
M A N N I N G

John Carnell

SAMPLE CHAPTER

www.itbook.store/books/9781617293986

https://itbook.store/books/9781617293986

Spring Microservices in Action
by John Carnell

Sample Chapter 1

Copyright 2017 Manning Publications

www.itbook.store/books/9781617293986

https://itbook.store/books/9781617293986

brief contents
1 ■ Welcome to the cloud, Spring 1
2 ■ Building microservices with Spring Boot 35
3 ■ Controlling your configuration with Spring Cloud

configuration server 64
4 ■ On service discovery 96
5 ■ When bad things happen: client resiliency patterns with

Spring Cloud and Netflix Hystrix 119
6 ■ Service routing with Spring Cloud and Zuul 153
7 ■ Securing your microservices 192
8 ■ Event-driven architecture with Spring Cloud Stream 228
9 ■ Distributed tracing with Spring Cloud Sleuth and Zipkin 259

10 ■ Deploying your microservices 288

www.itbook.store/books/9781617293986

https://itbook.store/books/9781617293986

www.itbook.sto
Welcome to the cloud,
Spring
The one constant in the field of software development is that we as software devel-
opers sit in the middle of a sea of chaos and change. We all feel the churn as new
technologies and approaches appear suddenly on the scene, causing us to reevalu-
ate how we build and deliver solutions for our customers. One example of this
churn is the rapid adoption by many organizations of building applications using

This chapter covers
 Understanding microservices and why companies

use them

 Using Spring, Spring Boot, and Spring Cloud for
building microservices

 Learning why the cloud and microservices are relevant
to microservice-based applications

 Building microservices involves more than building
service code

 Understanding the parts of cloud-based development

 Using Spring Boot and Spring Cloud in microservice
development
1

re/books/9781617293986

https://github.com/Netflix/Hystrix)
https://github.com/Netflix/Hystrix)
https://github.com/Netflix/Ribbon)
https://itbook.store/books/9781617293986

2 CHAPTER 1 Welcome to the cloud, Spring

www.itboo
microservices. Microservices are distributed, loosely coupled software services that
carry out a small number of well-defined tasks.

 This book introduces you to the microservice architecture and why you should
consider building your applications with them. We’re going to look at how to build
microservices using Java and two Spring framework projects: Spring Boot and Spring
Cloud. If you’re a Java developer, Spring Boot and Spring Cloud will provide an easy
migration path from building traditional, monolithic Spring applications to microser-
vice applications that can be deployed to the cloud.

1.1 What’s a microservice?
Before the concept of microservices evolved, most web-based applications were built
using a monolithic architectural style. In a monolithic architecture, an application is
delivered as a single deployable software artifact. All the UI (user interface), business,
and database access logic are packaged together into a single application artifact and
deployed to an application server.

 While an application might be a deployed as a single unit of work, most of the time
there will be multiple development teams working on the application. Each develop-
ment team will have their own discrete pieces of the application they’re responsible
for and oftentimes specific customers they’re serving with their functional piece. For
example, when I worked at a large financial services company, we had an in-house,
custom-built customer relations management (CRM) application that involved the
coordination of multiple teams including the UI, the customer master, the data ware-
house, and the mutual funds team. Figure 1.1 illustrates the basic architecture of this
application.

 The problem here is that as the size and complexity of the monolithic CRM appli-
cation grew, the communication and coordination costs of the individual teams work-
ing on the application didn’t scale. Every time an individual team needed to make a
change, the entire application had to be rebuilt, retested and redeployed.

 The concept of a microservice originally crept into the software development com-
munity’s consciousness around 2014 and was a direct response to many of the chal-
lenges of trying to scale both technically and organizationally large, monolithic
applications. Remember, a microservice is a small, loosely coupled, distributed service.
Microservices allow you to take a large application and decompose it into easy-to-
manage components with narrowly defined responsibilities. Microservices help combat
the traditional problems of complexity in a large code base by decomposing the large
code base down into small, well-defined pieces. The key concept you need to embrace
as you think about microservices is decomposing and unbundling the functionality of

k.store/books/9781617293986

https://www.rabbitmq.com/)
https://www.rabbitmq.com/)
https://itbook.store/books/9781617293986

3What’s a microservice?

www.itbook.

Each team has their own areas
of responsibity with their own

requirements and delivery demands.
All their work is synchronized

into a single code base.

The entire application also has knowledge of
and access to all of the data sources used

within the application.

Mutual funds
database

Single source code
repository

Mutual funds team

Customer master
team

Data warehousing
team

UI team

Java application server
(JBoss, Websphere, WebLogic, Tomcat)

Typical
Spring-based

web applications

Customer master
database

Data
warehouse

MVC

WAR

Spring
services

Spring data

Continuous
integration

pipeline

Figure 1.1 Monolithic applications force multiple development teams to artificially synchronize their delivery
because their code needs to be built, tested, and deployed as an entire unit.
store/books/9781617293986

https://itbook.store/books/9781617293986

4 CHAPTER 1 Welcome to the cloud, Spring

www.itboo
your applications so they’re completely independent of one another. If we take the
CRM application we saw in figure 1.1 and decompose it into microservices, it might
look like what’s shown in figure 1.2.

 Looking at figure 1.2, you can see that each functional team completely owns their
service code and service infrastructure. They can build, deploy, and test indepen-
dently of each other because their code, source control repository, and the infrastruc-
ture (app server and database) are now completely independent of the other parts of
the application.

Invokes all business
logic as REST-based

service calls

Mutual funds
source code repositoryMutual funds team

Customer master
team

Data warehousing
team

UI team

Mutual funds
database

Mutual funds
microservice

Continuous
integration

pipeline

Customer master
source code repository

Customer
master

database

Customer
master

microservice

Continuous
integration

pipeline

Data warehouse
source code repository

Data
warehouse

Data
warehouse

microservice

Continuous
integration

pipeline

UI source code
repository

UI web
application

Continuous
integration

pipeline

Figure 1.2 Using a microservice architecture our CRM application would be decomposed into a set
of microservices completely independent of each other, allowing each development team to move at
their own pace.
k.store/books/9781617293986

https://itbook.store/books/9781617293986

5What is Spring and why is it relevant to microservices?

www.itbook.
 A microservice architecture has the following characteristics:

 Application logic is broken down into small-grained components with well-
defined boundaries of responsibility that coordinate to deliver a solution.

 Each component has a small domain of responsibility and is deployed com-
pletely independently of one another. Microservices should have responsibility
for a single part of a business domain. Also, a microservice should be reusable
across multiple applications.

 Microservices communicate based on a few basic principles (notice I said prin-
ciples, not standards) and employ lightweight communication protocols such as
HTTP and JSON (JavaScript Object Notation) for exchanging data between the
service consumer and service provider.

 The underlying technical implementation of the service is irrelevant because
the applications always communicate with a technology-neutral protocol (JSON
is the most common). This means an application built using a microservice
application could be built with multiple languages and technologies.

 Microservices—by their small, independent, and distributed nature—allow
organizations to have small development teams with well-defined areas of
responsibility. These teams might work toward a single goal such as delivering
an application, but each team is responsible only for the services on which
they’re working.

I often joke with my colleagues that microservices are the gateway drug for building
cloud applications. You start building microservices because they give you a high
degree of flexibility and autonomy with your development teams, but you and your
team quickly find that the small, independent nature of microservices makes them
easily deployable to the cloud. Once the services are in the cloud, their small size
makes it easy to start up large numbers of instances of the same service, and suddenly
your applications become more scalable and, with forethought, more resilient.

1.2 What is Spring and why is it relevant to microservices?
Spring has become the de facto development framework for building Java-based appli-
cations. At its core, Spring is based on the concept of dependency injection. In a nor-
mal Java application, the application is decomposed into classes where each class
often has explicit linkages to other classes in the application. The linkages are the
invocation of a class constructor directly in the code. Once the code is compiled,
these linkage points can’t be changed.

 This is problematic in a large project because these external linkages are brittle and
making a change can result in multiple downstream impacts to other code. A depen-
dency injection framework, such as Spring, allows you to more easily manage large Java
projects by externalizing the relationship between objects within your application
through convention (and annotations) rather than those objects having hard-coded
knowledge about each other. Spring sits as an intermediary between the different Java
store/books/9781617293986

https://itbook.store/books/9781617293986

6 CHAPTER 1 Welcome to the cloud, Spring

www.itboo
classes of your application and manages their dependencies. Spring essentially lets you
assemble your code together like a set of Lego bricks that snap together.

