Author Picks

Chapters selected by
Dominique D. Guinard and Viad M. Trifa

/I. manning

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Using the Web to Build the IoT

Selections by Dominique D. Guinard
and Vlad M. Trifa

Manning Author Picks

Copyright 2016 Manning Publications
To pre-order or learn more about these books go to www.manning.com

www.itbook.store/books/9781617294006

http://www.manning.com/
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

For online information and ordering of these and other Manning books, please visit
www.manning.com. The publisher offers discounts on these books when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

Email: orders@manning.com
©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

/I/I Manning Publications Co.
20 Baldwin Road Technical
PO Box 761
Shelter Island, NY 11964

Cover designer: Leslie Haimes

ISBN 9781617294006
Printed in the United States of America
12345678910-EBM-2120191817 16

www.itbook.store/books/9781617294006

http://www.manning.com
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

contents

ntroduction v

THE ACCESS LAYER 1

Hello, World Wide Web of Things
Chapter 2 from Building the Web of Things 2

Getting data from clients: data ingestion
Chapter 2 from Streaming Data: Designing the real-time pipeline 34

THE FIND LAYER 59

Enhancing results from search engines
Chapter 6 from Linked Data: Structured Data on the Web 60

THE SHARE LAYER 93

Security

Chapter 10 from Express in Action: Node applications with Express
and its companion tools 94

THE COMPOSE LAYER 116

Example: NYC taxi data
Chapter 6 from Real-World Machine Learning 118

Big data visualization
Chapter 11 from D3.js in Action 134

Index 160

iii

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

mmtroduction

This collection of chapters examines one of most important new waves in computing:
the Internet of Things (IoT)! Capturing the essence of the IoT in one sentence is
nearly impossible. It has become such a hot topic that there are no clear boundaries
between what the IoT is and what it isn’t. Broadly speaking, the IoT vision is of a world
where the internet is much more than the bunch of multimedia content it is today—
where it extends into the physical, real-time world using a myriad of tiny computers.
The simplest definition we can offer is the following: The Internet of Things is a sys-
tem of physical objects that can be discovered, monitored, controlled, or interacted
with by electronic devices that communicate over various networking interfaces and
eventually can be connected to the wider internet.

The concept has been around since 1999, but the IoT has not yet truly material-
ized. Yes, we have smart devices in our homes that can be controlled via mobile
phones. We have smart thermostats that are aware of our location. We have smart
scales that can help us manage our weight and fitness trackers that motivate us to
move. Yet, all these devices largely exist in isolation. To put it bluntly, the Internet of
Things of today is essentially a growing collection of isolated Intranets of Things that
can’t be connected to each other. No need to worry too much—the internet itself
went through a similar phase. It started as a network of computers that used multiple
incompatible protocols to communicate with one another. It formed a network of
connected computers, but without standard ways of building applications on top of
this network the use of the internet was rather limited! Then came the web: a simple
and universal application. The web allowed the internet to evolve from a network of
computers exchanging bits of data to a world-wide service platform accessible through
standard and universally understood protocols such as HTTP. Similarly, the Internet of
Things desperately needs its own application layer to truly blossom. Just like the inter-
net needed the web, the IoT needs a set of standards that applications can use to con-
trol, monitor, and aggregate the data of connected things; otherwise it is likely to
remain an Intranet of isolated Things! We could reinvent the wheel once more, but
because the web proved to be the most scalable, flexible, and versatile application

iv

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

INTRODUCTION v

layer out there, why shouldn’t we reuse it for the IoT? This is what we call the Web of
Things!

The concept of the Web of Things (WoT) is fairly straightforward: it explores how
we can re-use the goodness of the web to make these tiny computers talk together and
push their data to places where it can be leveraged to build truly ground-breaking
applications! To better grasp the different technologies that can be involved in mak-
ing the IoT an integral part of the web, in our book Building the Web of Things, we cre-
ate four layers for the WoT architecture: Access, Find, Share & Secure, and Compose
(see figure 1). Each layer solves a set of problems using web technologies for the layer
above it. For example, the Access layer is all about creating web APIs for Things, while
the Find layer assumes these APIs exist and deals with making them discoverable and
findable on the web.

I
i . A Systems IFTTT Web applications i
i ayer 4: q q]
: Compose integration Physical mashups A !
: WoT-a-Mashup Node-RED Ul generation |
.
o
I Social networks AP tokens TLS DTLS 1
: Layer 3: |
: Share PKI OAuth JWT Delegated |
: Encryption Social WoT authentication |
| T - - T e
b o
: REST Crawler RDFa Web Thing Model JSON-LD |
L 2 |
: alzii; HATEOAS Search engines Semantic Web !
|
: Link header mDNS Schema.org Linked Data |
.
b eeee— 0000
: HTML JSON Proxy RESTAPI |
| Layer 1: |
: Access Webhooks WebSockets HTTP i
[URI/URL Gateway MQTT CoAP 1
e
jEtutuiuitubuiuut b
! NFC 6LoWPAN Thread |
| Networked QR Beacons Bluetooth ZigBee i
! things OF:10) o} : !
EE N Y
| (= } !

Figure 1 The Web of Things architecture stack with its 4 layers.

This architecture probably makes Building the Web of Things the first comprehensive
toolbox for building the WoT. However, each layer could entail an entire book of its
own! That's what this collection of chapters is all about. We've borrowed chapters
from other great Manning books that are spot-on when it comes to illustrating our
WoT architecture and building the application layer of the IoT!

www.itbook.store/books/9781617294006

https://www.manning.com/books/building-the-web-of-things
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

vi INTRODUCTION

A chapter from Streaming Data: Designing the real-time pipeline by Andrew G. Psaltis
builds on the Access layer by looking into data collection, patterns, and protecting
from data loss.

Linked Data: Structured data on the Web by David Wood, Marsha Zaidman, Luke Ruth,
and Michael Hausenblas takes you into the Find layer with an in-depth look at
Resource Description Framework in Attributes.

In the Share layer, we delve into keeping code bug-free, dealing with attacks, and
auditing code with a chapter from Express in Action: Node applications with Express and its
companion tools by Evan M. Hahn.

The final layer, Compose, is illustrated with case study-like examples and in-depth
visualizations from Real-World Machine Learning by Henrik Brink, Joseph W. Richards,
and Mark Fetherolf, and from D3.js in Action by Elijah Meeks.

www.itbook.store/books/9781617294006

https://www.manning.com/books/streaming-data
https://www.manning.com/books/linked-data
https://www.manning.com/books/d3-js-in-action
https://www.manning.com/books/real-world-machine-learning
https://www.manning.com/books/express-in-action
https://www.manning.com/books/express-in-action
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

The Access layer

Tle Access layer is the most fundamental because it looks into the way
Things can be connected to the web by offering a web API. This layer is responsi-
ble for turning any Thing into a programmable web Thing that other devices and
applications can easily talk to. The core idea of this level is simple: how can
Things be smoothly integrated into the web by exposing their services through a
RESTful API using HTTP, built on top of TCP/IP as well as the JSON data format.
The Access layer also describes how to use WebSockets to accommodate the fact
that a number of IoT use cases are real-time or event-driven. Because not all
Things will be able to speak web protocols or even be connected to the internet,
the Access layer also looks into the web integration of non-web and non-internet
Things using several integration patterns such as gateways.

To better illustrate why bringing Things to the web is really powerful, we
picked the chapter "Hello, World Wide Web of Things" from Building the Web of
Things. In this chapter, you'll see how you can program applications using
embedded devices with simple and powerful JavaScript code instead of having to
use complex embedded programming!

www.itbook.store/books/9781617294006

https://www.manning.com/books/building-the-web-of-things
https://www.manning.com/books/building-the-web-of-things
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Chapter 2 from Building the Web of Things
by Dominique D. Guinard and Vlad M. Trifa

Hello, World Wide Web
of Things

This chapter covers

= A sneak peek at the different levels of the Web of
Things architecture

= Accessing devices with HTTR URLs, and browsers
= Working with REST APIs to expose JSON data

= Learning about the idea of semantics on the web
= Creating your first physical mashup

Before we dive head first into the Web of Things architecture and show how to
build it from scratch, we want to give you a taste of what the Web of Things looks
like. This chapter is structured as a set of exercises where you’ll build tiny web
applications that use data generated by a real device. Each exercise will be a
smooth introduction to the many problems and technical issues that you'll face
when building web-connected devices and the applications around them.

In this chapter, you’ll have the opportunity to get your hands dirty and code some
simple (and less simple) Web of Things applications. Oh, you don’t have a device
yet? No problem; just use ours! To make it possible for you to do those exercises

www.itbook.store/books/9781617294006

https://www.manning.com/books/building-the-web-of-things
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Meet a Web of Things device 3

without having a real device nearby, we connected our own device to the web so you can
connect to it from your computer. Of course, if you already have a device, you can also
download the source code used in this chapter and run it on your own device. How to
run the code on the device will be detailed later, in chapter 7.

2.1 Meet a Web of Things device
This chapter is organized as a series of short and sweet exercises that illustrate the var-
ious difficulties and problems you’ll learn how to solve in the next chapters. Each exer-
cise allows you to interact with an actual Web of Things device in our office that’s live
24/7. This will allow you to do the exercises without having a real device next to you.

Temperature and humidity sensor LCD

PIR sensor The Pi The camera

Figure 2.1 The Raspberry Pi and webcam you are accessing as they are set up in our London office

The device in our office is the Raspberry Pi 2 (or just Pi for friends and family) shown
in figure 2.1, which we’ll describe in detail in chapter 4. If you’ve never seen one, you
can simply think of a credit card—sized computer board with a few sensors attached to
it and connected to our local network and the web via an Ethernet cable. In chapter 7,
we’ll describe what gateways are in the Web of Things and help you build your own,
but for now just imagine it’s a somewhat intelligent proxy or, in more detail, a server
that abstracts the access to other servers, hiding some of the complexity to the clients,
as shown in figure 2.2.

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

211

CHAPTER 2 Hello, World Wide Web of Things

Our office in London

. devices.webofthings.io/pi/sensors/pir
¥ Passive infrared sensor

Your house

devices.webofthings.io/camera
HTTP A Wi-Fi connected camera

= HTTP ,@/
: devices.webofthings.io e devices.webofthings.io/pi

Your HTTP Public URL of the M Raspberry Pi 2 with LCD and sensors

client application Pi in our office \

v

A\ J
devices.webofthings.io/pi/sensors/temperature
Temperature sensor

-

Figure 2.2 The setup of devices and sensors used in the examples of this chapter

At the time of writing, we have a liquid crystal display (LCD), a camera, a temperature
sensor, and a PIR sensor connected to our Raspberry Pi. We’ll keep adding various
sensors and actuators to it over time, so you're welcome to experiment and go well
beyond the examples we provide here. You’ll soon realize that the various techniques
and patterns described in this book will allow you to quickly extend and customize the
examples we provide to any device, sensor, or object you can think of.

The suspect: Raspberry Pi

We’ll introduce the Raspberry Pi in greater detail in chapter 4, so all you need to
understand for now is that a Pi is a small computer to which you can connect multiple
sensors and accessories. It offers all the features you would expect from a desktop
computer but with a lower power consumption and smaller form factor. Moreover,
you can attach all sorts of digital and analog sensors or actuators to it using the
input/output (I/0) pins. Actuatoris an umbrella term for any element attached to a
device that has an effect on the real world, for example, turning on/off some LEDs,
displaying a text on an LCD panel, rotating an electric motor, unlocking a door, play-
ing some music, and so on. In the Web of Things, just as you send write requests to a
web API using HTTP, you do the same to activate an actuator. Now back to our exer-
cises. The first thing you need to do is to download the examples used in these pages
from our repository here: http://book.webofthings.io.

You can check out the repository on your own computer, and you’ll find in it a few
folders—one for each chapter. The exercises in this chapter are located in the folder
chapter2-hello-wot/client. If you wonder about the code for the server, worry not!
This is what you’ll learn how to build in the rest of the book.

www.itbook.store/books/9781617294006

http://book.webofthings.io
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Exercise I—Browse a device on the Web of Things 5

How to get the code examples in this chapter

We use the GitHub? service as a syncing server between our Pi and your computer.
As an alternative, the Bitbucket® service works and is configured in a similar manner.
Both services are based on the Git source version control system, and the source
code for all the chapters is available from GitHub (here’s the link:
http://book.webofthings.io). The examples for this chapter are located in the
chapter2-hello-wot folder.

If you're unfamiliar with Git and its commands, don’t worry: there are plenty of short
descriptions on the web, but here are the most vital commands to work with it:

= git clone—Fetches a version of a repository locally. For the book code you
need to use the recursive option that will clone all the sub-projects as well:
git clone https://github.com/webofthings/wot-book --recursive.

= git commit -a -m "your message"—Commits code changes locally.

" git push origin master—Pushes the last commits to the remote reposi-
tory (origin) on the master branch. can

a GitHub is a widely popular, web-based, source code management system. Many open source
projects are hosted on GitHub, because, well, it's pretty awesome. Here’s an excellent intro
to GitHub: http://bit.ly/intro-git.

b https://bitbucket.com

2.2 Exercise 1—Browse a device on the Web of Things

We’ll start our exploration of the Web of Things with a simple exercise where you have
almost nothing to do but click a few links. The first point we want to illustrate is that
on the Web of Things, devices can easily offer simultaneously a visual user interface
(web pages) to allow humans to control and interact with them and an application
programming interface (API) to allow machines or applications to do the same.

2.2.1 Part 1—The web as user interface

In this first exercise, you’ll simply use your browser to interact with some of the real
Web of Things devices connected in our office. First, have a glimpse of what the setup
in our office looks like through a webcam; see figure 2.3. Open the following link in
your favorite browser to access the latest image taken by the web cam: http://devices
.webofthings.io/camera/sensors/picture. This link will always return the latest screen-
shot taken by our camera so you can see the devices you will play with (try it at night—
at night it’s even more fun!). You won’t be seeing the camera itself though.

You probably noticed that the URL you typed had a certain path structure. Let’s play
abitwith this structure and go back to the root of this URL, where you’ll see the homepage
of the gateway that allows you to browse through the devices in our office (figure 2.4).
Simply enter the following URL in your browser: http://devices.webofthings.io.

www.itbook.store/books/9781617294006

http://devices.webofthings.io
http://book.webofthings.io
http://devices.webofthings.io/camera/sensors/picture
http://devices.webofthings.io/camera/sensors/picture
https://bitbucket.com
http://bit.ly/intro-git
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

CHAPTER 2 Hello, World Wide Web of Things

Sensor: Camera Sensor

Description: Takes a still picture with the camera.

1. Type: image
2. Recorded at: 2016-01-06T14:28:32.6912
3. Value: http://devices.webofthings.io:9080/snapshot.cgiTuser=snapshots&pwd=4MXTSrOgH

Sensor Value

Your logo here?

Your text here!

Figure 2.3 The web page of the camera used in our setup. The image is a live screenshot
taken by the camera.

Home

Hello!

Welcome to the Web of Things gateway.

Devices

The various devices connected to this gateway:
1. My WoT Raspberry Pl: A simple WoT-connected Raspberry Pl for the WoT book.
2. My WoT Camera: A simple WoT-connected camera,

The WoT Pi

Figure 2.4 The HTML homepage of the gateway of our WoT device. The two hyperlinks at the
bottom of the page allow you to access the pages of the devices connected to the gateway.

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Exercise I—Browse a device on the Web of Things 7

This URL will always redirect you to the root page of the gateway running in our office,
which shows the list of devices attached to it. Here, you can see that two devices are
attached to the gateway:

= A Raspberry Pi with various sensors and actuators
= A webcam (the one you accessed earlier)

Note that this page is automatically generated based on which physical devices we
have attached to it, so you might see a few more devices or sensors as we attach them.
Yes, although it looks just like any other web page, it’s actually real data served in real
time from real devices that are in a real office!

Now, click the My WoT Raspberry Pi link to access the root page of the device
itself. Because you followed a link in your browser, you'll see that the URL has changed
to http://devices.webofthings.io/pi, as shown in figure 2.5.

Device metadata ———" Device Information
evice metadat

Narme My WoT Raspberry Pl
URL Ihitpei/devices, webafthings. iofplf
Description A simple WoT-connected Raspbery Pi for the WaT book.
Tags ["raspborry®,"pi*,"WaT"]

Resources

Thesse ane the sub-slements of this device:

Sensors
F\,, + See Tha list of sensors

o « S The list of actuatons

Actuators
P Links
Other links)
Metadata hl‘.n'.--'wol:ﬂ.‘)‘l‘llr\.‘,"'. io/mata/device
Self salff
Documentation hitpffwebolthings. lo/docs/pdf

User Interface ul!

Figure 2.5 The homepage of the Raspberry Pi. Here as well, you can use the links at the bottom to
browse and explore the various resources offered by this device, for example, its sensors and actuators.

This is another root page—the one of the device this time. In this case, we just
appended /pi to the root URL of the gateway because this page is hosted on the gate-
way. But it would have been equally simple to serve the root page directly from the Pi
and allow you to access the Pi directly (say, using its public IP address). In this case, it
would have been both impractical (because we want to make sure we scale and sup-
port many concurrent users) and insecure (after all, the device is connected to the
LAN of our company office). Using a gateway (a simple software application) outside
our private network solves both those problems without changing the experience
from your point of view, because you're still sending HTTP requests to a URL. Being

www.itbook.store/books/9781617294006

http://devices.webofthings.io/pi
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

8 CHAPTER 2 Hello, World Wide Web of Things

able to do this sort of thing is exactly the point of the Web of Things: leverage the
tools and abstractions that work on the web and use them for physical objects!

Coming back to our device root page, hover with your mouse above the various
links to see their structure, and then click The List of Sensors link. You’ll see the URL
change again to this (figure 2.6): http://devices.webofthings.io/pi/sensors.

My WoT Raspberry Pl > Sensors

Device Information

UAL hittp:fidevices. webofthings ia/pl/
Description A simple WoT-connected Raspberry P1 for the WoT book.
Tags ['raspbarry”,"pi*,"WoT"]

Sensors

Temperature
sensor \T'!:elﬁ!ol'mamilwlsw'vm the device,

1. Temperature Sensor: A temperalure sensor
2. Humidity Sensor: A temperstuny Sensor
3. Passive Infrared: A passive infrared sensor. When tnve someona is present.

Figure 2.6 The list of sensors on the Pi. You can click each of them and see the latest known value
for each.

So far, it’s pretty straightforward: your browser is asking for an HTML page that shows
the list of /sensors of the device /pi connected to the devices.webofthings.io gateway.
Remember that there’s also a camera connected to this, so in your browser address
bar replace piwith camera and you’ll be taken directly to the Sensors page of the cam-
era: http://devices.webofthings.io/camera/sensors; see figure 2.7.

Now, go back to the list of sensors on your Pi and see the various sensors attached
to the device. Currently, you can access three sensors: temperature, humidity, and pas-
sive infrared. Open the Temperature Sensor link and you’ll see the temperature sen-
sor page with the current value of the sensor. Finally, just like you did for the sensor,
go to the actuators list of the Pi and open the Actuator Details page (screenshot in fig-
ure 2.13), at the following URL: http://devices.webofthings.io/pi/actuators/display.

The display is a simple LCD screen attached to the Pi that can display some text,
which you’ll use in exercise 2.4. You can see the information about this actuator, in
particular the current value being displayed, the API description to send data to it,
along with a form to display new data. You won’t use this form for now, but this is com-
ing in section 2.4.

2.2.2 Part 2—The web as an API

In part 1, you started to interact with the Web of Things from your browser. You’ve
seen how a human user can explore the various content offered by a device (sensors,
actuators, and so on) and how to control it from a web page. All of that is done by
browsing the resources of a physical device, just as you’d browse the various pages of a

www.itbook.store/books/9781617294006

http://devices.webofthings.io/pi/sensors
http://devices.webofthings.io/camera/sensors
http://devices.webofthings.io/pi/actuators/display
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Exercise I—Browse a device on the Web of Things 9

My WoT Camera > Sensors

Device Information

URL http://devices.webofthings.io/camera/
Description A simple WoT-connected camera.
Tags [*camera","WoT"]

Link to the sensor
The list of sensors available currently on the device. /
1. Camera Sensor: Takes a still picture with the camera.
Figure 2.7 The sensors on the camera. There’s only one sensor here, which is the current image.

website. But what if instead of a human user, you want a software application or
another device to do the same thing, without having a human in the loop? How can
you make it easy for any web client to find a device, understand what it does, see what
its API looks like, determine what commands it can send, and so on?

