

 SAMPLE CHAPTER

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

Functional Programming in C#

by Enrico Buonanno

Chapter 14

Copyright 2017 Manning Publications

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

brief contents

PART 1 CORE CONCEPTS ...1

1 ■ Introducing functional programming 3

2 ■ Why function purity matters 31

3 ■ Designing function signatures and types 52

4 ■ Patterns in functional programming 80

5 ■ Designing programs with function composition 102

PART 2 BECOMING FUNCTIONAL ...121

6 ■ Functional error handling 123

7 ■ Structuring an application with functions 149

8 ■ Working effectively with multi-argument functions 177

9 ■ Thinking about data functionally 202

10 ■ Event sourcing: a functional approach to persistence 229

PART 3 ADVANCED TECHNIQUES..255

11 ■ Lazy computations, continuations, and the beauty

of monadic composition 257

12 ■ Stateful programs and stateful computations 279

vii

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

viii BRIEF CONTENTS

13 ■ Working with asynchronous computations 295

14 ■ Data streams and the Reactive Extensions 320

15 ■ An introduction to message-passing concurrency 345

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

Data streams and
 the Reactive Extensions

This chapter covers
 Using IObservable to represent data streams

 Creating, transforming, and combining IObservables

 Knowing when you should use IObservable

In chapter 13, you gained a good understanding of asynchronous values—values that
are received at some point in the future. What about a series of asynchronous values?
For example, say you have an event-sourced system like the one in chapter 10; how
can you model the stream of events that are produced and define downstream pro
cessing of those events? For example, say you want to recompute an account’s balance
with every transaction, and send a notification if it becomes negative?

 The IObservable interface provides an abstraction to represent such event
streams. And not just event streams, but more generally data streams, where the val
ues in the stream could be, say, stock quotes, byte chunks being read from a file,
successive states of an entity, and so on. Really, anything that constitutes a sequence
of logically related values in time can be thought of as a data stream.

320

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

321 Representing data streams with IObservable

 In this chapter, you’ll learn what IObservables are, and how to use the Reactive
Extensions (Rx) to create, transform, and combine IObservables. We’ll also discuss
what sort of scenarios benefit from using IObservable.

 Rx is a set of libraries for working with IObservables—much like LINQ provides
utilities for working with IEnumerables. Rx is a very rich framework, so thorough cov
erage is beyond the scope of this chapter; instead, we’ll just look at some basic features
and applications of IObservable and at how it relates to other abstractions we’ve cov
ered so far.

14.1 Representing data streams with IObservable
If you think of an array as a sequence of values in space (space in memory, that is),
then you can think of IObservable as a sequence of values in time:

 With an IEnumerable, you can enumerate its values at your leisure.
 With an IObservable, you can observe the values as they come.

Table 14.1 shows how IObservable relates to other abstractions.

Table 14.1 How IObservable compares with other abstractions

Synchronous Asynchronous

Single value T Task<T>

Multiple values IEnumerable<T> IObservable<T>

IObservable is like an IEnumerable, in that it contains several values, and it’s like a
Task, in that values are delivered asynchronously. IObservable is therefore more gen
eral than both: you can view IEnumerable as a special case of IObservable that pro
duces all its values synchronously; you can think of Task as a special case of
IObservable that produces a single value.

14.1.1 A sequence of values in time

The easiest way to develop an intuition about IObservable is through marble diagrams,
a few examples of which are shown in figure 14.1. Marble diagrams represent the val
ues in the stream. Each IObservable is represented with an arrow, representing time,
and marbles, representing values that are produced by the IObservable.

 The image illustrates that an IObservable can actually produce three different
kinds of messages:

 OnNext signals a new value, so if your IObservable represents a stream of
events, OnNext will be fired when an event is ready to be consumed. This is an
IObservable’s most important message, and often the only one you’ll be inter
ested in.

 OnCompleted signals that the IObservable is done and will signal no more values.
 OnError signals that an error has occurred and provides the relevant Exception.

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

322 CHAPTER 14 Data streams and the Reactive Extensions

A marble indicates that the IObservable produces
a value (this value is given to the OnNext handler).

1 2 3 4

A vertical bar indicates that the IObservable
completes (the OnCompleted handler is called).

1 2

An X indicates that the IObservable faults
(the OnError handler is called with an Exception).

1 2

Figure 14.1 Marble diagrams provide an intuitive way to understand IObservables.

The IObservable contract
The IObservable contract specifies that an IObservable should produce messages
according to the following grammar:

OnNext* (OnCompleted|OnError)?

That is, an IObservable can produce an arbitrary number of T’s (OnNext), possibly
followed by a single value indicating either successful completion (OnCompleted) or
an error (OnError).

This means that there are three possibilities in terms of completion. An IObservablecan

 Never complete
 Complete normally, with a completion message
 Complete abnormally, in which case it produces an Exception

An IObservable never produces any values after it’s completed, regardless of
whether it completes normally or with an error.