 Spring’s rapid inclusion of features drove its utility, and the framework quickly
became a lighter weight alternative for enterprise application Java developers looking
for a way to building applications using the J2EE stack. The J2EE stack, while powerful,
was considered by many to be bloatware, with many features that were never used by
application development teams. Further, a J2EE application forced you to use a full-
blown (and heavy) Java application server to deploy your applications.

 What’s amazing about the Spring framework and a testament to its development
community is its ability to stay relevant and reinvent itself. The Spring development
team quickly saw that many development teams were moving away from monolithic
applications where the application’s presentation, business, and data access logic were
packaged together and deployed as a single artifact. Instead, teams were moving to
highly distributed models where services were being built as small, distributed services
that could be easily deployed to the cloud. In response to this shift, the Spring devel-
opment team launched two projects: Spring Boot and Spring Cloud.

 Spring Boot is a re-envisioning of the Spring framework. While it embraces core
features of Spring, Spring Boot strips away many of the “enterprise” features found in
Spring and instead delivers a framework geared toward Java-based, REST-oriented
(Representational State Transfer)1 microservices. With a few simple annotations, a
Java developer can quickly build a REST microservice that can be packaged and
deployed without the need for an external application container.

NOTE While we cover REST in more detail in chapter 2, the core concept
behind REST is that your services should embrace the use of the HTTP verbs
(GET, POST, PUT, and DELETE) to represent the core actions of the service
and use a lightweight web-oriented data serialization protocol, such as JSON,
for requesting and receiving data from the service.

Because microservices have become one of the more common architectural patterns
for building cloud-based applications, the Spring development community has given
us Spring Cloud. The Spring Cloud framework makes it simple to operationalize and
deploy microservices to a private or public cloud. Spring Cloud wraps several popular
cloud-management microservice frameworks under a common framework and makes
the use and deployment of these technologies as easy to use as annotating your code. I
cover the different components within Spring Cloud later in this chapter.

1.3 What you’ll learn in this book
This book is about building microservice-based applications using Spring Boot and
Spring Cloud that can be deployed to a private cloud run by your company or a public

1 While we cover REST later in chapter 2, it’s worthwhile to read Roy Fielding’s PHD dissertation on building
REST-based applications (http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm). It’s still one of the
best explanations of REST available.
k.store/books/9781617293986

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://itbook.store/books/9781617293986

7Why is this book relevant to you?

www.itbook.
cloud such as Amazon, Google, or Pivotal. With this book, we cover with hands-on
examples

 What a microservice is and the design considerations that go into building a
microservice-based application

 When you shouldn’t build a microservice-based application
 How to build microservices using the Spring Boot framework
 The core operational patterns that need to be in place to support microservice

applications, particularly a cloud-based application
 How you can use Spring Cloud to implement these operational patterns
 How to take what you’ve learned and build a deployment pipeline that can be

used to deploy your services to a private, internally managed cloud or a public
cloud provider

By the time you’re done reading this book, you should have the knowledge needed to
build and deploy a Spring Boot-based microservice. You’ll also understand the key
design decisions need to operationalize your microservices. You’ll understand how
service configuration management, service discovery, messaging, logging and tracing,
and security all fit together to deliver a robust microservices environment. Finally,
you’ll see how your microservices can be deployed within a private or public cloud.

1.4 Why is this book relevant to you?
If you’ve gotten this far into reading chapter 1, I suspect that

 You’re a Java developer.
 You have a background in Spring.
 You’re interested in learning how to build microservice-based applications.
 You’re interested in how to use microservices to build cloud-based applications.
 You want to know if Java and Spring are relevant technologies for building

microservice-based applications.
 You’re interested in seeing what goes into deploying a microservice-based appli-

cation to the cloud.

I chose to write this book for two reasons. First, while I’ve seen many good books on the
conceptual aspects of microservices, I couldn’t a find a good Java-based book on imple-
menting microservices. While I’ve always considered myself a programming language
polyglot (someone who knows and speaks several languages), Java is my core develop-
ment language and Spring has been the development framework I “reach” for when-
ever I build a new application. When I first came across Spring Boot and Spring Cloud,
I was blown away. Spring Boot and Spring Cloud greatly simplified my development life
when it came to building microservice-based applications running in the cloud.

 Second, as I’ve worked throughout my career as both an architect and engineer,
I’ve found that many times the technology books that I purchase have tended to go to
one of two extremes. They are either conceptual without concrete code examples, or
store/books/9781617293986

https://itbook.store/books/9781617293986

8 CHAPTER 1 Welcome to the cloud, Spring

www.itboo
are mechanical overviews of a particular framework or programming language. I
wanted a book that would be a good bridge and middle ground between the architec-
ture and engineering disciplines. As you read this book, I want to give you a solid
introduction to the microservice patterns development and how they’re used in real-
world application development, and then back these patterns up with practical and
easy-to-understand code examples using Spring Boot and Spring Cloud.

 Let’s shift gears for a moment and walk through building a simple microservice
using Spring Boot.

1.5 Building a microservice with Spring Boot
I’ve always had the opinion that a software development framework is well thought
out and easy to use if it passes what I affectionately call the “Carnell Monkey Test.” If a
monkey like me (the author) can figure out a framework in 10 minutes or less, it has
promise. That’s how I felt the first time I wrote a sample Spring Boot service. I want
you to have to the same experience and joy, so let’s take a minute to see how to write a
simple “Hello World” REST-service using Spring Boot.

 In this section, we’re not going to do a detailed walkthrough of much of the code
presented. Our goal is to give you a taste of writing a Spring Boot service. We’ll go into
much more detail in chapter 2.

 Figure 1.3 shows what your service is going to do and the general flow of how
Spring Boot microservice will process a user’s request.

 This example is by no means exhaustive or even illustrative of how you should
build a production-level microservice, but it should cause you to take a pause because
of how little code it took to write it. We’re not going to go through how to set up the
project build files or the details of the code until chapter 2. If you’d like to see the
Maven pom.xml file and the actual code, you can find it in the chapter 1 section of the
downloadable code. All the source code for chapter 1 can be retrieved from the
GitHub repository for the book at https://github.com/carnellj/spmia-chapter1.

NOTE Please make sure you read appendix A before you try to run the code
examples for the chapters in this book. Appendix A covers the general pro-
ject layout of all the projects in the book, how to run the build scripts, and
how to fire up the Docker environment. The code examples in this chapter
are simple and designed to be run natively right from your desktop without
the information in additional chapters. However, in later chapters you’ll
quickly begin using Docker to run all the services and infrastructure used in
this book. Don’t go too far into the book without reading appendix A on set-
ting up your desktop environment.
k.store/books/9781617293986

https://github.com/carnellj/spmia-chapter1
https://itbook.store/books/9781617293986

9Building a microservice with Spring Boot

www.itbook.

For this example, you’re going to have a single Java class called simpleservice/
src/com/thoughtmechanix/application/simpleservice/Application.java

that will be used to expose a REST endpoint called /hello.
 The following listing shows the code for Application.java.

package com.thoughtmechanix.simpleservice;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RestController;
import org.springframework.web.bind.annotation.PathVariable;

Listing 1.1 Hello World with Spring Boot: a simple Spring microservice

A client makes an
HTTP GET request to
your Hello microservice.

The client receives the response from your
service as JSON. The success or failure of
the call is returned as an HTTP status code.

Once Spring Boot has identified the route
it will map any parameters defined inside
the route to a Java method that will carry
out the work.

Once all of the data has been mapped,
Spring Boot will execute the business logic.

Spring Boot will parse
the HTTP request and map
the route based on the HTTP
Verb, the URL, and potential
parameters defined for the
URL. A route maps to a
method in a Spring
RestController class.

For an HTTP PUT or Post,
a JSON passed in the HTTP
body is mapped to a
Java class.

Once the business logic
is executed, Spring Boot
will convert a Java object
to JSON.

GET http://localhost:8080/hello/john/carnell

HTTP STATUS:200
{"message": "Hello john carnell"}

Route mapping

Flow of Spring
Boot microservice

Parameter
destructuring

JSON->Java
object mapping

Business logic
execution

Java->JSON
object mapping

Figure 1.3 Spring Boot abstracts away the common REST microservice task (routing to business logic, parsing
HTTP parameters from the URL, mapping JSON to/from Java Objects), and lets the developer focus on the business
logic for the service.
store/books/9781617293986

https://itbook.store/books/9781617293986

10 CHAPTER 1 Welcome to the cloud, Spring

a
o
.

www.itboo
@SpringBootApplication
@RestController
@RequestMapping(value="hello")
public class Application {

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }

 @RequestMapping(value="/{firstName}/{lastName}",
 method = RequestMethod.GET)

 public String hello(@PathVariable("firstName") String firstName,
 @PathVariable("lastName") String lastName) {
 return String.format("{\"message\":\"Hello %s %s\"}",
 firstName, lastName);
 }
}

In listing 1.1 you’re basically exposing a single GET HTTP endpoint that will take two
parameters (firstName and lastName) on the URL and then return a simple JSON
string that has a payload containing the message “Hello firstName lastName”. If you
were to call the endpoint /hello/john/carnell on your service (which I’ll show
shortly) the return of the call would be

{"message":"Hello john carnell"}

Let’s fire up your service. To do this, go to the command prompt and issue the follow-
ing command:

mvn spring-boot:run

This command, mvn, will use a Spring Boot plug-in to start the application using an
embedded Tomcat server.

