
SAMPLE
CHAPTER

www.itbook.store/books/9781617293993

https://itbook.store/books/9781617293993

Get Programming with F#
by Isaac Abraham

Lesson 30

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617293993

https://itbook.store/books/9781617293993

iii

Contents

Foreword v
Preface viii
Acknowledgments x
About this book xi
About the author xiv

Welcome to Get Programming
with F#! 1

Unit 1

F# AND VISUAL STUDIO

Lesson 1 The Visual Studio experience 17

Lesson 2 Creating your first F# program 25

Lesson 3 The REPL—changing how we
develop 34

Unit 2

HELLO F#

Lesson 4 Saying a little, doing a lot 47

Lesson 5 Trusting the compiler 58

Lesson 6 Working with immutable data 70

Lesson 7 Expressions and statements 81

Lesson 8 Capstone 1 92

Unit 3

TYPES AND FUNCTIONS

Lesson 9 Shaping data with tuples 101

Lesson 10 Shaping data with records 111

Lesson 11 Building composable functions 125

Lesson 12 Organizing code without classes 138

Lesson 13 Achieving code reuse in F# 149

Lesson 14 Capstone 2 160

Unit 4

COLLECTIONS IN F#

Lesson 15 Working with collections in F# 173

Lesson 16 Useful collection functions 186

Lesson 17 Maps, dictionaries, and sets 197

Lesson 18 Folding your way to success 206

Lesson 19 Capstone 3 219

Unit 5

THE PIT OF SUCCESS WITH THE F# TYPE
SYSTEM

Lesson 20 Program flow in F# 231

Lesson 21 Modeling relationships in F# 244

Lesson 22 Fixing the billion-dollar mistake 257

Lesson 23 Business rules as code 270

Lesson 24 Capstone 4 284

Unit 6

LIVING ON THE .NET PLATFORM

Lesson 25 Consuming C# from F# 299

Lesson 26 Working with NuGet packages 310

www.itbook.store/books/9781617293993

https://itbook.store/books/9781617293993

iv Contents

Lesson 27 Exposing F# types and functions
to C# 321

Lesson 28 Architecting hybrid language
applications 331

Lesson 29 Capstone 5 342

Unit 7

WORKING WITH DATA

Lesson 30 Introducing type providers 355

Lesson 31 Building schemas from live data 365

Lesson 32 Working with SQL 376

Lesson 33 Creating type provider-backed
APIs 388

Lesson 34 Using type providers in the real
world 401

Lesson 35 Capstone 6 411

Unit 8

WEB PROGRAMMING

Lesson 36 Asynchronous workflows 425

Lesson 37 Exposing data over HTTP 439

Lesson 38 Consuming HTTP data 453

Lesson 39 Capstone 7 464

Unit 9

UNIT TESTING

Lesson 40 Unit testing in F# 477

Lesson 41 Property-based testing in F# 489

Lesson 42 Web testing 501

Lesson 43 Capstone 8 511

Unit 10

WHERE NEXT?

Appendix A The F# community 521

Appendix B F# in my organization 527

Appendix C Must-visit F# resources 537

Appendix D Must-have F# libraries 543

Appendix E Other F# language features 556

Index 564

www.itbook.store/books/9781617293993

https://itbook.store/books/9781617293993

355

30LESSON

INTRODUCING TYPE PROVIDERS

Welcome to the world of data! The first lesson of this unit will

 Gently introduce you to type providers
 Get you up to speed with the most popular type provider, FSharp.Data

After this lesson, you’ll be able to work with external data sources in various formats
more quickly and easily than you’ve ever done before in .NET—guaranteed!

30.1 Understanding type providers

Type providers are a language feature first introduced in F# 3.0:

An F# type provider is a component that provides types, properties, and methods for use in your
program. Type providers are a significant part of F# 3.0 support for information-rich
programming.

—https://docs.microsoft.com/en-us/dotnet/articles/fsharp/tutorials/type-providers/index

At first glance, this sounds a bit fluffy. You already know what types, properties, and
methods are. And what does information-rich programming mean? The short answer is to
think of type providers as T4 templates on steroids—a form of code generation, but one
that lives inside the F# compiler. Confused? Read on.

www.itbook.store/books/9781617293993

https://docs.microsoft.com/en-us/dotnet/articles/fsharp/tutorials/type-providers/index
https://itbook.store/books/9781617293993

356 Lesson 30 Introducing type providers

Let’s look at a somewhat holistic view of type providers first, before diving in and work-
ing with one to see what the fuss is all about. You might already be familiar with the
notion of a compiler that parses C# (or F#) code and builds IL from which you can run
applications, and if you’ve ever used Entity Framework (particularly the earlier ver-
sions) or old-school SOAP web services in Visual Studio, you’re familiar with the idea of
code generation tools such as T4 templates. These are tools that can generate C# code
from another language or data source, as depicted in figure 30.1.

