
M A N N I N G

John Carnell

SAMPLE CHAPTER

www.itbook.store/books/9781617293986

https://itbook.store/books/9781617293986

Spring Microservices in Action
by John Carnell

Sample Chapter 6

Copyright 2017 Manning Publications

www.itbook.store/books/9781617293986

https://itbook.store/books/9781617293986

brief contents
1 ■ Welcome to the cloud, Spring 1
2 ■ Building microservices with Spring Boot 35
3 ■ Controlling your configuration with Spring Cloud

configuration server 64
4 ■ On service discovery 96
5 ■ When bad things happen: client resiliency patterns with

Spring Cloud and Netflix Hystrix 119
6 ■ Service routing with Spring Cloud and Zuul 153
7 ■ Securing your microservices 192
8 ■ Event-driven architecture with Spring Cloud Stream 228
9 ■ Distributed tracing with Spring Cloud Sleuth and Zipkin 259

10 ■ Deploying your microservices 288

www.itbook.store/books/9781617293986

https://itbook.store/books/9781617293986

www.itbook.sto
Service routing with
Spring Cloud and Zuul
In a distributed architecture like a microservices one, there will come a point
where you’ll need to ensure that key behaviors such as security, logging, and track-
ing of users across multiple service calls occur. To implement this functionality,
you’ll want these attributes to be consistently enforced across all of your services
without the need for each individual development team to build their own solu-
tions. While it’s possible to use a common library or framework to assist with build-
ing these capabilities directly in an individual service, doing so has three
implications.

This chapter covers
 Using a services gateway with your

microservices

 Implementing a service gateway using Spring
Cloud and Netflix Zuul

 Mapping microservice routes in Zuul

 Building filters to use correlation ID and
tracking

 Dynamic routing with Zuul
153

re/books/9781617293986

https://itbook.store/books/9781617293986

154 CHAPTER 6 Service routing with Spring Cloud and Zuul

www.itboo
 First, it’s difficult to consistently implement these capabilities in each service being
built. Developers are focused on delivering functionality, and in the whirlwind of day-
to-day activity they can easily forget to implement service logging or tracking. (I per-
sonally am guilty of this.) Unfortunately, for those of us working in a heavily regulated
industry, such as financial services or healthcare, showing consistent and documented
behavior in your systems is often a key requirement for complying with government
regulations.

 Second, properly implementing these capabilities is a challenge. Things like
microservice security can be a pain to set up and configure with each service being
implemented. Pushing the responsibilities to implement a cross-cutting concern like
security down to the individual development teams greatly increases the odds that
someone will not implement it properly or will forget to do it.

 Third, you’ve now created a hard dependency across all your services. The more
capabilities you build into a common framework shared across all your services, the
more difficult it is to change or add behavior in your common code without having to
recompile and redeploy all your services. This might not seem like a big deal when
you have six microservices in your application, but it’s a big deal when you have a
larger number of services, perhaps 30 or more. Suddenly an upgrade of core capabili-
ties built into a shared library becomes a months-long migration process.

 To solve this problem, you need to abstract these cross-cutting concerns into a ser-
vice that can sit independently and act as a filter and router for all the microservice
calls in your application. This cross-cutting concern is called a services gateway. Your ser-
vice clients no longer directly call a service. Instead, all calls are routed through the
service gateway, which acts as a single Policy Enforcement Point (PEP), and are then
routed to a final destination.

 In this chapter, we’re going to see how to use Spring Cloud and Netflix’s Zuul to
implement a services gateway. Zuul is Netflix’s open source services gateway imple-
mentation. Specifically, we’re going to look at how to use Spring Cloud and Zuul to

 Put all service calls behind a single URL and map those calls using service dis-
covery to their actual service instances

 Inject correlation IDs into every service call flowing through the service gateway
 Inject the correlation ID back from the HTTP response sent back from the client
 Build a dynamic routing mechanism that will route specific individual organi-

zations to a service instance endpoint that’s different than what everyone else
is using

Let’s dive into more detail on how a services gateway fits into the overall microservices
being built in this book.

6.1 What is a services gateway?
Until now, with the microservices you’ve built in earlier chapters, you’ve either
directly called the individual services through a web client or called them program-
matically via a service discovery engine such as Eureka.
k.store/books/9781617293986

https://itbook.store/books/9781617293986

155What is a services gateway?

www.itbook.
A service gateway acts as an intermediary between the service client and a service
being invoked. The service client talks only to a single URL managed by the service
gateway. The service gateway pulls apart the path coming in from the service client
call and determines what service the service client is trying to invoke. Figure 6.2 illus-
trates how like a “traffic” cop directing traffic, the service gateway directs the user to a
target microservice and corresponding instance. The service gateway sits as the gate-
keeper for all inbound traffic to microservice calls within your application. With a ser-
vice gateway in place, your service clients never directly call the URL of an individual
service, but instead place all calls to the service gateway.

Because a service gateway sits between all calls from the client to the individual ser-
vices, it also acts as a central Policy Enforcement Point (PEP) for service calls. The use
of a centralized PEP means that cross-cutting service concerns can be implemented in
a single place without the individual development teams having to implement these
concerns. Examples of cross-cutting concerns that can be implemented in a service
gateway include

 Static routing—A service gateway places all service calls behind a single URL and
API route. This simplifies development as developers only have to know about
one service endpoint for all of their services.

When a service client invokes a
service directly, there’s no way
you can easily implement
cross-cutting concerns such as
security or logging without
having each service implement
this logic directly in the service.

Service
client

Organization service
http://localhost:8085/v1/organizations/...

Licensing service
http://localhost:9009/v1/organizations/
{org-id}/licenses/{license-id}

Figure 6.1 Without a services gateway, the service client will call distinct endpoints for each service.

The client invokes the service by
calling the services gateway.

The services gateway pulls apart the URL being called and maps
the path to a service sitting behind the services gateway.

Service
client

Organization
service

Licensing
service

http://licensingservice:9009/v1/organizations/
{org-id}/licenses/{license-id}...

http://servicediscovery/api/
organizationservice/v1/organizations/...

http://organizationservice:8085/
v1/organizations/...

Services gateway

Figure 6.2 The service gateway sits between the service client and the corresponding service
instances. All service calls (both internal-facing and external) should flow through the service gateway.
store/books/9781617293986

https://itbook.store/books/9781617293986

156 CHAPTER 6 Service routing with Spring Cloud and Zuul

www.itboo
 Dynamic routing—A service gateway can inspect incoming service requests and,
based on data from the incoming request, perform intelligent routing based on
who the service caller is. For instance, customers participating in a beta pro-
gram might have all calls to a service routed to a specific cluster of services that
are running a different version of code from what everyone else is using.

 Authentication and authorization—Because all service calls route through a service
gateway, the service gateway is a natural place to check whether the caller of a ser-
vice has authenticated themselves and is authorized to make the service call.

 Metric collection and logging—A service gateway can be used to collect metrics
and log information as a service call passes through the service gateway. You can
also use the service gateway to ensure that key pieces of information are in
place on the user request to ensure logging is uniform. This doesn’t mean that
shouldn’t you still collect metrics from within your individual services, but
rather a services gateway allows you to centralize collection of many of your
basic metrics, like the number of times the service is invoked and service
response time.

Let’s now look at how to implement a service gateway using Spring Cloud and Netflix
Zuul.

Wait—isn’t a service gateway a single point of failure and
potential bottleneck?
Earlier in chapter 4 when I introduced Eureka, I talked about how centralized load bal-
ancers can be single point of failure and a bottleneck for your services. A service gate-
way, if not implemented correctly, can carry the same risk. Keep the following in mind
as you build your service gateway implementation.

Load balancers are still useful when out in front of individual groups of services. In
this case, a load balancer sitting in front of multiple service gateway instances is an
appropriate design and ensures your service gateway implementation can scale. Hav-
ing a load balancer sit in front of all your service instances isn’t a good idea because
it becomes a bottleneck.

Keep any code you write for your service gateway stateless. Don’t store any informa-
tion in memory for the service gateway. If you aren’t careful, you can limit the scal-
ability of the gateway and have to ensure that the data gets replicated across all
service gateway instances.

Keep the code you write for your service gateway light. The service gateway is the
“chokepoint” for your service invocation. Complex code with multiple database calls
can be the source of difficult-to-track-down performance problems in the service
gateway.
k.store/books/9781617293986

https://itbook.store/books/9781617293986

157Introducing Spring Cloud and Netflix Zuul

www.itbook.
6.2 Introducing Spring Cloud and Netflix Zuul
Spring Cloud integrates with the Netflix open source project Zuul. Zuul is a services
gateway that’s extremely easy to set up and use via Spring Cloud annotations. Zuul
offers a number of capabilities, including

 Mapping the routes for all the services in your application to a single URL—Zuul isn’t
limited to a single URL. In Zuul, you can define multiple route entries, making
the route mapping extremely fine-grained (each service endpoint gets its own
route mapping). However, the first and most common use case for Zuul is to
build a single entry point through which all service client calls will flow.

 Building filters that can inspect and act on the requests coming through the gateway—
These filters allow you to inject policy enforcement points in your code and per-
form a wide number of actions on all of your service calls in a consistent fashion.