Java vs. Groovy and Maven vs. Gradle
The Spring Boot framework has strong support for both Java and the Groovy program-
ming languages. You can build microservices with Groovy and no project setup.
Spring Boot also supports both Maven and the Gradle build tools. I’ve limited the
examples in this book to Java and Maven. As a long-time Groovy and Gradle aficio-
nado, I have a healthy respect for the language and the build tool, but to keep the
book manageable and the material focused, I’ve chosen to go with Java and Maven
to reach the largest audience possible.

Tells the Spring Boot framework that this class
is the entry point for the Spring Boot service Tells Spring Boot you’re going

to expose the code in this class
as a Spring RestController class

All URLs exposed in this application
will be prefaced with /hello prefix.

Spring Boot will expose an endpoint as
GET-based REST endpoint that will take tw

parameters: firstName and lastName

Maps the firstName and lastName
parameters passed in on the URL to two
variables passed into the hello functionReturns a simple JSON string that you manually

build. In chapter 2 you won’t create any JSON.
k.store/books/9781617293986

https://itbook.store/books/9781617293986

11Building a microservice with Spring Boot

www.itbook.
Figure 1.4 Your Spring Boot service will communicate the endpoints exposed and the port of the service
via the console.

If everything starts correctly, you should see what’s shown in figure 1.4 from your
command-line window.

 If you examine the screen in figure 1.4, you’ll notice two things. First, a Tomcat
server was started on port 8080. Second, a GET endpoint of /hello/{firstName}/
{lastName} is exposed on the server.

The service will listen to port 8080 for incoming HTTP requests.

Our /hello endpoint is mapped with two variables: firstName and lastName.

HTTP GET for the /hello/john/carnell endpoint

JSON payload returned back from the service

Figure 1.5 The response from the /hello endpoint shows the data you’ve requested represented as
a JSON payload.
store/books/9781617293986

https://itbook.store/books/9781617293986

12 CHAPTER 1 Welcome to the cloud, Spring

www.itboo
You’re going to call your service using a browser-based REST tool called POSTMAN
(https://www.getpostman.com/). Many tools, both graphical and command line, are
available for invoking a REST-based service, but I’ll use POSTMAN for all my examples
in this book. Figure 1.5 shows the POSTMAN call to the http://localhost:8080/
hello/john/carnell endpoint and the results returned from the service.

 Obviously, this simple example doesn’t demonstrate the full power of Spring Boot.
But what it should show is that you can write a full HTTP JSON REST-based service with
route-mapping of URL and parameters in Java with as few as 25 lines of code. As any
experienced Java developer will tell you, writing anything meaningful in 25 lines of
code in Java is extremely difficult. Java, while being a powerful language, has acquired
a reputation of being wordy compared to other languages.

 We’re done with our brief tour of Spring Boot. We now have to ask this question:
because we can write our applications using a microservice approach, does this mean
we should? In the next section, we’ll walk through why and when a microservice
approach is justified for building your applications.

1.6 Why change the way we build applications?
We’re at an inflection point in history. Almost all aspects of modern society are now
wired together via the internet. Companies that used to serve local markets are sud-
denly finding that they can reach out to a global customer base. However, with a
larger global customer base also comes global competition. These competitive pres-
sures mean the following forces are impacting the way developers have to think about
building applications:

 Complexity has gone way up—Customers expect that all parts of an organization
know who they are. “Siloed” applications that talk to a single database and don’t
integrate with other applications are no longer the norm. Today’s applications
need to talk to multiple services and databases residing not only inside a com-
pany’s data center, but also to external service providers over the internet.

 Customers want faster delivery—Customers no longer want to wait for the next
annual release or version of a software package. Instead, they expect the features
in a software product to be unbundled so that new functionality can be released
quickly in weeks (even days) without having to wait for an entire product release.

 Performance and scalability—Global applications make it extremely difficult to
predict how much transaction volume is going to be handled by an application
and when that transaction volume is going to hit. Applications need to scale up
across multiple servers quickly and then scale back down when the volume
needs have passed.

 Customers expect their applications to be available—Because customers are one click
away from a competitor, a company’s applications must be highly resilient. Fail-
ures or problems in one part of the application shouldn’t bring down the entire
application.
k.store/books/9781617293986

https://www.getpostman.com/
https://itbook.store/books/9781617293986

13What exactly is the cloud?

www.itbook.
To meet these expectations, we, as application developers, have to embrace the para-
dox that to build high-scalable and highly redundant applications we need to break
our applications into small services that can be built and deployed independently of
one another. If we “unbundle” our applications into small services and move them
away from a single monolithic artifact, we can build systems that are

 Flexible—Decoupled services can be composed and rearranged to quickly
deliver new functionality. The smaller the unit of code that one is working with,
the less complicated it is to change the code and the less time it takes to test
deploy the code.

 Resilient—Decoupled services mean an application is no longer a single “ball of
mud” where a degradation in one part of the application causes the whole appli-
cation to fail. Failures can be localized to a small part of the application and con-
tained before the entire application experiences an outage. This also enables the
applications to degrade gracefully in case of an unrecoverable error.

 Scalable—Decoupled services can easily be distributed horizontally across multi-
ple servers, making it possible to scale the features/services appropriately. With
a monolithic application where all the logic for the application is intertwined,
the entire application needs to scale even if only a small part of the application
is the bottleneck. Scaling on small services is localized and much more cost-
effective.

To this end, as we begin our discussion of microservices keep the following in mind:

Small, Simple, and Decoupled Services = Scalable, Resilient, and Flexible Applications

1.7 What exactly is the cloud?
The term “cloud” has become overused. Every software vendor has a cloud and every-
one’s platform is cloud-enabled, but if you cut through the hype, three basic models
exist in cloud-based computing. These are

 Infrastructure as a Service (IaaS)
 Platform as a Service (PaaS)
 Software as a Service (SaaS)

To better understand these concepts, let’s map the everyday task of making a meal to
the different models of cloud computing. When you want to eat a meal, you have four
choices:

1 You can make the meal at home.
2 You can go to the grocery store and buy a meal pre-made that you heat up and

serve.
3 You can get a meal delivered to your house.
4 You can get in the car and eat at restaurant.
store/books/9781617293986

https://itbook.store/books/9781617293986

14 CHAPTER 1 Welcome to the cloud, Spring

www.itboo
Figure 1.6 The different cloud computing models come down to who’s
responsible for what: the cloud vendor or you.

Figure 1.6 shows each model.
 The difference between these options is about who’s responsible for cooking these

meals and where the meal is going to be cooked. In the on-premise model, eating a
meal at home requires you to do all the work, using your own oven and ingredients
already in the home. A store-bought meal is like using the Infrastructure as a Service
(IaaS) model of computing. You’re using the store’s chef and oven to pre-bake the
meal, but you’re still responsible for heating the meal and eating it at the house (and
cleaning up the dishes afterward).

 In a Platform as a Service (PaaS) model you still have responsibility for the meal,
but you further rely on a vendor to take care of the core tasks associated with making
a meal. For example, in a PaaS model, you supply the plates and furniture, but the res-
taurant owner provides the oven, ingredients, and the chef to cook them. In the Soft-
ware as a Service (SaaS) model, you go to a restaurant where all the food is prepared
for you. You eat at the restaurant and then you pay for the meal when you’re done.
you also have no dishes to prepare or wash.

 The key items at play in each of these models are ones of control: who’s responsi-
ble for maintaining the infrastructure and what are the technology choices available
for building the application? In a IaaS model, the cloud vendor provides the basic
infrastructure, but you’re accountable for selecting the technology and building the
final solution. On the other end of the spectrum, with a SaaS model, you’re a passive
consumer of the service provided by the vendor and have no input on the technology
selection or any accountability to maintain the infrastructure for the application.