Later in the book, we’ll show you in detail how to do this. For now, we’ll simply
illustrate how the web makes it easy to support both humans and applications by show-
ing you what a client application sees when it browses your device.

For this exercise, you’ll need to have Chrome installed and install one of our favor-
ite browser extensions called Postman' or use cURL? if you’d rather use the command
line. Postman is a handy little app that will help you a lot when working with a web
API, because it allows you to easily send HTTP requests and customize the various
options of these requests, such as the headers, the payload, and much more. Postman
will make your life easier throughout this book, so just go ahead and install it.

' Get it here: http://www.getpostman.com/
9

* cURL is a command-line tool that allows you to transfer data using various protocols, among which is HTTP.
If it’s not preinstalled on your machine, you can easily install it on Mac, Linux, or Windows. Website:
http://curl.haxx.se/

www.itbook.store/books/9781617294006

http://www.getpostman.com/
http://curl.haxx.se/
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

10 CHAPTER 2 Hello, World Wide Web of Things

In part 1, your browser is simply a web client requesting content from the server.
The browser automatically asks for the content to be in HTML format, which is
returned by the server and then displayed by the browser.

In part 2, you’ll do almost the same exercise as in part 1 but this time by requesting
the server to return JSON documents instead of an HTML page. JSON is pretty much
the most successful data interchange format used on the internet. It has an easy-to-
understand syntax and is lightweight, which makes it much more efficient to transmit
when compared to its old parent, XML. In addition, JSON is easy for humans to read
and write and also for machines to parse and generate, which makes it particularly
suited to be the data exchange format of the Web of Things. The process of asking for
a specific encoding is called content negotiation in the HTTP 1.1 specification and will be
covered in detail in chapter 6.

STEP 1—GETTING THE LIST OF DEVICES FROM THE GATEWAY
Just as you did before, you’ll send a GET request to the root page of the gateway to get
the list of devices. For this just enter the URL of the gateway in Postman and click
Send, as shown in figure 2.8.

Because most web servers return HTML by default, you’ll see in the body area the
HTML page content returned by the server (4). This is basically what happens behind
the scenes each time you access a website from your browser. Now to get JSON instead

I. Verb 2. URL 3. Click Send

O

GET » http://devices webofthings.io Params

Autharization Headers (0) Pre-request script Tests
—
Mo Auth ~
Bedy Cookie Headers (9] Tests Status 20006 Time 97ms
ty Raw Proview HTMLw | = [Q | saveresponse

1 kIDOCTYPE html>

2= <html lang="en">

3 <head>

4 <meta charset="ucf-g">

5 <meta htrp-equive="X-UA-Compatible" content="IE=edge”>

6 <meta names="viewport" content="width=device-width, imitial-scale=1">
7 <title>Gateway Page</title>

B
9

<|-- Bootstrap -->
<l Latest compiled and minified CS§ -->
18 <link rﬂ.- stylesheet” href="https://maxcdn.bootstrapcdn. com/bootstrap/3.3.1/css/bootstrap.min,.css™>
11 <l - al theme -->
12 <l ink rel stylesheet” href="htcps: Hnaxcan bootstrapedn, com/bootstrap/3.3.1/ess/bootstrap-theme . min.
13 Links to ether respurces --
14 <1Ink href="meta.rdf" rel="meta" l:i.tie- Metadata" />
15 <Link href="self" rel="self" title="Self" />
16 <Link href="doc" rel="doc" title="Documentation®™ />
17 <lir\k href="ui" rel="ui" title="User Interface" />
18 1-- Links to other davices -->
19 /" qink href="pi" rel="device™ title="Hy WoT Raspbercy PI" />
28 <Link href="camera® rel="device" title="My WoT Camera" />

4. Tada! The response.

Figure 2.8 Getting the root page of the gateway using the Postman web client. The request is an
HTTP GET (1) on the URL of the gateway (2). The response body will contain an HTML document

(4).

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Exercise I—Browse a device on the Web of Things 11

of HTML, click the Headers button and add a header named Accept with application
/json in the value, and click Send again, as shown in figure 2.9. Adding this header to
your request is simply telling the HTTP server, “Hey, if you can, please return me the
results encoded in JSON.” Because this is supported by the gateway, you’ll now see the
same content in JSON, which is the machine equivalent of that page with only the con-
tent and no visual elements (that is, the HTML code).

I. Toggle the headers 2. Ask for JSON
GETv | htpsldeviceswepotfingsio oo st - |
Autharization Headers (1) Pre-request script Tests .<f>': 3
@ Accept application/json
Heade ’ v
Body H) Status 2000K Time 150ms
v Raw Preview sonw | = [Q | saveresponse
!
2= "pim:
3 “1d%: "1,
4 “name”: "My WoT Raspberry PI",
5 “description": “A simple WoT-connected Raspberry PI for the WoT book.",
& "url": "http://devices.webofthings.io/pi/",
7 "currentStatus"; "Live",
8 "version™: "v@.1",
9 "tags": [
18 "raspberry",
11 "pi®,
12 "o T*

Figure 2.9 Getting the list of devices connected to the gateway via Postman. The Accept header
is now set to application/json to ask for the results to be returned in JSON.

The JSON body returned contains a machine-readable description of the devices
attached to the gateway and looks like this:

{
rid*. 1",
"name": "My WoT Raspberry Pi",
"description": "A simple WoT-connected Raspberry Pi for the WoT book.",
"url": "http://devices.webofthings.io/pi/",
"currentStatus": "Live",
"version": "v0.1",
"tags": [
"raspberry",
"pit,
"WoT"
1,
"resources": {
"sensors": {
"url": "sensors/",
"name": "The list of sensors"
T,
"actuators": {
"url": "actuators/",
"name": "The list of actuators"

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

12 CHAPTER 2 Hello, World Wide Web of Things

}
I
"links": {
"meta": {
"rel": "http://book.webofthings.io",
"title": "Metadata"
}
"doc": {
"rel":
"https://www.raspberrypi.org/products/raspberry-pi-2-model-b/",
"title": "Documentation"
I
"uin: {
"rel": ".",
"title": "User Interface"
}

In this JSON document, you can see there are two first-level elements (pi and camera)
that represent the two devices attached to the gateway and a few details about them,
such as their URL, name, ID, or description. Don’t worry for now if you don’t under-
stand everything here; all of this will become crystal clear to you in a few chapters.

STEP 2—GETTING A SINGLE DEVICE
Now change the URL of the request in Postman to point to the Pi device (which is
exactly the same as the one you typed in your browser in part 1), and click Send again,

as shown in figure 2.10.

GET http//deviceswebofthings.io/pi Params

Autharization Headers (1) Pre-request script Tests @) (D)
S ———————— c
@ Accent application/json
Heade s Presets o
Body Cookies Headers{8] Tests Status 2000K Time 1Z2ms
retty Raw Praview SoNw | E [1 Q saveresponse
i-{
2 nidn: mqn,
3 "name": "My WoT Raspberry PI",
4 "description”: "A simple WoT-connected Raspberry PI for the WoT book.",
5 "url": "http://devices.webofthings.io/pi/",
[} “currentStatus”: “"Live",
7 "wersion": "v@.1",
8- “rags": [
9 "raspberry",
1@ "pd~,
11 *WoT"

Figure 2.10 Getting the JSON representation of the Raspberry Pi. The JSON payload contains
metadata about the device as well as links to its sub-resources.

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Exercise I—Browse a device on the Web of Things 13

The body now contains the JSON object of the Pi except with the same information as
shown previously, and you can see that the resources object has sensors, actuators,

and so on:
"resources": {
"sensors": {
"url": "sensors/",
"name": "The list of sensors"
T,
"actuators": {
"url": "actuators/",
"name": "The list of actuators"
}
}

STEP 3—GETTING THE LIST OF SENSORS ON THE DEVICE
To get to the list of sensors available on the device, just as you did before, simply
append /sensors to the URL of the Pi in Postman and send the request again. An
HTTP GET there will return this JSON document in the response:

{

"temperature": {

Iy

"name": "Temperature Sensor",
"description": "A temperature sensor.",
"type": "float",

"unit": "celsius",

"value": 23.4,
"timestamp": "2015-10-04T14:39:17.240z",
"frequency": 5000

"humidity": {

Iy

"name": "Humidity Sensor",
"description": "A temperature sensor.",
"type": "float",

"unit": "percent",

"value": 38.9,
"timestamp": "2015-10-04T14:39:17.240z",
"frequency": 5000

"pir": {
"name": "Passive Infrared",
"description": "A passive infrared sensor. True when someone present.",
"type": "boolean",
"value": true,
"timestamp": "2015-10-04T14:39:17.2402",
"gpio": 20
}
}
You can see that the Pi has three sensors attached to it (respectively, temperature,

humidity, and pir), along with details about each sensor and its latest value.

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

14

223

CHAPTER 2 Hello, World Wide Web of Things

STEP 4—GET DETAILS OF A SINGLE SENSOR

Finally, you’ll get the details of a specific sensor, so simply append /temperature to
the URL in Postman and click Send again. The URL should now be
http://devices.webofthings.io/pi/sensors/temperature, as shown in figure 2.11.

I. URL of the temperature sensor

Authorization Headers (1) Pre-request script Tests) (D
Mo Auth ~
Body Cookles Headers(d) Test Status 2000K Time 193ms

tty Raw Proview ISONw | E [1 O saveresponse

"name”: “Temperature Sensor*,
"description": A temperature sensor.“,

1
2
3
4
5 "unit*; “celsius",
&
7
8

"type": "float",
5 "value": 23.4,
“rimestamp™: “20815-108-84T14:43:35.1812",
"frequency”: 5880
9}
2. Latest sensor value 3. Timestamp when the value was measured

Figure 2.11 Retrieve the temperature sensor object from the Raspberry Pi. You can see the latest
reading (23.4 degrees Celsius) and when it took place (at 14:43 on October 4, 2015).

You’ll get more detailed information about that sensor, in particular the field value,
which contains the latest value of the temperature sensor:

{

"value":22.4
}
You’ll now see additional details about this particular sensor, and among others you
can see the latest value of the temperature sensor. If you only want this sensor value,
you can append /value to the URL of the temperature sensor to retrieve it. This also
works for the other sensors and actuators.

So what?

Now it’s time for you to play around with the different URLs you’ve seen so far in this
exercise. Look at how they differ and are structured, browse around the device, and try
to understand what data each sensor has, its format, and so on. As an extension look at
the electronic devices around you—the appliances in your kitchen or the TV or sound
system in your living room, the ordering system in the café, or the train notification sys-
tem, depending on where you’re reading this book from. Now imagine how the ser-
vices and data offered by all these devices could all have a similar structure: URLs,
content, paths, and so on. Try to map this system using the same JSON structure you’ve
just seen, and write the URLs and JSON object that would be returned.

www.itbook.store/books/9781617294006

http://devices.webofthings.io/pi/sensors/temperature
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Exercise 2—Polling data from a WoT sensor 15

What you have seen is that both humans and applications get data using exactly
the same URL but using another encoding format (HTML for humans, J[SON for appli-
cations). Obviously, the data in both cases is identical, which makes it easy for applica-
tion developers to go back and forth from one format to the other. A lot of what
you’ve seen in this first part is linked to using HTTP and URLs as technologies to offer
web services. You’ll explore and learn a lot more about how this can be used on
devices in chapter 6 onward.

2.3 Exercise 2—Polling data from a WoT sensor

In the first exercise you learned about the structure of a WoT device and how it works.
In particular, you saw that every element of the device is simply a resource with a
unique URL that can be used by both people and applications to read and write data.
Now you’re going to put a developer hat on and start coding your first web application
that interacts with this Web of Things device.

2.3.1 Part 1—Polling the current sensor value

For this exercise, go to the folder you checked out from GitHub into the chapter2-
hello-wot/client folder. Double-click the ex-2.1-polling-temp.html file to open it in a
modern browser." This page simply displays the value of the temperature sensor on
the Pi in our office and updates this value every five seconds by retrieving it in JSON,
exactly as you saw in figure 2.11.

This file uses jQuery? to poll data from the temperature sensor on our Pi. Now
open this file in your favorite code editor and look at the source code. You'll see two
things there:

= An <h2> tag showing where the current sensor value will be written.

= A JavaScript function called doPoll() that reads the value from the Pi, displays
it, and calls itself again five seconds later. This function is shown in the follow-
ing listing.

Listing 2.1 Polling for the temperature sensor

Wait until the page Use the AJAX helper to get
is loaded and then the JSON payload from the

call doPoll temperature sensor
$ (document) .ready (4/ 0 P ‘/

function doPoll() {
$.getJSON('http://devices.webofthings.io/pi/sensors/temperature',

function (data) { 4\
console.log(data); When the response arrives,
this function is called

! We fully tested our examples on Firefox (>41) and Chrome (>46) and suggest you install the latest version of
these. Safari (>9) should also work. If you really want to use Internet Explorer, please be aware that you’ll need
version 10 onward; older versions won’t work.

2 jQuery is a handy JavaScript library that makes it easier to do lots of things, such as talk to REST APIs, manip-
ulate HTML elements, handle events, and so on. Learn more here: http://jquery.com/.

www.itbook.store/books/9781617294006

http://jquery.com/
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

16 CHAPTER 2 Hello, World Wide Web of Things

Select the "temp" HTML element and update its
content using the data.value (the value) and

The doPoll() function sets a timer to call itself data.unit (the unit) returned in the JSON payload
again in 5 seconds (5000 milliseconds)

S('#temp') .html (data.value + ' ' + data.unit);
setTimeout (doPoll, 5000); \
P
1)

When developing (and especially debugging!) web applications, it might be useful to
display content from JavaScript outside the page; for this you have a JavaScript con-
sole. To access it in Chrome, right-click somewhere on the page and select Inspect Ele-
ment; then see the console view that displays below. The console.log(data)
statement displays the data JSON object received from the server in this console.

2.3.2 Part 2—Polling and graphing sensor values

This is great, but in some cases you’d like to display more than just the current value of
the sensor, for example, a graph of all readings in the last hour or week. So open the
second HTML file in the exercises (ex-2.2-polling-temp-chart.html). This is a slightly
more complex example that keeps track of the last 10 values of the temperature sensor
and displays them in a graph. When you open this second file in your browser, you’ll
see the graph being updated every two seconds, as shown in figure 2.12.

We built this graph using Google Charts,' a nice and lightweight JavaScript library
for displaying all sorts of charts and graphs. See our annotated code sample in the
next listing.

Temperature
30.0
225
15.0
75
0.0
3:55:51 3:56:52 3:55:54 3:55:56 3:55:58 3:56:00 3:56:03 3:56:05
PM PM PM PM PM PM PM PM
M Temperature

Figure 2.12 This graph gets a new value every few seconds from the device and is updated
automatically.

! https://developers.google.com/chart/

www.itbook.store/books/9781617294006

https://developers.google.com/chart/
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Exercise 2—Polling data from a WoT sensor 17

Listing 2.2 Polling and displaying a sensor reading

S (document) .ready (function () {
var maxDataPoints = 10;
var chart = new google.visualization.LineChart ($('#chart')[0]);
////l"var data = google.visualization.arrayToDataTable ([<\\\
Initialize the ['Time', 'Temperature'],
Google chart [getTime(), 0] Create an array that will
1 contain the data points

var options = { <-ﬁ__‘\\\\
title: 'Temperature',

Configure the parameters

curveType: 'function',

animation: { of the chart
duration: 1000,
easing: 'in'

} Add a data point to the chart
' data and remove the oldest

.legend: {position: 'bottom'] one if needed (if there are
}i already 10 points available)

function addDataPoint (dataPoint) {
if (data.getNumberOfRows () > maxDataPoints) {
data.removeRow (0) ;

} Redraw the chart
data.addRow([getTime (), dataPoint.value]l); / with the new data
chart.draw(data, options);

}

function getTime() {

var d = new Date(); Poll the temperature

return d.toLocaleTimeString() ; sensor just like before
) 4/
function doPoll () {

$.getJSON('http://devices.webofthings.io/pi/sensors/temperature/value',
function (result) ({
addDataPoint (result) ;

setTimeout (doPoll, 2000); When the new readings are
1) returned, use them to call the
} addDataPoint() function

doPoll () ;
)i

2.3.3 Part 3—Real-time data updates

In the previous exercises, polling the temperature sensor of the Pi worked just fine.
But this seems somewhat inefficient, doesn’t it? Instead of having to fetch the temper-
ature from the device every two seconds or so, wouldn’t it be better if our script was
informed of any change of temperature when it happens, and only if the value changes?

As we’ll explore to a greater extent in chapter 6, this has been one of the major
impedance mismatches between the model of the web and the event-driven model of
wireless sensor applications. For now, we’ll just look at one way of resolving the prob-
lem using a relatively recent add-on to the web: WebSockets. In a nutshell, WebSockets

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

18 CHAPTER 2 Hello, World Wide Web of Things

are simple yet powerful mechanisms for web servers to push notifications to web clients
introduced as part of the efforts around the HTML5 standards.

The WebSockets standard comprises two distinct parts: one for the server and one
for the client. Since the server is already implemented for us, the only specification
we’ll use here is the client part. The client WebSockets API is based on JavaScript and
is relatively simple and straightforward. The two lines of code in the following listing
are all you need to connect to a WebSocket server and display in the console all mes-
sages received.

Listing 2.3 Connecting to a WebSocket and listening for messages

var socket = new WebSocket ('ws://ws.webofthings.io');
socket.onmessage = function (event) {console.log(event);};

Let’s get back to our examples. Go to the folder. Double-click the ex-2.3-websockets-
temp-graph.html file to open it in your favorite browser. What you see on the page is
exactly the same as in the previous exercise. But under the hood things are quite dif-
ferent. Indeed, have a look at the new code shown here.

Listing 2.4 Register to a WebSocket and get real-time temperature updates

var socket = new

WebSocket ('ws://devices.webofthings.io/pi/sensors/temperature') ; ‘\
socket.onmessage = function (event) { Create a WebSocket subscription
var result = JSON.parse (event.data); to the temperature sensor. Note
addDataPoint (result) ; that the URL uses the
}; WebSockets protocol (ws://...).
SOCket'Clme]lfror ! - éuncilon (err?].f) { Register this anonymous
console.log('WebSocket error!'); function to be called when
console.log (error) ;

. . a message arrives on the
i Register this other anonymous WebSocket

function to be triggered when an
error occurs on the WebSocket.

In this exercise, you don’t poll periodically for new data but only register your interest
in these updates, by subscribing to the /sensors/temperature endpoint via Web-
Sockets. When the server has new temperature data available, it will send it to your cli-
ent (your web browser). This event will be picked up by the anonymous function you
registered and give it as a parameter the event object that contains the latest tempera-
ture value.

2.3.4 So what?

Let’s take a step back and reflect about what you did with this exercise: you managed
to communicate with an embedded device (the Raspberry Pi) that might be on the
other side of the world (if you don’t happen to be living in rainy and beautiful Eng-
land). From a web page you managed to fetch, on a regular basis, data from a sensor

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Exercise 3—Act on the real world 19

connected to the device and display it on a graph. Not bad for a simple web page of 60
lines of HTML, JavaScript, and CSS code. You didn’t stop there: with fewer than 10
lines of JavaScript you also subscribed to notifications from our Pi using WebSockets
and then displayed the temperature in our office in real time. As an extension of this
exercise, you could write a simple page that automatically fetches the image from the
camera (ideally, you’d avoid doing this 25 times per second!).

If this was your first encounter with the Web of Things, what should strike you at
this stage is the simplicity of these examples. Let’s imagine for a second our Pi wasn’t
actually providing its data through HTTP, JSON, or WebSockets but via a “vintage”
XML-based machine-to-machine application stack such as DPWS (if you’ve never heard
about it, don’t worry; that’s exactly our point!). Basically, you wouldn’t be able to talk
directly to the device from your browser without a lot more effort. You would have
been forced to write your application using a lower-level and more complex language
such as C or Java. You wouldn’t have been able to use widespread concepts and lan-
guages such as URLs, HTML, CSS, and JavaScript. This is also what the Web of Things is
about: creating APIs for things that are universally accessible and bringing them closer
to the masses of web development where a lot of today’s innovation and creative build-
ing happens.

As mentioned before, in this book you’ll learn a lot more about the art of API craft-
ing for physical things. In chapter 6 we’ll look at HTTP, REST, and JSON as well as at
the real-time web, but in chapter 7 we’ll also look at how to build bridges to bring
other protocols and systems closer to goodness of the web.

24 Exercise 3—Act on the real world

So far, you’ve seen various ways to read all sorts of sensor data from web devices. What
about “writing” to a device? For example, you’d like to send a command to your
device to change a configuration parameter. In other cases, you might want to control
an actuator (for example, open the garage door or turn off all lights).

