
SAMPLE
CHAPTER

www.itbook.store/books/9781617293993

https://itbook.store/books/9781617293993

Get Programming with F#
by Isaac Abraham

Lesson 6

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617293993

https://itbook.store/books/9781617293993

iii

Contents

Foreword v
Preface viii
Acknowledgments x
About this book xi
About the author xiv

Welcome to Get Programming
with F#! 1

Unit 1

F# AND VISUAL STUDIO

Lesson 1 The Visual Studio experience 17

Lesson 2 Creating your first F# program 25

Lesson 3 The REPL—changing how we
develop 34

Unit 2

HELLO F#

Lesson 4 Saying a little, doing a lot 47

Lesson 5 Trusting the compiler 58

Lesson 6 Working with immutable data 70

Lesson 7 Expressions and statements 81

Lesson 8 Capstone 1 92

Unit 3

TYPES AND FUNCTIONS

Lesson 9 Shaping data with tuples 101

Lesson 10 Shaping data with records 111

Lesson 11 Building composable functions 125

Lesson 12 Organizing code without classes 138

Lesson 13 Achieving code reuse in F# 149

Lesson 14 Capstone 2 160

Unit 4

COLLECTIONS IN F#

Lesson 15 Working with collections in F# 173

Lesson 16 Useful collection functions 186

Lesson 17 Maps, dictionaries, and sets 197

Lesson 18 Folding your way to success 206

Lesson 19 Capstone 3 219

Unit 5

THE PIT OF SUCCESS WITH THE F# TYPE
SYSTEM

Lesson 20 Program flow in F# 231

Lesson 21 Modeling relationships in F# 244

Lesson 22 Fixing the billion-dollar mistake 257

Lesson 23 Business rules as code 270

Lesson 24 Capstone 4 284

Unit 6

LIVING ON THE .NET PLATFORM

Lesson 25 Consuming C# from F# 299

Lesson 26 Working with NuGet packages 310

www.itbook.store/books/9781617293993

https://itbook.store/books/9781617293993

iv Contents

Lesson 27 Exposing F# types and functions
to C# 321

Lesson 28 Architecting hybrid language
applications 331

Lesson 29 Capstone 5 342

Unit 7

WORKING WITH DATA

Lesson 30 Introducing type providers 355

Lesson 31 Building schemas from live data 365

Lesson 32 Working with SQL 376

Lesson 33 Creating type provider-backed
APIs 388

Lesson 34 Using type providers in the real
world 401

Lesson 35 Capstone 6 411

Unit 8

WEB PROGRAMMING

Lesson 36 Asynchronous workflows 425

Lesson 37 Exposing data over HTTP 439

Lesson 38 Consuming HTTP data 453

Lesson 39 Capstone 7 464

Unit 9

UNIT TESTING

Lesson 40 Unit testing in F# 477

Lesson 41 Property-based testing in F# 489

Lesson 42 Web testing 501

Lesson 43 Capstone 8 511

Unit 10

WHERE NEXT?

Appendix A The F# community 521

Appendix B F# in my organization 527

Appendix C Must-visit F# resources 537

Appendix D Must-have F# libraries 543

Appendix E Other F# language features 556

Index 564

www.itbook.store/books/9781617293993

https://itbook.store/books/9781617293993

70

6LESSON

WORKING WITH IMMUTABLE DATA

Working with immutable data is one of the more difficult aspects of functional pro-
gramming to deal with, but as it turns out, after you get over the initial hurdle, you’ll be
surprised just how easy it is to write entire applications working with purely immutable
data structures. It also goes hand in hand with many other F# features you’ll see, such as
expression-based development. In this lesson, you’ll learn

 The basic syntax for working with immutable and mutable data in F#
 Some reasons you should consider immutability by default in software develop-

ment today
 Simple examples of working with immutable values to manage changing state

6.1 Working with mutable data—a recap

Let’s start by thinking about some of the issues we come up against but often take for
granted as simply “the way things are.” Here are a few examples that I’ve either seen
firsthand or fallen foul of myself.

www.itbook.store/books/9781617293993

https://itbook.store/books/9781617293993

71Working with mutable data—a recap

6.1.1 The unrepeatable bug

Say you’re developing an application, and one of the test team members comes up to
you with a bug report. You walk over to that person’s desk and see the problem happen-
ing. Luckily, your tester is running in Visual Studio, so you can see the stack trace and so
on. You look through the locals and application state, and figure out why the bug is
showing up. Unfortunately, you have no idea how the application got into this state in
the first place; it’s the result of calling a number of methods repeatedly over time with
some shared mutable state stored in the middle.

You go back to your machine and try to get the same error, but this time you can’t repro-
duce it. You file a bug in your work-item tracking system and wait to see if you can get
lucky and figure out how the application got into this state.