14.1.2 Subscribing to an IObservable

Observ-ables work in tandem with observ-ers. Simply put,

 Observables produce values
 Observers consume them

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

323 Representing data streams with IObservable

If you want to consume the messages produced by an IObservable, you can create an
observer and associate it with an IObservable via the Subscribe method. The sim
plest way to do this is by providing a callback that will handle the values produced by
the IObservable, like so:

using System;
Exposes the
using System.Reactive.Linq;
 Exposes theIObservable

Subscribe extensioninterface
IObservable<int> nums = //...
 method used below

nums.Subscribe(Console.WriteLine);

So when I say that nums “produces” an int value, all I really mean is that it calls the
given function (in this case, Console.WriteLine) with the value. The result of the pre
ceding code is that whenever nums produces an int, it’s printed out.

 I find the naming a bit confusing; you’d expect an IObservable to have an
Observe method, but instead it’s called Subscribe. Basically, you can think of the two
as synonyms: an “observer” is a subscriber, and in order to “observe” an observable,
you subscribe to it.

 What about the other types of messages an IObservable can produce? You can
provide handlers for those as well. For instance, the following listing shows a conve
nience method that attaches an observer to an IObservable; this observer will simply
print some diagnostic messages whenever the IObservable signals. We’ll use this
method later for debugging.

Listing 14.1 Subscribing to the messages produced by an IObservable

using static System.Console;

public static IDisposable Trace<T>

 (this IObservable<T> source, string name)

 => source.Subscribe(

onNext: t => WriteLine($"{name} -> {t}"),

onError: ex => WriteLine($"{name} ERROR: {ex.Message}"),

onCompleted: () => WriteLine($"{name} END"));

Subscribe actually takes three handlers (all are optional arguments), to handle the
different messages that an IObservable<T> can produce. It should be clear why the
handlers are optional: if you don’t expect an IObservable to ever complete, there’s
no point providing an onComplete handler.

 A more OO option for subscribing is to call Subscribe with an IObserver,1 an
interface that, unsurprisingly, exposes OnNext, OnError, and OnCompleted methods.

 Also notice that Subscribe returns an IDisposable (the subscription). By dispos
ing it, you unsubscribe.

1	 This is the method defined on the IObservable interface. The overload that takes the callbacks is an exten
sion method.

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

324 CHAPTER 14 Data streams and the Reactive Extensions

 In this section you’ve seen some of the basic concepts and terminology around
IObservable. It’s a lot to absorb, but don’t worry; things will become clearer as you
see some examples. These are the basic ideas to keep in mind:

 Observables produce values; observers consume them.
 You associate an observer with an observable by using Subscribe.
 An observable produces a value by calling the observer’s OnNext handler.

14.2 Creating IObservables
You now know how to consume the data in a stream by subscribing to an IObservable.
But how do you get an IObservable in the first place? The IObservable and
IObserver interfaces are included in .NET Standard, but if you want to create or
perform many other operations on IObservables, you’ll typically use the Reactive
Extensions (Rx) by installing the System.Reactive package.2

 The recommended way to create IObservables is by using several dedicated meth
ods included in the static Observable, and we’ll explore them next. I recommend you
follow along in the REPL when possible.

14.2.1 Creating a timer

A timer can be modeled with an IObservable that signals at regular intervals. We can
represent it with a marble diagram as follows:

0 1 2 3 4 5 6 7 8 9

This is a good way to start experimenting with IObservables because it’s simple but
does include the element of time.

 You create a timer with Observable.Interval.

Listing 14.2 Creating an IObservable that signals every second

using System.Reactive.Linq;

var oneSec = TimeSpan.FromSeconds(1);

IObservable<long> ticks = Observable.Interval(oneSec);

Here we define ticks as an IObservable that will begin signaling after one second,
producing a long counter value that increments every second, starting at 0. Notice I
said “will begin” signaling? The resulting IObservable is lazy, so unless there’s a sub
scriber, nothing will actually be done. Why talk, if nobody’s listening?

Rx includes several libraries. The main library, System.Reactive, bundles the packages you’ll most com
monly need: System.Reactive.Interfaces, System.Reactive.Core, System.Reactive.Linq, and
System.Reactive.PlatformServices. There are several other packages that are useful in more special
ized scenarios, such as if you’re using Windows forms.

2

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

325 Creating IObservables

 If we want to see some tangible results, we need to subscribe to the IObservable. We
can do this with the Trace method defined earlier:

ticks.Trace("ticks");

At this point, you’ll start to see the following messages appear in the console, one second
apart:

ticks -> 0

ticks -> 1

ticks -> 2

ticks -> 3

ticks -> 4

...

Because this IObservable never completes, you’ll have to reset the REPL to stop the
noise—sorry!

14.2.2 Using Subject to tell an IObservable when it should signal

Another way to create an IObservable is by instantiating a Subject, which is an
IObservable that you can imperatively tell to produce a value that it will in turn push
to its observers. For example, the following program turns inputs from the console
into values signaled by a Subject.

Listing 14.3 Modeling user inputs as a stream

Tells the
Subject to

produce a value,
which it will push

to its observers

Leaving the
using block
disposes the
subscription.

using System.Reactive.Subjects;

public static void Main()

{

var inputs = new Subject<string>(); Creates a Subject

Subscribes to the Subjectusing (inputs.Trace("inputs"))

 {

for (string input; (input = ReadLine()) != "q";)

 inputs.OnNext(input);

 inputs.OnCompleted();
 Tells the Subject to
}
 signal completion

}

Every time the user types in some input, the code pushes that value to the Subject by
calling its OnNext method. When the user types “q”, the code exits the for loop and
calls the Subject’s OnCompleted method, signaling that the stream has ended. Here
we’ve subscribed to the stream of inputs using the Trace method defined in 14.1, so
we’ll get a diagnostic message printed for each user input.