24.1 Part 1—Use a form to update text to display

To illustrate how you can send commands to an actuator, this exercise will show you
how to build a simple page that allows you to push a piece of text to the LCD con-
nected to the Piin our office. To test this functionality first, open the actuator page of
the LCD: http://devices.webofthings.io/pi/actuators/display.

On this page (shown in figure 2.13), you now see the various properties of the LED
actuator. First, you see brightness, which you could change (but can’t, because we
made it read-only). Then, you have content, which is the value you want to send, and
finally there is the duration, which is how long the piece of text will be displayed on
our LCD. Use Postman to get the JSON format of the display actuator by entering the
URL just shown as you learned in the first exercise of this chapter:

{

"name": "LCD Display screen",
"description": "A simple display that can write commands.",

www.itbook.store/books/9781617294006

http://devices.webofthings.io/pi/actuators/display
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

20 CHAPTER 2 Hello, World Wide Web of Things

"properties": {
"brightness": {
"name": "Brightness",

"timestamp": "2015-02-01T21:06:02.9132",
"value": 80,

Hunit" . "%",
"type": "integer",
"description": "Percentage of brightness of the display. Min is 0

which is black, max is 100 which is white."

}
"content": {

"name": "Content",

"timestamp": "2015-02-01T21:06:32.933Z",

"type": "string",

"description": "The text to display on the LCD screen."
}
"duration": {

"name": "Display Duration",

"timestamp": "2015-02-01T21:06:02.913Z",
"value": 5000,
"unit": "milliseconds",
"type": "integer",
"read-only": true,
"description": "The duration for how long text will be displayed
on the LCD screen."
}
I
"commands": [
"write",
"clear",
"blink",
"color",
"brightness"

}

Obviously, it wouldn’t be much fun to display something in our office if you couldn’t
see what is being displayed. For this reason, we’ve set up a webcam where you can see
the LCD on our Pi, so you can always see what is displayed on it. Here’s the URL:
http://devices.webofthings.io/camera/sensors/picture. So go ahead, open this page,
and you’ll see the latest picture of the camera you saw earlier in figure 2.3 (to see the
latest image, just refresh the page).

Now you’ll send a new message to the Pi for it to be displayed by the LCD. The
content property is always the current message displayed on the LCD, so to update it
you simply POST a new value for that property with the message to be displayed (for
example, {"value": "Hello World!"}) as a body. You can go ahead and try this in
Postman, but the simplest way to do it is through the page of the display actuator in
your browser: http://devices.webofthings.io/pi/actuators/display. See figure 2.13 for
the details of the LCD actuator.

www.itbook.store/books/9781617294006

http://devices.webofthings.io/camera/sensors/picture
http://devices.webofthings.io/pi/actuators/display
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Exercise 3—Act on the real world 21

Actuator Details

Description: A simple LCD screen where text can be displayed.

Properties
Content
Enter some Description: The text to be displayed on the LCD screen..
text here. Last value: Second text @ Sun Feb 22 2015 18:26:07 GMT+0000 (GMT)
Second text Update
Brightness

Description: Percentage of brightness of the display. Min is 0 which is black, max is 100 which is white..
Last value: 80 @ Sun Feb 22 2015 18:25:27 GMT+0000 (GMT)

Display Duration
Description: How long text will be displayed on the LCD screen..
Last value: 20000 @ Sun Feb 22 2015 18:25:27 GMT+0000 (GMT)

milliseconds = 20000

Figure 2.13 The details of the LCD actuator, with the various properties that you can set, for
example, the text that should be displayed next on the device

On this page you can see the various properties of the LCD actuator. Some are edit-
able, and some aren’t. The content property is the one you want to edit, so enter the
text you’d like to display and click Update. If all works fine, you’ll see a JSON payload
like this:

{
vid 11,

"messageReceived": "Make WoT, not war!",
"displayInSeconds":20

}

The returned payload contains the message that will be displayed, a unique ID for
your message, and an estimated delay for when your text will appear on the LCD
screen (in seconds), so you know when to look at the camera image to see your text.

2.4.2 Part 2—Create your own form to control devices

Now let’s build a simple HTML page that allows you to send all sorts of commands to a
web device using a simple form. From your browser, open the file ex-3.1-actuator-
form.html in the exercises folder and you’ll see the screen shown in figure 2.14.

Display Message on WoT Pi
Figure 2.14 This simple client-side form
Enter a message: Hello woridl Send to Pi allows you to send new text to be displayed
by the Pi.

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

22

The format of
the data you
expect to get

\\\\~> dataType: 'Jjson',

The HTTP verb
this request
will send

CHAPTER 2 Hello, World Wide Web of Things

This page has an input text field and a Send to Pi button, as shown in the following
listing. Whatever text you enter will be displayed there. So yes, please keep it courte-
ous, and because the API of our Pi is open to the public, we decline all responsibilities
for what people write there.

Listing 2.5 Simple HTML form to send a command to an actuator

<form action="http://devices.webofthings.io/pi/actuators/display/content/"
method="post">

<label>Enter a message:</label>

<input type="text" name="value" placeholder="Hello world!">

<button type="submit">Send to Pi</button>
</form>

This is a simple HTML form that sends an HTTP POST (value of method) to the URL of
the display (the value of action). The input text bar is called value (name="value") so
that the Pi knows where to find the text to be displayed. This method works well.
Unfortunately, what you don’t see behind the scenes is that web browsers do not sub-
mit (nor do they make it possible to submit) the server using a JSON payload body (as
you could easily do with Postman for the previous) but instead use a format called
application/x-www-form-urlencoded. The Pi needs to be able to understand this
format in addition to application/json in order to handle data input from HTML
forms.

HTML forms can use only the verbs POST or GET but not DELETE or PUT. It’s
rather unfortunate that even modern browsers don’t send the content of HTML forms
as JSON objects because of some obscure legacy reasons, but hey, c’est la vie!

As you’ll see later in this book, the ability for all entities on the Web of Things to
receive and transmit JSON content is essential to guarantee a truly open ecosystem.
For this reason, we’ll show you how to send actual JSON from an HTML form page (by
using AJAX and JavaScript), because doing so is an essential part of communicating
with web devices.

Open the ex-3.2-actuator-ajax-json.html file to see a similar form but this time with
a large piece of JavaScript, as follows.

Listing 2.6 Send an HTTP POST with JSON payload from a form

The URL the request
will be sent to
(function($){ function processForm(e) { i:;

$.ajax({
url: 'http://devices.webofthings.io/pi/actuators/display/content/",

method: 'POST', The encoding of tl!e
data you are sending
contentType: 'application/json',

data: JSON.stringify({"value": S$('#value').vall()}),

The actual data you are
sending (the content of
the form)

processData: false,

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

24.3

2.5

Exercise 4—Tell the world about your device 23

success: function(data, textStatus, joxhr){ 4“\\\\

S ('#response pre').html(JSON.stringify(data)); The callback to invoke

b if the request was
successful

error: function(jgXhr, textStatus, errorThrown) { <—\\\\

console.log(errorThrown) ;
) The callback to invoke

1) if the request failed

. tDefault () ;
e-preventbefault() Attach the processForm()

} function to be called when
$ ('#message-form') .submit (processForm) ; / someone clicks Submit

}) (JQuery) ;

In this code, a function called processForm() is defined, which takes the data from
the form, packs it into a JSON object, POSTs it to the Pi, and displays the result if suc-
cessful (or displays an error in the console otherwise). The url parameter specifies
the end-point URL (the Pi display), the method is the HTTP method to use, and the
contentType is the format of the content sent to the server (in this case application
/json). The last line attaches the event generated by a click of the Submit button of
the form #message-form to call the processForm() function.

There is a variation of this code, ex-3.2b-actuator-ajax-form.html, which encodes
the data in the application/x-www-form-urlencoded formatin place of JSON, just as
it’s done with the simple form we showed in part 1 of exercise 3.

So what?

In this section you learned the basics of how to send write requests and commands to
a device, both using a form on a web page and from an API. You had a crash course in
the limitations, challenges, and problems of the modern web (don’t worry; there are
many more ahead!), in particular how different web browsers can interpret and
implement the same web standards differently. Finally, you learned how to use AJAX to
bypass these limitations and send JSON commands to a Raspberry Pi and control it
remotely.

We hope that after doing this exercise you realize that it’s straightforward to send
actuator commands to all sorts of devices—as long as these are connected to the web
and offer a simple HTTP/JSON interface. But the last problem is how to find a device
nearby, understand its API, determine what functions are offered by the device, and
know what parameters you need to include in your command, along with their type,
unit, limitations, and the like. The next section will show you how to solve this prob-
lem, so keep reading.

Exercise 4—Tell the world about your device

In the previous exercises you learned how devices can be easily exposed over the web
and then explored and used by other client applications. But those examples assumed

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

24 CHAPTER 2 Hello, World Wide Web of Things

that you (as a human developer or as the application you wrote) know what the fields
of the JSON objects (for example, sensor or actuator) mean and how to use them. But
how is this possible? What if the only thing you know about a device is its URL and
nothing else?

Imagine you’d like to build a web application that can control home automation
devices present in your local network. How can you ensure this application will always
work, even if you're in someone else’s network and you don’t know anything about
devices there?

First, you need to find the devices at a network level (the device discovery problem).
In other words, how can your web application discover the root URL of all the devices
around you?

Second, even if you happened to know (by some magic trick) the root URL of all
Web of Things—compatible devices around you, how could your application “under-
stand” what sensors or actuators these devices offer, what formats they use, and the
meaning of those devices, properties, fields, and so on?

As you saw in exercise 2 (section 2.3.2), if you know the root URL of a device, then
you can easily browse the device and find data about it and its sensors, services, and
more. This is easy because you’re a human, but imagine if you just had a JSON docu-
ment with unintelligible words or characters and no documentation that explain what
those words mean—how would you know what the device does? And how would you
know it’s a device, for that matter?

Open ex-4-parse-device.html in your browser, and you’ll see a form prepopulated
with the URL of the Pi (figure 2.15), so simply click Browse This Device.

Browse a new device

http://devices.webofthii | Browse this device

Device Metadata

Metadata. A general model used by this device can be found here:

Metadata http://book.webofthings.io

Documentation. A human-readable documentation specifically for this device can be found here:
Documentation https://www.raspberrypi.org/products/raspberry-pi-2-model-b/

Sensors. The sensors offered by this device:

3 sensors found!

« Temperature Sensor
« Humidity Sensor
+ Passive Infrared

Figure 2.15 A mini-browser that parses your device metadata and displays the results

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Exercise 4—Tell the world about your device 25

This JavaScript code of ex-4-parse-device.html will read the root document of the
Raspberry Pi (as JSON) and generate a simple report about the device and its sensors,
along with link to the documentation for this device. First, let’s look at the HTML code
to display the report.

Listing 2.7 A basic browser

<form id="message-form">

<input type="text" id="host" name="host"

value="http://devices.webofthings.io/pi"
placeholder="The URL of a WoT device" />

<button type="submit">Browse this device</button>
</form>

<h4>Device Metadata</h4d>
<p>Metadata. A general model used by this device can be found here:
<div id="meta"></div></p>
<p>Documentation. A human-readable documentation specifically for
this device can be found here: <div id="doc"></div></p>
<p>Sensors. The sensors offered by this device:

<div id="sensors"></div></p>
<ul id="sensors-list">

The first thing you can see is a form where you can enter the root URL of a device with
a Browse button. Then, there are some HTML text elements that will act as placehold-
ers (meta, doc, and so on). Now let’s look at the AJAX calls.

Listing 2.8 Retrieve and parse device metadata using AJAX JSON calls

(function ($) {
function processForm(e) { GET the ROOT JSON of the

device and extract data from it
var sensorsPath = ''; 4#1//////
$.ajax({

url: $('#host').val(),
method: 'GET',
dataType: 'Jjson',

success: function (data) { Store the
Update the $('#meta’) .html (data.links.meta.title + " <a href=\"" + URL of the
"meta" and "doc" data.links.meta.rel + "\">" + data.links.meta.rel + ""); gensors
elements with $('#doc') .html (data.links.doc.title + " <a href=\"" + resource
the link found in || 4aca.links.doc.rel + "\">" + data.links.doc.rel + "");
the root JSON /
document sensorsPath = data.url + data.resources.sensors.url;
$.ajax ({
url: sensorsPath, Callback function that
method: 'GET', processes the sensors JSON
. dataType: 'json', document; 'data' contains the
GET the list of all success: function (data) { JSON object of the sensors

sensors on the

" var sensorList = "";
device

S ('#sensors') .html (Object.keys (data) .length + " sensors
found!") ;

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

26 CHAPTER 2 Hello, World Wide Web of Things

for (var key in data) {
/////’ sensorList = sensorList + "<a href=\"" + sensorsPath +

key + "\">" + datalkey].name + "";

Loop through)
all sensors
$('#sensors-list') .html (sensorList) ;
b, \ Display the list
error: function (data, textStatus, JjgXHR) { in the HTML

console.log(data) ;
}
1)
Y,
error: function (data, textStatus, jgXHR) {
console.log(data) ;
}
)i

e.preventDefault () ;

}

S ('#message-form') .submit (processForm) ;
}) (JQuery) ;

Looking at this code, you can see that you first set the root JSON document of the
device using the URL entered in the form ($('#host').val()). If the JSON file has
been successfully retrieved, the success callback function will be triggered with the
data variable containing the root JSON document of the device (which was shown in
step 2 of section 2.2.2). Then you parse this JSON to extract the elements you're look-
ing for; in this case the code is looking for a links element in the returned JSON
object (hence the data.links), which contains various links to get more information
about this device, which looks like the following:

"links": {
"meta": {
"rel": "http://book.webofthings.io",
"title": "Metadata"
}
"doc": {
"rel":
"https://www.raspberrypi.org/products/raspberry-pi-2-model-b/",
"title": "Documentation"
}
"uit: {
"rel": ".",
"title": "User Interface"

In particular, the meta element contains a link (value of rel) to the general model
used by this device (which describes the grammar used to describe the elements of
this device) and then a doc that links to a human-readable documentation that

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Exercise 4—Tell the world about your device 27

describes the meaning (the semantics) and specific details of this particular device
(that is, which sensors are present and what they measure).

The metadata document linked in the previous code is nothing more than a
machine-readable JSON document model that allows users to describe WoT devices in
a structured manner, along with a definition of the logic elements all WoT devices
must have. If hundreds of device manufacturers would use this same data model to
expose the services of their devices, it would mean that any application that can read
and parse this file will be able to read the JSON file returned by the device and under-
stand the components of the devices (how many sensors it has, their names or limita-
tions, their type, and so on).

Now, what about the sensors or actuators themselves? The links element only
defined metadata (documentation and such) about the device, not the device contents
itself. To find the sensors contained in the device, you’ll have to parse the sensors field
of the resources element, which is what happens in the second AJAX call where you do
a GET on the sensors resource of the device. Once you get the sensors JSON document,
you iterate over each sensor and create a link to it using this pattern:

"+datalkey] .name+"</1i>

Here sensorsPath is the URL of the sensors resource (in this case http://devices
.webofthings.io/pi/sensors) to which you add the sensor ID of each sensor (key),
along with the name of the respective sensor (data[key] .name).

2.5.1 So what?

If you didn’t understand all the details of the previous exercises, it’s perfectly fine—
there’s nothing wrong with you! What happened is that you got your first hands-on
crash course on the Semantic Web or rather on the hard problems it tries to solve. The
reason you've heard a lot about it yet never seen or used it (or understood it, for that
matter) is that it’s a complex problem for computers and people who program them:
how the hell do you explain the real world—and its existential questions—to a com-
puter? Well, it turns out you can’t really teach philosophy to your machine yet. But, as
we’ve shown here and will detail in chapter 8, there are quite a few small tricks that you
can apply successfully that make the web—and computers—just a little smarter.

You’ve seen how web devices can advertise their basic capabilities, data, and ser-
vices in a machine-readable manner. The fact that we used well-known web patterns
made it easy to build a web app interacting with our Things. Unfortunately, there’s no
single standard to define this information universally, and the JSON model we use is
something born out of trial and error over the years. In order to reach more of the
Web of Things potential, we need to have the ability to define this information in a
universally accepted manner using a well-defined namespace with a clear semantic
definition. We’ll explore how to get there using web and lightweight Semantic Web
technologies in much more detail in chapter 8.

www.itbook.store/books/9781617294006

http://devices.webofthings.io/pi/sensors
http://devices.webofthings.io/pi/sensors
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

28 CHAPTER 2 Hello, World Wide Web of Things

2.6 Exercise 5—Create your first physical mashup

In the previous exercises, you learned how to access a web device, understand the ser-
vice and data it offers, and read and write data from devices. In this exercise, we’ll
show you how to build your first mashup. The concept of mashups originates from the
hip-hop scene to describe a song composed by taking samples of other songs. Simi-
larly, a web mashup is a web application that gets data from various sources, processes
it, and combines it to create a new application.

Here, you'll create not only a web mashup but a physical mashup—a web applica-
tion that uses data from a real sensor connected to the web. Indeed, in this exercise
you're going to take local temperature data from the Yahoo! Weather service, com-
pare it with the temperature sensor attached to the Pi in our office, and publish your
results to the LCD screen attached to the Piin London. Finally, to get a visual feedback
of what your message looks like, you’ll use the web API of the webcam to take a picture
and display it on our web page! See figure 2.16 for an illustration.

o A
v

Yahoo
Weather

- >

Temperature
sensor

Message on Webcam
LCD screen

Figure 2.16 A physical mashup application. First (1), you retrieve the
local temperature from Yahoo Weather and then the remote
temperature from the sensor attached to our Pi (2). You compare it with
the temperature in London and send the results to an LCD screen (3).
When the screen displays the text you’ve sent, you retrieve a picture of
the screen form the webcam (4) and display it on the mashup.

Go ahead and open the file ex-5-mashup.html in both your editor and your browser.
This code is a little longer than what you’ve seen so far but not much more compli-
cated, as shown in the following listing.

Listing 2.9 Listing 2.9 Mashup function

S (document) .ready (function () {
var rootUrl = 'http://devices.webofthings.io';

function mashup (name, location) {
var yahooUrl = "https://query.yahooapis.com/vl/public/ygl?g=select item
from weather.forecast where woeid in (select woeid from geo.places (1)

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Exercise 5—Create your first physical mashup 29

where text='" + location + "') and u='c'&format=json"; Get the
$.getJSON (yahooUrl, function (yahooResult) { <-‘*‘\\\\\\tempennurein
var localTemp = the user location
yahooResult.query.results.channel.item.condition. temp; from Yahoo
console.log('Local @ ' + location + ': ' + localTemp);
$.getJSON(rootUrl + '/pi/sensors/temperature', function (piResult) {
////,> console.log('Pi @ London: ' + piResult.value);
Get the publishMessage (prepareMessage (name, location, localTemp,
temperature piResult.value)) ;
from the WoT 1) ‘\ Prepare the text to
Pi in London 1 publish and use it to

update the content
of the LCD screen

function publishMessage (message) {
$S.ajax (rootUrl + '/pi/actuators/display/content', { A i
/’ Set a timer that will

data: JSON.stringif "value" : , .
ate stringify({"value": message}) call the takePicture()

POST the contentType: 'application/json', function in N seconds

message to type: 'POST', (after the LCD content

the LCD success: function (data) { has been updated)
actuator S ('#message') .html ('Published to LCD: ' + message);

S('#wait') .html ('The Webcam image with your message will appear
below in : ' + (data.displayInSeconds+2) + ' seconds.');
console.log('We will take a picture in ' +
(data.displayInSeconds+2) + ' seconds...');

setTimeout (takePicture, (data.displayInSeconds+2) * 1000);

1)

/////> function prepareMessage (name, location, localTemp, piTemp) {
<

return name + '@' + location + ((localTemp < piTemp) ? ' st >)
Generate the + piTemp;
text to display !
with the user
name, location, function takePicture() {
. an:iPl $.ajax({
emperature .
P type: 'GET', ‘\ Retrieve the current
url: rootUrl + '/camera/sensors/picture/', imageﬁomthe
dataType: 'json', webcam in our office

success: function (data) {
console.log(data) ;
S ('#camImg') .attr('src', data.value);

), ¥ Update the HTML

error: function (err) { tag with
console.log (err); the image URL
}
}) i
}
mashup ('Rachel', 'Zurich, CH');

)

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

30 CHAPTER 2 Hello, World Wide Web of Things

The mashup () function is responsible for running the different bits of the mashup. It
takes two parameters: the first parameter is your name; the second one is the name of
the city where you live formatted as city, country code (for example, Zurich, CH;
London, UK; or New York, US). It’s then essentially composed of two HTTP GET calls
over AJAX requesting a response as application/json representations. The first call is
to the Yahoo Weather Service API, which given a location returns its current weather
and temperature.