6.1.2 Multithreading pitfalls

How about this one? You’re developing an application and have decided to use multi-
threading because it’s cool. You recently heard about the Task Parallel Library in .NET,
which makes writing multithreaded code a lot easier, and also saw that there’s a Parallel
.ForEach() method in the BCL. Great! You’ve also read about locking, so you carefully put
locks around the bits of the shared state of your application that are affected by the mul-
tithreaded code.

You test it locally and even write some unit tests. Everything is green! You release, and
two weeks later find a bug that you eventually trace to your multithreaded code. You
don’t know why it happened, though; it’s caused by a race condition that occurs only
under a specific load and a certain ordering of messages. Eventually, you revert your
code to a single-threaded model.

6.1.3 Accidentally sharing state

Here’s another one. You’ve working on a team and have designed a business object
class. Your colleague has written code to operate on that object. You call that code, sup-
plying an object, and then carry on. Sometime later, you notice a bug in your applica-
tion: the state of the business object no longer looks as it did previously!

It turns out that the code your colleague wrote modified a property on the object with-
out you realizing it. You made that property public only so that you could change it; you
didn’t intend or expect other bits of code to change the state of it! You fix the problem by
making an interface for the type that exposes the bits that are “really” public on the
type, and give that to consumers instead.

www.itbook.store/books/9781617293993

https://itbook.store/books/9781617293993

72 Lesson 6 Working with immutable data

6.1.4 Testing hidden state

Or maybe you’re writing unit tests. You want to test a specific method on your class, but
unfortunately, to run a specific branch of that method, you first need to get the object
into a specific state. This involves mocking a bunch of dependencies that are needed to
run the other methods; only then can you run your method. Then, you try to assert
whether the method worked, but the only way to prove that the method worked prop-
erly is to access a shared state that’s private to the class. Your deadlines are fast
approaching, so you change the accessibility of the private field to be Internal, and make
internals visible to your test project.

6.1.5 Summary of mutability issues

All of these problems are real issues that occur on a regular basis, and they’re nearly
always due to mutability. The problem is often that we simply assume that mutability is
a way of life, something we can’t escape, and so look for other ways around these sorts
of issues—things like encapsulation, hacks such as InternalsVisibleTo, or one of the many
design patterns out there. It turns out that working with immutable data solves many of
these problems in one fell swoop.

6.2 Being explicit about mutation

So far, you’ve only looked at simple values in F#, but even these show that by default,
values are immutable. As you’ll see in later lessons, this also applies to your own cus-
tom F# types (for example, Records).

6.2.1 Mutability basics in F#

You’ll now see immutability in action. Start by opening a script file and entering the
following code.

let name = "isaac"
name = "kate"

You’ll notice when you execute this code, you receive the following output in FSI:

val name : string = "isaac"
val it : bool = false

Listing 6.1 Creating immutable values in F#

Creating an immutable value

Trying to assign “kate” to name

www.itbook.store/books/9781617293993

https://itbook.store/books/9781617293993

73Being explicit about mutation

The false doesn’t mean that the assignment has somehow failed. It occurs because in F#,
the = operator represents equality, as == does in C#. All you’ve done is compare isaac
with kate, which is obviously false.

How do you update or mutate a value? You use the assignment operator, <-. Unfortu-
nately, trying to insert that into your code leads to an error, as shown next.

name <- "kate"
error FS0027: This value is not mutable

Oops! This still doesn’t work. It turns out that you need to take one final step to make a
value mutable, which is to use the mutable keyword.

let mutable name = "isaac"
name <- "kate"

If you installed and configured Visual F# Power Tools, you’ll notice that the name value is
now automatically highlighted in red as a warning that this is a mutable value. You can
think of this as the inverse of C# and VB .NET, whereby you use variables by default, and
explicitly mark individual items as immutable values by using the readonly keyword.

The reason that F# makes this decision is to help guide you down what I refer to as the
pit of success; you can use mutation when needed, but you should be explicit about it and
should do so in a carefully controlled manner. By default you should go down the route
of adopting immutable values and data structures.

As it turns out, you can easily develop entire applications (and I have, with web front ends,
SQL databases, and so forth) by using only immutable data structures. You’ll be surprised
when you realize how little you need mutable data, particularly in request/response-style
applications such as web applications, which are inherently stateless.

6.2.2 Working with mutable objects

Before we move on to working with immutable data, here’s a quick primer on the syntax
for working with mutable objects. I don’t recommend you create your own mutable
types, but working with the BCL is a fact of life as a .NET developer, and the BCL is
inherently OO-based and filled with mutable structures, so it’s good to know how to
interact with them.