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

326 CHAPTER 14 Data streams and the Reactive Extensions

 An interaction with the program looks like this (user inputs in bold):

hello

inputs -> hello

world

inputs -> world

q

inputs END

14.2.3 Creating IObservables from callback-based subscriptions

If your system subscribes to an external data source, such as a message queue, event
broker, or publisher/subscriber, you can model that data source as an IObservable.

 For example, Redis can be used as a publisher/subscriber, and the following listing
shows how you can use Observable.Create to create an IObservable from the callback-
based Subscribe methods that allows you to subscribe to messages published to Redis.

Listing 14.4 Creating an IObservable from messages published to Redis

Create takes an observer, so the
given function will only be called
when a subscription is being made. Converts from the callback-based

implementation of Subscribe to values
using StackExchange.Redis; produced by the IObservable
using System.Reactive.Linq;

ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("localhost");

IObservable<RedisValue> RedisNotifications(RedisChannel channel)

 => Observable.Create<RedisValue>(observer =>

 {

var sub = redis.GetSubscriber();

 sub.Subscribe(channel, (_, value) => observer.OnNext(value));

return () => sub.Unsubscribe(channel);

Returns a function that will be called});

when the subscription is disposed

The preceding method returns an IObservable that will produce the values received
from Redis on the given channel. You could use this as follows:

Gets an IObservable that
signals when messages are
published on the “weather”

RedisChannel weather = "weather";

channelvar weatherUpdates = RedisNotifications(weather);

weatherUpdates.Subscribe(

 onNext: val => WriteLine($"It's {val} out there"));

redis.GetDatabase(0).Publish(weather, "stormy");

Publishing a value causes
weatherUpdates to

Subscribes to the IObservable

// prints: It's stormy out there

signal, and the onNext
handler is called as a result.

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

327 Creating IObservables

AVOID USING Subject Subject works imperatively (you tell a Subject when to
fire), and this goes somewhat counter to the reactive philosophy of Rx (you
specify how to react to certain things when they happen).

For this reason, it’s recommended that you avoid Subjects whenever
possible, and instead use other methods, such as Observable.Create. For
example, as an exercise, try to rewrite the code in listing 14.3, using
Observable.Create to create an IObservable of user inputs.

14.2.4 Creating IObservables from simpler structures

I said that IObservable<T> is more general than a value T, a Task<T>, or an IEnumera
ble<T>, so let’s see how each of these can be “promoted” to an IObservable. This
becomes useful if you want to combine one of these less powerful structures with an
IObservable.

Return allows you to lift a single value into an IObservable that looks like this:

hello

That is, it immediately produces the value and then completes. Here’s an example:

IObservable<string> justHello = Observable.Return("hello");

justHello.Trace("justHello");

// prints: justHello -> hello

// justHello END

Return takes a value, T, and lifts it into an IObservable<T>. This is the first container
where the Return function is actually called Return!

 Let’s see about creating an IObservable from a single asynchronous value—a
Task. Here, we have an IObservable that looks like this:

0.92

That is, after some time we’ll get a single value, immediately followed by the signal for
completion. In code, it looks like this:

Observable.FromAsync(() => Yahoo.GetRate("USDEUR"))

 .Trace("singleUsdEur");

// prints: singleUsdEur -> 0.92

// singleUsdEur END

Finally, an IObservable created from an IEnumerable looks like this:

cba

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

328 CHAPTER 14 Data streams and the Reactive Extensions

That is, it immediately produces all the values in the IEnumerable, and completes:

IEnumerable<char> e = new[] { 'a', 'b', 'c' };

IObservable<char> chars = e.ToObservable();

chars.Trace("chars");

// prints: chars -> a

// chars -> b

// chars -> c

// chars END

You’ve now seen many—but not all—methods for creating IObservables. You may
end up creating IObservables in other ways; for example, in Windows application
development you can turn UI events such as mouse clicks into event streams by using
Observable.FromEvent and FromEventPattern.

 Now that you know about creating and subscribing to IObservable, let’s move on
to the most fascinating area: transforming and combining different streams.

14.3 Transforming and combining data streams
The power of using streams comes from the many ways in which you can combine
them and define new streams based on existing ones. Rather than dealing with indi
vidual values in a stream (like in most event-driven designs), you deal with the stream
as a whole.

 Rx offers a lot of functions (often called operators) to transform and combine
IObservables in a variety of ways. I’ll discuss the most commonly used ones, and add a
few operators of my own. You’ll recognize the typical traits of a functional API: purity
and composability.

14.3.1 Stream transformations

You can create new observables by transforming an existing observable in some way.
One of the simplest operations is mapping. This is achieved with the Select method,
which works—as with any other “container”—by applying the given function to each
element in the stream, as shown in figure 14.2.

1 2 3

Select(x => 10 * x)

10 20 30

Figure 14.2 Select maps a function onto a stream.