In this example, Entity Framework has a tool that can read a SQL database schema and
generate an .edmx file—an XML representation of a database. From here, a T4 template
is used to generate C# classes that map back to the SQL database.

Ultimately, T4 templates and the like, although useful, are awkward to use. For exam-
ple, you need to attach them into the build system to get them up and running, and they
use a custom markup language with C# embedded in them; they’re not great to work
with or distribute.

At their most basic, type providers are just F# assemblies (which anyone can write) that
can be plugged into the F# compiler, and can then be used at edit time to generate entire
type systems for you to work with as you type. In a sense, type providers serve a similar
purpose to T4 templates, except they’re much more powerful, more extensible, more
lightweight to use, and extremely flexible. They can be used with what I call live data
sources, and also offer a gateway not just to data sources but also to other programming
languages, as shown in figure 30.2.

Unlike T4 templates, type providers can affect type systems without rebuilding the pro-
ject, because they run in the background as you write code. Dozens, if not hundreds, of
type providers are available, from ones that work with simple flat files, to relational
SQL databases, to cloud-based data storage repositories such as Microsoft Azure Stor-
age or Amazon Web Services S3. The term information-rich programming refers to the
concept of bringing disparate data sources into the F# programming language in an
extensible way.

Don’t worry if that sounds a little confusing. You’ll take a look at your first type pro-
vider in just a second.

T4 template.edmx file C# entity model SQL database

Figure 30.1 Entity Framework database-first code generation process

www.itbook.store/books/9781617293993

https://itbook.store/books/9781617293993

357Working with your first type provider

30.2 Working with your first type provider

Let’s look at a simple example of a data access challenge, not unlike what you looked at
in lesson 13. You’ll work with soccer results, except that rather than working with an in-
memory dataset, you’ll work with a larger, external data source—a CSV file, located in
learnfsharp/data/ FootballResults.csv. You need to answer the following question:
which three teams won at home the most over the whole season?

F# compiler /
type system

 R type
provider

R API
surface area

 JSON document XML document CSV document

 SQL database SQL type
provider

FSharp Data
type provider

Figure 30.2 A set of F# type providers with supported data sources

Quick check 30.1

1 What is a type provider?
2 How do type providers differ from T4 templates?
3 Is the number of type providers fixed?

QC 30.1 answer
1 A flexible code generation mechanism supported by the F# compiler.
2 Type providers are supported within the F# compiler directly, and allow edit-time type generation;

there’s no code generation as with T4 templates.
3 No. Type providers can be written, downloaded, and added to your applications as separate,

reusable components.

www.itbook.store/books/9781617293993

https://itbook.store/books/9781617293993

358 Lesson 30 Introducing type providers

30.2.1 Working with CSV files today

Let’s first think about the typical process that you might use to answer this question, as
shown in figure 30.3.

Before you can even begin to perform the calculation, you need to understand the data.
This usually means looking at the source CSV file in Excel or a similar program, and
then designing a C# type to match the data in the CSV. Then, you do all of the usual boil-
erplate parsing: opening a handle to the file, skipping the header row, splitting on com-
mas, pulling out the correct columns, and parsing into the correct data types. Only after
doing all of that can you start to work with the data and produce some business value.
Most likely, you’ll use a console application to get the results, too. This entire process is
more akin to typical software engineering—not a great fit when you want to explore
data quickly and easily.

30.2.2 Introducing FSharp.Data

You could quite happily perform the preceding steps in F#; at least using the REPL
affords you a more exploratory way of development. But that process wouldn’t remove
the whole boilerplate element of parsing the file, and this is where your first type pro-
vider comes in: FSharp.Data.

FSharp.Data is an open source, freely distributable NuGet package designed to provide
generated types when working with data in CSV, JSON, or XML formats.