Furniture

Plates

Oven

Ingredients

Chef

Homemade

On premise

Furniture

Plates

Oven

Ingredients

You manage Provider manages

Chef

Store bought

IaaS

Furniture

Plates

Oven

Ingredients

Chef

Delivered

PaaS

Furniture

Plates

Oven

Ingredients

Chef

Restaurant

SaaS
k.store/books/9781617293986

https://itbook.store/books/9781617293986

15Why the cloud and microservices?

www.itbook.
1.8 Why the cloud and microservices?
One of the core concepts of a microservice-based architecture is that each service is
packaged and deployed as its own discrete and independent artifact. Service instances
should be brought up quickly and each instance of the service should be indistin-
guishable from another.

 As a developer writing a microservice, sooner or later you’re going to have to
decide whether your service is going to be deployed to one of the following:

 Physical server—While you can build and deploy your microservices to a physi-
cal machine(s), few organizations do this because physical servers are con-
strained. You can’t quickly ramp up the capacity of a physical server and it can
become extremely costly to scale your microservice horizontally across multiple
physical servers.

 Virtual machine images—One of the key benefits of microservices is their ability
to quickly start up and shut down microservice instances in response to scalabil-
ity and service failure events. Virtual machines are the heart and soul of the

Emerging cloud platforms
I’ve documented the three core cloud platform types (IaaS, PaaS, SaaS) that are in
use today. However, new cloud platform types are emerging. These new platforms
include Functions as a Service (FaaS) and Container as a Service (CaaS). FaaS-based
(https://en.wikipedia.org/wiki/Function_as_a_Service) applications use technolo-
gies like Amazon’s Lambda technologies and Google Cloud functions to build appli-
cations deployed as “serverless” chunks of code that run completely on the cloud
provider’s platform computing infrastructure. With a FaaS platform, you don’t have to
manage any server infrastructure and only pay for the computing cycles required to
execute the function.

With the Container as a Service (CaaS) model, developers build and deploy their
microservices as portable virtual containers (such as Docker) to a cloud provider.
Unlike an IaaS model, where you the developer have to manage the virtual machine
the service is deployed to, with CaaS you’re deploying your services in a lightweight
virtual container. The cloud provider runs the virtual server the container is running
on as well as the provider’s comprehensive tools for building, deploying, monitoring,
and scaling containers. Amazon’s Elastic Container Service (ECS) is an example of a
CaaS-based platform. In chapter 10 of this book, we’ll see how to deploy the
microservices you’ve built to Amazon ECS.

It’s important to note that with both the FaaS and CaaS models of cloud computing,
you can still build a microservice-based architecture. Remember, the concept of
microservices revolves around building small services, with limited responsibility,
using an HTTP-based interface to communicate. The emerging cloud computing plat-
forms, such as FaaS and CaaS, are really about alternative infrastructure mecha-
nisms for deploying microservices.
store/books/9781617293986

https://en.wikipedia.org/wiki/Function_as_a_Service
https://itbook.store/books/9781617293986

16 CHAPTER 1 Welcome to the cloud, Spring

www.itboo
major cloud providers. A microservice can be packaged up in a virtual machine
image and multiple instances of the service can then be quickly deployed and
started in either a IaaS private or public cloud.

 Virtual container—Virtual containers are a natural extension of deploying your
microservices on a virtual machine image. Rather than deploying a service to a
full virtual machine, many developers deploy their services as Docker contain-
ers (or equivalent container technology) to the cloud. Virtual containers run
inside a virtual machine; using a virtual container, you can segregate a single vir-
tual machine into a series of self-contained processes that share the same virtual
machine image.

The advantage of cloud-based microservices centers around the concept of elasticity.
Cloud service providers allow you to quickly spin up new virtual machines and contain-
ers in a matter of minutes. If your capacity needs for your services drop, you can spin
down virtual servers without incurring any additional costs. Using a cloud provider to
deploy your microservices gives you significantly more horizontal scalability (adding
more servers and service instances) for your applications. Server elasticity also means
that your applications can be more resilient. If one of your microservices is having prob-
lems and is falling over, spinning up new service instances can you keep your applica-
tion alive long enough for your development team to gracefully resolve the issue.

 For this book, all the microservices and corresponding service infrastructure will
be deployed to an IaaS-based cloud provider using Docker containers. This is a com-
mon deployment topology used for microservices:

 Simplified infrastructure management—IaaS cloud providers give you the ability to
have the most control over your services. New services can be started and
stopped with simple API calls. With an IaaS cloud solution, you only pay for the
infrastructure that you use.

 Massive horizontal scalability—IaaS cloud providers allow you to quickly and suc-
cinctly start one or more instances of a service. This capability means you can
quickly scale services and route around misbehaving or failing servers.

 High redundancy through geographic distribution—By necessity, IaaS providers have
multiple data centers. By deploying your microservices using an IaaS cloud
provider, you can gain a higher level of redundancy beyond using clusters in a
data center.

k.store/books/9781617293986

https://itbook.store/books/9781617293986

17Microservices are more than writing the code

www.itbook.
The services built in this book are packaged as Docker containers. One of the reasons
why I chose Docker is that as a container technology, Docker is deployable to all the
major cloud providers. Later in chapter 10, I demonstrate how to package microser-
vices using Docker and then deploy these containers to Amazon’s cloud platform.

1.9 Microservices are more than writing the code
While the concepts around building individual microservices are easy to understand,
running and supporting a robust microservice application (especially when running

Why not PaaS-based microservices?
Earlier in the chapter we discussed three types of cloud platforms (Infrastructure as
a Service, Platform as a Service, and Software as a Services). For this book, I’ve cho-
sen to focus specifically on building microservices using an IaaS-based approach.
While certain cloud providers will let you abstract away the deployment infrastructure
for your microservice, I’ve chosen to remain vendor-independent and deploy all parts
of my application (including the servers).

For instance, Amazon, Cloud Foundry, and Heroku give you the ability to deploy your
services without having to know about the underlying application container. They pro-
vide a web interface and APIs to allow you to deploy your application as a WAR or JAR
file. Setting up and tuning the application server and the corresponding Java con-
tainer are abstracted away from you. While this is convenient, each cloud provider’s
platform has different idiosyncrasies related to its individual PaaS solution.

An IaaS approach, while more work, is portable across multiple cloud providers and
allows us to reach a wider audience with our material. Personally, I’ve found that
PaaS-based cloud solutions can allow you to quickly jump start your development
effort, but once your application reaches enough microservices, you start to need the
flexibility the IaaS style of cloud development provides.

Earlier in the chapter, I mentioned new cloud computing platforms such as Function
as a Service (FaaS) and Container as a Service (CaaS). If you’re not careful, FaaS-
based platforms can lock your code into a cloud vendor platform because your code
is deployed to a vendor-specific runtime engine. With a FaaS-based model, you might
be writing your service using a general programming language (Java, Python, JavaS-
cript, and so on), but you’re still tying yourself heavily to the underlying vendor APIs
and runtime engine that your function will be deployed to.
store/books/9781617293986

https://itbook.store/books/9781617293986

18 CHAPTER 1 Welcome to the cloud, Spring

www.itboo
in the cloud) involves more than writing the code for the service. Writing a robust ser-
vice includes considering several topics. Figure 1.7 highlights these topics.

 Let’s walk through the items in figure 1.7 in more detail:

 Right-sized—How do you ensure that your microservices are properly sized so
that you don’t have a microservice take on too much responsibility? Remember,
properly sized, a service allows you to quickly make changes to an application
and reduces the overall risk of an outage to the entire application.

 Location transparent—How you we manage the physical details of service invoca-
tion when in a microservice application, multiple service instances can quickly
start and shut down?

 Resilient—How do you protect your microservice consumers and the overall
integrity of your application by routing around failing services and ensuring
that you take a “fail-fast” approach?

 Repeatable—How do you ensure that every new instance of your service brought
up is guaranteed to have the same configuration and code base as all the other
service instances in production?

 Scalable—How do you use asynchronous processing and events to minimize the
direct dependencies between your services and ensure that you can gracefully
scale your microservices?

This book takes a patterns-based approach as we answer these questions. With a pat-
terns-based approach, we lay out common designs that can be used across different

How do you manage the physical location
so services instances can be added and
removed without impacting service clients?

How do you make sure
the service is focused
on one area of
responsibility?

How do you make sure
when there is a problem
with a service, service
clients “fail fast”?

How do you ensure
that your applications
can scale quickly with
minimal dependencies
between services?

How do you ensure that every
time a new service instance is
started it always has the same
code and configuration as
existing instance(s)?