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

329 Transforming and combining data streams

Here’s some code that creates a timer and then maps a simple function on it:

var oneSec = TimeSpan.FromSeconds(1);

var ticks = Observable.Interval(oneSec);

ticks.Select(n => n * 10)

 .Trace("ticksX10");

We’re attaching an observer on the last line, with the Trace method, so the preceding
code will cause the following messages to be printed every second:

ticksX10 -> 0

ticksX10 -> 10

ticksX10 -> 20

ticksX10 -> 30

ticksX10 -> 40

...

Because Select follows the LINQ query pattern, we can write the same thing using LINQ:

from n in ticks select n * 10

Using Select, we can rewrite our simple program that checks exchange rates (first
introduced in listing 12.1) in terms of observables:

public static void Main()

The stream of values{

entered by the uservar inputs = new Subject<string>();

var rates = from pair in inputs

select Yahoo.GetRate(pair).Result;
 Maps user inputs to the

corresponding retrieved
using (inputs.Trace("inputs"))
 values
using (rates.Trace("rates"))

for (string input; (input = ReadLine().ToUpper()) != "Q";)

 inputs.OnNext(input);

}

Subscribes to both streams
to produce debug messages

Here, inputs represents the stream of currency pairs entered by the user, and in
rates we map those pairs to the corresponding values retrieved from the Yahoo API.
We’re subscribing to both observables with the usual Trace method, so an interaction
with this program could be as follows:

eurusd

inputs -> EURUSD

rates -> 1.0852

chfusd

inputs -> CHFUSD

rates -> 1.0114

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

330 CHAPTER 14 Data streams and the Reactive Extensions

Notice, however, that we’re calling Result to wait for the remote query in GetRate to
complete. In a real application, we wouldn’t want to block a thread, so how could we
avoid that?

 We saw that a Task can easily be promoted to an IObservable, so we could gener
ate an IObservable of IObservables. Sound familiar? Bind! We can use SelectMany
instead of Select, which will flatten the result into a single IObservable. We can
therefore rewrite the definition of the rates stream as follows:

var rates = inputs.SelectMany

 (pair => Observable.FromAsync(() => Yahoo.GetRate(pair)));

Observable.FromAsync promotes the Task returned by GetRate to an IObservable,
and SelectMany flattens all these IObservables into a single IObservable.

 Because it’s always possible to promote a Task to an IObservable, an overload of
SelectMany exists that does just that (this is similar to how we overloaded Bind to
work with an IEnumerable and an Option-returning function in chapter 4). This
means we can avoid explicitly calling FromAsync and return a Task instead. Further
more, we can use a LINQ query:

var rates =

from pair in inputs

from rate in Yahoo.GetRate(pair)

select rate;

The program thus modified will work the same way as before, but without the block
ing call to Result.

IObservable also supports many of the other operations that are supported by
IEnumerable, such as filtering with Where, Take (takes the first n values), Skip, First,
and so on.

14.3.2 Combining and partitioning streams

There are also many operators that allow you to combine two streams into a single
one. For example, Concat produces all the values of one IObservable, followed by all
the values in another, as shown in figure 14.3.

1 1 1

2 2

Concat

1 1 1 2 2

Figure 14.3 Concat waits for an IObservable to complete and then produces elements from the
other IObservable.

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

331 Transforming and combining data streams

For instance, in our exchange rate lookup, we have an observable called rates with the
retrieved rates. If we want an observable of all the messages the program should output
to the console, this must include the retrieved rates, but also an initial message prompt
ing the user for some input. We can lift this single message into an IObservable with
Return and then use Concat to combine it with the other messages:

IObservable<decimal> rates = //...

IObservable<string> outputs = Observable

 .Return("Enter a currency pair like 'EURUSD', or 'q' to quit")

 .Concat(rates.Select(Decimal.ToString));

In fact, the need to provide a starting value for an IObservable is so common that
there’s a dedicated function, StartWith. The preceding code is equivalent to this:

var outputs = rates.Select(Decimal.ToString)

 .StartWith("Enter a currency pair like 'EURUSD', or 'q' to quit");

Whereas Concat waits for the left IObservable to complete before producing values
from the right observable, Merge combines values from two IObservables without
delay, as shown in figure 14.4.

20 40 60 80

1 1

100

Merge

20 40 801 60 1 100

Figure 14.4 Merge merges two IObservables into one.

For example, if you have a stream of valid values and one of error messages, you could
combine them with Merge as follows:

IObservable<decimal> rates = //...

IObservable<string> errors = //...

var outputs = rates.Select(Decimal.ToString)

 .Merge(errors);

Just as you might want to merge values from different streams, the opposite operation—
partitioning a stream according to some criterion—is also often useful. Figure 14.5
illustrates this.

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

332 CHAPTER 14 Data streams and the Reactive Extensions

1 60 18020 40 100

Partition(x => x > 10)

20 40 8060 100

1 1

Figure 14.5 Partitioning an IObservable according to a predicate

This is one of many cases in which C# 7 tuple syntax facilitates working with IObservable
effectively. Partition is defined as follows:

public static (IObservable<T> Passed, IObservable<T> Failed)

 Partition<T>(this IObservable<T> ts, Func<T, bool> predicate)

 => (Passed: from t in ts where predicate(t) select t

 , Failed: from t in ts where !predicate(t) select t);

It can be used in client code like this:

var (evens, odds) = ticks.Partition(x => x % 2 == 0);

Partitioning an IObservable of values is roughly equivalent to an if when dealing
with a single value, so it’s useful when you have a stream of values that you want to pro
cess differently, depending on some condition. For example, if you have a stream of
messages and some criterion for validation, you can partition the stream into two
streams of valid and invalid messages, and process them accordingly.