Once this call has returned (that is, the anonymous callback function has been
invoked), the second function is called to fetch the latest value from the Pi tempera-
ture sensor, just as you already did in section Part 1—Polling the current sensor value.

Next, you call prepareMessage (), which formats your message and passes the
result to publishMessage (). This last function runs an HTTP POST call over AJAX with
a JSON payload containing the message to push to the LCD screen, as done in section
Exercise 3—Act on the real world.

Because you need to wait in the queue for your message to be displayed, you set a
timer that will trigger the takePicture() function. This last function runs a final
HTTP GET request to fetch a picture of what the LCD screen shows, via the web-
enabled camera. You then dynamically add the returned picture to the image con-
tainer of your HTML page.

To start this chain of real-world and virtual-world events, all you need to do is edit
the source code so it invokes the mashup (x,y) function using your own name and city.
For example, Rachel from Zurich in Switzerland needs to call this function as follows:

mashup ('Rachel', 'Zurich, CH')

Then open the file in your browser, and voila! Within a few seconds, you’ll see a live
image from the webcam with your message appearing on the screen of the Pi in our
office.

2.6.1 So what?

You’ve built your first web-based physical mashup using data from various sources,
both physical and real-time, and run a simple algorithm to decide whether your
weather is better than ours (although competing against London on the weather is
somewhat unfair). Think about it for a second. This mashup involves a temperature
sensor connected to an embedded device, a video camera, an LCD screen, and a vir-
tual weather service, and yet you were able to create a whole new application that fits
into 80 lines of HTML and JavaScript, UI included! Isn’t that nice? All this thanks to
the fact that all the actors (devices and other services) expose their APIs on the web
and therefore are directly accessible using JavaScript! You’ll learn much more about
physical mashups throughout the book and especially in chapter 10, where we’ll sur-
vey the various tools and techniques available.

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Summary 31

2.7 Summary

= You experienced your first hands-on encounter with web-connected devices
across the world and could browse their metadata, content, sensors, actuators,
and so on.

= Web-connected devices can be surfed just like any other website. Real-time data
from sensors can be consumed via an HTTP API just like other content on the
web.

= It’s much easier and faster to understand the basics of HTTP APIs than the vari-
ous and complex protocols commonly used in the IoT.

= In only a few minutes you were able to read and write data to a device across the
world by sending HTTP requests with Postman.

= Connecting the physical world to the web enables rapid prototyping of interac-
tive applications that require only a few lines of HTML/JavaScript code.

= As data and services from various devices are made available as web resources, it
becomes easy to build physical mashups that integrate content from all sorts of
sources with minimal integration effort.

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

32

The Internet of Things (IoT) is a hot conversation
topic. Analysts call it a disruptive technology. Compet-
ing standards and technologies are appearing daily,
and there are no tangible signs of a single protocol
that will enable all devices, services, and applications
to talk to each other seamlessly. Fortunately, there’s a
great universal IoT application platform available now:
the World Wide Web. Web standards and tools provide
the ideal substrate for connected devices and applica-
tions to exchange data, and this vision is called the
Web of Things.

Building the Web of Things is a hands-on guide that

will teach how to design and implement scalable, flexible, and open IoT solutions
using Web technologies. This book focuses on providing the right balance of theory,
code samples and practical examples, to enable you how to successfully connect all
sorts of devices to the Web and how to expose their services and data over REST APIs.

After you build a simple proof of concept app, you’ll learn a systematic methodology

and system architecture for connecting things to the Web, finding other things, shar-
ing data, and combining these components to rapidly build distributed applications
and physical mashups. Gain the knowledge and skills you'll need to fully take advan-
tage of a new generation of real-time, web-connected devices and services and to be
able to build scalable applications that merge the physical and digital worlds.

What’s inside

= Sense and connect the real world

= Build a Web interface to control your Smart Home using a Raspberry Pi
= Create a Web API for any device

= Build real-time physical mashups with JavaScript and node.js
= Integrate other protocols such as MQTT, CoAP or Bluetooth to the Web
= WoT and IoT platforms, tools, and protocols

Whether you're a seasoned developer, a system architect, or a curious amateur with

basic programming skills, this book will provide you with a complete toolbox to

become an active participant in the Web of Things revolution.

www.itbook.store/books/9781617294006

https://www.manning.com/books/building-the-web-of-things
https://www.manning.com/books/building-the-web-of-things
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

-» b ith the previous chapter about the Access layer, you learned how blending

embedded devices into the web makes them so much more easily programmable.
The request/response pattern of REST combined with the real-time power of Web-
Sockets is ideal to offer simple web APIs for Things, but other patterns exist on the
web. These patterns become especially valuable when considering use cases beyond
your control. In the next chapter, “Getting data from clients: data ingestion” from
Streaming Data, you'll discover a number of other web patterns for your Things,
such as Publish/Subscribe, One-Way, and Request/Acknowledge. Finally, you'll
explore the Stream pattern, which is especially useful when continuous flows of
data need to be transmitted from Things to web platforms.

33

www.itbook.store/books/9781617294006

https://www.manning.com/books/streaming-data
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Chapter 2 from Streaming Data
by Andrew G. Psaltis

Getting data from clients:
data ingestion

This chapter covers

= |earning about the collection tier

= Understanding the data collection patterns
= Taking the collection tier to the next level

= Protecting from data loss

Now on to our first tier: the collection tier is our entry point for bringing data into
our streaming system. Figure 2.1 shows a slightly modified version of our blueprint,
with focus put on the collection tier.

This tier is where data comes into the system and starts its journey; from here it
will progress through the rest of the system. In the coming chapters we’ll follow the
flow of data through each of the tiers. Your goal for this chapter is to learn about
the collection tier. When you finish this chapter you will have learned about the col-
lection patterns, how to scale, and how to improve the dependability of the tier via
the application of fault-tolerance techniques.

34

www.itbook.store/books/9781617294006

https://www.manning.com/books/streaming-data
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Common interaction patterns 35

Browser,

. Browser,
Device,

C Device,
Vend_lng Vending
Machine, Machine, etc..

etc..

\ A

Collection Message Analysis In-Memory
Tier Queueing Tier Tier Data Store
[| I
/
/

Data
Access Tier

__/

Sometimes we need to reach back to
get data that has just been analyzed.

We will not be covering this in
detail. But you may want to persist
analyzed data for future use.

Figure 2.1 Architectural blueprint with emphasis on the collection tier

2.1 Common interaction patterns
Regardless of the protocol used by a client to send data to the collection tier—or in cer-
tain cases the collection tier reaching out and pulling in the data—a limited number of
interaction patterns are in use today. Even considering the protocols driving the emer-
gence of the Internet of Everything, the interaction patterns fall into one of the following
categories:

= Request/response

= Publish/subscribe

= One-way

= Request/acknowledge

= Stream
At a high level we can group these interactions into two main categories:

= Request/response optional (request/response, publish/subscribe, one-way,
request/acknowledge)

= Stream

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

36 CHAPTER 2 Getting data from clients: data ingestion

Let’s take a moment and explore each of these patterns and discuss how you might
collect data using them.

211 Request/response

This is the simplest pattern and is used when the client must have an immediate
response or wants the service to complete a task without delay. Every day you experi-
ence this pattern while browsing the web, searching for information online, and using
your mobile device. This pattern works as follows: First, a client makes a request to a
service; this may be to take an action (such as send a text message, apply for a job, or
buy an airline ticket) or to request data (such as perform a search on Google or find
the current weather in their city). Second, the service sends a response to the client.
Figure 2.2 illustrates this pattern.

("Connection N
»(Request) -

Client ——— Service
- { Response)=

The request and the Figure 2.2 Basic request/
response happen over

the same connection response pattern

When you look at figure 5.2 it’s apparent how simple this pattern is. One caveat of this
pattern is that the request from the client and response from the service happen over
the same connection in a synchronous fashion. This pattern is still widely used today
and still relevant. The simplicity of a synchronous request and response comes at the
cost of the client having to wait for the response and the service having to respond in
a timely fashion. With modern-day services this cost often results in an unacceptable
experience for users. Imagine browsing to your favorite news or social site and your
browser trying to request all the resources in a synchronous fashion. Outside of basic
services such as requesting the current weather, the potential delay is no longer toler-
able. In many cases this can translate into lost revenue for merchants, because users
don’t want to wait for the response. There are three common strategies used to over-
come this limitation: one client side, one service side, and the last a combination of
the two. Let’s consider the client side first. A common strategy often taken by the cli-
ent is to make the requests asynchronously; this approach is illustrated in figure 2.3.
With this adaptation the client makes the request of the service and then contin-
ues on with other processing while the service is processing the request. This is the
pattern used by all modern web browsers; the browser makes many asynchronous
requests for resources and then renders the image and/or content as it arrives. This
type of processing allows the client to maximize the time normally spent waiting on
the response; the end result is an overall increase in the work performed by the client

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Common interaction patterns 37

The request and the
response happen over
the same connection

Client (Connection (h Time t
@ { Beauast }
\ AN J - J l|r
O Time t+1
O Other work being Service
Z performed
O Time t +2
Connection Figure 2.3 Client making
@ | Time t+3 asynchronous request to
\ 7 \ / v the service

over a period of time. Implementing this type of pattern is relatively easy today
because all modern programming languages and many of the frameworks you may
use natively support performing the request asynchronously. This pattern is often
called half-async because one half of the request response is done asynchronously.
Implementing this type of processing on the service end is also very common and is
illustrated in figure 2.4.

With the service side half-async pattern the service receives a request from a
client, delegates the work to be done, and when the work is finished responds to the
client. This type of processing results in the development of more scalable services,
which are able to handle requests from many more clients. This type is also very com-
mon in all server-side development frameworks found today for all popular program-
ming languages.

- Service
Client @ Connection Time t
----+0
Connection 2 o Time t+1

Client
o] Time t +2
ot (1) ﬁ! «—--0
Time t+3

Connection 2 D
. Time t+4
Hesponse A - —D

Figure 2.4 Service async request/response pattern

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

38 CHAPTER 2 Getting data from clients: data ingestion

The last variation of this pattern occurs when both the client and the server perform
their work asynchronously; the resulting flow is the same as that shown in figure 2.4.
When both the client and the server are performing their work asynchronously, we
call this pattern full-async. Today many modern clients and services operate in this
fashion. Now let’s walk through an example of how we can use this pattern in the
design and the development of a streaming system.

Imagine for a moment that we work in the transportation industry and last week
while enjoying coffee with our friend Eric, who works in the automotive industry, we
came up with an idea to provide a real-time traffic and routing service for all vehicles
on the road. Our company would build the service and Eric’s company would build
the streaming system that would reside inside the vehicles. We then sketched out what
this solution would look like; starting with the vehicle part of it, figure 2.5 shows our
high-level drawing of the vehicle side of things.

For the vehicle Eric is going to build an embedded streaming system to not just
handle interacting with our traffic and navigation service but to also have the ability to
interact with other services and perhaps vehicles.

The request/response pattern would work well for this scenario; in particular we’d
want to choose the full-async variant. By choosing the full-async variant our traffic and

Construction 1 mile
ahead, alternate
route recommended

Traffic
Conditions
Service

On board
Navigation

.
Collection Message Analysis In-Memory Data
Queueing Data Store Access

Figure 2.5 Receiving the response to the traffic conditions request with an on-board streaming system

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Common interaction patterns 39

navigation service would be better positioned to handle requests from a lot of cars on
the road at a single time. For Eric’s on-board streaming system, the ability to asynchro-
nously request data and process it as it arrives would be essential. By following this pat-
tern, the streaming system would not be blocked waiting for a response from our
service and could handle other data analysis pertinent to the vehicle.

At this point we’re ready for Eric’s team to build the vehicle side of things and
we’re ready to build the traffic and routing service. If you are interested in learning
more about this pattern, a good place to start is with Robert Daigneau’s Service Design
Patterns (Addison-Wesley, 2011).

2.1.2 Request/acknowledge

There are times when you need to use an interaction pattern with similar semantics to
the request/response pattern but you don’t need a response from the service. Instead,
what you need is an acknowledgement that your request was received; the
request/acknowledge pattern fits that need. Oftentimes the data sent back in the
acknowledgement can be used to make subsequent requests, perhaps to check the sta-
tus of the initial request or get a final response.

As an example, imagine we’re working with the marketing department for our
company to make sure that on our e-commerce site we provide the right offer to the
right person at the right time, with the goal of increasing their likelihood of purchas-
ing from us during their current visit. After further discussions with the marketing
team we settled on a solution that would constantly update a visitor’s propensity-to-buy
score during their visit. With this dynamic score available, at any time our site can
make the right offer to influence their decision to purchase. Figure 2.6 shows how this
looks from a high level.

Let’s walk through the flow of data illustrated in figure 2.6. As the visitor is brows-
ing our site we’re collecting data about each of the pages they’re visiting and the links
they’re clicking. The unique thing we’re doing that’s particular to the
request/acknowledge pattern occurs on the very first page they visit. On this page our
collection tier returns an acknowledgment that can be used in future requests. Unlike
the request/response pattern that may return as response success or failure, this pat-
tern returns data that can be used in future requests. In this case the acknowledge-
ment is nothing more than a unique identifier, but it plays an important role. The
acknowledgement can be used on all subsequent pages the visitor visits. When we call
the propensity service, we can pass the unique identifier we obtained on the very first
visit. With the unique identifier, which identifies the visitor, our propensity service can
determine and return the visitor’s current propensity-to-purchase score. I realize that
we’re leaving out a lot of the details of how we go from collection to a propensity
score, but don’t worry; this will become clearer as we progress through the coming
chapters. The key takeaway is that with the request/acknowledge pattern a client
makes a request of a service, asking for an action to be taken, and in turn receives an
acknowledgement token that can be used in future requests. If you think about it,
you’ll realize that we experience this pattern every day in real life. For example, when

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

40 CHAPTER 2 Getting data from clients: data ingestion

. Get propensity to buy
TR R - score, passing in the
Retumn acknowledgement 7 34 Ol ~ N\ acknowledgement
TN .
- S Y
B g B TN '\
Ty Teg n

Propensity
Service

¥ — =

i '
Collection o~ ~ |
Message \

Queuging

: y

e _"\‘ — x

[In-Memory

l Data Store |*’— —.-.a-i\ Data Access

J
]

Figure 2.6 Visitor browsing while data is collected and their propensity-to-buy score is updated

you purchase an item online, you're often given a confirmation number. Subse-
quently, you can use this confirmation number to check on the status of your order.

If you're interested in learning more about this pattern, see Gregor Hohpe and
Bobby Woolf’s Enterprise Integration Patterns (Addison-Wesley, 2003).

2.1.3 Publish/subscribe

This is a common pattern with message-based data systems; the general flow is shown
in figure 2.7.

The general data flow as illustrated in figure 2.7 starts with a producer publishing a
message to a broker. The messages are often sent to a topic, which you can think of as
a logical grouping for messages. Next, the message is sent to all the consumers who
are subscribing to that topic. There’s a subtlety in this last step that we’ll cover in
depth in chapter 3. For now, just realize that some technologies follow the data flow as
illustrated here, pushing messages to consumers. But with other technologies the con-
sumer pulls messages from the brokers. It may not be obvious at first, but oftentimes
just because a producer publishes a message it doesn’t mean that it needs to subscribe
to a topic. Nor is it required that a subscriber produce a message.

Let’s walk through an example of how this protocol can be used and its impact on
our collection tier. After the success of our joint venture with Eric’s company, we

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Common interaction patterns 41

4 Broker N

GroduceD_’CMes“sageD_ _._:\/ Subs-iipnanj_ {Mesfage>—><00nsumel>

(Producer }— Mes2sage) / - Meszsage
[~ Topic /" Subscription ™ i)
| +———»(Consumer
@_’ . B /| Message

(ProduceD—»(Mngage)’ : 3 - 4
T Ve pT—
Producer Message | _ /“Topic ("~ Subscription \.'— Message
4 [_ B J 4

o j

Figure 2.7 General data flow for the publish/subscribe message pattern

started to think about how we can take our in-vehicle traffic and routing service to the
next level. After considering several ideas, we settled on the idea of making it social.
In addition to the vehicle requesting traffic information and routing, it would send
real-time traffic updates back to the service and subscribe to the real-time traffic
reports from other vehicles traveling along the same route. Figure 2.8 shows the flow
of messages we’re talking about.

For simplicity we’re showing only a handful of cars acting as producers and send-
ing their current traffic conditions to the broker and a single car acting as the con-

Car Car Car Car
(Producer) (Producer) (Producer) (Producer)

¥ ¥ ¥ ¥
Current Current Current Current
Traffic Traffic Traffic Traffic

Traffic Topic

\J

I'/ Traffic \.I
Subscription /
Broker - pron/

. v

Current
Traffic

Figure 2.8 Current traffic publish/
(Consumer) subscribe message pattern

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

42 CHAPTER 2 Getting data from clients: data ingestion

sumer. If this was real, you could imagine how each producer would also consume and
analyze all of the data. By using the publish/subscribe pattern we’re able to decouple
the sender of the traffic data from the consumer of it. As we scale this simple example
of four cars sending data and one consuming data to all cars in the United States, I
think you can imagine how important the decoupling this pattern provides is. If
you’re interested in learning some of the finer points about this pattern, a good place
to start is Enlerprise Integration Patlerns, mentioned previously.

2.1.4 One-way

This interaction pattern is commonly found in cases where the system making the
request doesn’t need a response. Often you may also see this pattern referred to as the
“fire and forget” message pattern. In some cases this pattern has distinct advantages
and may be the only way for a client to communicate with a service. This pattern is
similar to the request/response and request/acknowledge patterns in the way a mes-
sage is sent from the client to the service. The major difference is that the service does
not send back a response. Whereas in the other patterns the client knows the request
was received and processed, in the case of the one-way pattern the client doesn’t even
know if the request was received by the service.

You may be wondering how or where a pattern that has zero guarantees that the
message was even received by a service can be useful. This pattern is useful in environ-
ments where a client doesn’t have the resources or the need to process a request. For
example, think of the data available about the servers in your data center. You’d like
for the server to send data about how much memory and CPU are being used every 10
seconds. You don’t need the server to take any action or even worry about the result;
it’s purely producing data as fast as possible. Examples of this interaction pattern
appear all around us and will continue to grow along with the proliferation of the
Internet of Everything. It’s infiltrating many aspects of our life, and sports is no excep-
tion. For example, a recent partnership between the NFL and Zebra
(http://www.zebra.com/us/en/nfl.html) resulted in players during Thursday Night
Football games being outfitted with quarter-sized radio frequency identifier (RFID)
tags on their equipment. This tag will transmit data, such as the athlete’s movement,
distance, and speed, approximately 25 times a second to the 20 RFID receivers installed
in the stadium. Within half a second, the data will be analyzed and relayed to the TV
broadcast trucks to be used by commentators. In this scenario the RFID tag, which is
the client, does not need and does not have the resources to process a response from
the RFID receiver. Another aspect about this example as it relates to this pattern is that
the data is being sent 25 times a second. If during one second five samples were lost
and they were not received by the RFID receiver, would the resulting analysis be
impacted? No, it would not. That’s another noteworthy characteristic of this pattern—
it is appropriate and often found in environments where losing some data is tolerable
in exchange for simplicity, reduced resource utilization, and speed. To learn more
about this pattern, see Nicolai M. Josuttis’s SOA in Practice (O’Reilly, 2007).

www.itbook.store/books/9781617294006

http://www.zebra.com/us/en/nfl.html
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Common interaction patterns 43

2.1.5 Stream

This interaction style is quite different than all of the others we’ve talked about thus
far. With all of the other patterns a client was making a request to a service that may or
may not have returned a response. With this pattern we’re flipping things around and
the service becomes the client. A comparison of this to the other patterns you've seen
is illustrated in figure 2.9.

"Connection ™
»(_ Request)} -

Client =

~ Service
Response

_(Single message) /™~
- /

A) Request/Response Optional

" Connection ™
- {_Request)=

Stream .
Source . [Response | - Service
| (Continuous) | Figure 2.9 Comparing the

_ Y, request/response patterns to
the stream pattern

B) Streaming

There are a couple of important distinctions to point out when comparing the previ-
ous patterns (all the request/response optional patterns) with the stream pattern:

= With the request/response style of interaction as depicted at the top of figure 2.9,
the client pushes data to the service in the request and the service may respond.
This response is grayed out in the diagram, because the response is not required
by some variations of this pattern. It boils down to a single request resulting in
zero or one response. The stream pattern as depicted at the bottom of figure 2.9
is quite different; a single request results in no data or a continual flow of data as
a response.