To get started with Zuul, you’re going to do three things:

1 Set up a Zuul Spring Boot project and configure the appropriate Maven depen-
dences.

2 Modify your Spring Boot project with Spring Cloud annotations to tell it that it
will be a Zuul service.

3 Configure Zuul to communicate with Eureka (optional).

6.2.1 Setting up the Zuul Spring Boot project

If you’ve been following the chapters sequentially in this book, the work you’re about
to do should be familiar. To build a Zuul server, you need to set up a new Spring Boot
service and define the corresponding Maven dependencies. You can find the project
source code for this chapter in the GitHub repository for this book (https://
github.com/carnellj/spmia-chapter6). Fortunately, little is needed to set up Zuul in
Maven. You only need to define one dependency in your zuulsvr/pom.xml file:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-zuul</artifactId>
</dependency>

This dependency tells the Spring Cloud framework that this service will be running
Zuul and initialize Zuul appropriately.

6.2.2 Using Spring Cloud annotation for the Zuul service

After you’ve defined the maven dependencies, you need to annotate the bootstrap
class for the Zuul services. The bootstrap class for the Zuul service implementation
can be found in the zuulsvr/src/main/java/com/thoughtmechanix/zuulsvr/
Application.java class.
store/books/9781617293986

https://github.com/carnellj/spmia-chapter6
https://github.com/carnellj/spmia-chapter6
https://itbook.store/books/9781617293986

158 CHAPTER 6 Service routing with Spring Cloud and Zuul

www.itboo

package com.thoughtmechanix.zuulsvr;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.zuul.EnableZuulProxy;
import org.springframework.context.annotation.Bean;

@SpringBootApplication

➥ @EnableZuulProxy
➥ public class ZuulServerApplication {
 ➥ public static void main(String[] args) {
 ➥ SpringApplication.run(
 ZuulServerApplication.class,
 args);
 ➥ }
➥ }

That’s it. There’s only one annotation that needs to be in place: @EnableZuulProxy.

NOTE If you look through the documentation or have auto-complete turned
on, you might notice an annotation called @EnableZuulServer. Using this
annotation will create a Zuul Server that doesn’t load any of the Zuul reverse
proxy filters or use Netflix Eureka for service discovery. (We’ll get into the
topic of Zuul and Eureka integration shortly.) @EnableZuulServer is used
when you want to build your own routing service and not use any Zuul pre-
built capabilities. An example of this would be if you wanted to use Zuul to
integrate with a service discovery engine other than Eureka (for example,
Consul). We’ll only use the @EnableZuulProxy annotation in this book.

6.2.3 Configuring Zuul to communicate with Eureka

The Zuul proxy server is designed by default to work on the Spring products. As such,
Zuul will automatically use Eureka to look up services by their service IDs and then use
Netflix Ribbon to do client-side load balancing of requests from within Zuul.

NOTE I often read chapters out of order in a book, jumping to the specific
topics I’m most interested in. If you do the same and don’t know what Netflix
Eureka and Ribbon are, I suggest you read chapter 4 before proceeding
much further. Zuul uses those technologies heavily to carry out work, so
understanding the service discovery capabilities that Eureka and Ribbon
bring to the table will make understanding Zuul that much easier.

The last step in the configuration process is to modify your Zuul server’s zuulsvr/src/
main/resources/application.yml file to point to your Eureka server. The following list-
ing shows the Zuul configuration needed for Zuul to communicate with Eureka. The

Listing 6.1 Setting up the Zuul Server bootstrap class

Enables the service
to be a Zuul server
k.store/books/9781617293986

https://itbook.store/books/9781617293986

159Configuring routes in Zuul

www.itbook.
configuration in the listing should look familiar because it’s the same configuration
we walked through in chapter 4.

eureka:
 instance:
 preferIpAddress: true
 client:
 registerWithEureka: true
 fetchRegistry: true
 serviceUrl:
 defaultZone: http://localhost:8761/eureka/

6.3 Configuring routes in Zuul
Zuul at its heart is a reverse proxy. A reverse proxy is an intermediate server that sits
between the client trying to reach a resource and the resource itself. The client has no
idea it’s even communicating to a server other than a proxy. The reverse proxy takes
care of capturing the client’s request and then calls the remote resource on the cli-
ent’s behalf.

 In the case of a microservices architecture, Zuul (your reverse proxy) takes a
microservice call from a client and forwards it onto the downstream service. The ser-
vice client thinks it’s only communicating with Zuul. For Zuul to communicate with
the downstream clients, Zuul has to know how to map the incoming call to a down-
stream route. Zuul has several mechanisms to do this, including

 Automated mapping of routes via service discovery
 Manual mapping of routes using service discovery
 Manual mapping of routes using static URLs

6.3.1 Automated mapping routes via service discovery

All route mappings for Zuul are done by defining the routes in the zuulsvr/src/main/
resources/application.yml file. However, Zuul can automatically route requests based
on their service IDs with zero configuration. If you don’t specify any routes, Zuul will
automatically use the Eureka service ID of the service being called and map it to a
downstream service instance. For instance, if you wanted to call your organization-
service and used automated routing via Zuul, you would have your client call the
Zuul service instance, using the following URL as the endpoint:

http://localhost:5555/organizationservice/v1/organizations/e254f8c-c442-4ebe-
a82a-e2fc1d1ff78a

Your Zuul server is accessed via http://localhost:5555. The service you’re try-
ing (organizationservice) to invoke is represented by the first part of the end-
point path in the service.

Listing 6.2 Configuring the Zuul server to talk to Eureka
store/books/9781617293986

https://itbook.store/books/9781617293986

160 CHAPTER 6 Service routing with Spring Cloud and Zuul

www.itboo
Figure 6.3 illustrates this mapping in action.
 The beauty of using Zuul with Eureka is that not only do you now have a single

endpoint that you can make calls through, but with Eureka, you can also add and
remove instances of a service without ever having to modify Zuul. For instance, you
can add a new service to Eureka, and Zuul will automatically route to it because it’s
communicating with Eureka about where the actual physical services endpoints are
located.

 If you want to see the routes being managed by the Zuul server, you can access the
routes via the /routes endpoint on the Zuul server. This will return a listing of all the
mappings on your service. Figure 6.4 shows the output from hitting http://local-
host:5555/routes.

 In figure 6.4 the mappings for the services registered with Zuul are shown on the
left-hand side of the JSON body returned from the /route calls. The actual Eureka
service IDs the routes map to are shown on the right.

The service name acts as the key for the service gateway
to lookup the physical location of the service.

The rest of the path is the actual
url endpoint that will be invoked.

Service
client

Organization service instance 3

Organization service instance 2

Organization service instance 1

Services gateway
(Zuul)

http://localhost:5555/organizationservice/v1/organizations/

Service discovery
(Eureka)

http://localhost:5555/organizationservice...

Figure 6.3 Zuul will use the organizationservice application name to map requests to
organization service instances.
k.store/books/9781617293986

https://itbook.store/books/9781617293986

161Configuring routes in Zuul

www.itbook.

6.3.2 Mapping routes manually using service discovery

Zuul allows you to be more fine-grained by allowing you to explicitly define route
mappings rather than relying solely on the automated routes created with the service’s
Eureka service ID. Suppose you wanted to simplify the route by shortening the organi-
zation name rather than having your organization service accessed in Zuul via the
default route of /organizationservice/v1/organizations/{organization-
id}. You can do this by manually defining the route mapping in zuulsvr/src/main/
resources/application.yml:

zuul:
 routes:
 organizationservice: /organization/**

By adding this configuration, you can now access the organization service by hitting the
/organization/v1/organizations/{organization-id} route. If you check the
Zuul server’s endpoint again, you should see the results shown in figure 6.5.

Service route in Zuul created automatically
based on Eureka service ID

Eureka service ID the
route maps to

Figure 6.4 Each service that’s mapped in Eureka will now be mapped as a Zuul route.
store/books/9781617293986

https://itbook.store/books/9781617293986

162 CHAPTER 6 Service routing with Spring Cloud and Zuul

www.itboo
If you look carefully at figure 6.5 you’ll notice that two entries are present for the orga-
nization service. The first service entry is the mapping you defined in the applica-
tion.yml file: “organization/**”: “organizationservice”. The second service
entry is the automatic mapping created by Zuul based on the organization service’s
Eureka ID: “/organizationservice/**”: “organizationservice”.

NOTE When you use automated route mapping where Zuul exposes the ser-
vice based solely on the Eureka service ID, if no instances of the service are
running, Zuul will not expose the route for the service. However, if you man-
ually map a route to a service discovery ID and there are no instances regis-
tered with Eureka, Zuul will still show the route. If you try to call the route for
the non-existent service, Zuul will return a 500 error.

If you want to exclude the automated mapping of the Eureka service ID route and
only have available the organization service route that you’ve defined, you can add an
additional Zuul parameter to your application.yml file, called ignored-services.

Notice the custom route
for the organization service.

We still have the Eureka
service ID–based route here.