14.3.3 Error handling with IObservable

Error handling when working with IObservable works differently from what you
might expect. In most programs, an uncaught exception either causes the whole
application to crash, or causes the processing of a single message/request to fail, while
subsequent requests work fine. To illustrate how things work differently in Rx, con
sider this version of our program for looking up exchange rates:

public static void Main()

{

var inputs = new Subject<string>();

var rates =

from pair in inputs

from rate in Yahoo.GetRate(pair)

select rate;

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

333

xxx

Transforming and combining data streams

var outputs = from r in rates select r.ToString();

using (inputs.Trace("inputs"))

using (rates.Trace("rates"))

using (outputs.Trace("outputs"))

for (string input; (input = ReadLine().ToUpper()) != "Q";)

 inputs.OnNext(input);

}

The program captures three streams, each dependent on another (outputs is defined in
terms of rates, and rates is defined in terms of inputs, as shown in figure 14.6), and
we’re printing diagnostic mes
sages for all of them with Trace.

 Now look what happens if
you break the program by pass- Figure 14.6 Simple dataflow between three IObservables

ing an invalid currency pair:

rates outputsinputs

eurusd

inputs -> EURUSD

rates -> 1.0852

outputs -> 1.0852

chfusd

inputs -> CHFUSD

rates -> 1.0114

outputs -> 1.0114

inputs -> XXX

rates ERROR: Input string was not in a correct format.

outputs ERROR: Input string was not in a correct format.

chfusd

inputs -> CHFUSD

eurusd

inputs -> EURUSD

What this shows is that once rates errors, it never signals again (as specified in the
IObservable contract). As a result, everything downstream is also “dead.” But
IObservables upstream of the failed one are fine: inputs is still signaling, as would
any other IObservables defined in terms of inputs.

 To prevent your system from going into such a state, where a “branch” of the data
flow dies, while the remaining graph keeps functioning, you can use the techniques
you learned for functional error handling.

 To do this, you can use a helper function I’ve defined in the LaYumba.Functional
library, which allows you to safely apply a Task-returning function to each element in a
stream. The result will be a pair of streams: a stream of successfully computed values,
and a stream of exceptions.

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

334 CHAPTER 14 Data streams and the Reactive Extensions

Listing 14.5 Safely performing a Task and returning two streams

Converts each Task<R> to a

Task<Exceptional<R>> to

get a stream of Exceptionals

public static (IObservable<R> Completed, IObservable<Exception> Faulted)

 Safely<T, R>(this IObservable<T> ts, Func<T, Task<R>> f)

 => ts

 .SelectMany(t => f(t).Map(

Faulted: ex => ex,

Completed: r => Exceptional(r)))

 .Partition();

static (IObservable<T> Successes, IObservable<Exception> Exceptions)

Partition<T>(this IObservable<Exceptional<T>> excTs)

{ Partitions a stream of
bool IsSuccess(Exceptional<T> ex) Exceptionals into successfully

=> ex.Match(_ => false, _ => true); computed values and exceptions

T ValueOrDefault(Exceptional<T> ex)

 => ex.Match(exc => default(T), t => t);

 Exception ExceptionOrDefault(Exceptional<T> ex)

 => ex.Match(exc => exc, _ => default(Exception));

return (

Successes: excTs

 .Where(IsSuccess)

 .Select(ValueOrDefault),

Exceptions: excTs

 .Where(e => !IsSuccess(e))

 .Select(ExceptionOrDefault)

);

}

For each T in the given stream, we apply the Task-returning function f. We then use
the binary overload of Map defined in chapter 13 to convert each resulting Task<R> to
a Task<Exceptional<R>>. This is where we gain safety: instead of an inner value R that
will throw an exception when it’s accessed, we have an Exceptional<R> in the appro
priate state. SelectMany flattens away the Tasks in the stream and returns a stream of
Exceptionals. We can then partition this in successes and exceptions.

 With this in place, we can refactor our program to handle errors more gracefully:

var (rates, errors) = inputs.Safely(Yahoo.GetRate);

14.3.4 Putting it all together

Let’s showcase the various techniques you’ve learned in this section by refactoring
the exchange rates lookup program to safely handle errors, and without the debug
information.