= The second difference between the request/response optional patterns and the
stream pattern is that in the former a client external to the streaming system is
pushing the message to it. In our previous examples this was a web browser, a
car, or a phone—all clients that send a message to our collection tier. In the
case of the stream pattern, our collection tier connects to a stream source and
pulls data in. For example, you may be interested in building a streaming sys-
tem to do sentiment analysis of tweets. To do so you’d build a collection tier
that establishes a connection to Twitter and consumes the stream of tweets.

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

44 CHAPTER 2 Getting data from clients: data ingestion

The usage of this pattern is very interesting and powerful; you’re ingesting a stream of
data and producing another stream. With this you can quickly build a streaming anal-
ysis system that consumes publicly available data and in turn create new streams of
data based on your analysis. Unlike the other patterns where you need to create or
find clients to send a request to your service, with the stream pattern you can chose to
connect to and process the data from a stream source. The U.S. government provides
an example input stream that you can use for exploring this interaction pattern or as
input to a streaming system. The stream is composed of JSON events, each of which is
generated every time someone clicks a 1.USA.gov URL, which is any .gov or .mil URL
that has been Bit.ly shortened. To see this input stream in action, open your favorite
browser and go to http://developer.usa.gov/lusagov. In this case, a simple, long-lived
HTTP connection is established and data is subsequently streamed back to your
browser until you end the HTTP connection. In the data stream you’ll see J[SON events
that are similar to the following listing.

Listing 2.1 Example JSON stream event

{
nhn . “lt2pQ2p",
" gu .o lguGHEx“ ,
"1": "tweetdeckapi", The destination page

"hh": "1.usa.gov", ‘/ that this event is for
ng

"http://www.nasa.gov/aero/infographics.html",

////~> "r": "http://t.co/jEtfiOv786",
"a": "Mozilla/5.0 (Linux; U; Android 4.3; es-us; SGH-T889 Build/JSS15J)

The referring AppleWebKit/534.30 (KHTML, like Gecko) Version/4.0 Mobile
URL that led to Safari/534.30",

the destination "en. 1416409750,

page "nk". l,

"hc": 1416344005,
"_id": "546cb296-0003c-0784b-321cfl0a",

"al": "es-US, en-US",
"c": "PR",
"tz": "America/Puerto_Rico",
"gr": "00",
"cy": "Ensenada",
"1l [
17.9638,
-66.9452

This is an example of using the stream interaction pattern. Imagine if you took this
data and combined it with social data such as tweets about certain URLs. Again that’s
something that’s hard to replicate with the other patterns. As you look at this data I'm
sure you’ll come up with a variety of questions about it without combining it with
other streams. Perhaps you’d want to count the top pages viewed or maybe the top
referrers by city. But let’s not get ahead of ourselves; we’re going to work through how

www.itbook.store/books/9781617294006

http://developer.usa.gov/1usagov
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Scaling the interaction patterns 45

to answer these and other types of questions in chapter 4. For now it’s enough to rec-
ognize this pattern and start to get a feel for this interaction pattern. If you're inter-
ested in learning more about this dataset, please see http://www.usa.gov/About/
developer-resources/lusagov.shtml.

2.2 Scaling the interaction patterns

Now that we’ve discussed each of the interaction patterns, let’s see how we’d scale our
collection tier and talk about some of the things to keep in mind when implementing
it. We're going to keep the discussion at the level of the two categories we grouped the
interaction patterns into before.

2.2.1 Request/response optional

To discuss scaling this general pattern we’ll continue with the example from our ini-
tial discussion of the request/response pattern, the real-time traffic and routing ser-
vice for all vehicles on the road. To get a better sense for the scale of our idea—to
provide this service for all vehicles on the road in the United States—we’ll consider
the 2012 (the last complete year) National Transportation Statistics report (produced
by the Bureau of Transportation Statistics, http://www.rita.dot.gov/). According to
this report approximately 253 million vehicles were registered in the United States
and we collectively drove approximately 2.966 trillion miles. This means that at any
time during the almost 3 trillion miles driven by one of the 253 million vehicles, we
may get a request for the current traffic conditions and alternate route suggestions.
Undoubtedly at any moment we’ll need to handle thousands and possibly millions of
requests. If you remember, in chapter 1 we talked about horizontal scaling being our
overall goal for every tier of our streaming system. With this example and our use of
the request/response optional pattern, horizontal scaling will work very well for two
reasons: First, with this pattern we don’t have any state information about the client
making the request, which means that a client can connect and send a request to any
service instance we have running. Second—and this is a result of the stateless nature
of this pattern—we can easily add new instances of this service without changing any-
thing about the currently running instances. The mode of scaling stateless services is
so popular that many cloud hosting providers, such as Amazon, provide a feature
called auto-scaling that will automatically increase or decrease the number of
instances running based on demand. On top of horizontal scaling we also want our
service to be stateless, which will allow any vehicle to make a request to any instance of
our service at any time. This stateless trait is commonly found in systems that use this
pattern. Taking horizontal scaling and statelessness into consideration, we arrive at
figure 2.10, which shows these two aspects together.

We’re using a load balancer here to be able to route requests from the vehicles to
an instance of our service that’s running. As instances are started or stopped based on
demand, the running instances the load balancer routes requests to will change. We
now have a pretty good idea of how we’re going to scale our service and the protocol
we’re going to use with our clients.

www.itbook.store/books/9781617294006

http://www.usa.gov/About/developer-resources/1usagov.shtml
http://www.usa.gov/About/developer-resources/1usagov.shtml
http://www.rita.dot.gov/
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

46 CHAPTER 2 Gelting data from clients: data ingestion

Traffic Service Traffic Service Traffic Service Traffic Service
(Collection Node) (Collection Node) (Collection Node) (Collection Node)
T [I
v ¥ v v

Message Queueing Tier

Figure 2.10 Vehicle and traffic service with a load balancer

2.2.2 Scaling the stream pattern

The 1.USA.gov stream we used as an example in section 2.1.5 for our discussion of the
stream interaction pattern has a fairly low velocity (less than 10 events per second).
Obviously that’s not the best example to help us think through how to scale a collection
tier when using the stream interaction pattern. Instead, let’s imagine that Google pro-
vided a public stream of all the searches being performed as they happen; according to
internetlivestats.com (http://www.internetlivestats.com/one-second/#google-band)
that would result in approximately 46,000 search events per second. Previously we men-
tioned that horizontal scaling is our goal when building each tier of our streaming sys-
tem. With many streaming protocols, just like you saw earlier when you consumed the
1.USA.gov stream in your browser, there’s a direct and persistent connection between
the client (our collection tier) and the server (the service we request data from), as illus-
trated in figure 2.11.

www.itbook.store/books/9781617294006

http://www.internetlivestats.com/one-second/#google-band
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Scaling the interaction patterns 47

(" Google Search Stream)

A/ "
These Nodes
Collection Node Collection Node Collection Node Collection Node sitidle
™

Figure 2.11 Search stream with direct connection to single collection node

In figure 2.11 you can see that three of the four nodes are idle because there’s a direct
connection between the search stream and the node handling the stream. To scale
our collection tier we have a couple of options: scaling up the collection node that’s
consuming the stream and introducing a buffering layer in the collection tier. These
are not mutually exclusive, and depending on the volume and velocity of the stream
both may be required. Scaling up the node consuming the stream will only get us so
far; at a certain point we’ll reach the limits of the hardware our collection node is run-
ning on and won’t be able to scale it up any further. To aid in preventing this from
happening we’ll introduce a buffering layer. Figure 2.12 shows what our collection tier
looks like with the buffering layer in place.

The key to being able to put a buffering layer in the middle lies in making sure
that no business logic is performed on the messages when they’re consumed from the
stream. Instead, they should be consumed from the stream and as quickly as possible
pushed to the buffering layer. A separate set of collection nodes that may perform
business logic on the messages will then consume the messages from the buffering
layer. The second set of collection nodes can now also be scaled horizontally.

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

48 CHAPTER 2 Getting data from clients: data ingestion

(Google Search Stream)

IIAI‘
Load Balancer
[}

“pn

Collection Node

(Buffering Layer

\

(Collection Node) (Collection Node) (Collection Node)

+ v v
(Message Queueing Tier j
A\
T T T T | I I
\ y ¥ y ¥ v ¥

Figure 2.12 Collection tier with buffering layer in place

2.3 Fault tolerance

Regardless of the interaction pattern used, one thing is for sure: at some point we will
have a failure with one or more of our collection nodes. The failure may be the result
of a bug in our software, third-party software we rely on, or the hardware our service
runs on. Regardless of the cause, our goal is to mask the failures and to improve the
dependability of our collection tier. You may be wondering why we need to worry
about this if we’ve done our job of horizontally scaling and increasing the redundancy
of our tier. That’s a fair question to ask. The answer actually is quite simple; the mes-
sage our collection tier receives from a client may not be reproducible. In essence,
there may be no way for our collection tier to ask for the client to send us the data
again and in many cases no way for the client to actually do so even if our collection
tier could ask. Depending on your business, there may be times when it’s okay to lose
data, but in many cases it’s important that you do not lose data. In this section we’re
going to explore the fault-tolerance techniques we can employ to help us ensure we
do not lose data and we improve the dependability of our collection tier. Our over-
arching goal is that when a collection node crashes (and it will) we do not lose data

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Fault tolerance 49

Data
Producer
Places where we

X can lose data
v Q-_____________‘ o
- uring a crash

Collection
Tier Node

e Message N
_Queueing Tier / Figure 2.13 Collection scenario with
our data loss potential identified

and can recover as if the crash had never occurred. To understand the areas we need
to protect, take a look at figure 2.13, which shows the simplest possible collection sce-
nario with the places we can lose data when the node crashes.

The two primary approaches to implementing fault tolerance, checkpointing and log-
ging, are designed to protect against data loss and enable speedy recovery of the
crashed node. The characteristics of checkpointing and logging are not the same, as
you’ll soon see.

First, let’s consider checkpointing. There are a variety of checkpoint-based proto-
cols in the literature to choose from, but when you boil them down, the following two
characteristics can be found in all of them:

= Global snapshot—They require that a snapshot of the global state of the whole
system be regularly saved to storage somewhere, not just the state of the collec-
tion tier

= Potential for data loss—They only ensure that the system is recoverable up to the
most recent recorded global state; any messages that were processed and gener-
ated afterward are lost

What does it mean to have a global snapshot? It means we’re able to capture the entire
state of all data and computations from the collection tier through the data access tier
and save it to a durable persistent store. This is what we’re talking about when we refer
to the global state of the system. This state is then used during recovery to put the system
back into the last known state. The potential for data loss exists if we can’t capture the
global state every time data is changed in the system. An example I’'m sure you’ve seen
is AutoSave in popular document-editing software such as Microsoft Word or Google
Docs. In both cases a snapshot is taken of the document as you are editing it, and if the
application crashes you can recover to the last checkpoint. If you’re like many people,
you’ve seen checkpointing and the potential for data loss in action. Perhaps, like many,
you’ve encountered the situation where a word processing program crashes and your
most recent edits were not saved. When considering using a checkpoint protocol for
implementing fault tolerance in a streaming system, you have to keep two things in
mind: the implications of the previously mentioned attributes and the fact that a

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

50 CHAPTER 2 Getting data from clients: data ingestion

streaming system is composed of many layers and many different technologies. This
layering and the data movement make it very hard to consistently capture a global
snapshot at a point in time. This makes checkpointing a bad choice for a streaming sys-
tem. But checkpointing is a valid choice if you’re building the next version of HDFS or
perhaps a new NoSQL data store. Given that checkpointing isn’t a good match for a
streaming system, we won’t spend more time on these protocols. Even though they’re
not a good fit, they’re fascinating to study. If you’re interested in learning about them,
I would encourage you to start with the following great article by Elnozahy, En Mootaz,
etal, “A Survey of Rollback-Recovery Protocols in Message-Passing Systems” (ACM Com-
puting Surveys 34.3 (2002): 375-408).

Turning our attention to the logging protocols, you have a variety to choose from.
Reducing them to their essence, you'll find that they all share the common goals of
overcoming the expense and complexity of checkpointing and providing the ability to
recover up to the last message received before a crash. Part of the complexity of
checkpointing that’s eliminated is the global snapshot and thus the management and
generation of the global state. In the end the goals of the logging technique manifest
themselves in the basic idea that underpins all of the logging techniques: If a message
can be replayed, then the system can reach a global consistent state without the need for a global
snapshot.

This means that each tier in the system independently records all messages it
receives and plays them back after a crash. Implementing a logging protocol frees us
from worrying about maintaining global state, enabling us to focus on how to add
fault tolerance to the collection tier. To do this we’re going to discuss two classic tech-
niques, recetver-based message logging (RBML) and sender-based message logging (SBML), and
an emerging technique called hybrid message logging. Along the way we’ll also discuss
how and why we can use these with our collection tier. Before moving on to discuss
these different techniques, take a look at figure 2.14, which illustrates how they fit
together and what data we’re trying to protect.

Figure 2.14 shows a single collection tier node that’s receiving a message, perform-
ing some logic on it, and then sending it to the next tier. As their names imply,
receiver-based logging is concerned with protecting the data the node is receiving and
sender-based logging is concerned with protecting the data that’s going to be sent to
the next tier. You can imagine your business logic being sandwiched between two lay-
ers of logging, one designed to capture the data before it’s changed and one to cap-
ture it before it’s sent to the next tier. If you’re thinking that this is a lot of potential
overhead and overlap, in some cases it may be, and this is where hybrid message log-
ging (HML) aims to strike a balance between RBML and SBML. With that frame of ref-
erence let’s start our discussion with receiver-based logging.

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Fault tolerance

We don't want Data Producer
to lose this

l
Receivin
ing Collection Tier

Node
Node Logic

Sending

| Message We don’t want

'ﬁ to lose this
v

7/~ Message Queueing
\ Tier /

Figure 2.14 High-level overview of receiver-based and sender-based message logging

2.3.1 Receiver-based message logging

The RBML technique involves synchronously writing every received message to stable
storage before any action is taken on it. By doing that, we can ensure that when our
software crashes while handling the message, we already have it saved and upon recov-

ering we can replay the message. Figure 2.15 illustrates how our collection node
changes with the introduction of RBML.

Data Producer

1
|
Y
: REBML 2 (Messags Stable Storage
Logger Collection Tier
4 3 Node
\J
Node "“"\5
Logic
5 | Gessand
A . .
7~ Message \ Figure 2:15 RBML ||:np|emented
\ Queueing Tier / for the simple collection node

showing the happy path

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

52 CHAPTER 2 Getting data from clients: data ingestion

In figure 2.15 the message flows from step 1 through to step 5; this shows the happy
path when there is no failure. We’ll walk through the recovery side of it shortly, but
first let’s take a moment and briefly review the flow:

1 A message is sent from a data producer (any client).

2 A new piece of software we wrote for the collection node, called the RBML log-
ger, gets the message from the data producer and sends it to storage.

3 The message is written to stable storage.

4 The message then proceeds through to any other logic we have in the node;
perhaps we want to enrich the data we are collecting, filter it, and/or route it
based on business rules. The important aspect is we are recording the data as
soon as it is received and before we do anything to it.

5 The message is then sent to the message queueing tier, the next tier in the
streaming system.

It’s important to point out that depending on the type of stable storage used, steps 2
and 3 have the potential of negatively impacting the throughput performance of our
collection node. Sometimes in the literature you’ll see this called out as one of the
drawbacks to logging protocols. The hybrid message logging technique we’ll discuss
in section 2.3.3 helps to address some of those concerns. For now we’ll keep it sim-
ple—at the end of the day the simplicity and recoverability of using RBML for our col-
lection node wins.

Now that you understand how the data flows during normal operation, take a look
at figure 2.16, which shows what the recovery data flow looks like.

In figure 2.16 there are a couple of things to call out. First, once the crash occurs,
all incoming messages to this collection node are stopped. Because you’ll have more
than one collection node and they’ll be behind a load balancer, you would take this
node out of rotation. Next, the RBML logger reads the messages that have not been
processed from stable storage and sends them through the rest of the node logic as if

Incoming messages
prevented till all
\ messages replayed
Xeo /
'!

REML Stable Storage

Logger

2 | (Message)
v

Node h\}
Logic
Y=
L
/" Message

{ Queueing Tier \x Figure 2.16 The recovery

data flow for RBML

Collection Tier
Node

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Fault tolerance 53

nothing has happened. Lastly, after all of pending messages are processed, the node is
considered restored and can be put back into rotation, and the data flow resumes as
in figure 2.15.

2.3.2 Sender-based message logging

The SBML technique involves writing the message to stable storage before it is sent. If
you think of the RBML technique as logging all messages that come in the front door
of our collection node as a means to protect us from ourselves, then SBML is the act of
logging all outgoing messages from our collection node before we send them, protect-
ing ourselves from the next tier crashing or a network interruption. Figure 2.17 shows
the data flow for SBML.

1 | @essage
¥
1 D
Collection Tier
e Node
Stable Storage _J
{ SBML Logger)
B —
T 7(bkt 4 (Message)
mMes: =l
\. J
5 6
ACK
B B
(" Message Queueing "
Tier Figure 2.17 The normal execution
data flow for SBML

Now that you understand RBML and in particular the data flow, I suspect that the data
flow for SBML as depicted in figure 2.17 seems fairly reasonable to you through step 5.
One thing to keep in mind that’s different between the RBML data flow and SBML is
that with RBML we are recording the message as soon as it is received before we do
anything to it, and with SBML we are recording it before we send any data to the next
tier. Thus the data recorded by an RBML logger is the raw incoming data and the data
recorded by the SBML logger is after our node logic (remember, we may have aug-
mented the data in some way) executes and before we send it on. Besides this nuance
there’s a little wrinkle we’ll need to deal with during recovery. During recovery how do
we know if the next tier has already processed the message we’re replaying? There are
several ways to handle this. One that is shown in figure 2.17 is that we use a message
queueing tier that returns an acknowledgement that it received the message. With
that acknowledgement in hand, we can either mark the message as replayed in stable

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

54 CHAPTER 2 Getting data from clients: data ingestion

storage, or we can delete it from stable storage because we don’t need to replay it any-
more during recovery. If the technology you choose for your message queueing tier
doesn’t support returning an acknowledgement of any sort, then you may be forced
into a situation where if no error occurs when sending the message to the message
queueing tier, steps 6 and 7 will result in you deleting the message from stable storage.
The recovery data flow as illustrated in figure 2.18 is a little more complex than how
we handled recovery with the RBML.

Incoming messages
Mo incoming Data Producer prevented till all

messages, SO messages replayed

no work to do Xeuo_ =/
I
3

< ' N

-
™ Node
\l_ogic
Collection Tier
f " MNode
Stable Storage _J
| SBML Logger)
G pp— (Message)
+ 4 Delete -
message
o /
2 3
ACK
- ‘r —
(" Message Queueing "
N Tler Figure 2.18 Recovery data
flow for SBML

I think you’ll agree that the recovery data flow for SBML is only marginally more com-
plex than the RBML workflow, but it shouldn’t look too foreign to you.

2.3.3 Hybrid message logging

If we stopped right now, we’d have two solutions that we can put in place to address
our data loss concerns and dependability: RBML to handle the incoming messages and
SBML to handle the outgoing messages. As we discussed, writing to stable storage can
negatively impact our collection node’s performance. Implementing both RBML and
SBML means we’re writing to stable storage at least twice during normal execution.
Some may argue that we’ll be doing more logging than processing of data; looking at
figure 2.19 might lead you to believe they may not be far off.

To help with this, an emerging technique called hybrid message logging has been
designed to take the best parts of RBML and SBML at the cost of minimal additional
complexity. HML is also designed to provide the same data loss protection and recov-
erability found in RBML, SBML, and other logging techniques. There are several ways
to implement HML; one common approach is illustrated in figure 2.20.