Using scripts for the win

At this point, I’m going to advise you to move away from heavyweight solutions and
start to work exclusively with standalone scripts; this fits much better with what you’re
going to be doing. You’ll notice in the code repository a build.cmd file—run it. This
command uses Paket to download NuGet packages into the packages folder, which you
can then reference directly in your scripts. This means you don’t need a project or solu-
tion to start coding—you can simply create scripts and jump right in. I recommend cre-
ating your scripts in the src/code-listings/ folder (or another folder at the same level,

 Understand
source data

in Excel

Create C#
POCO

 Skip
header row

 Convert
source rows
into POCOs

Perform
business

logic

Figure 30.3 Steps to parse a CSV file in order to perform a calculation on it

www.itbook.store/books/9781617293993

https://itbook.store/books/9781617293993

359Working with your first type provider

such as src/learning/) so that the package references shown in the listings here work
without needing changes.

Working with CSV files

Let’s look at our first experiment with a type provider, the CSV type provider in
FSharp.Data, and perform the analysis that we discussed at the start of this section.

Now you try

You’ll start by doing some simple data analysis over a CSV file:

1 Create a new standalone script in Visual Studio by choosing File > New. You
don’t need a solution here; remember that a script can work standalone.

2 Save the newly created file into an appropriate location as described in “Scripts
for the win.”

3 Enter the following code.

#r @"..\..\packages\FSharp.Data\lib\net40\FSharp.Data.dll"
open FSharp.Data
type Football = CsvProvider< @"..\..\data\FootballResults.csv">
let data = Football.GetSample().Rows |> Seq.toArray

That’s it. You’ve now parsed the data, converted it into a type that you can consume
from F#, and loaded it into memory. Don’t believe me? Check out figure 30.4.

Listing 30.1 Working with CSV files using FSharp.Data

Referencing the
FSharp.Data assembly

Connecting to the CSV file
to provide types based on

the supplied file

Loading in all data from
the supplied CSV file

Figure 30.4 Accessing a provided type from FSharp.Data

www.itbook.store/books/9781617293993

https://itbook.store/books/9781617293993

360 Lesson 30 Introducing type providers

You now have full IntelliSense to the dataset. That’s it! You don’t have to manually parse
the dataset; that’s been done for you. You also don’t need to figure out the types; the
type provider will scan through the first few rows and infer the types based on the con-
tents of the file! Rather than using a tool such as Excel to understand the data, you can
now begin to use F# as a tool to both understand and explore your data.

Visualizing data

While we’re at it, let’s also look at an easy-to-use F#-friendly charting library, XPlot. This
library provides access to charts available in Google Charts as well as Plotly. You’ll use
the Google Charts API here, which means adding dependencies to XPlot.GoogleCharts
(which also brings down the Google.DataTable.Net.Wrapper package):

1 Add references to both the XPlot.GoogleCharts and Google.DataTable.Net.Wrap-
per assemblies. If you’re using standalone scripts, both packages will be in the
packages folder after running build.cmd. Use #r to reference the assembly inside
one of the lib/net folders.

2 Open the XPlot.GoogleCharts namespace.
3 Execute the following code to calculate the results and plot them as a chart, as

shown in figure 30.5.

Backtick members
You’ll see in figure 30.4, as well as from the code when you try it out yourself, that the
fields listed have spaces in them! It turns out that this isn’t a type provider feature, but
one that’s available throughout F# called backtick members. Just place a double backtick
(``) at the beginning and end of the member definition, and you can put spaces, num-
bers, or other characters in the member definition. Visual Studio doesn’t correctly
provide IntelliSense for these in all cases (for example, let-bound members on modules),
but it works fine on classes and records. You’ll see some interesting uses for this when
dealing with unit testing.

www.itbook.store/books/9781617293993

https://itbook.store/books/9781617293993

361Working with your first type provider

data
|> Seq.filter(fun row ->
 row.``Full Time Home Goals`` > row.``Full Time Away Goals``)
|> Seq.countBy(fun row -> row.``Home Team``)
|> Seq.sortByDescending snd
|> Seq.take 10
|> Chart.Column
|> Chart.Show

In a few lines of code, you were able to open a CSV file you’ve never seen, explore the
schema of it, perform an operation on it, and then chart it in less than 20 lines of code—
not bad! This ability to rapidly work with and explore datasets that you haven’t even
seen before, while still allowing you to interact with the full breadth of .NET libraries
that are out there, gives F# unparalleled abilities for bringing in disparate data sources
to full-blown applications.

Listing 30.2 Charting the top ten teams for home wins

Figure 30.5 Visualizing data sourced from the CSV type provider

countBy generates a
sequence of tuples (team
vs. number of wins).