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

335 Implementing logic that spans multiple events

Listing 14.6 The program refactored to safely handle errors

public static void Main()

{

var inputs = new Subject<string>();

var (rates, errors) = inputs.Safely(Yahoo.GetRate);

var outputs = rates

 .Select(Decimal.ToString)

 .Merge(errors.Select(ex => ex.Message))

 .StartWith("Enter a currency pair like 'EURUSD', or 'q' to quit");

using (outputs.Subscribe(WriteLine))

for (string input; (input = ReadLine().ToUpper()) != "Q";)

 inputs.OnNext(input);

}

The dataflow diagram in figure 14.7 shows the various IObservables involved, and
how they depend on one another.

rates

"Enter…"

Safely Merge
Select

StartWith

errors
Select

outputs

inputs

Figure 14.7 Dataflow with a separate branch for handling errors

Notice how Safely allows us to create two branches, each of which can be processed
independently until a uniform representation for both cases is obtained and they can
be merged. Also take note of the three parts of a program that uses IObservables:

1 Set up the data sources—In our case: inputs, which requires a Subject; and the
single value “Enter…”

2 Process the data—This is where functions like Select, Merge, and so on are used.
3 Consume the results—Observers consume the most downstream IObservables; in

this case: outputs.

14.4 Implementing logic that spans multiple events
So far I’ve mostly aimed at familiarizing you with IObservables and the many opera
tors that can be used with them. For this, I’ve used familiar examples like the
exchange rates lookup. After all, given that you can promote any value T, Task<T>, or
IEnumerable<T> to an IObservable<T>, you could pretty much write all of your code
in terms of IObservables! But should you?

 The answer, of course, is “probably not.” The area in which IObservable and Rx
really shine is when you can use them to write stateful programs without any explicit

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

336 CHAPTER 14 Data streams and the Reactive Extensions

state manipulation. By “stateful programs,” I mean programs in which events aren’t
treated independently; past events influence how new events are treated. In this sec
tion, you’ll see a few such examples.

14.4.1 Detecting sequences of pressed keys

At some point, you’ve probably written an event handler that listens to a user’s key-
presses and performs some actions based on what key and key modifiers were pressed.
A callback-based approach is satisfactory for many cases, but what if you want to listen
to a specific sequence of keypresses? For example, say you want to implement some
behavior when the user presses the combination Alt-K-B.

 In this case, pressing Alt-B should lead to different behavior, based on whether it was
shortly preceded by the leading Alt-K, so keypresses can’t be treated independently. If
you have a callback-based mechanism that deals with single keypressed events, you
effectively need to set in motion a state machine when the user presses Alt-K, and then
wait for the possible Alt-B that will follow, reverting to the previous state if no Alt-B is
received in time. It’s actually pretty complicated!

 With IObservable, this can be solved much more elegantly. Let’s assume that we
have a stream of keypress events, keys. We’re looking for two events—Alt-K and Alt-B—
that happen on that same stream in quick succession. In order to do this, we need to
explore how to combine a stream with itself. Consider the following diagram:

keys

a b c d e

b c d e

keys.Select(=> keys)

c d e

d e

e

It’s important to understand this diagram. The expression keys.Select(_ => keys)
yields a new IObservable that maps each value produced by keys to keys itself. So when
keys produces its first value, a, this new IObservable produces an IObservable that has
all following values in keys. When keysproduces its second value, b, the new IObservable
produces another IObservable that has all the values that follow b, and so on.3

Imagine what keys.Select(_ => keys) would look like if keys were an IEnumerable: for each value,
you’d be taking the whole IEnumerable, so in the end you’d have an IEnumerable containing n replicas of
keys (n being the length of keys). With IObservable, the behavior is different because of the element of
time, so when you say “give me keys,” what you really get is “all values keys will produce in the future.”

3

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

337 Implementing logic that spans multiple events

 Looking at the types can also help clarify this:

keys : IObservable<KeyInfo>

_ => keys : KeyInfo IObservable<KeyInfo>

keys.Select(_ => keys) : IObservable<IObservable<KeyInfo>>

If we use SelectMany instead, all these values are flattened into a single stream:

a b d e

keys

c

keys.SelectMany(=> keys)

b cc d dd e ee e

Of course, if we’re looking for two consecutive keypresses, we don’t need all values that
follow an item, but just the next one. So instead of mapping each value to the whole
IObservable, let’s reduce it to the first item with Take:

a b c

c

d e

keys

b

keys.Select(=> keys.Take(1))

d

e

We’re getting close. Now, let’s make the following changes:

 Instead of ignoring the current value, pair it with the following value.
 Use SelectMany to obtain a single IObservable.
 Use LINQ syntax.

The resulting expression pairs each value in an IObservable with the previously emit
ted value:

keys

a b c d e

from first in keys

from second in keys.Take(1)

select (first, second)

a, b b, c c, d e, f

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

338 CHAPTER 14 Data streams and the Reactive Extensions

This is a pretty useful function in its own right, and I’ll call it PairWithPrevious. We’ll
use it later.

 But for this particular scenario, we only want pairs to be created if they’re suffi
ciently close in time. This can be achieved easily: in addition to taking only the next
value with Take(1), we only take values within a timespan, using an overload of Take
that takes a TimeSpan. The solution is shown in the following listing.

Listing 14.7 Detecting when the user presses the Alt-K-B key sequence

IObservable<ConsoleKeyInfo> keys = //...

var halfSec = TimeSpan.FromMilliseconds(500);

var keysAlt = keys

 .Where(key => key.Modifiers.HasFlag(ConsoleModifiers.Alt));

var twoKeyCombis =

For any keypress, pairs it withfrom first in keysAlt

the next keypress that occursfrom second in keysAlt.Take(halfSec).Take(1)

within a half-secondselect (First: first, Second: second);

var altKB =

from pair in twoKeyCombis

where pair.First.Key == ConsoleKey.K

 && pair.Second.Key == ConsoleKey.B

select Unit();

As you can see, the solution is simple and elegant, and you can apply this approach to
recognize more complex patterns within sequences of events—all without explicitly
keeping track of state and introducing side effects!