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Fault tolerance

1| Glessag)
1
'
4 ™
RBML 2 Stable Storage
Logger 3
4 Collection Tier
L4 MNode
Node __\J
Logic “ |
5
v
6 Stable Storage
(SBML Logger)
B —
¥ 10(Delete 7 [Message
message
. /
8 9
ACK
Y
/" Message Queueing Figure 2.19 RBML and SBML
k Tier together in the collection tier
node

Data Producer

'\h

Asynchronous 1

I

writin !
g \ i

1

kY s

2
Stable Storage

3 (Messagg

Collection Tier
MNode

Delete I

(SBML Logger)

/Y
e _/
6 7
ACK
y
(" Message Queueing

A Tier /

Figure 2.20
HML sample data flow

www.itbook.store/books/9781617294006

55

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

56 CHAPTER 2 Getting data from clients: data ingestion

It’s apparent when comparing the data flow shown in figure 2.19 with both RBML and
SBML to the HML data flow shown in figure 2.20 that the HML approach is slightly less
complex. Several factors contribute to this simplification. The first one, which may
not come as a surprise, is that the two stable storage instances have been consolidated.
This is a minor change, but it allows you to reduce the number of moving parts. The
second change, writing to stable storage asynchronously, has a subtle difference. Argu-
ably this has a more profound impact on the implementation complexity and perfor-
mance. The complexity comes from making sure you are correctly handling any
errors that happen, and the performance comes from leveraging the multi-core world
we live in to perform more than one task at a time. The rest of the data flow should be
routine for you by now. If you feel comfortable with the additional complexity and
have a choice of implementing HML or standard RBML and SBML, you should imple-
ment HML. Regardless of whether you are implementing HML or not, if you're inter-
ested in learning more about this protocol a great article to start with is Meyer,
Rexachs, and Luque, “Hybrid Message Logging. Combining advantages of Sender-
based and Receiver-based Approaches” (Procedia Computer Science 29 (2014): 2380-90).

2.4 A dose of reality

Here’s a funny little story to put some of this scaling and fault tolerance into perspec-
tive. One time I was working on a streaming system that was populating fancy dash-
boards for marketers. It had all the bells and whistles—scaling, fault tolerance,
monitoring, alerting—the whole nine yards. We had to have all of this and could not
lose any data, because our customers wouldn’t accept a solution that didn’t have com-
plete data. Once this system was running in production, I was curious as to how well
our web-based dashboards that consumed our stream via WebSockets were keeping
up. Well, come to find out, many of our customers were only able to keep up with
about 60% of the stream that was being sent to them; the other 40% of the data was
being dropped because they couldn’t read it fast enough. When I mentioned this to
coworkers, they were shocked and somewhat in disbelief because our customers and
business folks loved what they were seeing. It really put things in perspective: the dash-
boards we produced were showing a picture of our customers’ business that was not
distorted by the missing data. To me this was like the difference between the high-end
HDTV and the mid-level HDTV—sure the quality of the picture may be slightly better,
but the picture doesn’t change. Now, I'm not implying that you don’t need to worry
about scaling or fault tolerance, but it’s good to keep things in perspective and then
reflect on the difference between “we must have xyz features” and reality.

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Summary 57

2.5 Summary

We’ve covered a lot of ground in this chapter exploring the various aspects of collect-

ing data for a streaming system, from the interaction patterns through scaling and the
fault-tolerance techniques.

Along the way you

Learned about the collection tier

Developed an understanding of the various collection patterns
Had a chance to interact with a live stream

Learned how to think about scaling your collection tier
Learned about the common fault-tolerance techniques

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

58

There's a big difference between sipping a glass of
water and drinking directly from the hydrant. In the
same way, applications built to deal with streaming
data present fundamentally different challenges than
those that work with stored data. For example, live
location data paired with a social media profile might
allow a vendor to recommend a product or service to a
user at just the right instant, and the splitnanosecond
reaction of a pacemaker or anti-lock brakes can save
lives. Emerging techniques and technologies that
enable you to take immediate action on streaming data

make it possible to design and build in-the-moment
decision systems, dynamic reporting dashboards, live recommendation systems, and
other real-time applications.

Streaming Data introduces the concepts and requirements of streaming and real-
time data systems. Through this book you will develop a foundation to understand the
challenges and solutions of building in-the-moment data systems before committing
to specific technologies. Using copious diagrams, this book systematically builds up
the blueprint for an in-the-moment system concept by concept. Although code may
occasionally appear in examples, this book focuses on the big ideas of streaming and
real time data systems rather than the implementation details.

Many of the technologies discussed in the book—Spark, Storm, Kafka, Impala,
RabbitMQ), etc.-are covered individually in other books. As you read, you'll get a clear
picture of how these technologies work individually and together, gain insight on how
to choose the correct technologies, and discover how to fuse them together to archi-
tect a robust system.

What's inside

Architect a complete system for collecting and analyzing data in real time
Harness the Internet of Things by handling live data from billions of devices

Combine emerging technologies like Spark, Storm, Kafka, RabbitMQ), and Web-
Sockets

Integrating and extending the Lambda architecture into a complete system

No experience with streaming or real-time data systems required. Perfect for develop-
ers or architects, this book is also written to be accessible to technical managers and
business decision makers.

www.itbook.store/books/9781617294006

https://www.manning.com/books/streaming-data
https://www.manning.com/books/streaming-data
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

The Find layer

-» b ith the Access layer we ensure Things are accessible on the web. However,

making Things accessible via a web API doesn’t mean a client can “understand”
what the Thing is, what data or services it offers, and so on. The Find layer deals
with this problem. In Building the Web of Things, we propose a web-based protocol
with a set of resources, data models, a payload syntax, and semantic extensions that
web Things and applications should follow. This ensures that your Things and the
services they provide can be easily understood and used by other web clients.

However, that isn’t the end of the story. A web page offers nothing if users
can’t find it, and the same goes for Things. The Find layer looks into making
Things findable. One interesting technique is to make them searcheable. Just
like a lonely web page starts to attract traffic once it is indexed by Google, Things
can benefit from being indexed by search engines. Imagine a not-too-distant
future where you can Google your running shoes to locate them instead of des-
perately rooting through closets in your chaotic physical world!

In the next chapter, “Enhancing results from search engines” from Linked
Data: Structured Data on the Web, you’ll learn how to make any page efficiently
searchable using the Semantic Web. The same approach can be applied to the
pages of Things!

www.itbook.store/books/9781617294006

https://www.manning.com/books/building-the-web-of-things
https://www.manning.com/books/linked-data
https://www.manning.com/books/linked-data
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Chapter 6 from Linked Data: Structured Data on the Web
by David Wood, Marsha Zaidman, Luke Ruth,
and Michael Hausenblas

Enhancing resulis
Jrom search engines

This chapter covers

m Adding Resource Description Framework in
Attributes (RDFa) to HTML

m Using RDFa and the GoodRelations vocabulary
to enhance HTML

m Using RDFa with schema.org
m Applying SPARQL to extracted RDFa

Previous chapters covered discovering Linked Data on the Web. This chapter will
guide you in enhancing your own web pages with RDFa. We’ll start with a typical HTML
web page designed for human readability and demonstrate how to embed RDFa con-
tent that will enable your page to be both human- and machine-consumable. The
presence of this Linked Data will improve search engine optimization (SEO) and the
likelihood that your web content will be discovered.

We’ll then convert a web page designed to showcase a consumer product and
embed RDFa that uses the GoodRelations vocabulary. These improvements will
improve the discovery of this product by common search engines like Google,

60

www.itbook.store/books/9781617294006

https://www.manning.com/books/linked-data
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Enhancing HTML by embedding RDFa 61

, D r D

Some headline Title

An Image Personal Photo
Subheadings Personal Data

A bulleted list Email address
Subheadings Friend 1 Info

A bulleted list Friend 2 Info

And so forth. And so forth.

\ y \ y Figure 6.1 Machine
interpretation of HTML
documents versus human

Document A--Without RDFa Document B--With RDFa interpretation

Microsoft, Yandex, and Yahoo!. Finally, we’ll demonstrate a similar outcome with the
schema.org vocabularies. The embedded RDFa can be extracted and we’ll illustrate
searching the extracted RDFa using a SPARQL query.

Overall, our goal is to provide semantic meaning to your web content and enable
the extraction of Linked Data. We use the FOAF vocabulary because it will be familiar
from chapter 4. We use the GoodRelations vocabulary because of its significance to
e-commerce, and we use schema.org because it’s supported by a collaboration of
three major search engines (Yahoo!, Bing, and Google). By embedding RDFa in your
HTML documents, you enable search engines to provide more relevant search results
and also allow for the incorporation of the content as Linked Data on the Web.

6.1 Enhancing HTML by embedding RDFa

Being digitally accessible isn’t synonymous with being machine comprehendible. For
instance, the cover of a publication may have a digitally accessible photo, but the sig-
nificance of that photo is not machine understandable. But a barcode on that cover is
machine consumable in that it enables a program to identify the object and likely to
access its costand track its purchase. Using RDFa on a web page serves an equivalent pur-
pose to the barcode. It enables a search engine to identify the meaning of the digital
data, making it structured data.

RDF provides a mechanism for expressing data and relationships. RDF in Attributes
(RDFa) is a language that allows you to express RDF data within an HTML document.
This enables your website to be both machine- and human-readable. HTML is a means
of describing the desired visual appearance of your content. HTML doesn’t differenti-
ate between a book title and a job title. It can only differentiate the font displayed
according to the author’s direction. The human reader needs to interpret the infor-
mation based on the context of the page and identify a book title as opposed to a job
title. RDFa enables the author to embed structured data that will identify this differen-
tiation. Authors can mark up human-consumable information for interpretation by
browsers, search engines, and other programs. The RDFa-specific attributes don’t
affect the visual display of the HTML content and are ignored by the browser as it
would any other attribute not recognizable as HTML.

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

62 CHAPTER 6 Enhancing results from search engines

This page is about me, Anakin Skywalker

Who am I?
Image of Anakin would be here
Some personal data

* Full Name: AnaKin Skywalker
* Given Name: Anakin
* Surname: Skywalker.
« Title: Jedi
« Nationality: Tantooine
+ Gender: male
« Nickname: The Chosen One
+ Family: I am married to Padme and have one son, Luke.
* You can get in touch with me by:
o Phone: 866-555-1212
o EmmlﬂmMLmkﬂﬁmmmnmﬁmm
For more information refer to H
Find me on Facebook: 5

-

1 know a lot of people. Here are two of them.
¢ Obi-Wan Kenobi

* Email: Obi-WanKenobi@example.com
e Darth Vader
* Email: DarthVader@example.com

Figure 6.2 Web page produced by listing 6.1

We’ll begin our application with a traditional basic HTML document about Anakin Sky-
walker, shown in listing 6.1. We’ll mark up the HTML by embedding RDFa and explain
what we’re doing as we proceed. As an HTML page without RDFa, the browser interprets
the content without regard to its semantic meaning. The page as displayed could con-
tain any content, and the HTML elements affect its visual appearance. Hence, the con-
tent is simply as illustrated in Document A of figure 6.1.

As human readers (illustrated as Document B of figure 6.1), we recognize that the
web page in figure 6.2 is about Anakin Skywalker. We recognize thatit contains an image
of Anakin, some of his personal information, and brief information about the people
he knows. Our goal is to embed RDFa properties that would enable an automated
interpretation of this page as a human reader would. The following listing contains the
fundamental HTML description without any embedded RDFa.

Listing 6.1 An HTML description without embedded RDFa

<html>

<head>

<title>Anakin Skywalker</title>

<meta content="text/html; charset=UTF-8" http-equiv="Content-Type"
/>

</head>

<body>

<hl> This page is about me, Anakin Skywalker </hl>

<h2>Who am I?</h2>

<img
src="http://www.starwars.com/img/explore/encyclopedia/

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Enhancing HTML by embedding RDFa

=» characters/anakinskywalker_detail.png"
= alt="http://www.starwars.com/img/explore/encyclopedia/
=» characters/anakinskywalker_detail.png">

<h2>

<p>I was born on the planet Tatooine. I like to invent.

I invented my own droid, C-3PO, from salvaged parts.

My mother is Shmi and she says that I do not have a father.
I was trained as a Jedi knight by Obi-Wan Kenobi.

I am an excellent knight but I don't like authority figures.

While I was assigned to guard Padme, I fell in love with her.
She knew that I loved her and that I distrusted the
political process. I wished we had one strong leader. </p>

<p>As a Jedi Knight, I fought many battles for the Republic
and I rescued many captives. However, after a series

of such episodes, I was injured and succumbed to the

Dark Side.</p>

</h2>

<h2>

Some personal data

</h2>

<h3>

<1li>Full Name: Anakin Skywalker </1li>
Given Name: Anakin </1li>
Surname: Skywalker.
Title: Jedi </1i>
Nationality: Tatooine </1li>
Gender: male</1li>

Nickname: The Chosen One </1li>

Family: I am married to Padme and have one son, Luke.
</h3>

<h3>

 You can get in touch with me by: </1i>

Phone: 866-555-1212</1i>
Email:

=»
=» darthvader@example.com

 For more information refer to
=»

www.itbook.store/books/9781617294006

63

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

64 CHAPTER 6 Enhancing results from search engines

http://www.imdb.com/character/ch0000005/bio </1li>
<1li> Find me on Facebook:
<a href= "https://www.facebook.com/pages/Darth-
Vader/10959490906484">
https://www.facebook.com/pages/Darth-Vader/10959490906484 </1li>

</h3>

<h3>
I know a lot of people. Here are two of them.
<1li> Obi-Wan Kenobi

Email:
Obi-WanKenobi@example.com</1i>

 Darth Vader</1li>

Email:
DarthVader@example.com</1li>

</h3>
</body>
</html>

6.1.1 RDFa markup using FOAF vocabulary

Now let’s embed some RDFa into the HTML of listing 6.1. Our fully enhanced HTML doc-
ument is contained in listing 6.2. Let’s break down the additions to the basic HTML doc-
ument from listing 6.1. As you enhance your HTML document with RDFa, you should
periodically validate your efforts. You’ll find an easy-to-use tool at http://www.w3.org/
2012/pyRdfa/.

At the beginning of listing 6.2, you’ll notice two statements that you need to sup-
port both HTML5 and RDFa:

<!DOCTYPE HTML>
<html version="HTML+RDFa 1.1" lang="en" >

In the remainder of the document, you embed the RDFa elements by applying them in
conjunction with HTML tags. RDFa attributes allowed on all elements in the HTML5 con-
tent model are

= vocab ® resource = about = datatype
= typeof = prefix = rel = inlist
" property = content " rev

All other attributes that RDFa may process, like href and src, are only allowed on the
elements defined in the HTML5 specification.!

! HTML+RDFa 1.1, Support for RDFa in HTML4 and HTML5, W3C working draft, Sept. 11, 2012, http://
www.w3.org/TR/2012/WD-rdfa-in-html-20120911/#extensions-to-the-html5-syntax.

www.itbook.store/books/9781617294006

http://www.w3.org/TR/2012/WD-rdfa-in-html-20120911/#extensions-to-the-html5-syntax
http://www.w3.org/TR/2012/WD-rdfa-in-html-20120911/#extensions-to-the-html5-syntax
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Enhancing HTML by embedding RDFa 65

The HTML body tag shown in the following snippet, extracted from listing 6.2, con-
tains a prefix attribute. The prefix attribute serves the same purpose here as it does
in Turtle documents. The various vocabularies listed in the prefix attribute of the
body tag can be conveniently referred to throughout the body of the document using
the associated shorthand prefixes defined.

<body id=me

prefix = "

rdf: http://www.w3.0rg/1999/02/22-rdf-syntax-ns#

rdfs: http://www.w3.0rg/2000/01/rdf-schema#

xsd: http://www.w3.org/2001/XMLSchema#

dc: http://purl.org/dc/elements/1.1/

foaf: http://xmlns.com/foaf/0.1/

rel: http://purl.org/vocab/relationship/

stars: http://www.starwars.com/explore/encyclopedia/characters/ "
>

Asyou further examine listing 6.2, you’ll notice extensive use of the HTML div and span
tags. These tags don’t affect the visual appearance of the document and are primarily
used as grouping indicators. The span and div elements are similar to <div>a con-
tained block</div> thatstarts on a newline. some text is an inline sep-
arator that identifies the enclosed text as a single entity. The typeof attribute defines
the enclosed entity as being an object of type foaf:Person.

Listing 6.2 HTML sample with RDFa markup from the FOAF vocabulary

<!DOCTYPE html>

. Statements alerting
<html version="HTML+RDFa 1.1" lang="en">

browser to RDFa

<head> and use of HTML5
<title>Anakin Skywalker</title>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<base href= "http://rosemary.umw.edu/~marsha/starwars/foaf.ttl#" >

</head>

<body id=me

prefix = " Prefix
rdf: http://www.w3.0rg/1999/02/22-rdf-syntax-ns# statement
rdfs: http://www.w3.0rg/2000/01/rdf-schema#

xsd: http://www.w3.o0rg/2001/XMLSchema#
dc: http://purl.org/dc/elements/1.1/
foaf: http://xmlns.com/foaf/0.1/

rel: http://purl.org/vocab/relationship/
stars: http://www.starwars.com/explore/encyclopedia/characters/ "

. Defines the
enclosed entity as
being an object of
type foaf:Person

Defines the start of a
block named container

<div id="container"
about="http://rosemary.umw.edu/~marsha/starwars/foaf.ttl#me"
typeof="foaf:Person">

<hl> This page is about me, Anakin Skywalker </hl> X X X
Identifies the image to display and

<h2>Who am I?</h2> identifies this object as being a
foaf:img property

<img property="foaf:img" class="flr"

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

66 CHAPTER 6 Enhancing results from search engines

src="http://www.starwars.com/img/explore/encyclopedia/characters/
> anakinskywalker_detail.png" alt="http://www.starwars.com/img/explore/
encyclopedia/characters/anakinskywalker_detail.png">

<h2>

<p>I was born on the planet Tatooine. I like to invent. I invented my own
droid, C-3PO, from salvaged parts. My mother is Shmi and she says that I
do not have a father.

I was trained as a Jedi knight by Obi-Wan Kenobi. I am an excellent knight
but I don't like authority figures.

While I was assigned to guard Padme, I fell in love with her. She knew that I
loved her and that I distrusted the political process. I wished we had
one strong leader. </p>

<p>As a Jedi Knight, I fought many battles for the Republic and I rescued
many captives. However, after a series of such episodes, I was injured
and succumbed to the Dark Side.</p>

</h2>
<h2>

Defines Padme as someone known to
Some personal data Anakin Skywalker and clarifies that
</h2> relationship as one of spouse using
 the Relationship vocabulary’
<h3>

<1li>Full Name: Anakin Skywalker
Given Name: Anakin </1li>

Surname: Skywalker</1li>

Title: Jedi </1li>

Nationality: Tatooine </1li>

Gender: male</11i>

Nickname: The Chosen One</1li>

Family: I am married to Padme</ <—

span> and have one son, Luke Skywalker</
span>.</1i>

</h3>

<h3>

 You can get in touch with me by: </1i>

<div vocab="http://xmlns.com/foaf/0.1/">
Phone: 866-555-1212</1i>
Email: <span property="mbox_shalsum"

- content="cc77937087£686e222bcf1194fb8c671d8591e00">

AnakinSkywalker
- </1i>

</div>

<1li> For more information refer to <a property="foaf:homepage" href= "http://
www . imdb.com/character/ch0000005/bio">http://www.imdb.com/character/
ch0000005/bio </1i>

2 “Relationship: A vocabulary for describing relationships between people,” created by Ian Davis and Eric

Vitiello Jr., http://purl.org/vocab/relationship.

www.itbook.store/books/9781617294006

http://purl.org/vocab/relationship
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Enhancing HTML by embedding RDFa 67

 Find me on Facebook: <a typeof="foaf:account" href= "https://
www . facebook.com/pages/Darth-Vader/10959490906484"> https://
www . facebook.com/pages/Darth-Vader/10959490906484 </1li>

I know a lot of people. Here are two of them.
<div rel="foaf:knows" typeof="foaf:Person">

<1li>
<a property="foaf:homepage" href="http://live.dbpedia.org/page/
Obi-Wan_Kenobi" />
0bi-Wan Kenobi

<1li>
Email: <span property="foaf:mbox_shalsum"
content="aadfbacb9de289977d85974fda32baff4db60cal86">
0bi-Wan Kenobi
</1li>

</1li>

</div>

<div rel="foaf:knows" typeof="foaf:Person">

<a property="foaf:homepage"
href="http://www.imdb.com/character/ch0000005/bio" />
Darth Vader

Email: <span property="foaf:mbox_shalsum"
content="cc77937087£686e222bcfl1194fb8c671d8591e00">
DarthVader
</1li>

</1li>

</div>
</h3>
</div>
</body>
</html>

6.1.2 Using the HTML span attribute with RDFa

The first use of the tag in conjunction with the RDFa property attribute
is in the bulleted items excerpted in listing 6.3. The property attribute identifies which
class property is being defined. In the case of

Full Name: Anakin Skywalker </1li>

it’s defining Anakin Skywalker as a foaf :name. Hence the characters “Anakin Skywalker”
are now more than just some text to be displayed but are associated with the meaning
defined by a foaf:name.