Figure 6.5 The results of the Zuul /routes call with a manual mapping of the organization service
k.store/books/9781617293986

https://itbook.store/books/9781617293986

163Configuring routes in Zuul

www.itbook.
The following code snippet shows how the ignored-services attribute can be used
to exclude the Eureka service ID organizationservice from the automated mappings
done by Zuul:

zuul:
 ignored-services: 'organizationservice'
 routes:
 organizationservice: /organization/**

The ignored-services attribute allows you to define a comma-separated list of
Eureka service-IDs that you want to exclude from registration. Now, when your call the
/routes endpoint on Zuul, you should only see the organization service mapping
you’ve defined. Figure 6.6 shows the outcome of this mapping.

If you want to exclude all Eureka-based routes, you can set the ignored-services
attribute to “*”.

 A common pattern with a service gateway is to differentiate API routes vs. content
routes by prefixing all your service calls with a type of label such as /api. Zuul supports

Now there’s only one
organization service entry.

Figure 6.6 Only one organization service is now defined in Zuul.
store/books/9781617293986

https://itbook.store/books/9781617293986

164 CHAPTER 6 Service routing with Spring Cloud and Zuul

All d
servic
be p

wi
e
g

www.itboo
this by using the prefix attribute in the Zuul configuration. Figure 6.7 lays out concep-
tually what this mapping prefix will look like.

 In the following listing, we’ll see how to set up specific routes to your individual
organization and Licensing services, exclude all of the eureka-generated services, and
prefix your services with a /api prefix.

zuul:
 ignored-services: '*'
 prefix: /api
 routes:
 organizationservice: /organization/**
 licensingservice: /licensing/**

Listing 6.3 Setting up custom routes with a prefix

It’s not uncommon to have an /api route prefix
and then a simplified name to a service.

We have mapped the service
to the name “organization.”

Service
client

Organization service instance 3

Organization service instance 2

Organization service instance 1

Services gateway
(Zuul)

http://localhost:5555/api/organization/v1/organizations/

Service discovery
(Eureka)

http://localhost:5555/api/organization...

Figure 6.7 Using a prefix, Zuul will map a /api prefix to every service it manages.

The ignored-services attribute is set
to * to exclude the registration of all
eureka service ID based routes.

efined
es will
refixed
th /api.

Your organizationservice and licensingservic
are mapped to the organization and licensin
endpoints respectively.
k.store/books/9781617293986

https://itbook.store/books/9781617293986

165Configuring routes in Zuul

rout
licensi

www.itbook.
Figure 6.8 Your routes in Zuul now have an /api prefix.

Once this configuration is done and the Zuul service has been reloaded, you should
see the following two entries when hitting the /route endpoint: /api/organiza-
tion and /api/licensing. Figure 6.8 shows these entries.

 Let’s now look at how you can use Zuul to map to static URLs. Static URLs are URLs
that point to services that aren’t registered with a Eureka service discovery engine.

6.3.3 Manual mapping of routes using static URLs

Zuul can be used to route services that aren’t managed by Eureka. In these cases, Zuul
can be set up to directly route to a statically defined URL. For example, let’s imagine
that your license service is written in Python and you want to still proxy it through
Zuul. You’d use the Zuul configuration in the following listing to achieve this.

zuul:
 routes:
 licensestatic:
 path: /licensestatic/**
 url: http://licenseservice-static:8081

Listing 6.4 Mapping the licensing service to a static route

Keyname Zuul will use to
identify the service internally

The static
e for your
ng service

You’ve set up a static instance of your license service
that will be called directly, not through Eureka by Zuul.
store/books/9781617293986

https://itbook.store/books/9781617293986

166 CHAPTER 6 Service routing with Spring Cloud and Zuul

www.itboo
Figure 6.9 You’ve now mapped a static route to your licensing service.

Once this configuration change has been made, you can hit the /routes endpoint
and see the static route added to Zuul. Figure 6.10 shows the results from the
/routes listing.

 At this point, the licensestatic endpoint won’t use Eureka and will instead
directly route the request to the http://licenseservice-static:8081 end-
point. The problem is that by bypassing Eureka, you only have a single route to point
requests at. Fortunately, you can manually configure Zuul to disable Ribbon integra-
tion with Eureka and then list the individual service instances that ribbon will load bal-
ance against. The following listing shows this.

zuul:
 routes:
 licensestatic:
 path: /licensestatic/**
 serviceId: licensestatic
ribbon:
 eureka:
 enabled: false
licensestatic:
 ribbon:
 listOfServers: http://licenseservice-static1:8081,

http://licenseservice-static2:8082

Listing 6.5 Mapping licensing service statically to multiple routes

Our static route entry

Defines a service ID that will be used
to look up the service in Ribbon

Disables Eureka
support in Ribbon

List of servers used to
route the request to
k.store/books/9781617293986

https://itbook.store/books/9781617293986

167Configuring routes in Zuul

www.itbook.
Once this configuration is in place, a call to the /routes endpoint now shows that
the /api/licensestatic route has been mapped to a service ID called licenses-
tatic. Figure 6.10 shows this.

Figure 6.10 You now see that the /api/licensestatic now maps to a service ID called
licensestatic

Dealing with non-JVM services
The problem with statically mapping routes and disabling Eureka support in Ribbon
is that you’ve disabled Ribbon support for all your services running through your Zuul
service gateway. This means that more load will be placed on your Eureka servers
because Zuul can’t use Ribbon to cache the look-up of services. Remember, Ribbon
doesn’t call Eureka every time it makes a call. Instead, it caches the location of the
service instances locally and then checks with Eureka periodically for changes. With
Ribbon out of the picture, Zuul will call Eureka every time it needs to resolve the loca-
tion of a service.

Earlier in the chapter, I talked about how you might end up with multiple service gate-
ways where different routing rules and policies would be enforced based on the type
of services being called. For non-JVM applications, you could set up a separate Zuul
server to handle these routes. However, I’ve found that with non-JVM-based lan-
guages, you’re better off setting up a Spring Cloud “Sidecar” instance. The Spring
Cloud sidecar allows you to register non-JVM services with a Eureka instance and then

Our static route entry is
now behind a service ID.
store/books/9781617293986

https://itbook.store/books/9781617293986

168 CHAPTER 6 Service routing with Spring Cloud and Zuul

www.itboo
6.3.4 Dynamically reload route configuration

The next thing we’re going to look at in terms of configuring routes in Zuul is how to
dynamically reload routes. The ability to dynamically reload routes is useful because it
allows you to change the mapping of routes without having to recycle the Zuul
server(s). Existing routes can be modified quickly and new routes added within have to
go through the act of recycling each Zuul server in your environment. In chapter 3, we
covered how to use Spring Cloud Configuration service to externalize a microservices
configuration data. You can use Spring Cloud configuration to externalize Zuul routes.
In the EagleEye examples you can set up a new application folder in your config-
repo (http://github.com/carnellj/config-repo) called zuulservice. Like your orga-
nization and licensing services, you’ll create three files—zuulservice.yml, zuulservice-
dev.yml, and zuulservice-prod.yml—that will hold your route configuration.

 To be consistent with the examples in the chapter 3 configuration, I’ve changed
the route formats to move from a hierarchical format to the “.” format. The initial
route configuration will have a single entry in it:

zuul.prefix=/api

If you hit the /routes endpoint, you should see all your Eureka-based services cur-
rently shown in Zuul with the prefix of /api. Now, if you wanted to add new route
mappings on the fly, all you have to do is make the changes to the config file and then
commit them back to the Git repository where Spring Cloud Config is pulling its con-
figuration data from. For instance, if you wanted to disable all Eureka-based service
registration and only expose two routes (one for the organization and one for the
licensing service), you could modify the zuulservice-*.yml files to look like this:

zuul.ignored-services: '*'
zuul.prefix: /api
zuul.routes.organizationservice: /organization/**
zuul.routes.organizationservice: /licensing/**

Then you can commit the changes to GitHub. Zuul exposes a POST-based endpoint
route /refresh that will cause it to reload its route configuration. Once this
/refresh is hit, if you then hit the /routes endpoint, you’ll see that the two new
routes are exposed and all the Eureka-based routes are gone.

(continued)

proxy them through Zuul. I don’t cover Spring Sidecar in this book because you’re not
writing any non-JVM services, but it’s extremely easy to set up a sidecar instance.
Directions on how to do so can be found at the Spring Cloud website (http://
cloud.spring.io/spring-cloud-netflix/spring-cloud-netflix.html#spring-cloud-ribbon-
without-eureka).
k.store/books/9781617293986

http://github.com/carnellj/config-repo
http://cloud.spring.io/spring-cloud-netflix/spring-cloud-netflix.html#spring-cloud-ribbon-without-eureka
http://cloud.spring.io/spring-cloud-netflix/spring-cloud-netflix.html#spring-cloud-ribbon-without-eureka
http://cloud.spring.io/spring-cloud-netflix/spring-cloud-netflix.html#spring-cloud-ribbon-without-eureka
https://itbook.store/books/9781617293986

169The real power of Zuul: filters

www.itbook.
6.3.5 Zuul and service timeouts

Zuul uses Netflix’s Hystrix and Ribbon libraries to help prevent long-running service
calls from impacting the performance of the services gateway. By default, Zuul will ter-
minate and return an HTTP 500 error for any call that takes longer than one second to
process a request. (This is the Hystrix default.) Fortunately, you can configure this
behavior by setting the Hystrix timeout properties in your Zuul server’s configuration.