 You’ve probably also realized that coming up with such a solution isn’t necessarily
easy. It takes a while to get familiar with IObservable and its many operators, and
develop an understanding of how to use them.

14.4.2 Reacting to multiple event sources

Imagine we have a bank account denominated in euros, and we’d like to keep track of
its value in US dollars. Both changes in balance and changes in the exchange rate
cause the dollar balance to change. To react to changes from different streams, we
could use CombineLatest, which takes the latest values from two observables, when
ever one of them signals, as shown in figure 14.8.

 Its usage would be as follows:

IObservable<decimal> balance = //...

IObservable<decimal> eurUsdRate = //...

var balanceInUsd = balance.CombineLatest(eurUsdRate

 , (bal, rate) => bal * rate);

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

339 Implementing logic that spans multiple events

1 2 3 4 5

C DA B

CombineLatest((x, y) => $"{x}{y}")

1A 2A 2C2B 2D 3D 4D 5D

Figure 14.8 CombineLatest signals whenever one of two IObservables signals.

This works, but it doesn’t take into account the fact that the exchange rate is much
more volatile than the account balance. In fact, if exchange rates come from the FX
market, there may well be dozens or hundreds of tiny movements every second!
Surely this level of detail isn’t required for a private client who wants to keep an eye on
their finances. Reacting to each change in exchange rate would flood the client with
unwanted notifications.

 This is an example of an IObservable producing too much data (see the sidebar
on backpressure). For this, we can use Sample, an operator that takes an IObservable
that acts as a data source, and another IObservable that signals when values should be
produced. Sample is illustrated in figure 14.9.

1 2 3 4 5

C DA B

Sample

1 3 5

Figure 14.9 Sample produces the values from a “source” stream whenever a “sampler” stream signals.

In this scenario, we can create an IObservable that signals at 10 minute intervals, and
use it to sample the stream of exchange rates.

Listing 14.8 Sampling a value from an IObservable every 10 minutes

IObservable<decimal> balance = //...

IObservable<decimal> eurUsdRate = //...

var tenMins = TimeStamp.FromMinutes(10);

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

340 CHAPTER 14 Data streams and the Reactive Extensions

var sampler = Observable.Interval(tenMins);

var eurUsdSampled = eurUsdRate.Sample(sampler);

var balanceInUsd = balance.CombineLatest(eurUsdSampled

 , (bal, rate) => bal * rate);

Both CombineLatest and Sample are cases in which our logic spans multiple events,
and Rx allows us to do so without explicitly keeping any state.

Backpressure: when an IObservable produces data too quickly
When you iterate over the items in an IEnumerable, you’re “pulling” or requesting
items, so you can process them at your own pace. With IObservable, items are
“pushed” to you (the consuming code). If an IObservable produces values more rap
idly than they can be consumed by the subscribed observers, this can cause exces
sive backpressure, causing strain to your system.

To ease backpressure, Rx provides several operators:

 Throttle

 Sample

 Buffer
 Window

 Debounce

Each has a different behavior and several overloads, so we won’t discuss them in
detail. The point is that with these operators, you can easily and declaratively imple
ment logic like, “I want to consume items in batches of 10 at a time,” or “if a cluster
of values come in quick succession, I only want to consume the last one.” Implement
ing such logic in a callback-based solution, where each value is received indepen
dently, would require you to manually keep some state.

14.4.3 Notifying when an account becomes overdrawn

For a final, more business-oriented example, imagine that, in the context of the BOC
application, we consume a stream of all transactions that affect bank accounts, and we
want to send clients a notification if their account’s balance becomes negative.

 An account’s balance is the sum of all the transactions that have affected it, so at
any point, given a list of past Transactions for an account, you could compute its cur
rent balance using Aggregate. There is an Aggregate function for IObservable; it
waits for an IObservable to complete, and aggregates all the values it produces into a
single value.

 But this isn’t what we need: we don’t want to wait for the sequence to complete,
but to know the balance with every Transaction received. For this, we can use Scan
(see figure 14.10), which is similar to Aggregate but aggregates all previous values
with every new value that is produced.

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

341 Implementing logic that spans multiple events

1 2 43 5

Scan(0, (x, y) => x + y)

1 3 6 10 15

Figure 14.10 Scan aggregates all values produced so far.

As a result, we can effectively use Scan to keep state. Given an IObservable of Trans
actions affecting a bank account, we can use Scan to add up the amounts of all past
transactions as they happen, obtaining an IObservable that signals with the new bal
ance whenever the account balance changes:

IObservable<Transaction> transactions = //... decimal initialBalance = 0;

IObservable<decimal> balance = transactions.Scan(initialBalance

 , (bal, trans) => bal + trans.Amount);

Now that we have a stream of values representing an account’s current balance, we
need to single out what changes in balance cause the account to “dip into the red,”
going from positive to negative.