Right-sized

Location
transparent

Your microservice Resilient

Scalable Repeatable

Figure 1.7 Microservices are more than the business logic. You need to think about the environment
where the services are going to run and how the services will scale and be resilient.
k.store/books/9781617293986

https://itbook.store/books/9781617293986

19Microservices are more than writing the code

www.itbook.
technology implementations. While we’ve chosen to use Spring Boot and Spring
Cloud to implement the patterns we’re going to use in this book, nothing will keep
you from taking the concepts presented here and using them with other technology
platforms. Specifically, we cover the following six categories of microservice patterns:

 Core development patterns
 Routing patterns
 Client resiliency patterns
 Security patterns
 Logging and tracing patterns
 Build and deployment patterns

Let’s walk through these patterns in more detail.

1.9.1 Core microservice development pattern

The core development microservice development pattern addresses the basics of
building a microservice. Figure 1.8 highlights the topics we’ll cover around basic ser-
vice design.

Figure 1.8 When designing your microservice, you have to think about how the service will be consumed
and communicated with.

Communication protocols:
How your client and service
communicate data back
and forth

Configuration management:
How your services manage
their application-specific
configuration so that the
code and configuration
are independent entities

Service granularity: What is the
right level of responsibility the
service should have?

Interface design: How you are
going to expose your service
endpoints to clients

Event processing: How you can
use events to communicate
state and data changes
between services

Web client Microservice

Microservice

Communication
protocols

Service
granularity

Interface
design

Configuration
management

Event
processing
store/books/9781617293986

https://itbook.store/books/9781617293986

20 CHAPTER 1 Welcome to the cloud, Spring

www.itboo
 Service granularity—How do you approach decomposing a business domain
down into microservices so that each microservice has the right level of respon-
sibility? Making a service too coarse-grained with responsibilities that overlap
into different business problems domains makes the service difficult to main-
tain and change over time. Making the service too fine-grained increases the
overall complexity of the application and turns the service into a “dumb” data
abstraction layer with no logic except for that needed to access the data store. I
cover service granularity in chapter 2.

 Communication protocols—How will developers communicate with your service?
Do you use XML (Extensible Markup Language), JSON (JavaScript Object Nota-
tion), or a binary protocol such as Thrift to send data back and forth your
microservices? We’ll go into why JSON is the ideal choice for microservices and
has become the most common choice for sending and receiving data to
microservices. I cover communication protocols in chapter 2.

 Interface design—What’s the best way to design the actual service interfaces that
developers are going to use to call your service? How do you structure your ser-
vice URLs to communicate service intent? What about versioning your services?
A well-design microservice interface makes using your service intuitive. I cover
interface design in chapter 2.

 Configuration management of service—How do you manage the configuration of
your microservice so that as it moves between different environments in the
cloud you never have to change the core application code or configuration? I
cover managing service configuration in chapter 3.

 Event processing between services—How do you decouple your microservice using
events so that you minimize hardcoded dependencies between your services
and increase the resiliency of your application? I cover event processing
between services in chapter 8.

1.9.2 Microservice routing patterns

The microservice routing patterns deal with how a client application that wants to
consume a microservice discovers the location of the service and is routed over to it.
In a cloud-based application, you might have hundreds of microservice instances run-
ning. You’ll need to abstract away the physical IP address of these services and have a
single point of entry for service calls so that you can consistently enforce security and
content policies for all service calls.

 Service discovery and routing answer the question, “How do I get my client’s
request for a service to a specific instance of a service?”

 Service discovery—How do you make your microservice discoverable so client
applications can find them without having the location of the service hard-
coded into the application? How do you ensure that misbehaving microservice
instances are removed from the pool of available service instances? I cover ser-
vice discovery in chapter 4.
k.store/books/9781617293986

https://itbook.store/books/9781617293986

21Microservices are more than writing the code

www.itbook.
 Service routing—How do you provide a single entry point for all of your services so
that security policies and routing rules are applied uniformly to multiple services
and service instances in your microservice applications? How do you ensure that
each developer in your team doesn’t have to come up with their own solutions for
providing routing to their services? I cover service routing in chapter 6.

In figure 1.9, service discovery and service routing appear to have a hard-coded
sequence of events between them (first comes service routing and the service discov-
ery). However, the two patterns aren’t dependent on one another. For instance, we
can implement service discovery without service routing. You can implement service
routing without service discovery (even though its implementation is more difficult).

1.9.3 Microservice client resiliency patterns

Because microservice architectures are highly distributed, you have to be extremely
sensitive in how you prevent a problem in a single service (or service instance) from

Service routing gives the
microservice client a single
logical URL to talk to and acts
as a policy enforcement point
for things like authorization,
authentication, and
content checking.

Service discovery abstracts
away the physical location
of the service from the client.
New microservice instances
can be added to scale up, and
unhealthy service instances
can be transparently removed
from the service.

172.18.32.100 172.18.32.101

Microservice A (two instances)

172.18.38.96 172.18.38.97

Microservice B (two instances)

Web client

http://myapp.api/servicea http://myapp.api/serviceb

Microservice

Figure 1.9 Service discovery and routing are key parts of any large-scale microservice
application.
store/books/9781617293986

https://itbook.store/books/9781617293986

22 CHAPTER 1 Welcome to the cloud, Spring

www.itboo
cascading up and out to the consumers of the service. To this end, we’ll cover four cli-
ent resiliency patterns:

 Client-side load balancing—How do you cache the location of your service
instances on the service client so that calls to multiple instances of a microser-
vice are load balanced to all the health instances of that microservice?

 Circuit breakers pattern—How do you prevent a client from continuing to call a
service that’s failing or suffering performance problems? When a service is run-
ning slowly, it consumes resources on the client calling it. You want failing
microservice calls to fail fast so that the calling client can quickly respond and
take an appropriate action.

 Fallback pattern—When a service call fails, how do you provide a “plug-in” mech-
anism that will allow the service client to try to carry out its work through alter-
native means other than the microservice being called?

 Bulkhead pattern—Microservice applications use multiple distributed resources
to carry out their work. How do you compartmentalize these calls so that the mis-
behavior of one service call doesn’t negatively impact the rest of the application?

Figure 1.10 With microservices, you must protect the service caller from a poorly behaving service.
Remember, a slow or down service can cause disruptions beyond the immediate service.

The circuit breaker pattern
ensures that a service client
does not repeatedly call a failing
service. Instead, a circuit breaker
"fails fast" to protect the client.

How do you segregate different
service calls on a client to make
sure one misbehaving service
does not take up all the resources
on the client?

When a client does fail, is there
an alternative path the client can
take to retrieve data from or take
action with?

172.18.32.100

The service client caches
microservice endpoints retrieved
from the service discovery and
ensures that the service calls are
load balanced between instances.

172.18.32.101

Microservice A (two instances)

172.18.38.96 172.18.38.97

Microservice B (two instances)

Web client

http://myapp.api/servicea http://myapp.api/serviceb

Microservice

Client-side load
balancing

Circuit
breaker

Fallback

Bulkhead
k.store/books/9781617293986

https://itbook.store/books/9781617293986

23Microservices are more than writing the code

www.itbook.
Figure 1.10 shows how these patterns protect the consumer of service from being
impacted when a service is misbehaving. I cover these four topics in chapter 5.

1.9.4 Microservice security patterns

I can’t write a book on microservices without talking about microservice security. In
chapter 7 we’ll cover three basic security patterns. These patterns are

 Authentication—How do you determine the service client calling the service is
who they say they are?

 Authorization—How do you determine whether the service client calling a
microservice is allowed to undertake the action they’re trying to undertake?

 Credential management and propagation—How do you prevent a service client from
constantly having to present their credentials for service calls involved in a trans-
action? Specifically, we’ll look at how token-based security standards such as
OAuth2 and JavaScript Web Tokens (JWT) can be used to obtain a token that can
be passed from service call to service call to authenticate and authorize the user.

Figure 1.11 shows how you can implement the three patterns described previously to
build an authentication service that can protect your microservices.

 At this point I’m not going to go too deeply into the details of figure 1.10. There’s
a reason why security requires a whole chapter. (It could honestly be a book in itself.)

Figure 1.11 Using a token-based security scheme, you can implement service authentication and
authorization without passing around client credentials.

2. The resource owner grants which
 applications/users can access the
 resource via the authentication service

3. When the user tries to access
 a protected service, they must
 authenticate and obtain a token
 from the authentication service.

4. The token server authenticates
 the user and validates tokens
 presented to it

1. The service you
 want to protect

Application trying to
access a protected

resource

Token
authentication

server

Protected
resource

The user

Resource owner
store/books/9781617293986

https://itbook.store/books/9781617293986

24 CHAPTER 1 Welcome to the cloud, Spring

www.itboo
1.9.5 Microservice logging and tracing patterns

The beauty of the microservice architecture is that a monolithic application is broken
down into small pieces of functionality that can be deployed independently of one
another. The downside of a microservice architecture is that it’s much more difficult
to debug and trace what the heck is going on within your application and services.