 To set the Hystrix timeout for all of the services running through Zuul, you can use
the hystrix.command.default.execution.isolation.thread.timeoutIn-

Milliseconds property. For instance, if you wanted to set the default Hystrix time
out to be 2.5 seconds, you could use the following configuration in your Zuul’s Spring
Cloud config file:

zuul.prefix: /api
zuul.routes.organizationservice: /organization/**
zuul.routes.licensingservice: /licensing/**
zuul.debug.request: true
hystrix.command.default.execution.isolation.thread.timeoutInMilliseconds: 2500

If you need to set the Hystrix timeout for specific service, you can replace the
default part of the property with the Eureka service ID name of the service whose
timeout you want to override. For instance, if you wanted to change only the licens-
ingservice’s timeout to three seconds and leave the rest of the services to use the
default Hystrix timeout, you could use something like this in your configuration:

hystrix.command.licensingservice.execution.isolation.thread.timeoutInMillisec
onds: 3000

Finally, you need to be aware of one other timeout property. While you’ve overridden
the Hystrix timeout, the Netflix Ribbon also times out any calls that take longer than
five seconds. While I highly recommend you revisit the design of any call that takes
longer than five seconds, you can override the Ribbon timeout by setting the follow-
ing property: servicename.ribbon.ReadTimeout. For example, if you wanted to
override the licensingservice to have a seven-second timeout, you’d use the fol-
lowing configuration:

hystrix.command.licensingservice.execution.

➥ isolation.thread.timeoutInMilliseconds: 7000
licensingservice.ribbon.ReadTimeout: 7000

NOTE For configurations longer than five seconds you have to set both the
Hystrix and the Ribbon timeouts.

6.4 The real power of Zuul: filters
While being able to proxy all requests through the Zuul gateway does allow you to sim-
plify your service invocations, the real power of Zuul comes into play when you want
to write custom logic that will be applied against all the service calls flowing through
store/books/9781617293986

https://itbook.store/books/9781617293986

170 CHAPTER 6 Service routing with Spring Cloud and Zuul

www.itboo
the gateway. Most often this custom logic is used to enforce a consistent set of applica-
tion policies like security, logging, and tracking against all the services.

 These application policies are considered cross-cutting concerns because you want
them to be applied to all the services in your application without having to modify
each service to implement them. In this fashion, Zuul filters can be used in a similar
way as a J2EE servlet filter or a Spring Aspect that can intercept a wide body of behav-
iors and decorate or change the behavior of the call without the original coder being
aware of the change. While a servlet filter or Spring Aspect is localized to a specific
service, using Zuul and Zuul filters allows you implement cross-cutting concerns
across all the services being routed through Zuul.

 Zuul allows you to build custom logic using a filter within the Zuul gateway. A filter
allows you to implement a chain of business logic that each service request passes
through as it’s being implemented.

 Zuul supports three types of filters:

 Pre-filters—A pre-filter is invoked before the actual request to the target destina-
tion occurs with Zuul. A pre-filter usually carries out the task of making sure
that the service has a consistent message format (key HTTP headers are in
place, for example) or acts as a gatekeeper to ensure that the user calling the
service is authenticated (they are who they say they are) and authorized (they
can do what they’re requesting to do).

 Post filters—A post filter is invoked after the target service has been invoked and
a response is being sent back to the client. Usually a post filter will be imple-
mented to log the response back from the target service, handle errors, or audit
the response for sensitive information.

 Route filters—The route filter is used to intercept the call before the target ser-
vice is invoked. Usually a route filter is used to determine if some level of
dynamic routing needs to take place. For instance, later in the chapter you’ll
use a route-level filter that will route between two different versions of the same
service so that a small percentage of calls to a service are routed to a new ver-
sion of a service rather than the existing service. This will allow you to expose a
small number of users to new functionality without having everyone use the
new service.

Figure 6.11 shows how the pre-, post, and route filters fit together in terms of process-
ing a service client’s request.

 If you follow the flow laid out in figure 6.11, you’ll see everything start with a ser-
vice client making a call to a service exposed through the service gateway. From there
the following activities take place:

1 Any pre-filters defined in the Zuul gateway will be invoked by Zuul as a request
enters the Zuul gateway. The pre-filters can inspect and modify a HTTP request
before it gets to the actual service. A pre-filter cannot redirect the user to a dif-
ferent endpoint or service.
k.store/books/9781617293986

https://itbook.store/books/9781617293986

171The real power of Zuul: filters

www.itbook.
2 After the pre-filters are executed against the incoming request by Zuul, Zuul
will execute any defined route filters. Route filters can change the destination
of where the service is heading.

3 If a route filter wants to redirect the service call to a place other than where the
Zuul server is configured to send the route, it can do so. However, a Zuul route
filter doesn’t do an HTTP redirect, but will instead terminate the incoming
HTTP request and then call the route on behalf of the original caller. This

Service client calls the
service through Zuul

3. A route filter
may dynamically
route services
outside Zuul.

1. Pre-route filters
are executed as
the incoming
request comes
into Zuul.

2. Route filters allow
 you to override Zuul’s
 default routing logic
 and will route a user
 to where they need
 to go.

4. In the end, Zuul will
 determine the target
 route and send the
 request onto its
 target destination.

5. After the target service
 is invoked, the response
 back from it will flow
 back through any Zuul
 post filter.

Service
client

Pre-filter

Route filter

Target route

Target service

Post filter

Dynamic route

Zuul services gateway

Figure 6.11 The pre-, route, and post filters form a pipeline in which a client request flows through. As a request
comes into Zuul, these filters can manipulate the incoming request.
store/books/9781617293986

https://itbook.store/books/9781617293986

172 CHAPTER 6 Service routing with Spring Cloud and Zuul

www.itboo
means the route filter has to completely own the calling of the dynamic route
and can’t do an HTTP redirect.

4 If the route filter doesn’t dynamically redirect the caller to a new route, the
Zuul server will send the route to the originally targeted service.

5 After the target service has been invoked, the Zuul Post filters will be invoked. A
post filter can inspect and modify the response back from the invoked service.

The best way to understand how to implement Zuul filters is to see them in use. To
this end, in the next several sections you’ll build a pre-, route, and post filter and then
run service client requests through them.

 Figure 6.12 shows how these filters will fit together in processing requests to your
EagleEye services.

Figure 6.12 Zuul filters provide centralized tracking of service calls, logging, and dynamic routing. Zuul
filters allows you to enforce custom rules and policies against microservice calls.

3. The ResponseFilter will make
 sure each response sent back
 from Zuul has the correlation
 ID in the HTTP header.

1. Our TrackingFilter will inspect
 each incoming request and
 create a correlation ID in the
 HTTP header if one is not present.

Service client
calls the service
through Zuul.

2. The SpecialRoutesFilter will
 determine whether or not we want
 to send a percentage of certain
 routes to a different service.

Service
client

TrackingFilter

SpecialRoutesFilter

ResponseFilter

New version of
target service

Old version of
target service

Zuul services
gateway

Pre-filters

Route filters

Post filters

Target service
k.store/books/9781617293986

https://itbook.store/books/9781617293986

173Building your first Zuul pre-filter generating correlation IDs

www.itbook.
Following the flow of figure 6.12, you’ll see the following filters being used:

1 TrackingFilter—The TrackingFilter will be a pre-filter that will ensure
that every request flowing from Zuul has a correlation ID associated with it. A
correlation ID is a unique ID that gets carried across all the microservices that
are executed when carrying out a customer request. A correlation ID allows you
to trace the chain of events that occur as a call goes through a series of
microservice calls.

2 SpecialRoutesFilter—The SpecialRoutesFilter is a Zuul routes filter
that will check the incoming route and determine if you want to do A/B testing
on the route. A/B testing is a technique in which a user (in this case a service) is
randomly presented with two different versions of services using the same ser-
vice. The idea behind A/B testing is that new features can be tested before
they’re rolled out to the entire user base. In our example, you’re going to have
two different versions of the same organization service. A small number of users
will be routed to the newer version of the service, while the majority of users will
be routed to the older version of the service.

3 ResponseFilter—The ResponseFilter is a post filter that will inject the
correlation ID associated with the service call into the HTTP response header
being sent back to the client. This way, the client will have access to the correla-
tion ID associated with the request they made.

6.5 Building your first Zuul pre-filter generating
correlation IDs
Building filters in Zuul is an extremely simple activity. To begin, you’ll build a Zuul
pre-filter, called the TrackingFilter, that will inspect all incoming requests to the
gateway and determine whether there’s an HTTP header called tmx-correlation-
id present in the request. The tmx-correlation-id header will contain a unique
GUID (Globally Universal Id) that can be used to track a user’s request across multiple
microservices.

NOTE We discussed the concept of a correlation ID in chapter 5. Here we’re
going to walk through in more detail how to use Zuul to generate a correla-
tion ID. If you skipped around in the book, I highly recommend you look at
chapter 5 and read the section on Hystrix and Thread context. Your imple-
mentation of correlation IDs will be implemented using ThreadLocal vari-
ables and there’s extra work to do to have ThreadLocal variables work with
Hystrix.