Converting the sequence
of tuples into an XPlot
Column Chart

Showing the chart in a
browser window

www.itbook.store/books/9781617293993

https://itbook.store/books/9781617293993

362 Lesson 30 Introducing type providers

30.2.3 Inferring types and schemas

One of the biggest differences in terms of mind-set when working with type providers
is the realization that the type system is driven by an external data source. This schema
may be inferred, as you saw with the CSV provider. Let’s see a quick example of how
this can affect your development process:

1 In your script, change the data source for the CSVProvider from FootballResults
.csv to FootballResultsBad.csv. This version of the CSV file has had the contents
of the Away Goals column changed from numbers to strings.

2 You’ll immediately notice a compile-time error within your query, as shown in
figure 30.6.

This is because the type provider has inferred the types based on the contents of the
sheet.

Type erasure
The vast majority of type providers fall into the category of erasing type providers. The
upshot of this is that the types generated by the provider exist only at compile time. At
runtime, the types are erased and usually compile down to plain objects; if you try to use
reflection over them, you won’t see the fields that you get in the code editor.

One of the downsides is that this makes them extremely difficult (if not impossible) to
work with in C#. On the flip side, they're extremely efficient. You can use erasing type pro-
viders to create type systems with thousands of types without any runtime overhead,
because at runtime they’re of type Object.

Generative type providers allow for runtime reflection, but are much less commonly used
(and from what I understand, much harder to develop).

Figure 30.6 Changes in inferred schema cause compile-
time errors.

www.itbook.store/books/9781617293993

https://itbook.store/books/9781617293993

363Working with your first type provider

This point is crucial to grasp, within the context of not only a script, but also a full-
blown application. Imagine you’re compiling your application off a CSV file provided
by your customer, and one day that customer provides you with a new version of the
format. You can supply the new file to your code and instantly know where incompati-
bles in your code are; any breaking changes won’t compile. This sort of instant feedback
is much quicker than either unit tests or runtime errors. Instead, you’re using the com-
piler and type system—the earliest possible stage—to show you exactly where code
breaks. Also, in case you’re wondering, type providers support the ability to redirect
from one file to another so that you can compile against one but run against another.
You’ll deal with this in the coming lessons.

Finally, note that when it comes to schema inference, some type providers work differ-
ently from others. For example, FSharp.Data allows you to manually override the
schema by supplying a custom argument to the type provider. Others can use some
form of schema guidance from the source system. For example, SQL Server provides
rich schema information from which a type provider doesn’t need to infer types at all.

Writing your own type providers?
Sorry—but this book doesn’t cover how to write your own type providers! The truth is that
they’re not easy to develop—particularly testing them while you develop them—but a few
decent resources are worth looking at, such as the Starter Pack (https://github
.com/fsprojects/FSharp.TypeProviders.StarterPack), as well as online video courses. If
you’re interested in learning how to write your own, I strongly advise you to look at some
of the simpler ones to start with, or try to contribute to one of the many open source
type providers; this is probably the best way to learn how they work.

Quick check 30.2

1 What are erased types?
2 What are backtick members?

QC 30.2 answer
1 Erased types are types that exist at compile-time only; at runtime, they’re “erased” to objects.
2 Backtick members are members of a type surrounded with double backticks, which allow you to

enter spaces and characters that would normally be forbidden in the name.

www.itbook.store/books/9781617293993

https://github.com/fsprojects/FSharp.TypeProviders.StarterPack
https://github.com/fsprojects/FSharp.TypeProviders.StarterPack
https://github.com/fsprojects/FSharp.TypeProviders.StarterPack
https://itbook.store/books/9781617293993

364 Lesson 30 Introducing type providers

Summary

In this lesson, you took your first look at type providers. The remainder of this unit will
introduce you to other forms of type providers and give you an idea of how far they can
go. In this lesson

 You saw what type providers are at a high level and learned about some of their
uses.

 You explored the FSharp.Data package and saw how to work with CSV files.
 You saw the XPlot library, a charting package that’s designed to work well with F#.

Try this

Find any CSV file that you have on your PC. Try to parse it by using the CSV type pro-
vider and perform simple operations on it, such as list aggregation. Or download a CSV
containing data and from the internet and try with that!

Alternatively, try creating a more complex query to compare the top five teams that
scored the most goals and display it in a pie chart.

www.itbook.store/books/9781617293993

https://itbook.store/books/9781617293993

www.itbook.store/books/9781617293993

https://itbook.store/books/9781617293993

	CoverF
	Copyright
	TOC
	SampleLesson30
	CoverB