Listing 6.2 Trying to mutate an immutable value

Listing 6.3 Creating a mutable variable

Defining a mutable variable

Assigning a new value to the variable

www.itbook.store/books/9781617293993

https://itbook.store/books/9781617293993

74 Lesson 6 Working with immutable data

Now you try

Start by creating a good old Windows Form, displaying it, and then setting a few prop-
erties of the window.

open System.Windows.Forms
let form = new Form()
form.Show()
form.Width <- 400
form.Height <- 400
form.Text <- "Hello from F#!"

Notice that you can see the mutation of the form happen through the REPL. If you exe-
cute the first three lines, you start with an empty form, but after executing the final line,
the title bar will immediately change, as shown in figure 6.1.

Listing 6.4 Working with mutable objects

Creating the form object

Mutating the form by
using the <- operator

Mutable bindings and objects
Most objects in the BCL, such as a Form, are inherently mutable. Notice that the form
symbol is immutable, so the binding symbol itself can’t be changed. But the object it
refers to is itself mutable, so properties on that object can be changed!

Figure 6.1 Creating a simple
form from an F# script

www.itbook.store/books/9781617293993

https://itbook.store/books/9781617293993

75Modeling state

F# also has a shortcut for creating mutable data structures in a way that assigns all
properties in a single action. This shortcut is somewhat similar to object initializers in
C#, except that in F# it works by making properties appear as optional constructor
arguments.

open System.Windows.Forms
let form = new Form(Text = "Hello from F#!", Width = 300, Height = 300)
form.Show()

If actual constructor arguments are required as well, you can put them in there at the
same time (VS2015 sadly doesn’t give IntelliSense for setting mutable properties in the
constructor).

6.3 Modeling state

Let’s now look at the work needed to model data with state without resorting to mutation.

6.3.1 Working with mutable data

Working with mutable data structures in the OO world follows a simple model: you cre-
ate an object, and then modify its state through operations on that object, as depicted in
figure 6.2.

Listing 6.5 Shorthand for creating mutable objects

Creating and mutating properties
of a form in one expression

Quick check 6.1

1 What keyword do you use to mark a value as mutable in F#?
2 What is the difference between = in C# and F#?
3 What keyword do you use in F# to update the value of a mutable object?

QC 6.1 answer
1 The mutable keyword.
2 In F#, = performs an equality between two values. It can also be used for binding a value to a

symbol. In C#, = always means assignment.
3 F# uses the <- operator to update a mutable value.

www.itbook.store/books/9781617293993

https://itbook.store/books/9781617293993

76 Lesson 6 Working with immutable data

What’s tricky about this model of working is that it can be hard to reason about your
code. Calling a method such as UpdateState() in the preceding example will generally
have no return value; the result of calling the method is a side effect that takes place on
the object.

Now you try

Let’s put this into practice with a simple example: driving a car. You want to be able to
write code that allows you to drive() a car, tracking the amount of petrol (gas) used.
Depending on the distance you drive, you should use up a different amount of petrol.

let mutable petrol = 100.0

let drive(distance) =
 if distance = "far" then petrol <- petrol / 2.0
 elif distance = "medium" then petrol <- petrol - 10.0
 else petrol <- petrol - 1.0

drive("far")
drive("medium")
drive("short")

petrol

Working like this, it’s worth noting a few things:

 Calling drive() has no outputs. You call it, and it silently modifies the mutable
petrol variable; you can’t know this from the type system.

 Methods aren’t deterministic. You can’t know the behavior of a method without
knowing the (often hidden) state. If you call drive("far") three times, the value of
petrol will change every time, depending on the previous calls.

 You have no control over the ordering of method calls. If you switch the order of
calls to drive(), you’ll get a different answer.

Listing 6.6 Managing state with mutable variables

UpdateState()
Stateful
object

Figure 6.2 Mutating
an object repeatedly

Initial state

Modify state through mutation

Repeatedly modify state

Check current state

www.itbook.store/books/9781617293993

https://itbook.store/books/9781617293993

77Modeling state

6.3.2 Working with immutable data

Let’s compare working with mutable data structures with working with immutable
ones, as per figure 6.3.

In this mode of operation, you can’t mutate data. Instead, you create copies of the state
with updates applied, and return that for the caller to work with; that state may be
passed in to other calls that themselves generate new state.

Now rewrite your code to use immutable data.

let drive(petrol, distance) =
 if distance = "far" then petrol / 2.0
 elif distance = "medium" then petrol - 10.0

Listing 6.7 Managing state with immutable values

GenerateNewState()

 Initial state

GenerateNewState()

 Intermediate
state

 Current state Figure 6.3 Generating
new states working with
immutable data

Performance of immutable data
I often hear this question asked: isn’t it much slower to make copies all the time rather
than modify a single object? The answer is yes and no. Yes, it’s slower to copy an object
graph than to make an in-place update. But unless you’re in a tight loop performing mil-
lions of mutations, the cost of doing so is negligible compared to, for example, opening a
database connection. Plus, many languages (including F#) have specific data structures
designed to work with immutable data in a highly efficient manner.