If the tmx-correlation-id isn’t present on the HTTP header, your Zuul Track-
ingFilter will generate and set the correlation ID. If there’s already a correlation ID
present, Zuul won’t do anything with the correlation ID. The presence of a correlation
ID means that this particular service call is part of a chain of service calls carrying out
the user’s request. In this case, your TrackingFilter class will do nothing.
store/books/9781617293986

https://itbook.store/books/9781617293986

174 CHAPTER 6 Service routing with Spring Cloud and Zuul

www.itboo
 Let’s go ahead and look at the implementation of the TrackingFilter in the fol-
lowing listing. This code can also be found in the book samples in zuulsvr/src/
main/java/com/thoughtmechanix/zuulsvr/filters/TrackingFilter.java.

package com.thoughtmechanix.zuulsvr.filters;

import com.netflix.zuul.ZuulFilter;
import org.springframework.beans.factory.annotation.Autowired;

//Removed other imports for conciseness

@Component
public class TrackingFilter extends ZuulFilter{
 private static final int FILTER_ORDER = 1;
 private static final boolean SHOULD_FILTER=true;
 private static final Logger logger =
 ➥ LoggerFactory.getLogger(TrackingFilter.class);

 @Autowired
 FilterUtils filterUtils;

 @Override
 public String filterType() {
 return FilterUtils.PRE_FILTER_TYPE;
 }

 @Override
 public int filterOrder() {
 return FILTER_ORDER;
 }

 public boolean shouldFilter() {
 return SHOULD_FILTER;
 }

 private boolean isCorrelationIdPresent(){
 if (filterUtils.getCorrelationId() !=null){
 return true;
 }

 return false;
 }

 private String generateCorrelationId(){
 return java.util.UUID.randomUUID().toString();
 }

 public Object run() {
 if (isCorrelationIdPresent()) {
 logger.debug("tmx-correlation-id found in tracking filter: {}.

 ➥ ",

Listing 6.6 Zuul pre-filter for generating correlation IDs

All Zuul filters must extend
the ZuulFilter class and
override four methods:
filterType(), filterOrder(),
shouldFilter(), and run().

Commonly used functions that are
used across all your filters have been
encapsulated in the FilterUtils class.

The filterType() method is used
to tell Zuul whether the filter
is a pre-, route, or post filter.

The filterOrder() method returns an integer
value indicating what order Zuul should send
requests through the different filter types.

The shouldFilter() method returns
a Boolean indicating whether or
not the filter should be active.

The helper methods that actually
check if the tmx-correlation-id is
present and can also generate a

correlation ID GUIID value

The run() method is the code
that is executed every time a

service passes through the
filter. In your run() function,
you check to see if the tmx-

correlation-id is present and
if it isn’t, you generate a

correlation value and set the
tmx-correlation-id HTTP
k.store/books/9781617293986

https://itbook.store/books/9781617293986

175Building your first Zuul pre-filter generating correlation IDs

www.itbook.
 filterUtils.getCorrelationId());
 }
 else{
 filterUtils
 .setCorrelationId(generateCorrelationId());

 logger.debug("tmx-correlation-id generated
 ➥ in tracking filter: {}.",
 ➥ filterUtils.getCorrelationId());
}

 RequestContext ctx =
 RequestContext.getCurrentContext();
 logger.debug("Processing incoming request for {}.",

 ctx.getRequest().getRequestURI());
 return null;
}
}

To implement a filter in Zuul, you have to extend the ZuulFilter class and then
override four methods: filterType(), filterOrder(), shouldFilter(), and
run(). The first three methods in this list describe to Zuul what type of filter you’re
building, what order it should be run in compared to the other filters of its type, and
whether it should be active. The last method, run(), contains the business logic the
filter is going to implement.

 You’ve implemented a class called FilterUtils. This class is used to encapsulate
common functionality used by all your filters. The FilterUtils class is located in the
zuulsvr/src/main/java/com/thoughtmechanix/zuulsvr/FilterUtils.java.
We’re not going to walk through the entire FilterUtils class, but the key methods
we’ll discuss here are the getCorrelationId() and setCorrelationId() func-
tions. The following listing shows the code for the FilterUtils getCorrelationId()
method.

public String getCorrelationId(){
 RequestContext ctx = RequestContext.getCurrentContext();

 if (ctx.getRequest()
 .getHeader(CORRELATION_ID) !=null) {
 return ctx.getRequest()
 .getHeader(CORRELATION_ID);
 }
 else{
 return ctx.getZuulRequestHeaders()
 .get(CORRELATION_ID);
 }
}

The key thing to notice in listing 6.7 is that you first check to see if the tmx-correla-
tion-ID is already set on the HTTP Headers for the incoming request. You do this
using the ctx.getRequest().getHeader(CORRELATION_ID) call.

Listing 6.7 Retrieving the tmx-correlation-id from the HTTP headers
store/books/9781617293986

https://itbook.store/books/9781617293986

176 CHAPTER 6 Service routing with Spring Cloud and Zuul

www.itboo
NOTE In a normal Spring MVC or Spring Boot service, the RequestContext
would be of type org.springframework.web.servletsupport.Request-
Context. However, Zuul gives a specialized RequestContext that has several
additional methods for accessing Zuul-specific values. This request context is
part of the com.netflix.zuul.context package.

If it isn’t there, you then check the ZuulRequestHeaders. Zuul doesn’t allow you to
directly add or modify the HTTP request headers on an incoming request. If we add
the tmx-correlation-id and then try to access it again later in the filter, it won’t be
available as part of the ctx.getRequestHeader() call. To work around this, you use
the FilterUtils getCorrelationId() method. You may remember that earlier
in the run() method on your TrackingFilter class, you did exactly this with the
following code snippet:

else{
 filterUtils.setCorrelationId(generateCorrelationId());
 logger.debug("tmx-correlation-id generated
 ➥ in tracking filter: {}.",
 filterUtils.getCorrelationId());
}

The setting of the tmx-correlation-id occurs with the FilterUtils set-

CorrelationId() method:

public void setCorrelationId(String correlationId){
 RequestContext ctx =
 RequestContext.getCurrentContext();
 ctx.addZuulRequestHeader(CORRELATION_ID, correlationId);
}

In the FilterUtils setCorrelationId() method, when you want to add a value to the
HTTP request headers, you use the RequestContext’s addZuulRequestHeader()
method. This method will maintain a separate map of HTTP headers that were added
while a request was flowing through the filters with your Zuul server. The data con-
tained within the ZuulRequestHeader map will be merged when the target service is
invoked by your Zuul server.

6.5.1 Using the correlation ID in your service calls

Now that you’ve guaranteed that a correlation ID has been added to every microser-
vice call flowing through Zuul, how do you ensure that

 The correlation-ID is readily accessible to the microservice that’s being invoked
 Any downstream service calls the microservice might make also propagate the

correlation-ID on to the downstream call

To implement this, you’re going to build a set of three classes into each of your
microservices. These classes will work together to read the correlation ID (along with
other information you’ll add later) off the incoming HTTP request, map it to a class
that’s easily accessible and useable by the business logic in the application, and then
ensure that the correlation ID is propagated to any downstream service calls.
k.store/books/9781617293986

https://itbook.store/books/9781617293986

177Building your first Zuul pre-filter generating correlation IDs

www.itbook.
Figure 6.13 demonstrates how these different pieces are going to be built out using
your licensing service.

 Let’s walk through what’s happening in figure 6.13:

1 When a call is made to the licensing service through the Zuul gateway, the
TrackingFilter will inject a correlation ID into the incoming HTTP header
for any calls coming into Zuul.

2 The UserContextFilter class is a custom HTTP ServletFilter. It maps a corre-
lation ID to the UserContext class. The UserContext class is stored values in
thread-local storage for use later in the call.

4. The UserContextInterceptor
 ensures that all outbound REST
 calls have the correlation ID
 from the UserContext in them.

2. The UserContextFilter will
 retrieve the correlation ID
 out of the HTTP header
 and store it in the
 UserContext object.

1. The licensing
 service is
 invoked via a
 route in Zuul.

3. The business logic in
 the service has access
 to any values retrieved
 in the UserContext.

Licensing
service

UserContextFilter

Licensing service
business logic

RestTemplate
UserContextInterceptor

Zuul services
gateway

Organization
service

Figure 6.13 A set of common classes
are used so that the correlation ID can be
propagated to downstream service calls.
store/books/9781617293986

https://itbook.store/books/9781617293986

178 CHAPTER 6 Service routing with Spring Cloud and Zuul

www.itboo
3 The licensing service business logic needs to execute a call to the organization
service.

4 A RestTemplate is used to invoke the organization service. The RestTemplate
will use a custom Spring Interceptor class (UserContextInterceptor) to
inject the correlation ID into the outbound call as an HTTP header.

