioned conciseness, FP leads to
more expressive, more readable, and more easily testable code. Clean code is
not just a developer’s intellectual pleasure, but it also leads to huge economic
benefits for the business through reduced maintenance costs.

 Better support for concurrency—Several factors, from multi-core CPUs to distrib
uted systems, bring a high degree of concurrency to your applications. Concur
rency is traditionally associated with difficult problems such as deadlocks, lost
updates, and more; FP offers techniques that prevent these problems from
occurring. You’ll see an introductory example in chapter 2 and more advanced
examples toward the end of the book.

 A multi-paradigm approach—They say that if the only tool you have is a hammer,
every problem will look like a nail. Conversely, the more angles from which you
can view a given problem, the more likely it is that you’ll find an optimal solu
tion. If you’re already proficient in OOP, learning a different paradigm such as
FP will inevitably give you a richer perspective. When faced with a problem,
you’ll be able to consider several approaches and pick the most effective.

Exercises
I recommend you take the time to do the the exercises and come up with a few of your
own along the way. The code samples repository on GitHub (https://github.com/
la-yumba/functional-csharp-code) includes placeholders so that you can write, com
pile, and run your code with minimal setup effort. It also includes solutions that you
can check your results against:

1	 Browse the methods of System.Linq.Enumerable (https://docs.microsoft.com/
en-us/dotnet/api/system.linq.enumerable). Which are HOFs? Which do you
think imply iterated application of the given function?

2 Write a function that negates a given predicate: whenever the given predicate
evaluates to true, the resulting function evaluates to false, and vice versa.

3 Write a method that uses quicksort to sort a List<int> (return a new list, rather
than sorting it in place).

4 Generalize the previous implementation to take a List<T>, and additionally a
Comparison<T> delegate.

www.itbook.store/books/9781617293955

https://github.com/la-yumba/functional-csharp-code
https://github.com/la-yumba/functional-csharp-code
https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable
https://docs.microsoft.com/en-us/dotnet/api/system.linq.enumerable
https://itbook.store/books/9781617293955

30	 CHAPTER 1 Introducing functional programming

5	 In this chapter, you’ve seen a Using function that takes an IDisposable and a
function of type Func<TDisp, R>. Write an overload of Using that takes a
Func<IDisposable> as the first parameter, instead of the IDisposable. (This
can be used to avoid warnings raised by some code analysis tools about instanti
ating an IDisposable and not disposing it.)

Summary
 FP is a powerful paradigm that can help you make your code more concise,

maintainable, expressive, robust, testable, and concurrency-friendly.
 FP differs from OOP by focusing on functions, rather than objects, and on data

transformations rather than state mutation.
 FP can be seen as a collection of techniques that are based on two fundamental

tenets:
 Functions are first-class values
 In-place updates should be avoided

 Functions in C# can be represented with methods, delegates, and lambdas.
 FP leverages higher-order functions (functions that take other functions as

input or output); hence the necessity for the language to have functions as first-
class values.

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