 For this reason, we’ll look at three core logging and tracing patterns:

 Log correlation—How do you tie together all the logs produced between services
for a single user transaction? With this pattern, we’ll look at how to implement a
correlation ID, which is a unique identifier that will be carried across all service
calls in a transaction and can be used to tie together log entries produced from
each service.

 Log aggregation—With this pattern we’ll look at how to pull together all of the
logs produced by your microservices (and their individual instances) into a sin-
gle queryable database. We’ll also look at how to use correlation IDs to assist in
searching your aggregated logs.

 Microservice tracing—Finally, we’ll explore how to visualize the flow of a client
transaction across all the services involved and understand the performance
characteristics of services involved in the transaction.

Figure 1.12 shows how these patterns fit together. We’ll cover the logging and tracing
patterns in greater detail in chapter 9.

Figure 1.12 A well-thought-out logging and tracing strategy makes debugging transactions across
multiple services manageable.

Log correlation: All service log
entries have a correlation ID that
ties the log entry to a single transaction.

Log aggegration: An aggregation
mechanism collects all of the logs
from all the services instances.

As data comes into a central
data store, it is indexed and
stored in a searchable format.

Microservice transaction tracing: The development and operations teams
can query the log data to find individual transactions. They should also be
able to visualize the flow of all the services involved in a transaction.

Service instance A Service instance A Service instance B Service instance B Service instance C
k.store/books/9781617293986

https://itbook.store/books/9781617293986

25Microservices are more than writing the code

www.itbook.
1.9.6 Microservice build/deployment patterns

One of the core parts of a microservice architecture is that each instance of a
microservice should be identical to all its other instances. You can’t allow “configura-
tion drift” (something changes on a server after it’s been deployed) to occur, because
this can introduce instability in your applications.

To this end, our goal is to integrate the configuration of your infrastructure right into
your build-deployment process so that you no longer deploy software artifacts such as
a Java WAR or EAR to an already-running piece of infrastructure. Instead, you want to
build and compile your microservice and the virtual server image it’s running on as
part of the build process. Then, when your microservice gets deployed, the entire
machine image with the server running on it gets deployed.

 Figure 1.13 illustrates this process. At the end of the book we’ll look at how to
change your build and deployment pipeline so that your microservices and the servers
they run on are deployed as a single unit of work. In chapter 10 we cover the following
patterns and topics:

 Build and deployment pipeline—How do you create a repeatable build and deploy-
ment process that emphasizes one-button builds and deployment to any envi-
ronment in your organization?

 Infrastructure as code—How do you treat the provisioning of your services as code
that can be executed and managed under source control?

 Immutable servers—Once a microservice image is created, how do you ensure
that it’s never changed after it has been deployed?

 Phoenix servers—The longer a server is running, the more opportunity for con-
figuration drift. How do you ensure that servers that run microservices get torn
down on a regular basis and recreated off an immutable image?

A phrase too often said
“I made only one small change on the stage server, but I forgot to make the change
in production.” The resolution of many down systems when I’ve worked on critical sit-
uations teams over the years has often started with those words from a developer or
system administrator. Engineers (and most people in general) operate with good
intentions. They don’t go to work to make mistakes or bring down systems. Instead
they’re doing the best they can, but they get busy or distracted. They tweak some-
thing on a server, fully intending to go back and do it in all the environments.

At a later point, an outage occurs and everyone is left scratching their heads wondering
what’s different between the lower environments in production. I’ve found that the
small size and limited scope of a microservice makes it the perfect opportunity to intro-
duce the concept of “immutable infrastructure” into an organization: once a service
is deployed, the infrastructure it’s running on is never touched again by human hands.

An immutable infrastructure is a critical piece of successfully using a microservice
architecture, because you have to guarantee in production that every microservice
instance you start for a particular microservice is identical to its brethren.
store/books/9781617293986

https://itbook.store/books/9781617293986

26 CHAPTER 1 Welcome to the cloud, Spring

www.itboo
Figure 1.13 You want the deployment of the microservice and the server it’s running on to be one atomic artifact
that’s deployed as a whole between environments.

Our goal with these patterns and topics is to ruthlessly expose and stamp out configu-
ration drift as quickly as possible before it can hit your upper environments, such as
stage or production.

NOTE For the code examples in this book (except chapter 10), everything
will run locally on your desktop machine. The first two chapters can be run
natively directly from the command line. Starting in chapter 3, all the code
will be compiled and run as Docker containers.

1.10 Using Spring Cloud in building your microservices
In this section, I briefly introduce the Spring Cloud technologies that you’ll use as you
build out your microservices. This is a high-level overview; when you use each technol-
ogy in this book, I’ll teach you the details on each as needed.

Everything starts with a developer checking in their code to a source control
repository. This is the trigger to begin the build/deployment process.

Infrastructure as code: We build our code
and run our tests for our microservices.
However, we also treat our infrastructure as
code. When the microservice is compiled and
packaged, we immediately bake and provision
a virtual server or container image with the
microservice installed on it.

Immutable servers: The moment an image is
baked and deployed, no developer or system
administrator is allowed to make modifications
to the servers. When promoting between
environments, the entire container or image
is started with environment-specific variables
that are passed to the server when the server
is first started.

Phoenix servers: Because the actual servers
are constantly being torn down as part of
the continous integration process, new servers
are being started and torn down. This greatly
decreases the change of configuration drift
between environments.

Code
compiled

Unit and
integration
tests run

Continuous integration/continuous delivery pipeline

Source repositoryDeveloper
Build deploy

engine

Run-time
artifacts
created

Platform test run

Image deploy/new server deployed

Platform test run

Image deploy/new server deployed

Platform test run

Dev

Test

Prod

Image deploy/new server deployed

Machine
image
baked

Image
committed

to repo
k.store/books/9781617293986

https://itbook.store/books/9781617293986

27Using Spring Cloud in building your microservices

www.itbook.
 Implementing all these patterns from scratch would be a tremendous amount of
work. Fortunately for us, the Spring team has integrated a wide number of battle-
tested open source projects into a Spring subproject collectively known as Spring
Cloud. (http://projects.spring.io/spring-cloud/).

 Spring Cloud wraps the work of open source companies such as Pivotal,
HashiCorp, and Netflix in delivering patterns. Spring Cloud simplifies setting up and
configuring of these projects into your Spring application so that you can focus on
writing code, not getting buried in the details of configuring all the infrastructure that
can go with building and deploying a microservice application.

 Figure 1.14 maps the patterns listed in the previous section to the Spring Cloud
projects that implement them.

 Let’s walk through these technologies in greater detail.

Figure 1.14 You can map the technologies you’re going to use directly to the microservice patterns we’ve
explored so far in this chapter.

Core microservice
patterns

Spring Boot

Configuration
management

Spring Cloud Config

Asynchronous
messaging

Spring Cloud Stream

Service discovery
patterns

Spring Cloud/
Netflix Eureka

Service routing
patterns

Spring Cloud/
Netflix Zuul

Continuous
integration

Travis CI

Infrastructure
as code

Docker

Immutable
servers

Docker

Phoenix servers

Travis CI/Docker

Client-side load balancing

Spring Cloud/
Netflix Ribbon

Microservice tracing

Spring Cloud
Sleuth/Zipkin

Log aggregation

Spring Cloud Sleuth
(with Papertrail)

Log correlation

Spring Cloud Sleuth

Development patterns

Logging patterns

Credential management
and propagation

Spring Cloud
Security/OAuth2/JWT

Authentication

Spring Cloud
Security/OAuth2

Authorization

Spring Cloud
Security/OAuth2

Security patterns

Routing patterns Build deployment patternsClient resiliency patterns

Circuit breaker pattern

Spring Cloud/
Netflix Hystrix

Fallback pattern

Spring Cloud/
Netflix Hystrix

Bulkhead pattern

Spring Cloud/
Netflix Hystrix
store/books/9781617293986

http://projects.spring.io/spring-cloud/
https://itbook.store/books/9781617293986

28 CHAPTER 1 Welcome to the cloud, Spring

www.itboo
1.10.1 Spring Boot

Spring Boot is the core technology used in our microservice implementation. Spring
Boot greatly simplifies microservice development by simplifying the core tasks of
building REST-based microservices. Spring Boot also greatly simplifies mapping HTTP-
style verbs (GET, PUT, POST, and DELETE) to URLs and the serialization of the JSON

protocol to and from Java objects, as well as the mapping of Java exceptions back to
standard HTTP error codes.