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

68 CHAPTER 6 Enhancing results from search engines

Listing 6.3 Bulleted list excerpt

Full Name: Anakin Skywalker </1li>
Given Name: Anakin </1li>
Surname: Skywalker</1li>
Title: Jedi </1li>
Nationality: Tatooine </1i>
Gender: male</1i>
Nickname: The Chosen One</1li>
Family: I am married to Padme</
span> and have
one son, Luke Skywalker.

NOTE The full RDFa 1.1 specification is at http://www.w3.org/TR/rdfa-core/.

6.1.3 Extracting Linked Data from a FOAF-enhanced HTML document

Entering the HTML document shown in listing 6.2 into the validator and RDFa 1.1 dis-
tiller (http://www.w3.0org/2012/pyRdfa/) generates the Turtle content shown in the
next listing. Although this isn’t a necessary step in using RDFa, it illustrates two impor-
tant points:

The RDFa enhancements are extractable as Linked Data.
The extracted RDF data can be saved in a separate file, published, and used as
input to other applications, as illustrated in section 6.4.

Listing 6.4 Turtle generated from listing 6.2 RDFa-enhanced HTML

@prefix foaf: <http://xmlns.com/foaf/0.1/>
@prefix rdfa: <http://www.w3.org/ns/rdfa#>
@prefix rel: <http://purl.org/vocab/relationship/>

<http://rosemary.umw.edu/~marsha/starwars/foaf.ttl> rdfa:usesVocabulary foaf: .

<http://rosemary.umw.edu/~marsha/starwars/foaf.ttl#me> a foaf:Person;
rel:spouseOf "Padme";
foaf:family name "Skywalker";
foaf:gender "male";
foaf:givenname "Anakin";
foaf:homepage <http://www.imdb.com/character/ch0000005/bio>;
foaf:img <http://www.starwars.com/img/explore/encyclopedia/characters/
anakinskywalker_detail.png>;
foaf:knows [a foaf:Person;
foaf :homepage <http://live.dbpedia.org/page/Obi-Wan_Kenobi>;
foaf :mbox_shalsum "aadfbacb9de289977d85974fda32baffdb60ca86";
foaf:name "Obi-Wan Kenobi" 1,
"Padme",
[a foaf:Person;
foaf:homepage <http://www.imdb.com/character/ch0000005/bio>;
foaf:mbox_shalsum "cc77937087£686e222bcf1194fb8c671d8591e00";
foaf:name "Darth Vader" 1,
"Luke Skywalker";
foaf:mbox_shalsum "cc77937087£f686e222bcf1194fb8c671d8591e00";
foaf:name "Anakin Skywalker";

www.itbook.store/books/9781617294006

http://www.w3.org/2012/pyRdfa/
http://www.w3.org/TR/rdfa-core/
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Embedding RDFa using the GoodRelations vocabulary 69

foaf:nick "The Chosen One";
foaf:phone "866-555-1212";
foaf:title "Jedi"

<https://www. facebook.com/pages/Darth-Vader/10959490906484> a foaf:account .

You’ll notice that this output in the previous listing bears a close resemblance to the
FOAF profiles that we developed in chapter 4.

You can use the Google Structured Data Testing Tool (http://www.google.com/
webmasters/tools/richsnippets) to see the result of your efforts. Unfortunately, you're
limited to 1500 characters.

This section illustrated how to use RDFa to enhance a typical HTML homepage to
provide meaningful structure to the content that enables machine interpretation of
the content. In general, RDFa enhancements improve SEO. In the following section
we’ll further illustrate how RDFa can be used to enhance business websites.

6.2 Embedding RDFa using the GoodRelations vocabulary

GoodRelations is the most widely used RDF vocabulary for e-commerce. It enables you
to publish details of your products and services in a way that search engines, mobile
applications, and browser extensions can utilize the information and improve your
click-through rates. In this section, we use the GoodRelations vocabulary to enhance a
web page that describes a product, the Sony Cyber-shot DSC-WX100 camera, thus giving
that description more meaning and improving its SEO.

Search engines like Google and Yahoo! recognize GoodRelations data in web
pages provided by more than 10,000 product vendors like Sears, Kmart, and Best Buy.

Martin Hepp,3 professor of e-commerce at University of Bundeswehr Munchen
and inventor of the GoodRelations ontology, says that preliminary evidence shows that
enhancing your web pages with RDFa will improve your click-through rate by 30%.
This is consistent with the results reported by Jay Myers, lead web development engi-

neer at bestbuy.com.4

6.2.1 An overview of the GoodRelations vocabulary

The GoodRelations website at http://www.heppnetz.de/projects/goodrelations/ con-
tains complete information on the vocabulary and its use. The goals and an overview of
the conceptual model of this vocabulary are published at http://wiki.goodrelations-
vocabulary.org/Documentation/Conceptual_model. As described there, the purpose
of GoodRelationsis to enable you to define an object for e-commerce that’sindustry neu-
tral, valid from raw materials through retail to after-sales services, and syntax neutral.
This is achieved by using just four entities for representing e-commerce scenarios:

= An agent (for example, a person or an organization)

= An object (for example, a camera, a house, a bicycle) or service (for example, a
manicure)

¥ Personal homepage of Martin Hepp, professor at the chair of General Management and E-Business at Uni-
versitit der Bundeswehr Munich, http://www.heppnetz.de/.

* Paul Miller, “SemTechBiz Keynote: Jay Myers discusses Linked Data at Best Buy,” June 6, 2012, http://
semanticweb.com/semtechbiz-keynote-jay-myers-discusses-linked-data-at-best-buy_b29622

www.itbook.store/books/9781617294006

http://www.google.com/webmasters/tools/richsnippets
http://www.google.com/webmasters/tools/richsnippets
http://www.heppnetz.de/projects/goodrelations/
http://wiki.goodrelations-vocabulary.org/Documentation/Conceptual_model
http://wiki.goodrelations-vocabulary.org/Documentation/Conceptual_model
http://www.heppnetz.de/
http://semanticweb.com/semtechbiz-keynote-jay-myers-discusses-linked-data-at-best-buy_b29622
http://semanticweb.com/semtechbiz-keynote-jay-myers-discusses-linked-data-at-best-buy_b29622
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

70 CHAPTER 6 Enhancing results from search engines

A promise (offer) to transfer some rights (ownership, temporary usage, a cer-
tain license) on the object or to provide the service for a certain compensation
(for example, an amount of money), made by the agent and related to the
object or service

A'location from which this offer is available

This Agent-Promise-Object Principle can be found across most industries and is the
foundation of the generic power of GoodRelations. It allows you to use the same vocab-
ulary for offering a camera as for a manicure service or for the disposal of used motor-
cycles.

The respective classes in GoodRelations are:

gr:BusinessEntity for the agent; that is, the company or individual
gr:0ffering for an offer to sell, repair, or lease something or to express inter-
est in such an offer

gr:ProductOrService for the object or service

gr:Location for a store or location from which the offer is available

In table 6.1, the first column lists the characteristics that you’d want to specify about a
product. The second column has the GoodRelations term associated with each charac-
teristic. Some properties are new to GoodRelations and others are reused from other
vocabularies (for example, FOAF and RDF-data vocabularies). You’ll see many of these
applied in the Sony camera HTML page that we enhance with RDFa. We’re including
these tables here for your ready reference and to give you an idea of the kind of data that
we’d want to enhance in support of e-commerce.

Table 6.1 Google-supported GoodRelations properties associated with products or services?®

Product characteristic GoodRelations property

name gr :name
image foaf:depiction
brand gr :hasManufacturer (for the brand link) and

gr :BusinessEntity for the manufacturer name

description gr:description
review information v:hasReview (from http://rdf.data-vocabulary.org/#)
review format v:Review-aggregate (from http://rdf.data-vocabulary.org/#)
identifier gr :hasStockKeepingUnit
gr:hasEAN_UCC-13
gr :hasMPN
gr:hasGTN

a. Google Webmaster Tools, “Produce properties: GoodRelations and hProduct,” May 27, 2013,
http:/ /support.google.com/webmasters/bin/answer.py?hl=en&answer=186036

www.itbook.store/books/9781617294006

http://support.google.com/webmasters/bin/answer.py?hl=en&answer=186036
http://rdf.data-vocabulary.org/
http://rdf.data-vocabulary.org/
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Embedding RDFa using the GoodRelations vocabulary 71

Table 6.2 lists the characteristics of an offer and the associated terms in the GoodRela-
tions vocabulary that you’d use in modeling these characteristics. The second column
lists the associated term in GoodRelations and offers guidance on how to apply it.
foaf:page is the only term not contained in the GoodRelations vocabulary.

Table 6.2 Google-supported GoodRelations properties associated with an offer®

Offer
characteristic

GoodRelations property

price Price information is enclosed in the gr:hasPriceSpecification tag. Use the
content attribute of the child gr : hasCurrencyValue to specify the actual
price (use only a decimal point as a separator).

priceRangeLow | Price information is enclosed in the gr :hasPriceSpecification tag. Use the
content attribute of the child gr : hasMinCurrencyValue to specify the lowest
price of the available range (use only a decimal point as a separator).

priceRangeHigh | Price information is enclosed in the gr :hasPriceSpecification tag. Use the
content attribute of the child gr : hasMaxCurrencyValue to specify the high-
est price of the available range (use only a decimal point as a separator).

priceValidUntil gr:validThrough

currency Price information is enclosed in the gr:hasPriceSpecification tag. Use the
child gr :hasCurrency to specify the actual currency.

seller gr:BusinessEntity
condition gr:condition
availability Inventory level is enclosed in the gr : hasInventoryLevel tag. Use the child tag

gr:QuantitativeValue to specify the quantity in stock. For example, an item is
in stock if the value of the content attribute of the enclosed tag gr : hasMinValue
is greater than 0. Listing 6.6 applies this property.

offerURI foaf:page

identifier gr:hasStockKeepingUnit
gr:hasEAN_UCC-13
gr :hasMPN
gr :hasGTN

a. Google Webmaster Tools, “Product properties: GoodRelations and hProduct,” May 27, 2013,
http://support.google.com/webmasters/bin/answer.py?hl=en&answer=186036.

When a single product that has different offers (for example, the same pair of running
shoes is offered by different merchants), an aggregate offer can be used. These prop-
erties and associated GoodRelations terms are listed in table 6.3. As you’d expect, many
of these terms are also associated with an offer.

www.itbook.store/books/9781617294006

http://support.google.com/webmasters/bin/answer.py?hl=en&answer=186036
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

72 CHAPTER 6 Enhancing results from search engines

Table 6.3 Google-supported GoodRelations properties associated with an offer-aggregate?

Offer-aggregate

characteristics GoodRelations property

priceRangeLow | Price information is enclosed in the gr :hasPriceSpecification tag. Use the
content attribute of the child gr : hasMinCurrencyValue to specify the lowest
price of the available range.

priceRangeHigh | Price information is enclosed in the gr :hasPriceSpecification tag. Use the
content attribute of the child gr : hasMaxCurrencyValue to specify the high-
est price of the available range.

currency Price information is enclosed in the gr:hasPriceSpecification tag. Use the
child gr :hasCurrency to specify the actual currency.

seller gr:BusinessEntity
condition gr:condition
availability Inventory level is enclosed in the gr:hasInventoryLevel tag. Use the child tag

gr:QuantitativeValue to specify the quantity in stock. For example, an item is
in stock if the value of the content attribute of the enclosed tag gr : hasMinvValue
is greater than O. See listing 6.6 for more details.

offerURI foaf:page
identifier gr:hasStockKeepingUnit gr:hasEAN_UCC-13
gr : hasMPN gr :hasGTN

a. Google Webmaster Tools, “Product properties: GoodRelations and hProduct,” May 27, 2013,
http://support.google.com/webmasters/bin/answer.py?hl=en&answer=186036.

6.2.2 Enhancing HTML with RDFa using GoodRelations

As we did in section 6.1, we’ll start with a basic HTML file, marking it up using RDFa and
the GoodRelations vocabulary. As we mentioned earlier in this chapter, GoodRelations
is an important vocabulary for e-commerce. A basic HTML version of a web page for the
camerawas previously added to our wish listin chapter 4. This HTML document is shown
in the next listing. This description will be annotated with many of the properties
described in tables 6.1 and 6.2 shortly.

Listing 6.5 Basic HTML without GoodRelations markup

<html>

<head>

<title>SONY Camera</title>

<meta content="text/html; charset=UTF-8" http-equiv="Content-Type" />
</head>

<body>

<h2> Sony - Cyber-shot DSC-WX100

18.2-Megapixel Digital Camera - Black

www.itbook.store/books/9781617294006

http://support.google.com/webmasters/bin/answer.py?hl=en&answer=186036
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Embedding RDFa using the GoodRelations vocabulary 73

</h2>

<img src="http://images.bestbuy.com/BestBuy_US/images/products/5430/
5430135_sa.jpg" alt="http://http://images.bestbuy.com/BestBuy_ US/images/
products/5430/5430135_sa.jpg">

Model: DSCWX100/B SKU: 5430135

Customer Reviews: 4.9 of 5 Stars(1l4 reviews)

Best Buy

http://www.bestbuy.com

Sale Price: $199.99

Regular Price: $219.99

In Stock

<h3>
Product Description

<1i>10x optical/20x clear image zoom </1i>
<1i>2.7" Clear Photo LCD display</1li>
<1i>1080/60i HD video</1li>
Optical image stabilization

</h3>

Sample Customer Reviews

Impressive - by: ABCD, November 29, 2012

At 4 ounces this is a wonder. With a bright view screen and tons of features,
this camera can't be beat.

5.0/5.0 Stars

Nice Camera, easy to use, panoramic feature by: AbcdE, November 26, 2012

Great for when you don't feel like dragging the SLR around. Panoramic feature
and video quality are very good.

4.75/5.0 Stars

</body>

</html>

Although RDFa supports the entire GoodRelations vocabulary,” we're electing to limit
our markup to the Google-supported properties listed in table 6.1. We encourage you
to generate rich snippets for your web page by using the tools provided by GoodRela-
tions.® You should heed the additional recommendations from the developers of Good-
Relations (http://wiki.goodrelations-vocabulary.org/Quickstart).

5 “GoodRelations Language Reference, V1.0, Release Oct. 1, 2011, http://www.heppnetz.de/ontologies/

goodrelations/v1l.html.
% Google Webmaster Tools, “Product properties: GoodRelations and hProduct,” May 27, 2013, http://sup-
port.google.com/webmasters/bin/answer.py?hl=en&answer=186036.

www.itbook.store/books/9781617294006

http://www.heppnetz.de/ontologies/goodrelations/v1.html
http://www.heppnetz.de/ontologies/goodrelations/v1.html
http://support.google.com/webmasters/bin/answer.py?hl=en&answer=186036
http://support.google.com/webmasters/bin/answer.py?hl=en&answer=186036
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

74 CHAPTER 6 Enhancing results from search engines

The following listing is an annotated version of the basic HTML shown in listing 6.5.
This web page is for the Sony camera from our wish list in chapter 4. We selected the
camera because it’s a product often marketed online, and GoodRelations will enable us
to annotate the sale price, the vendor, the manufacturer, and product reviews.

Listing 6.6 Sample listing 6.5 using GoodRelations

<!DOCTYPE html>

<html version="HTML+RDFa 1.1" lang="en">

<head>

<title>Illustrating RDFa and GoodRelations</title>

<meta content="text/html; charset=UTF-8" http-equiv="Content-Type" />
<base href =
"http://rosemary.umw.edu/~marsha/other/sonyCameraRDFaGRversion3.html" />
</head>

<body id="camera"

prefix = "

review: http://purl.org/stuff/rev#

rdf: http://www.w3.0rg/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.0rg/2000/01/rdf-schema#

xsd: http://www.w3.org/2001/XMLSchema#

foaf: http://xmlns.com/foaf/0.1/

rel: http://purl.org/vocab/relationship

v: http://rdf.data-vocabulary.org/# "

>

Generated using the URL in the
footnote but modified to centralize all
prefix declarations under body tag’

<!—Company related data—Put this on your main page -->
<div typeof="gr:BusinessEntity" about="#company">
<div property="gr:legalName" content="Linked Data Practitioner's
Guide"></div>
<div property="vcard:tel" content="540-555-1212"></div>
<div rel="vcard:adr">
<div typeof="vcard:Address">
<div property="vcard:country-name" content="United States"></div>
<div property="vcard:locality" content="Fredericksburg"></div> —
<div property="vcard:postal-code" content="22401"></div>
<div property="vcard:street-address" content="1234 Main
Street"></div>
</div>
</div>
<div rel="foaf:page" resource=""></div>
</div>

<div typeof="gr:0ffering" about="#offering">
<div rev="gr:offers" resource="http://www.example.com/#company"></div>
<div property="gr:name" content="Cyber-shot DSC-WX100"
ml:lang="en"></div>
<div property="gr:description" content="18.2-Megapixel
Digital Camera - Black 10x optical/20x
clear image zoom 2.7&guot; Clear Photo LCD

Generated using http://www.ebusiness-unibw.org/tools/grsnippetgen/.

www.itbook.store/books/9781617294006

http://www.ebusiness-unibw.org/tools/grsnippetgen/
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Embedding RDFa using the GoodRelations vocabulary 75

display <1li>1080/60i HD video<
/li> &1lt;li>Optical image stabilization"
xml:lang="en"></div>
<div property="gr:hasEAN_UCC-13" content="0027242854031"
datatype="xsd:string"></div>
<div rel="foaf:depiction"
resource="http://images.bestbuy.com/BestBuy US/images/products
/5430/5430135_sa.jpg"></div>
<div rel="gr:hasPriceSpecification">
<div typeof="gr:UnitPriceSpecification">
<div property="gr:hasCurrency" content="USD"
datatype="xsd:string"></div>
<div property="gr:hasCurrencyValue" content="199.99"
datatype="xsd:float"></div>
<div property="gr:hasUnitOfMeasurement" content="C62"
= datatype="xsd:string"></div>
</div>
</div>

fF§F §F 13D

'

§

<div rel="gr:hasBusinessFunction"
=» resource="http://purl.org/goodrelations/vl#Sell"></div>
<div rel="foaf:page" resource="http://www.example.com/dscwx1l00/"></div>
<div rel="gr:includes">
<div typeof="gr:Someltems" about="#product">
<div property="gr:category" content="ProductOrServiceModel"

= xml:lang="en"></div>

<div property="gr:name" content="Cyber-shot DSC-WX100"
= xml:lang="en"></div>

<div property="gr:description" content="18.2-Megapixel Digital
=» Camera - Black 10x optical/20x clear image zoom
- 2.7" Clear Photo LCD displayé
- &1t;1i>1080/601 HD video &1t;li>Optical image
= stabilization" xml:lang="en"></div>

<div property="gr:hasEAN_UCC-13" content="0027242854031"
= datatype="xsd:string"></div>

<div rel="foaf:depiction"
=» resource="http://images.bestbuy.com/BestBuy_US/images/products/
= 5430/5430135_sa.jpg"></div>

<div rel="foaf:page"
=» resource="http://www.example.com/dscwx100/"></div>

</div>
</div>
</div>

<h2> Sony - Cyber-shot DSC-WX100

18.2-Megapixel Digital Camera - Black </h2>

<img src="http://images.bestbuy.com/BestBuy_US/images/products/5430/
=» 5430135_sa.jpg" alt="http://http://images.bestbuy.com/BestBuy_US/images/

products/

= 5430/5430135_sa.jpg">

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

76 CHAPTER 6 Enhancing results from search engines

Customer Reviews:

 4.9

of 5.0 Stars (<span property="v:count"
datatype="xsd:string">14 reviews)

Best Buy

<div rel="foaf:page" resource="http://www.bestbuy.com"></div> Additional

 properties that

improve the

 accessibility of
 Yourdata

Sale Price: $<span property="gr:hasCurrencyValue v:lowprice"
datatype="xsd:float">199.99

Regular Price: $<span property="gr:hasCurrencyValue v:highprice"
datatype="xsd:float">219.99

Availability: <div rel="gr:hasInventoryLevel">
<div typeof="gr:Quantitativevalue">
<div property="gr:hasMinvValue" content="1" datatype="xsd:float">In-
stock</div>
</div>
</div>

<h3>

Product Description

<1i>10x optical/20x clear image zoom </1li>
<1i>2.7" Clear Photo LCD display
<1i>1080/601i HD video

Optical image stabilization</1li>

</h3> In RDFa, in the absence of a

 resource attribute, the typeof
attribute on the enclosing div
Sample Customer Reviews
 implicitly sets the subject of

 the properties marked up
within that div.
SmnN?Of
Product Reviews:
areview <div rel="review:hasReview v:hasReview">
aggregate

Average:

4.5, avg.:
0, max: -
5 (count:
<span property="review:totalRatings v:votes"
datatype="xsd:integer">45)

</DIV>

<div rel="review:hasReview v:hasReview" typeof="v:Review">
Impressive - by: ABCD, <span

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Embedding RDFa using the GoodRelations vocabulary 77

property="v:dtreviewed" content="2012-11-29">November 29, 2012

At 4 ounces this is a wonder. with a bright view
screen and tons of features this camera can't be beat

5.0of

5.0 Stars

</div>

<div rel="review:hasReview v:hasReview" typeof="v:Review">
Nice Camera, easy to use, panoramic feature by:
AbcdE, November

26, 2012

Great for when you don't feel like dragging the
SLR around. Panoramic feature and video quality are very good.