USERCONTEXTFILTER: INTERCEPTING THE INCOMING HTTP REQUEST
The first class you’re going to build is the UserContextFilter class. This class is an
HTTP servlet filter that will intercept all incoming HTTP requests coming into the ser-
vice and map the correlation ID (and a few other values) from the HTTP request to
the UserContext class. The following listing shows the code for the UserContext
class. The source for this class can be found in licensing-service/src/main/
java/com/thoughtmechanix/licenses/utils/UserContextFilter.java.

package com.thoughtmechanix.licenses.utils;

//Remove the imports for conciseness
@Component
public class UserContextFilter implements Filter {
 private static final Logger logger =
 LoggerFactory.getLogger(
 UserContextFilter.class);
 @Override

Repeated code vs. shared libraries
The subject of whether you should use common libraries across your microservices
is a gray area in microservice design. Microservice purists will tell you that you
shouldn’t use a custom framework across your services because it introduces artifi-
cial dependencies in your services. Changes in business logic or a bug can introduce
wide scale refactoring of all your services. On the other side, other microservice prac-
titioners will say that a purist approach is impractical because certain situations exist
(like the previous UserContextFilter example) where it makes sense to build a
common library and share it across services.

I think there’s a middle ground here. Common libraries are fine when dealing with
infrastructure-style tasks. If you start sharing business-oriented classes, you’re ask-
ing for trouble because you’re breaking down the boundaries between the services.

I seem to be breaking my own advice with the code examples in this chapter, because
if you look at all the services in the chapter, they all have their own copies of the
UserContextFilter, UserContext, and UserContextInterceptor
classes. The reason I took a share-nothing approach here is that I don’t want to com-
plicate the code examples in this book by having to create a shared library that would
have to be published to a third-party Maven repository. Hence, all the classes in the
utils package of the service are shared across all the services.

Listing 6.8 Mapping the correlation ID to the UserContext class

The filter is registered and picked
up by Spring through the use of the

Spring @Component annotation and by
implementing a javax.servler.Filter interface.
k.store/books/9781617293986

https://itbook.store/books/9781617293986

179Building your first Zuul pre-filter generating correlation IDs

www.itbook.
 public void doFilter(ServletRequest servletRequest,
 ServletResponse servletResponse,
 FilterChain filterChain)
 throws IOException, ServletException {
 HttpServletRequest httpServletRequest = (HttpServletRequest)

servletRequest;

 UserContextHolder
 .getContext()
 .setCorrelationId(
 ➥ httpServletRequest
 .getHeader(
 UserContext.CORRELATION_ID));
UserContextHolder.getContext().setUserId(
 httpServletRequest
 .getHeader(UserContext.USER_ID));
UserContextHolder
 .getContext()
 .setAuthToken(
 httpServletRequest
 .getHeader(UserContext.AUTH_TOKEN));
UserContextHolder
 .getContext()
 .setOrgId(
 httpServletRequest
 .getHeader(UserContext.ORG_ID));

 filterChain
 .doFilter(httpServletRequest, servletResponse);
}

 // Not showing the empty init and destroy methods}

Ultimately, the UserContextFilter is used to map the HTTP header values you’re
interested in into a Java class, UserContext.

USERCONTEXT: MAKING THE HTTP HEADERS EASILY ACCESSIBLE TO THE SERVICE

The UserContext class is used to hold the HTTP header values for an individual ser-
vice client request being processed by your microservice. It consists of a getter/setter
method that retrieves and stores values from java.lang.ThreadLocal. The follow-
ing listing shows the code from the UserContext class. The source for this class
can be found in licensing-service/src/main/java/com/thoughtmechanix/
licenses/utils/UserContext.java.

@Component
public class UserContext {
 public static final String CORRELATION_ID = "tmx-correlation-id";
 public static final String AUTH_TOKEN = "tmx-auth-token";
 public static final String USER_ID = "tmx-user-id";
 public static final String ORG_ID = "tmx-org-id";

Listing 6.9 Storing the HTTP header values inside the UserContext class

Your filter retrieves the correlation
ID from the header and sets the
value on the UserContext class.

The other values being scraped from the
HTTP Headers will come into play if you
use the authentication service example
defined in the code’s README file.
store/books/9781617293986

https://itbook.store/books/9781617293986

180 CHAPTER 6 Service routing with Spring Cloud and Zuul

www.itboo
 private String correlationId= new String();
 private String authToken= new String();
 private String userId = new String();
 private String orgId = new String();

 public String getCorrelationId() { return correlationId;}
 public void setCorrelationId(String correlationId) {
 this.correlationId = correlationId;}

 public String getAuthToken() { return authToken;}
 public void setAuthToken(String authToken) {
 this.authToken = authToken;}

 public String getUserId() { return userId;}
 public void setUserId(String userId) { this.userId = userId;}

 public String getOrgId() { return orgId;}
 public void setOrgId(String orgId) {this.orgId = orgId;
 }
}

Now the UserContext class is nothing more than a POJO holding the values scraped
from the incoming HTTP request. You use a class called zuulsvr/src/main/java/
com/thoughtmechanix/zuulsvr/filters/UserContextHolder.java to store
the UserContext in a ThreadLocal variable that is accessible in any method being
invoked by the thread processing the user’s request. The code for UserContext-
Holder is shown in the following listing.

public class UserContextHolder {
 private static final ThreadLocal<UserContext> userContext
 = new ThreadLocal<UserContext>();

 public static final UserContext getContext(){
 UserContext context = userContext.get();

 if (context == null) {
 context = createEmptyContext();
 userContext.set(context);
 }

 return userContext.get();
 }

 public static final void setContext(UserContext context) {
 Assert.notNull(context,
 ➥ "Only non-null UserContext instances are permitted");
 userContext.set(context);
 }

 public static final UserContext createEmptyContext(){
 return new UserContext();
 }
}

Listing 6.10 The UserContextHolder stores the UserContext in a ThreadLocal
k.store/books/9781617293986

https://itbook.store/books/9781617293986

181Building your first Zuul pre-filter generating correlation IDs

www.itbook.
CUSTOM RESTTEMPLATE AND USERCONTEXTINTECEPTOR: ENSURING THAT
THE CORRELATION ID GETS PROPAGATED FORWARD

The last piece of code that we’re going to look at is the UserContextInterceptor
class. This class is used to inject the correlation ID into any outgoing HTTP-based ser-
vice requests being executed from a RestTemplate instance. This is done to ensure
that you can establish a linkage between service calls.

 To do this you’re going to use a Spring Interceptor that’s being injected into the
RestTemplate class. Let’s look at the UserContextInterceptor in the following
listing.

package com.thoughtmechanix.licenses.utils;

//Removed imports for conciseness
public class UserContextInterceptor
 implements ClientHttpRequestInterceptor {

 @Override
 public ClientHttpResponse intercept(
 HttpRequest request, byte[] body,
 ClientHttpRequestExecution execution)
 throws IOException {

 HttpHeaders headers = request.getHeaders();
 headers.add(
 UserContext.CORRELATION_ID,
 UserContextHolder
 .getContext()
 .getCorrelationId());
 headers.add(UserContext.AUTH_TOKEN,
 UserContextHolder
 .getContext()
 .getAuthToken());

 return execution.execute(request, body);
 }
}

To use the UserContextInterceptor you need to define a RestTemplate bean
and then add the UserContextInterceptor to it. To do this, you’re going to add
your own RestTemplate bean definition to the licensing-service/src/main/
java/com/thoughtmechanix/licenses/Application.java class. The following
listing shows the method that’s added to this class.

@LoadBalanced
@Bean
public RestTemplate getRestTemplate(){

Listing 6.11 All outgoing microservice calls have the correlation ID injected into them

Listing 6.12 Adding the UserContextInterceptor to the RestTemplate class

The UserContextIntercept implements
the Spring frameworks

ClientHttpRequestInterceptor.

The intercept() method is invoked
before the actual HTTP service call
occurs by the RestTemplate.

You take the HTTP request header
that’s being prepared for the outgoing
service call and add the correlation
ID stored in the UserContext.

The @LoadBalanced annotation
indicates that this RestTemplate
object is going to use Ribbon.
store/books/9781617293986

https://itbook.store/books/9781617293986

182 CHAPTER 6 Service routing with Spring Cloud and Zuul

www.itboo
 RestTemplate template = new RestTemplate();
 List interceptors = template.getInterceptors();
 if (interceptors==null){
 template.setInterceptors(
 Collections.singletonList(
 new UserContextInterceptor()));
 }
 else{
 interceptors.add(new UserContextInterceptor());
 template.setInterceptors(interceptors);
 }

 return template; }

With this bean definition in place, any time you use the @Autowired annotation and
inject a RestTemplate into a class, you’ll use the RestTemplate created in listing
6.11 with the UserContextInterceptor attached to it.

6.6 Building a post filter receiving correlation IDs
Remember, Zuul executes the actual HTTP call on behalf of the service client. Zuul
has the opportunity to inspect the response back from the target service call and then
alter the response or decorate it with additional information. When coupled with cap-
turing data with the pre-filter, a Zuul post filter is an ideal location to collect metrics
and complete any logging associated with the user’s transaction. You’ll want to take
advantage of this by injecting the correlation ID that you’ve been passing around to
your microservices back to the user.

 You’re going to do this by using a Zuul post filter to inject the correlation ID back
into the HTTP response headers being passed back to the caller of the service. This
way, you can pass the correlation ID back to the caller without ever having to touch the
message body. The following listing shows the code for building a post filter. This code
can be found in zuulsvr/src/main/java/com/thoughtmechanix/zuulsvr/
filters/ResponseFilter.java.