1.10.2 Spring Cloud Config

Spring Cloud Config handles the management of application configuration data
through a centralized service so your application configuration data (particularly
your environment specific configuration data) is cleanly separated from your
deployed microservice. This ensures that no matter how many microservice instances
you bring up, they’ll always have the same configuration. Spring Cloud Config has its
own property management repository, but also integrates with open source projects
such as the following:

 Git—Git (https://git-scm.com/) is an open source version control system that
allows you to manage and track changes to any type of text file. Spring Cloud
Config can integrate with a Git-backed repository and read the application’s
configuration data out of the repository.

 Consul—Consul (https://www.consul.io/) is an open source service discovery
tool that allows service instances to register themselves with the service. Service
clients can then ask Consul where the service instances are located. Consul also
includes key-value store based database that can be used by Spring Cloud Con-
fig to store application configuration data.

 Eureka—Eureka (https://github.com/Netflix/eureka) is an open source Net-
flix project that, like Consul, offers similar service discovery capabilities. Eureka
also has a key-value database that can be used with Spring Cloud Config.

1.10.3 Spring Cloud service discovery

With Spring Cloud service discovery, you can abstract away the physical location (IP

and/or server name) of where your servers are deployed from the clients consuming
the service. Service consumers invoke business logic for the servers through a logical
name rather than a physical location. Spring Cloud service discovery also handles the
registration and deregistration of services instances as they’re started up and shut
down. Spring Cloud service discovery can be implemented using Consul (https://
www.consul.io/) and Eureka (https://github.com/Netflix/eureka) as its service dis-
covery engine.
k.store/books/9781617293986

https://git-scm.com/
https://www.consul.io/
https://github.com/Netflix/eureka
https://www.consul.io/
https://www.consul.io/
https://github.com/Netflix/eureka
https://itbook.store/books/9781617293986

29Using Spring Cloud in building your microservices

www.itbook.
1.10.4 Spring Cloud/Netflix Hystrix and Ribbon

Spring Cloud heavily integrates with Netflix open source projects. For microservice cli-
ent resiliency patterns, Spring Cloud wraps the Netflix Hystrix libraries (https://github
.com/Netflix/Hystrix) and Ribbon project (https://github.com/Netflix/Ribbon) and
makes using them from within your own microservices trivial to implement.

 Using the Netflix Hystrix libraries, you can quickly implement service client resil-
iency patterns such as the circuit breaker and bulkhead patterns.

 While the Netflix Ribbon project simplifies integrating with service discovery
agents such as Eureka, it also provides client-side load-balancing of service calls from a
service consumer. This makes it possible for a client to continue making service calls
even if the service discovery agent is temporarily unavailable.

1.10.5 Spring Cloud/Netflix Zuul

Spring Cloud uses the Netflix Zuul project (https://github.com/Netflix/zuul) to pro-
vide service routing capabilities for your microservice application. Zuul is a service
gateway that proxies service requests and makes sure that all calls to your microser-
vices go through a single “front door” before the targeted service is invoked. With this
centralization of service calls, you can enforce standard service policies such as a secu-
rity authorization authentication, content filtering, and routing rules.

1.10.6 Spring Cloud Stream

Spring Cloud Stream (https://cloud.spring.io/spring-cloud-stream/) is an enabling
technology that allows you to easily integrate lightweight message processing into your
microservice. Using Spring Cloud Stream, you can build intelligent microservices that
can use asynchronous events as they occur in your application. With Spring Cloud
Stream, you can quickly integrate your microservices with message brokers such as
RabbitMQ (https://www.rabbitmq.com/) and Kafka (http://kafka.apache.org/).

1.10.7 Spring Cloud Sleuth

Spring Cloud Sleuth (https://cloud.spring.io/spring-cloud-sleuth/) allows you to
integrate unique tracking identifiers into the HTTP calls and message channels (Rab-
bitMQ, Apache Kafka) being used within your application. These tracking numbers,
sometimes referred to as correlation or trace ids, allow you to track a transaction as it
flows across the different services in your application. With Spring Cloud Sleuth, these
trace IDs are automatically added to any logging statements you make in your
microservice.

 The real beauty of Spring Cloud Sleuth is seen when it’s combined with logging
aggregation technology tools such as Papertrail (http://papertrailapp.com) and trac-
ing tools such as Zipkin (http://zipkin.io). Papertail is a cloud-based logging platform
used to aggregate logs in real time from different microservices into one queryable
store/books/9781617293986

https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Ribbon
https://github.com/Netflix/zuul
https://cloud.spring.io/spring-cloud-stream/
https://www.rabbitmq.com/
http://kafka.apache.org/
https://cloud.spring.io/spring-cloud-sleuth/
http://papertrailapp.com
http://zipkin.io
https://itbook.store/books/9781617293986

30 CHAPTER 1 Welcome to the cloud, Spring

www.itboo
database. Open Zipkin takes data produced by Spring Cloud Sleuth and allows you to
visualize the flow of your service calls involved for a single transaction.

1.10.8 Spring Cloud Security

Spring Cloud Security (https://cloud.spring.io/spring-cloud-security/) is an authenti-
cation and authorization framework that can control who can access your services and
what they can do with your services. Spring Cloud Security is token-based and allows
services to communicate with one another through a token issued by an authentica-
tion server. Each service receiving a call can check the provided token in the HTTP
call to validate the user’s identity and their access rights with the service.

 In addition, Spring Cloud Security supports the JavaScript Web Token (https://
jwt.io). The JavaScript Web Token (JWT) framework standardizes the format of how a
OAuth2 token is created and provides standards for digitally signing a created token.

1.10.9 What about provisioning?

For the provisioning implementations, we’re going to make a technology shift. The
Spring framework(s) are geared toward application development. The Spring frame-
works (including Spring Cloud) don’t have tools for creating a “build and deployment”
pipeline. To implement a “build and deployment” pipeline you’re going to use the fol-
lowing tools: Travis CI (https://travis-ci.org) for your build tool and Docker (https://
www.docker.com/) to build the final server image containing your microservice.

 To deploy your built Docker containers, we end the book with an example of how
to deploy the entire application stack built throughout this book to Amazon’s cloud.

1.11 Spring Cloud by example
In the last section, we walked through all the different Spring Cloud technologies that
you’re going to use as you build out your microservices. Because each of these tech-
nologies are independent services, it’s obviously going to take more than one chapter
to explain all of them in detail. However, as I wrap up this chapter, I want to leave you
with a small code example that again demonstrates how easy it is to integrate these
technologies into your own microservice development effort.

 Unlike the first code example in listing 1.1, you can’t run this code example
because a number of supporting services need to be set up and configured to be used.
Don’t worry, though; the setup costs for these Spring Cloud services (configuration
service, service discovery) are a one-time cost in terms of setting up the service. Once
they’re set up, your individual microservices can use these capabilities over and over
again. We couldn’t fit all that goodness into a single code example at the beginning of
the book.

 The code shown in the following listing quickly demonstrates how the service dis-
covery, circuit breaker, bulkhead, and client-side load balancing of remote services
were integrated into our “Hello World” example.
k.store/books/9781617293986

https://cloud.spring.io/spring-cloud-security/
https://jwt.io
https://jwt.io
https://travis-ci.org
https://www.docker.com/
https://www.docker.com/
https://itbook.store/books/9781617293986

31Spring Cloud by example

d

hat
e

www.itbook.

package com.thoughtmechanix.simpleservice;

//Removed other imports for conciseness
import com.netflix.hystrix.contrib.javanica.annotation.HystrixCommand;
import com.netflix.hystrix.contrib.javanica.annotation.HystrixProperty;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;
import org.springframework.cloud.client.circuitbreaker.EnableCircuitBreaker;

@SpringBootApplication
@RestController
@RequestMapping(value="hello")
@EnableCircuitBreaker
@EnableEurekaClient
public class Application {

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }

 @HystrixCommand(threadPoolKey = "helloThreadPool")
public String helloRemoteServiceCall(String firstName,

 String lastName){
 ResponseEntity<String> restExchange =
 restTemplate.exchange(
 "http://logical-service-id/name/
 [ca]{firstName}/{lastName}",
 HttpMethod.GET,
 null, String.class, firstName, lastName);

 return restExchange.getBody();

 }

@RequestMapping(value="/{firstName}/{lastName}",
method = RequestMethod.GET)

 public String hello(@PathVariable("firstName") String firstName,
 @PathVariable("lastName") String lastName) {
 return helloRemoteServiceCall(firstName, lastName)
}
}

This code has a lot packed into it, so let’s walk through it. Keep in mind that this list-
ing is only an example and isn’t found in the chapter 1 GitHub repository source
code. I’ve included it here to give you a taste of what’s to come later in the book.