4.75 of
5.0 Stars

</div>

<div rel="gr:hasBusinessFunction"
resource="htt;://purl.org/goodrelations/vl1#Sell"></div>

From
<div property="gr:hasEAN_UCC-13" content="0027242854031" GoodRelations
datatype="xsd:string"></div> website

<div rel="foaf:page" resource=""></div>

<div rev="gr:offers" resource="http://www.bestbuy.com"></div>

</div>

</body>

</html>

As you can glean from examining listing 6.6, the GoodRelations vocabulary fulfilled its
expectations. Every business-related item on the page is associated with its meaning.
Martin Hepp recommends that developers follow the original Google patterns8 for
marking up their pages with the following additions. These additions will make your
data understood by all RDFa-aware search engines, shopping comparison sites, and
mobile services. The Google recommendations are for Google only. The additional
items are as follows:

= Add “about” attributes for turning your key data elements into identifiable
resources so you can refer to your offer data.

= Add “datatype” attributes for all literal values to fulfill valid RDF requirements.

® Add alt="Product image" to all images for XHTML compatibility.

= Add foaf:page link. Empty quotation marks are sufficient for this link if it
doesn’t exist.

= Add gr:hasEAN_UCC-13 for the EAN/ISBN13 code. The UPC code can be easily
translated to this format by appending a leading zero. This is useful for linking
your offer to datasheets provided by their manufacturers.

8 Google Webmaster Tools, “Product properties: GoodRelations and hProduct,” May 27, 2013, http://
support.google.com/webmasters/bin/answer.py?hl=en&answer=186036.

www.itbook.store/books/9781617294006

http://support.google.com/webmasters/bin/answer.py?hl=en&answer=186036
http://support.google.com/webmasters/bin/answer.py?hl=en&answer=186036
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

78 CHAPTER 6 Enhancing results from search engines

Add the gr:hasBusinessFunction to make clear you’re selling the item.
Add gr:offers link to the company via the rev attribute. This can also be
inserted on your main page.

Hence, in compliance with Martin Hepp’s recommendations, listing 6.6 includes the
following code:

<div rel="gr:hasBusinessFunction"
resource="http://purl.org/goodrelations/v1#Sell"></div>

<div property="gr:hasEAN_UCC-13" content="0027242854031"
datatype="xsd:string"></div>

<div rel="foaf:page" resource=""></div>

<div rev="gr:offers" resource="http://www.bestbuy.com"></div>

Notice the data type associated with each of the literal currency values.

Sale Price: $<span property="gr:hasCurrencyValue v:lowprice"
datatype="xsd:float">199.99

Regular Price: $<span property="gr:hasCurrencyValue v:highprice"
datatype="xsd:float">219.99

6.2.3 A closer look at selections of RDFa GoodRelations

Breaking down the document section by section, the start of the document contains
these statements:

<!DOCTYPE html>

<html version="HTML+RDFa 1.1" lang="en">

<head>

<title>Illustrating RDFa and GoodRelations</title>

<meta content="text/html; charset=UTF-8" http-equiv="Content-Type" />

<base href = "http://www.example.com/sampleProduct/">

</head>

These statements identify the document type as HTML5 and set the html version attri-
bute to HTML+RDFal.l. These settings will ensure that most clients extract the RDF and
recognize its existence. The purpose of the <base href..> statement is to provide an

absolute URI for reference, and itshould contain the URI of the companyweb reference.

NOTE Use the actual URI associated with the publication of the product’s doc-
ument as the expression within the quotes.

Including the prefix statement in the <body..> statement, shown in the next listing,
establishes access to the schema at each of these locations for the entire body section of
the document and establishes each vocabulary within this namespace.

Listing 6.7 Excerpt showing centralization of prefix information

<body id="camera"

prefix = "

review: http://purl.org/stuff/rev#

rdf: http://www.w3.0rg/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.0rg/2000/01/rdf-schema#

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Embedding RDFa using the GoodRelations vocabulary 79

xsd: http://www.w3.org/2001/XMLSchema#
foaf: http://xmlns.com/foaf/0.1/

rel: http://purl.org/vocab/relationship
v: http://rdf.data-vocabulary.org/# "

>

Sections of code in listing 6.8 were generated using the GoodRelations snippet gener-
ator at http://www.ebusiness-unibw.org/tools/grsnippetgen/. We modified the output
from the snippet generator. The namespace declarations were removed to simplify the
example and replace the xmlns statements with their HTML5 equivalents. We also con-
solidated and centralized all the prefix declarations.

The excerpt highlighted in this listing describes the company web page, the legal
name of the company, and its country, city, ZIP code, and physical address.

Listing 6.8 Excerpt of company information

<div typeof="gr:BusinessEntity" about="#company">
<div property="gr:legalName"
content="Linked Data Practitioner's Guide"></div>
<div property="vcard:tel" content="540-555-1212"></div>
<div rel="vcard:adr">
<div typeof="vcard:Address">
<div property="vcard:country-name" content="United States"></div>
<div property="vcard:locality" content="Fredericksburg"></div>
<div property="vcard:postal-code" content="22401"></div>
<div property="vcard:street-address"
content="1234 Main Street"></div>
</div>
</div>
<div rel="foaf:page" resource=""></div>
</div>

The next listing, also generated using the online form at http://www.ebusiness-
unibw.org/tools/grsnippetgen/, was modified to reflect the existing presence of the
prefix declarations. It annotates the individual product information. It includes the
product name, description, digital image of the product, UPC, seller, and cost.

Listing 6.9 Excerpt of product information

<div typeof="gr:0ffering" about="#offering">

<div rev="gr:offers" resource="http://www.example.com/#company"></div>
<div property="gr:name" content="Cyber-shot DSC-WX100"

xml:lang="en"></div>

<div property="gr:description" content="18.2-Megapixel Digital Camera

- Black 10x optical/20x clear image zoom &l1t;/li>

<1li>2.7" Clear Photo LCD displayé

&1t;1i>1080/601 HD video Optical image

stabilization" xml:lang="en"></div>

<div property="gr:hasEAN_UCC-13" content="0027242854031"

datatype="xsd:string"></div>

<div rel="foaf:depiction"
resource="http://images.bestbuy.com/BestBuy_US/images/products/5430/

www.itbook.store/books/9781617294006

http://www.ebusiness-unibw.org/tools/grsnippetgen/
http://www.ebusiness-unibw.org/tools/grsnippetgen/
http://www.ebusiness-unibw.org/tools/grsnippetgen/
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

80 CHAPTER 6 Enhancing results from search engines

5430135_sa.jpg"></div>
<div rel="gr:hasPriceSpecification">
<div typeof="gr:UnitPriceSpecification">
<div property="gr:hasCurrency"
content="USD" datatype="xsd:string"></div>
<div property="gr:hasCurrencyValue"
content="199.99" datatype="xsd:float"></div>
<div property="gr:hasUnitOfMeasurement"
content="C62" datatype="xsd:string"></div>
</div>
</div>

Listing 6.10 highlights the annotation of an individual product review. You’ll notice that
the entire review is wrapped in a <div rel=..> to establish a relationship between our
Sony camera and this review. Listing 6.6 contains two individual reviews and one aggre-
gate review. All three are similarly annotated. Because the aggregate review represents
a composite review, you’ll notice that some of the represented properties are different
from those in the next listing.

Listing 6.10 Excerpt showing annotation of an individual product review

<div rel="review:hasReview v:hasReview" typeof="v:Review">
Nice Camera, easy to use, panoramic feature by: AbcdE, <span property="v:dtreviewed"
content="2012-11-26">November 26, 2012

Great for when you don't feel like dragging
the SLR around. Panoramic feature and video quality are very
good.

4.75 of
5.0 Stars

</div>

6.2.4 Extracting Linked Data from GoodRelations-enhanced HTML document

As we illustrated in section 6.1, entering the HTML document shown in listing 6.6 into
the validator and RDF 1.1 distiller (http://www.w3.org/2012/pyRdfa/) generates the
Turtle content shown in the next listing. As we mentioned earlier in this chapter, this
output can be retained and published. It can be used as input to other applications. In
section 6.4, we’ll illustrate mining this Linked Data using SPARQL.

Listing 6.11 Turtle statements derived from listing 6.6

@prefix foaf: <http://xmlns.com/foaf/0.1/>
@prefix gr: <http://purl.org/goodrelations/v1#>
@prefix rev: <http://purl.org/stuff/rev#>

@prefix v: <http://rdf.data-vocabulary.org/#>
@prefix vcard: <http://www.w3.org/2006/vcard/ns#>
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>

<http://rosemary.umw.edu/~marsha/other/sonyCameraRDFaGRversion3.html

#company> a gr:BusinessEntity;
gr:legalName "Linked Data Practitioner's Guide"@en;

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Embedding RDFa using the GoodRelations vocabulary 81

vcard:adr [a vcard:Address;
vcard:country-name "United States"@en;
vcard:locality "Fredericksburg"@en;
vcard:postal-code "22401"€en;
vcard:street-address "1234 Main Street"@en];

vcard:tel "540-555-1212"Ren;

foaf:page

W <http://rosemary.umw.edu/~marsha/other/sonyCameraRDFaGRversion3.html>

<http://www.example.com/#company> gr:offers
= <http://rosemary.umw.edu/~marsha/other/sonyCameraRDFaGRversion3.html
= #offering>

<http://rosemary.umw.edu/~marsha/other/sonyCameraRDFaGRversion3 .html
= #offering> a gr:0ffering;
gr:description "18.2-Megapixel Digital Camera - Black
<1i>10x optical/20x clear image zoom
<1i>2.7\" Clear Photo LCD display
<1i>1080/601i HD video
Optical image stabilization"@en;
gr:hasBusinessFunction gr:Sell;
gr:hasEAN_UCC-13 "0027242854031"""xsd:string;
gr:hasPriceSpecification [a gr:UnitPriceSpecification;
gr:hasCurrency "USD"""xsd:string;
gr:hasCurrencyValue "199.99"""xsd:float;
gr:hasUnitOfMeasurement "C62"""xsd:string 1;
gr:includes
<http://rosemary.umw.edu/~marsha/other/sonyCameraRDFaGRversion3.html
#product>;
gr:name "Cyber-shot DSC-WX100"@en;
foaf:depiction
= <http://images.bestbuy.com/BestBuy_US/images/products/5430/
5430135_sa.jpg>;
foaf:page <http://www.example.com/dscwxl1l00/>

58

e

<http://rosemary.umw.edu/~marsha/other/sonyCameraRDFaGRversion3.html
= #product> a gr:Someltems;
gr:category "ProductOrServiceModel"@en;
gr:description "18.2-Megapixel Digital Camera - Black
<1i>10x optical/20x clear image zoom
<1i>2.7\" Clear Photo LCD display
<1i>1080/601 HD video</1li> Optical image stabilization"@en;
gr:hasEAN_UCC-13 "0027242854031"""xsd:string;
gr:name "Cyber-shot DSC-WX100"@en;
foaf:depiction
= <http://images.bestbuy.com/BestBuy_US/images/products/5430/
5430135_sa.jpg>;
foaf:page <http://www.example.com/dscwx100/>

AN

<http://rosemary.umw.edu/~marsha/other/sonyCameraRDFaGRversion3.html#
= review_data> a v:Review-aggregate;

v:average " 4.9"""xsd:string;

v:best "5.0"@en;

v:count "14"~"xsd:string

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

82 CHAPTER 6 Enhancing results from search engines

<http://www.bestbuy.com> gr:offers
w» <http://rosemary.umw.edu/~marsha/other/sonyCameraRDFaGRversion3.html>

<http://rosemary.umw.edu/~marsha/other/
=» sonyCameraRDFaGRversion3.html> gr:hasBusinessFunction
- <http://rosemary.umw.edu/~marsha/other/#Sell>;
=» gr:hasEAN_UCC-13 "0027242854031"""xsd:string;
gr:hasInventoryLevel [a gr:QuantitativeValue;
gr:hasMinValue "1"""xsd:float 1];
gr:hasPriceSpecification [a gr:UnitPriceSpecification;
gr:hasCurrencyValue "199.99"~"xsd:float,
"219.99"~"xsd:float;
v:highprice "219.99"""xsd:float;
v:lowprice "199.99"""xsd:float 1;
rev:hasReview _:_7a58d778-3981-4844-96e6-71b32felb439,
_:_8d4adede-7085-4104-9ad4e-d6131abe5853,
_:_Cc6154cbl-03bf-4ba9-b237-67e0984a7a86;
v:hasReview _:_7a58d778-3981-4844-96e6-71b32felb4d39,
_:_8d4adede-7085-4104-9ade-d6131abe5853,
_:_Cc6154cbl-03bf-4ba9-b237-67e0984a7a86,
<http://rosemary.umw.edu/~marsha/other/sonyCameraRDFaGRversion3.html
= #review_data>;
foaf:page <http://rosemary.umw.edu/~marsha/other/

sonyCameraRDFaGRversion3.html>, _:_7a58d778-3981-4844-96e6-
<http://www.bestbuy.com> . 71b32felb439 represents a blank
node. Refer to chapter 2 for a
_:_7a58d778-3981-4844-96e6-71b32felb439 a v:Review; more complete explanation.

v:best "5.0"@en;

v:dtreviewed "2012-11-26"@en;

v:reviewer " AbcdE"@en;

v:summary "Great for when you don't feel like dragging the SLR
> around. Panoramic feature and video quality are very good."@en;

v:value "4.75"@en

_:_8d4adede-7085-4104-9ad4e-d6131abe5853 a rev:Review, :_8d4ade4&J0854H049a4&

v: Revi§w—aggregate; déi31abe5853 represents a blank
rev:maxRating 5; node. Refer to chapter 2 for a

rev:minRating 0; more complete explanation.
rev:rating "4.5"""xsd:float;

rev:totalRatings 45;

v:average "4.5"~"xsd:float; _:_c6I54cbl-03bf-4ba9-b237-
v:votes 45 . 67e0984a7a86 represents a blank
node. Refer to chapter 2 for a
_:_c6154chbl-03bf-4ba9-b237-67€0984a7a86 a v:Review; more complete explanation.

v:best "5.0"@en;

v:dtreviewed "2012-11-29"@en;

v:reviewer "ABCD"@en;

v:summary "At 4 ounces this is a wonder. with a bright view screen and
tons of features this camera can't be beat "@en;

v:value "5.0"@en

In this section we’ve embedded RDFa using the GoodRelations vocabulary. This spe-
cialized vocabulary will enable you to embed product, service, and company informa-
tion in your web pages. This additional information improves SEO and click-through

www.itbook.store/books/9781617294006

https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Embedding RDFa using the schema.org vocabulary 83

rates. Stay tuned; we understand that GoodRelations is in the process of being inte-
grated into schema.org.

6.3 Embedding RDFa using the schema.org vocabulary

Schema.org is a collaborative initiative by three major search engines: Yahoo!, Bing, and
Google. Its purpose is to create and supporta common set of schema for structured data
markup on web pages and to provide a common means for webmasters to mark up their
pages so that the search results are improved and human users have a more satisfying
experience. We’ll follow a progression similar to what we did in section 6.2. We’ll take
abrieflook at the schema.org vocabulary and apply it by embedding RDFa into the same
basic HTML page that describes our Sony camera.

6.3.1 An overview of schema.org

The designers of schema.org provided a single common vocabulary and markup syntax
(Microdata®) that’s supported by the major search engines. This approach enables web-
masters to use a single syntax and avoid tradeoffs based on which markup type is sup-
ported by which search engine. As you can see in table 6.4, schema.org supports a broad
collection of object types and isn’t limited to e-commerce terminology.

Table 6.4 Commonly used schema.org object types by category

Parent type Subtypes

Creative works CreativeWork, Article, Blog, Book,
Comment, Diet, ExercisePlan,

ItemList, Map, Movie, MusicPlaylist,
MusicRecording, Painting,

Photograph, Recipe, Review, Sculpture,
SoftwareApplication, TVEpisode, TVSeason,
TVSeries, WebPage, WebPageElement

MediaObject AudioObject, ImageObject, MusicVideoObject,
(Embedded non-text objects) | VideoObject

Event BusinessEvent, ChildrensEvent, ComedyEvent,
DanceEvent, EducationEvent, Festival, FoodEvent,
LiteraryEvent, MusicEvent, SaleEvent,
SocialEvent, SportsEvent, TheaterEvent,
UserInteraction, VisualArtsEvent

Organization Corporation, EducationalOrganization,
GovernmentOrganization, LocalBusiness, NGO,
PerformingGroup, SportsTeam

Intangible Audience, Enumeration, JobPosting, Language,
Offer, Quantity, Rating, Structuredvalue

Person

¢ Defining the HTML microdata mechanism, HTML Microdata W3C Working Draft May 24, 2011, http://
dev.w3.org/html5/md-LC/.

www.itbook.store/books/9781617294006

http://dev.w3.org/html5/md-LC/
http://dev.w3.org/html5/md-LC/
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

84

CHAPTER 6 Enhancing results from search engines

Table 6.4 Commonly used schema.org object types by category (continued)

Parent type Subtypes

Place LocalBusiness, Restaurant, AdministrativeArea,
CivicStructure, Landform,
LandmarksOrHistoricalBuildings, LocalBusiness,
Residence, TouristAttraction

Product

Primitive Types Boolean, Date, DateTime, Number, Text, Time

NOTE The schema.org specification is accessible from http://schema.org/
docs/schemas.html.

Unlike RDF, schema.org was not designed to

Provide resource description for purposes other than discovery

Publish data not displayed on web pages

Facilitate machine-to-machine communication

Support other ontologies outside of those agreed on by the partners of
schema.org

Subsequent feedback from the web community encouraged the developers of
schema.org to accept and adopt RDFa Lite as an alternative syntax to encode schema.org
terms. Schema.org members are search engines, which really care about scalability, thus
making the use of RDFa Lite strongly preferred. The difference is that RDFa 1.1 is a com-
plete syntax for RDF (and can thus express anything that RDF can). RDFa Lite consists
of only five simple attributes: vocab, typeof, property, resource, and prefix. One of
the convenient features about RDFa 1.1 Lite and RDFa 1.1 is that a number of commonly
used prefixes (http://www.w3.org/2011/rdfa-context/rdfa-1.1.html) are predefined.
Therefore, you can omit declaring them and just use them, but the W3C recommended
style is to include the prefix declarations.

The full specification for RDFa 1.1 Lite is at http://www.w3.org/TR/rdfa-lite/.
RDFa 1.1 Lite is a subset of RDFa and consists of just five attributes that are used
together with HTML tags to enable web developers to mark up their sites with Linked
Data. We’ll briefly discuss these attributes and then develop an example illustrating
how RDFa 1.1 Lite works with HTML to enable meaningful markup of web pages.

Table 6.5 Properties of the schema.org Product class

Property Description

aggregateRating | AggregateRating | Based on a collection of reviews or ratings, this is the
overall rating of the item.

brand Organization The brand of the product, for example, Sony, Minolta.

description Text A brief narrative about the item.

www.itbook.store/books/9781617294006

http://schema.org/docs/schemas.html
http://schema.org/docs/schemas.html
http://www.w3.org/TR/rdfa-lite/
https://itbook.store/books/9781617294006
https://itbook.store/books/9781617294006

Embedding RDFa using the schema.org vocabulary 85

Table 6.5 Properties of the schema.org Product class (continued)

Property Type Description
image URI The URI of an image of the item.
manufacturer Organization The manufacturer of this product.
model Text The model identifier for this product.
name Text The name of the product.
offers Offer An offer to sell this pr