Log aggregation and authentication and more
Now that you have correlation ID’s being passed to each service, it’s possible to
trace a transaction as it flows through all the services involved in the call. To do this
you need to ensure that each service logs to a central log aggregation point that cap-
tures log entries from all of your services into a single point. Each log entry captured
in the log aggregation service will have a correlation ID associated to each entry.
Implementing a log aggregation solution is outside the scope of this chapter, but in
chapter 9, we’ll see how to use Spring Cloud Sleuth. Spring Cloud Sleuth won’t use
the TrackingFilter that you built here, but it will use the same concepts of track-
ing the correlation ID and ensuring that it’s injected in every call.

Adding the UserContextInterceptor
to the RestTemplate instance
that has been created
k.store/books/9781617293986

https://itbook.store/books/9781617293986

www.itbook.
183Building a post filter receiving correlation IDs

package com.thoughtmechanix.zuulsvr.filters;

//Remove imports for conciseness

@Component
public class ResponseFilter extends ZuulFilter{
 private static final int FILTER_ORDER=1;
 private static final boolean SHOULD_FILTER=true;
 private static final Logger logger =
 ➥ LoggerFactory
 .getLogger(ResponseFilter.class);

 @Autowired
 FilterUtils filterUtils;

 @Override
 public String filterType() {
 return FilterUtils.POST_FILTER_TYPE;
 }

 @Override
 public int filterOrder() {
 return FILTER_ORDER;
 }

 @Override
 public boolean shouldFilter() {
 return SHOULD_FILTER;
 }

 @Override
 public Object run() {
 RequestContext ctx =
 RequestContext.getCurrentContext();

 logger.debug("Adding the correlation id to
 ➥ the outbound headers. {}",
 ➥ filterUtils.getCorrelationId());

 ctx.getResponse()
 .addHeader(
 FilterUtils.CORRELATION_ID,
 filterUtils.getCorrelationId());

 logger.debug("Completing outgoing request for {}.",
 ➥ ctx.getRequest().getRequestURI());

 return null;
 }
}

Listing 6.13 Injecting the correlation ID into the HTTP response

To build a post filter you need to set the
filter type to be POST_FILTER_TYPE.

Grab the correlation ID that was
passed in on the original HTTP request
and inject it into the response.

Log the outgoing request URI so that you have
“bookends” that will show the incoming and

outgoing entry of the user’s request into Zuul.
store/books/9781617293986

https://itbook.store/books/9781617293986

184 CHAPTER 6 Service routing with Spring Cloud and Zuul

www.itboo
Figure 6.14 The tmx-correlation-id has been added to the response headers sent back to the service
client.

Once the ResponseFilter has been implemented, you can fire up your Zuul service
and call the EagleEye licensing service through it. Once the service has completed,
you’ll see a tmx-correlation-id on the HTTP response header from the call. Fig-
ure 6.14 shows the tmx-correlation-id being sent back from the call.

 Up until this point, all our filter examples have dealt with manipulating the service
client calls before and after it has been routed to its target destination. For our last fil-
ter example, let’s look at how you can dynamically change the target route you want to
send the user to.

6.7 Building a dynamic route filter
The last Zuul filter we’ll look at is the Zuul route filter. Without a custom route filter
in place, Zuul will do all its routing based on the mapping definitions you saw earlier
in the chapter. However, by building a Zuul route filter, you can add intelligence to
how a service client’s invocation will be routed.

 In this section, you’ll learn about Zuul’s route filter by building a route filter that will
allow you to do A/B testing of a new version of a service. A/B testing is where you roll
out a new feature and then have a percentage of the total user population use that fea-
ture. The rest of the user population still uses the old service. In this example, you’re
going to simulate rolling out a new version of the organization service where you want
50% of the users go to the old service and 50% of the users to go to the new service.

 To do this you’re going to build a Zuul route filter, called SpecialRoutes-
Filter, that will take the Eureka service ID of the service being called by Zuul and

The correlation ID returned in the HTTP response
k.store/books/9781617293986

https://itbook.store/books/9781617293986

185Building a dynamic route filter

www.itbook.
call out to another microservice called SpecialRoutes. The SpecialRoutes ser-
vice will check an internal database to see if the service name exists. If the targeted ser-
vice name exists, it will return a weight and target destination of an alternative
location for the service. The SpecialRoutesFilter will then take the weight
returned and, based on the weight, randomly generate a number that will be used to
determine whether the user’s call will be routed to the alternative organization service
or to the organization service defined in the Zuul route mappings. Figure 6.15 shows
the flow of what happens when the SpecialRoutesFilter is used.

Figure 6.15 The flow of a call to the organization service through the SpecialRoutesFilter

4. If request was routed to
 new alternate service
 endpoint, Zuul still routes
 response back through any
 pre-defined post filters.

1. SpecialRoutesFilter
 retrieves the
 service ID.

Service client calls the
service through Zuul

2. SpecialRoutes service
 checks if there’s a new
 alternate endpoint service,
 and the percentage of calls
 (weight number) to be sent
 to new versus old service

3. SpecialRoutesFilter
 generates random
 number and checks
 against weight number
 to determine routing.

Service
client

Eureka ID

ResponseFilter

Zuul services
gateway

SpecialRoutes
service

Post filters

Random number

Old version
of service

Old version
of service

SpecialRoutesFilter
store/books/9781617293986

https://itbook.store/books/9781617293986

186 CHAPTER 6 Service routing with Spring Cloud and Zuul

www.itboo
In figure 6.15, after the service client has called a service “fronted” by Zuul, the Spe-
cialRoutesFilter takes the following actions:

1 The SpecialRoutesFilter retrieves the service ID for the service being
called.

2 The SpecialRoutesFilter calls the SpecialRoutes service. The Special
Routes service checks to see if there’s an alternative endpoint defined for the
targeted endpoint. If a record is found, it will contain a weight that will tell Zuul
the percentage of service calls that should be sent to the old service and the
new service.

3 The SpecialRoutesFilter then generates a random number and compares
that against the weight returned by the SpecialRoutes service. If the ran-
domly generated number is under the value of the alternative endpoint weight,
SpecialRoutesFilter sends the request to the new version of the service.

4 If the SpecialRoutesFilter sends the request to new version of the service,
Zuul maintains the original predefined pipelines and sends the response back
from the alternative service endpoint through any defined post filters.

6.7.1 Building the skeleton of the routing filter

We’re going to start walking through the code you used to build the Special-
RoutesFilter. Of all the filters we’ve looked at so far, implementing a Zuul route fil-
ter requires the most coding effort, because with a route filter you’re taking over a
core piece of Zuul functionality, routing, and replacing it with your own functionality.
We’re not going to go through the entire class in detail here, but rather work through
the pertinent details.

 The SpecialRoutesFilter follows the same basic pattern as the other Zuul fil-
ters. It extends the ZuulFilter class and sets the filterType() method to return
the value of “route”. I’m not going to go into any more explanation of the filter-
Order() and shouldFilter() methods as they’re no different from the previous fil-
ters discussed earlier in the chapter. The following listing shows the route filter
skeleton.

package com.thoughtmechanix.zuulsvr.filters;

@Component
public class SpecialRoutesFilter extends ZuulFilter {
 @Override
 public String filterType() {
 return filterUtils.ROUTE_FILTER_TYPE;
 }

 @Override
 public int filterOrder() {}

Listing 6.14 The skeleton of your route filter
k.store/books/9781617293986

https://itbook.store/books/9781617293986

187Building a dynamic route filter

www.itbook.
 @Override
 public boolean shouldFilter() {}

 @Override
 public Object run() {}
}

6.7.2 Implementing the run() method

The real work for the SpecialRoutesFilter begins in the run() method of the
code. The following listing shows the code for this method.

public Object run() {
 RequestContext ctx = RequestContext.getCurrentContext();

 AbTestingRoute abTestRoute =
 getAbRoutingInfo(filterUtils.getServiceId());

 if (abTestRoute!=null &&
 useSpecialRoute(abTestRoute)) {
 String route =
 buildRouteString(
 ctx.getRequest().getRequestURI(),
 abTestRoute.getEndpoint(),
 ctx.get("serviceId").toString());
 forwardToSpecialRoute(route);
 }

 return null;
}

The general flow of code in listing 6.15 is that when a route request hits the run()
method in the SpecialRoutesFilter, it will execute a REST call to the Special-
Routes service. This service will execute a lookup and determine if a routing record
exists for the Eureka service ID of the target service being called. The call out to
SpecialRoutes service is done in the getAbRoutingInfo() method. The get-
AbRoutingInfo() method is shown in the following listing.

private AbTestingRoute getAbRoutingInfo(String serviceName){
 ResponseEntity<AbTestingRoute> restExchange = null;
try {
 restExchange = restTemplate.exchange(
 "http://specialroutesservice/v1
 ➥ /route/abtesting/{serviceName}",
 HttpMethod.GET,null, AbTestingRoute.class, serviceName);
}

Listing 6.15 The run() method for the SpecialRoutesFilter is where the
 work begins

Listing 6.16 Invoking the SpecialRouteservice to see if a routing record exists

Executes call to
SpecialRoutes service

to determine if there is a
routing record for this org

The useSpecialRoute() method
will take the weight of the route,

generate a random number,
and determine if you’re going

to forward the request onto
the alternative service.