 The first thing you should notice is the @EnableCircuitBreaker and
@EnableEurekaClient annotations. The @EnableCircuitBreaker annotation
tells your Spring microservice that you’re going to use the Netflix Hystrix libraries in
your application. The @EnableEurekaClient annotation tells your microservice to

Listing 1.2 Hello World Service using Spring Cloud

Enables the service to use the
Hystrix and Ribbon libraries

Tells the service that it shoul
register itself with a Eureka
service discovery agent and t
service calls are to use servic
discovery to “lookup” the
location of remote services

Wrappers calls to the
helloRemoteServiceCall
method with a Hystrix

circuit breaker

Uses a decorated RestTemplate
class to take a “logical” service
ID and Eureka under the covers
to look up the physical location
of the service
store/books/9781617293986

https://itbook.store/books/9781617293986

32 CHAPTER 1 Welcome to the cloud, Spring

www.itboo
register itself with a Eureka Service Discovery agent and that you’re going to use
service discovery to look up remote REST services endpoints in your code. Note that
configuration is happening in a property file that will tell the simple service the loca-
tion and port number of a Eureka server to contact. You first see Hystrix being used
when you declare your hello method:

@HystrixCommand(threadPoolKey = "helloThreadPool")
public String helloRemoteServiceCall(String firstName, String lastName)

The @HystrixCommand annotation is doing two things. First, any time the helloRe-
moteServiceCall method is called, it won’t be directly invoked. Instead, the
method will be delegated to a thread pool managed by Hystrix. If the call takes too
long (default is one second), Hystrix steps in and interrupts the call. This is the imple-
mentation of the circuit breaker pattern. The second thing this annotation does is cre-
ate a thread pool called helloThreadPool that’s managed by Hystrix. All calls to
helloRemoteServiceCall method will only occur on this thread pool and will be
isolated from any other remote service calls being made.

 The last thing to note is what’s occurring inside the helloRemoteServiceCall
method. The presence of the @EnableEurekaClient has told Spring Boot that
you’re going to use a modified RestTemplate class (this isn’t how the Standard
Spring RestTemplate would work out of the box) whenever you make a REST service
call. This RestTemplate class will allow you to pass in a logical service ID for the ser-
vice you’re trying to invoke:

ResponseEntity<String> restExchange = restTemplate.exchange
(http://logical-service-id/name/{firstName}/{lastName}

Under the covers, the RestTemplate class will contact the Eureka service and look
up the physical location of one or more of the “name” service instances. As a con-
sumer of the service, your code never has to know where that service is located.

 Also, the RestTemplate class is using Netflix’s Ribbon library. Ribbon will retrieve
a list of all the physical endpoints associated with a service. Every time the service is
called by the client, it “round-robins” the call to the different service instances on the
client without having to go through a centralized load balancer. By eliminating a cen-
tralized load balancer and moving it to the client, you eliminate another failure point
(load balancer going down) in your application infrastructure.

 I hope that at this point you’re impressed, because you’ve added a significant num-
ber of capabilities to your microservice with only a few annotations. That’s the real
beauty behind Spring Cloud. You as a developer get to take advantage of battle-hard-
ened microservice capabilities from premier cloud companies like Netflix and Con-
sul. These capabilities, if used outside of Spring Cloud, can be complex and obtuse to
set up. Spring Cloud simplifies their use to literally nothing more than a few simple
Spring Cloud annotations and configuration entries.
k.store/books/9781617293986

https://itbook.store/books/9781617293986

33Summary

www.itbook.
1.12 Making sure our examples are relevant
I want to make sure this book provides examples that you can relate to as you go about
your day-to-day job. To this end, I’ve structured the chapters in this book and the cor-
responding code examples around the adventures (misadventures) of a fictitious com-
pany called ThoughtMechanix.

 ThoughtMechanix is a software development company whose core product, Eagle-
Eye, provides an enterprise-grade software asset management application. It provides
coverage for all the critical elements: inventory, software delivery, license manage-
ment, compliance, cost, and resource management. Its primary goal is to enable orga-
nizations to gain an accurate point-in-time picture of its software assets.

 The company is approximately 10 years old. While they’ve experienced solid reve-
nue growth, internally they’re debating whether they should be re-platforming their
core product from a monolithic on-premise-based application or move their applica-
tion to the cloud. The re-platforming involved with EagleEye can be a “make or
break” moment for a company.

 The company is looking at rebuilding their core product EagleEye on a new archi-
tecture. While much of the business logic for the application will remain in place, the
application itself will be broken down from a monolithic design to a much smaller
microservice design whose pieces can be deployed independently to the cloud. The
examples in this book won’t build the entire ThoughtMechanix application. Instead
you’ll build specific microservices from the problem domain at hand and then build
the infrastructure that will support these services using various Spring Cloud (and
some non-Spring-Cloud) technologies.

 The ability to successfully adopt cloud-based, microservice architecture will impact
all parts of a technical organization. This includes the architecture, engineering, test-
ing, and operations teams. Input will be needed from each group and, in the end,
they’re probably going to need reorganization as the team reevaluates their responsi-
bilities in this new environment. Let’s start our journey with ThoughtMechanix as you
begin the fundamental work of identifying and building out several of the microser-
vices used in EagleEye and then building these services using Spring Boot.

1.13 Summary
 Microservices are extremely small pieces of functionality that are responsible

for one specific area of scope.
 No industry standards exist for microservices. Unlike other early web service

protocols, microservices take a principle-based approach and align with the
concepts of REST and JSON.

 Writing microservices is easy, but fully operationalizing them for production
requires additional forethought. We introduced several categories of microser-
vice development patterns, including core development, routing patterns, cli-
ent resiliency, security, logging, and build/deployment patterns.
store/books/9781617293986

https://itbook.store/books/9781617293986

34 CHAPTER 1 Welcome to the cloud, Spring

www.itboo
 While microservices are language-agnostic, we introduced two Spring frame-
works that significantly help in building microservices: Spring Boot and Spring
Cloud.

 Spring Boot is used to simplify the building of REST-based/JSON microservices.
Its goal is to make it possible for you to build microservices quickly with nothing
more than a few annotations.

 Spring Cloud is a collection of open source technologies from companies such
as Netflix and HashiCorp that have been “wrapped” with Spring annotations to
significantly simplify the setup and configuration of these services.
k.store/books/9781617293986

https://itbook.store/books/9781617293986

John Carnell

M
icroservices break up your code into small, distrib-
uted, and independent services that require careful
forethought and design. Fortunately, Spring Boot and

Spring Cloud simplify your microservice applications, just as
the Spring Framework simplifi es enterprise Java development.
Spring Boot removes the boilerplate code involved with writing
a REST-based service. Spring Cloud provides a suite of tools
for the discovery, routing, and deployment of microservices to
the enterprise and the cloud.

Spring Microservices in Action teaches you how to build
microservice-based applications using Java and the Spring
platform. You’ll learn to do microservice design as you build
and deploy your fi rst Spring Cloud application. Through-
out the book, carefully selected real-life examples expose
microservice-based patterns for confi guring, routing, scaling,
and deploying your services. You’ll see how Spring’s intuitive
tooling can help augment and refactor existing applications
with microservices.

What’s Inside
● Core microservice design principles
● Managing confi guration with Spring Cloud Confi g
● Client-side resiliency with Spring, Hystrix, and Ribbon
● Intelligent routing using Netfl ix Zuul
● Deploying Spring Cloud applications

This book is written for developers with Java and Spring
experience.

John Carnell is a senior cloud engineer with twenty years of
experience in Java.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/spring-microservices-in-action

$49.99 / Can $65.99 [INCLUDING eBOOK]

Spring Microservices IN ACTION

JAVA

M A N N I N G

“Spring is fast becoming
the framework for

microservices—this book
 shows you why and how.”

—John Guthrie, Dell/EMC

“A complete real-world
bible for any microservices

project in Spring.”
—Mirko Bernardoni, Ixxus

“Thorough and practical ...
with all the special

capabilities of Spring
 thrown in.”—Vipul Gupta, SAP

“Learn how to tame
complex and distributed

system design.
 Highly recommended.”

—Ashwin Raj, Innocepts

SEE INSERT

www.itbook.store/books/9781617293986

https://itbook.store/books/9781617293986

	Carnell-Spring-SC-front
	SampleChapterPages-1
	Ch-01
	Carnell-Spring-ebook-back