 For this, we need to look at changes in the balance, and we can do this with Pair-
WithPrevious, which signals the current value, together with the previously emitted
value. We’ve discussed this before, but here it is again for reference:

// ----1-------2---------3--------4------>

//

// PairWithPrevious

//

// ------------(1,2)-----(2,3)----(3,4)-->

//

public static IObservable<(T Previous, T Current)>

PairWithPrevious<T>(this IObservable<T> source)

 => from first in source

from second in source.Take(1)

select (Previous: first, Current: second);

This is one of many examples of custom operations that can be defined in terms of
existing operations. It’s also an example of how you can use ASCII marble diagrams to
document your code.

 We can now use this to signal when an account dips into the red as follows:

IObservable<Unit> dipsIntoTheRed =

from bal in balance.PairWithPrevious()

where bal.Previous >= 0

 && bal.Current < 0

select Unit();

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

342 CHAPTER 14 Data streams and the Reactive Extensions

Now let’s make things a bit closer to the real world. If your system receives a stream of
transactions, this will probably include transactions for all accounts. Therefore, we
must group them by account ID in order to correctly compute the balance. GroupBy
works for IObservable similarly to how it does for IEnumerable, but it returns a
stream of streams.

1 2 3 4 65

GroupBy(i => i % 2)

2 4 6

1 3 5

Let’s rewrite the code, assuming an initial stream of transactions for all accounts.

Listing 14.9 Signalling whenever an account becomes overdrawn

IObservable<Transaction> transactions = //...
 Includes transactions
from all accountsGroups by IObservable<Guid> dipsIntoRed = transactions

account ID .GroupBy(t => t.AccountId)

 .Select(DipsIntoTheRed)
 Applies the transformation
.MergeAll();
 to each grouped observable Flattens back

into a single
static IObservable<Guid> DipsIntoTheRed
observable

(IGroupedObservable<Guid, Transaction> transactions)

{

 Guid accountId = transactions.Key;

decimal initialBalance = 0;

var balance = transactions.Scan(initialBalance

 , (bal, trans) => bal + trans.Amount);

return from bal in balance.PairWithPrevious()

where bal.Previous >= 0

 && bal.Current < 0

select accountId;
 Signals the ID of the

}
 offending account

public static IObservable<T> MergeAll<T>

 (this IObservable<IObservable<T>> source)

 => source.SelectMany(x => x);

Now we’re starting with a stream of Transactions for all accounts, and we end up with
a stream of Guids that will signal whenever an account dips into the red, with the Guid
identifying the offending account. Notice how this program is effectively keeping

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

Summary	 343

track of the balances of all accounts, without the need for us to do any explicit state
manipulation.

14.5 When should you use IObservable?
In this chapter, you’ve seen how you can use IObservable to represent data streams,
and Rx to create and manipulate IObservables. There are many details and features
of Rx that we haven’t discussed at all,4 but we’ve still covered enough ground for you
to start using IObservables and to further explore the features of Rx as needed.

 As you’ve seen, having an abstraction that captures a data stream enables you to
detect patterns and specify logic that spans across multiple events, within the same
stream or across different streams. This is where I’d recommend using IObservable.
The corollary is that, if your events can be handled independently, then you probably
shouldn’t use IObservables, because using them will probably reduce the readability
of your code.

 A very important thing to keep in mind is that because OnNext has no return value,
an IObservable can only push data downstream, and never receives any data back.
Hence, IObservables are best combined into one-directional data flows. For instance, if
you read events from a queue and write some data into a DB as a result, IObservable
can be a good fit. Likewise if you have a server that communicates with web clients via
WebSockets, where messages are exchanged between client and server in a fire-and
forget fashion. On the other hand, IObservables are not well-suited to a request-
response model such as HTTP. You could model the received requests as a stream and
compute a stream of responses, but you’d then have no easy way to tie these responses
back to the original requests.

 Finally, if you have complex synchronization patterns that can’t be captured with
the operators in Rx, and you need more fine-grained control over how messages are
sequenced and processed, you may find the building blocks in the System.DataFlow
namespace (based on in-memory queues) more appropriate.

Summary
 IObservable<T> represents a stream of Ts: a sequence of values in time.
 An IObservable produces messages according to the grammar

OnNext* (OnCompleted|OnError)?.
 Writing a program with IObservables involves three steps:
 Create IObservables using the methods in System.Reactive.Linq.Observable.
 Transform and combine IObservables using the operators in Rx, or other

operators you may define.
 Subscribe to and consume the values produced by the IObservable.
 Associate an observer to an IObservable with Subscribe.

4	 To give you an idea of what was not covered, there are many more operators along with important implemen
tation details of Rx: schedulers (which determine how calls to observers are dispatched), hot vs. cold observ
ables (not all observables are lazy), and Subjects with different behaviors, for example.

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

344	 CHAPTER 14 Data streams and the Reactive Extensions

 Remove an observer by disposing of the subscription returned by Subscribe.
 Separate side effects (in observers) from logic (in stream transformations).

 When deciding on whether to use IObservable, consider the following:
 IObservable allows you to specify logic that spans multiple events.
 IObservable is good for modeling unidirectional data flows, not request-

response.

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

www.itbook.store/books/9781617293955

https://itbook.store/books/9781617293955