If there’s a routing record, build the full
URL (with path) to the service location
specified by the specialroutes service.

The forwardToSpecialRoute()
method does the work of

forwarding onto the
alternative service.

Calls the SpecialRoutesService
endpoint
store/books/9781617293986

https://itbook.store/books/9781617293986

188 CHAPTER 6 Service routing with Spring Cloud and Zuul

www.itboo
catch(HttpClientErrorException ex){
 if (ex.getStatusCode()== HttpStatus.NOT_FOUND){
 return null;
 throw ex;
}
return restExchange.getBody();
}

Once you’ve determined that there’s a routing record present for the target service,
you need to determine whether you should route the target service request to the
alternative service location or to the default service location statically managed by the
Zuul route maps. To make this determination, you call the useSpecialRoute()
method. The following listing shows this method.

public boolean useSpecialRoute(AbTestingRoute testRoute){
 Random random = new Random();

 if (testRoute.getActive().equals("N"))
 return false;

 int value =
 random.nextInt((10 - 1) + 1) + 1;

 if (testRoute.getWeight()<value)
 return true;

 return false;
}

This method does two things. First, the method checks the active field on the
AbTestingRoute record returned from the SpecialRoutes service. If the record is
set to “N,” useSpecialRoute() method shouldn’t do anything because you don’t
want to do any routing at this moment. Second, the method generates a random num-
ber between 1 and 10. The method will then check to see if the weight of the return
route is less than the randomly generated number. If the condition is true, the use-
SpecialRoute method returns true indicating you do want to use the route.

 Once you’ve determined that you do want to route the service request coming
into the SpecialRoutesFilter, you’re going to forward the request onto the target
service.

6.7.3 Forwarding the route

The actual forwarding of the route to the downstream service is where the majority of
the work occurs in the SpecialRoutesFilter. While Zuul does provide helper func-
tions to make this task easier, the majority of the work still lies with the developer.
The forwardToSpecialRoute() method does the forwarding work for you. The
code in this method borrows heavily from the source code for the Spring Cloud

Listing 6.17 Determining whether to use the alternative service route

If the routes services doesn’t
find a record (it will return a
404 HTTP Status Code), the
method will return null.

Checks to see if the
route is even active

Determines whether you should
use the alternative service route
k.store/books/9781617293986

https://itbook.store/books/9781617293986

189Building a dynamic route filter

www.itbook.
SimpleHostRoutingFilter class. While we’re not going to go through all of the
helper functions called in the forwardToSpecialRoute() method, we’ll walk
through the code in this method, as shown in the following listing.

private ProxyRequestHelper helper
 = new ProxyRequestHelper ();

private void forwardToSpecialRoute(String route) {
 RequestContext context
 = RequestContext.getCurrentContext();
 HttpServletRequest request = context.getRequest();

 MultiValueMap<String, String>headers =
 ➥ helper.buildZuulRequestHeaders(request);

 MultiValueMap<String, String> params =
 ➥ helper.buildZuulRequestQueryParams(request);

 String verb = getVerb(request);
 InputStream requestEntity = getRequestBody(request);
 if (request.getContentLength() < 0)
 context.setChunkedRequestBody();

 this.helper.addIgnoredHeaders();
 CloseableHttpClient httpClient = null;
 HttpResponse response = null;

 try {
 httpClient = HttpClients.createDefault();
 response = forward(
 httpClient,
 ➥ verb,
 route,
 request,
 headers,
 params,
 requestEntity);
 setResponse(response);
 }
 catch (Exception ex) {//Removed for conciseness}

}

The key takeaway from the code in listing 6.18 is that you’re copying all of the values
from the incoming HTTP request (the header parameters, HTTP verb, and the body)
into a new request that will be invoked on the target service. The forwardToSpecial-
Route() method then takes the response back from the target service and sets it on the
HTTP request context used by Zuul. This is done via the setResponse() helper
method (not shown). Zuul uses the HTTP request context to return the response back
from the calling service client.

Listing 6.18 The forwardToSpecialRoute invokes the alternative service

The helper variable is an
instance variable of type
ProxyRequestHelper class.
This is a Spring Cloud class
with helper functions for
proxying service requests.

Creates a copy of all the HTTP request
headers that will be sent to the service

Creates copy of all the
HTTP request parameters

Makes a copy of the
HTTP Body that will be
forwarded onto the
alternative service

Invokes the alternative service
using the forward helper
method (not shown)

The result of service call is
saved back to the Zuul server
through the setResponse()
helper method.
store/books/9781617293986

https://itbook.store/books/9781617293986

190 CHAPTER 6 Service routing with Spring Cloud and Zuul

www.itboo
6.7.4 Pulling it all together

Now that you’ve implemented the SpecialRoutesFilter you can see it an action by
calling the licensing service. As you may remember from earlier chapters, the licensing
service calls the organization service to retrieve the contact data for the organization.

 In the code example, the specialroutesservice has a database record for the
organization service that will route the requests for calls to the organization service 50%
of the time to the existing organization service (the one mapped in Zuul) and 50% of
the time to an alternative organization service. The alternative organization service
route returned from the SpecialRoutes service will be http://orgservice-new
and will not be accessible directly from Zuul. To differentiate between the two services,
I’ve modified the organization service(s) to pre-pend the text “OLD::” and “NEW::” to
contact names returned by the organization service.

 If you now hit the licensing service endpoint through Zuul

http://localhost:5555/api/licensing/v1/organizations/e254f8c-c442-4ebe-a82a-
e2fc1d1ff78a/licenses/f3831f8c-c338-4ebe-a82a-e2fc1d1ff78a

you should see the contactName returned from the licensing service call flip between
the OLD:: and NEW:: values. Figure 6.16 shows this.

 A Zuul routes filter does take more effort to implement then a pre- or post filter,
but it’s also one of the most powerful parts of Zuul because you’re able to easily add
intelligence to the way your services are routed.

Figure 6.16 When you hit the alternative organization service, you see NEW prepended to the
contactName.
k.store/books/9781617293986

https://itbook.store/books/9781617293986

191Summary

www.itbook.
6.8 Summary
 Spring Cloud makes it trivial to build a services gateway.
 The Zuul services gateway integrates with Netflix’s Eureka server and can auto-

matically map services registered with Eureka to a Zuul route.
 Zuul can prefix all routes being managed, so you can easily prefix your routes

with something like /api.
 Using Zuul, you can manually define route mappings. These route mappings

are manually defined in the applications configuration files.
 By using Spring Cloud Config server, you can dynamically reload the route

mappings without having to restart the Zuul server.
 You can customize Zuul’s Hystrix and Ribbon timeouts at global and individual

service levels.
 Zuul allows you to implement custom business logic through Zuul filters. Zuul

has three types of filters: pre-, post, and routing Zuul filters.
 Zuul pre-filters can be used to generate a correlation ID that can be injected

into every service flowing through Zuul.
 A Zuul post filter can inject a correlation ID into every HTTP service response

back to a service client.
 A custom Zuul route filter can perform dynamic routing based on a Eureka ser-

vice ID to do A/B testing between different versions of the same service.
store/books/9781617293986

https://itbook.store/books/9781617293986

John Carnell

M
icroservices break up your code into small, distrib-
uted, and independent services that require careful
forethought and design. Fortunately, Spring Boot and

Spring Cloud simplify your microservice applications, just as
the Spring Framework simplifi es enterprise Java development.
Spring Boot removes the boilerplate code involved with writing
a REST-based service. Spring Cloud provides a suite of tools
for the discovery, routing, and deployment of microservices to
the enterprise and the cloud.

Spring Microservices in Action teaches you how to build
microservice-based applications using Java and the Spring
platform. You’ll learn to do microservice design as you build
and deploy your fi rst Spring Cloud application. Through-
out the book, carefully selected real-life examples expose
microservice-based patterns for confi guring, routing, scaling,
and deploying your services. You’ll see how Spring’s intuitive
tooling can help augment and refactor existing applications
with microservices.

What’s Inside
● Core microservice design principles
● Managing confi guration with Spring Cloud Confi g
● Client-side resiliency with Spring, Hystrix, and Ribbon
● Intelligent routing using Netfl ix Zuul
● Deploying Spring Cloud applications

This book is written for developers with Java and Spring
experience.

John Carnell is a senior cloud engineer with twenty years of
experience in Java.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/spring-microservices-in-action

$49.99 / Can $65.99 [INCLUDING eBOOK]

Spring Microservices IN ACTION

JAVA

M A N N I N G

“Spring is fast becoming
the framework for

microservices—this book
 shows you why and how.”

—John Guthrie, Dell/EMC

“A complete real-world
bible for any microservices

project in Spring.”
—Mirko Bernardoni, Ixxus

“Thorough and practical ...
with all the special

capabilities of Spring
 thrown in.”—Vipul Gupta, SAP

“Learn how to tame
complex and distributed

system design.
 Highly recommended.”

—Ashwin Raj, Innocepts

SEE INSERT

www.itbook.store/books/9781617293986

https://itbook.store/books/9781617293986

	Carnell-Spring-SC-front
	SampleChapterPages-6
	Ch-06
	Carnell-Spring-ebook-back