Function explicitly
dependent on state—takes
in petrol and distance, and
returns new petrol

www.itbook.store/books/9781617293993

https://itbook.store/books/9781617293993

78 Lesson 6 Working with immutable data

 else petrol - 1.0

let petrol = 100.0
let firstState = drive(petrol, "far")
let secondState = drive(firstState, "medium")
let finalState = drive(secondState, "short")

There are now a few key changes to the code. The most important is that you aren’t
using a mutable variable for your state any longer, but a set of immutable values. You
“thread” the state through each function call, storing the intermediate states in values
that are then manually passed to the next function call. Working in this manner, you
gain a few benefits immediately:

 You can reason about behavior much more easily. Rather than hidden side effects
on private fields, each method or function call can return a new version of the
state that you can easily understand. This makes unit testing much easier, for
example.

 Function calls are repeatable. You can call drive(50, "far") as many times as you
want, and it will always give you the same result. This is because the only values
that can affect the result are supplied as input arguments; there’s no “global
state” that’s implicitly used. This is known as a pure function. Pure functions have
nice properties, such as being able to be cached or pregenerated, as well as being
easier to test.

 The compiler is able to protect you in this case from accidentally misordering
function calls, because each function call is explicitly dependent on the output of
the previous call.

 You can also see the value of each intermediate step as you “work up” toward the
final state.

Initial state

Storing output
state in a value

Chaining calls
together manually

Passing immutable state in F#
In this example, you’ll see that you’re manually storing intermediate state and explicitly
passing that to the next function call. That’s not strictly necessary, and you’ll see in future
lessons how F# has language syntax to avoid having to do this explicitly.

www.itbook.store/books/9781617293993

https://itbook.store/books/9781617293993

79Modeling state

Now you try

Let’s see how to make some changes to your drive code:

1 Instead of using a string to represent how far you’ve driven, use an integer.
2 Instead of far, check whether the distance is more than 50.
3 Instead of medium, check whether the distance is more than 25.
4 If the distance is > 0, reduce petrol by 1.
5 If the distance is 0, make no change to the petrol consumption. In other words,

return the same state that was provided.

6.3.3 Other benefits of immutable data

Immutable data has a few other benefits that aren’t necessarily obvious from the preced-
ing example:

 When working with immutable data, encapsulation isn’t necessarily as important
as it is when working with mutable data. At times encapsulation is still valuable
(for example, as part of a public API), but on other occasions, making your data
read-only eliminates the need to “hide” your data.

 You’ll see more of this later, but one of the other benefits of working with
immutable data is that you don’t need to worry about locks within a multi-
threaded environment. Because there’s never any shared mutable state, you never
have to be concerned with race conditions. Every thread can access the same
piece of data as often as it likes, as it can never change.

Quick check 6.2

1 How do you handle changes in state when working with immutable data?
2 What is a pure function?
3 What impact does working with immutable data have with multithreading code?

QC 6.2 answer
1 By creating copies of existing data with applied changes.
2 A function that varies based only on the arguments explicitly passed to it.
3 Immutable data doesn’t need to be locked when working across multiple threads.

www.itbook.store/books/9781617293993

https://itbook.store/books/9781617293993

80 Lesson 6 Working with immutable data

Summary

In this lesson

 You learned about areas where mutable data structures can cause problems.
 You saw how immutable data can act as a form of state through copy-and-update

that works particularly well with pure functions, while avoiding side effects to
allow you to more easily reason about your code.

 You saw a simple example of how to create and work with immutable data in F#.

This is only the beginning, and you’ll see examples throughout this book of how
immutable data is a core part of F#. Also important is that F# encourages you to work
with immutable data by default, but because F# is a pragmatic language, it always allows
you to opt out of this by using the mutable keyword and <- operators. This is particularly
useful when working with types from the BCL and/or other libraries written in C# or VB
.NET that are inherently mutable. But just as working with immutable data in C# is a bit
of extra work and not necessarily idiomatic, so the inverse is true in F#.

Try this

1 Try modeling another state machine with immutable data—for example, a kettle
that can be filled with water, which is then poured into a teapot or directly into a
cup.

2 Look at working with BCL classes that are inherently mutable, such as
System.Net.WebClient. Explore various ways to create and modify them.

www.itbook.store/books/9781617293993

https://itbook.store/books/9781617293993

www.itbook.store/books/9781617293993

https://itbook.store/books/9781617293993

	CoverF
	Copyright
	TOC
	SampleLesson06
	CoverB

