
M A N N I N G

Craig Grummitt

SAMPLE CHAPTER

Covers Swift 4, Xcode 9, and iOS 11

www.itbook.store/books/9781617294075

https://itbook.store/books/9781617294075

iOS Development with Swift
by Craig Grummitt

Sample Chapter 15

Copyright 2018 Manning Publications

www.itbook.store/books/9781617294075

https://itbook.store/books/9781617294075

brief contents
PART 1 INTRODUCING XCODE AND SWIFT 1

1 ■ Your first iOS application 3
2 ■ Introduction to Swift playgrounds 29
3 ■ Swift objects 55

PART 2 BUILDING YOUR INTERFACE .. 81
4 ■ View controllers, views, and outlets 83
5 ■ User interaction 105
6 ■ Adaptive layout 133
7 ■ More adaptive layout 167
8 ■ Keyboard notifications, animation, and scrolling 199

PART 3 BUILDING YOUR APP ... 225
9 ■ Tables and navigation 227

10 ■ Collections, searching, sorting, and tab bars 263
11 ■ Local data persistence 297
12 ■ Data persistence in iCloud 337
13 ■ Graphics and media 371
14 ■ Networking 409
15 ■ Debugging and testing 439

PART 4 FINALIZING YOUR APP ... 479
16 ■ Distributing your app 481
17 ■ What’s next? 513

www.itbook.store/books/9781617294075

https://itbook.store/books/9781617294075

www.itbook.sto
 Debugging and testing
All’s well and good reading a book or following a tutorial, but in the real world
things go wrong. And often! This is your chance to put your detective hat on and
investigate.

 In this chapter, we’ll look at what to do when things go wrong by using debug-
ging. We’ll also look at how to prevent things from going wrong with testing.

 Along the way, we’ll explore additional concepts:

 The console
 Variables view
 Breakpoints and the breakpoint navigator
 The debug navigator and gauges
 Instruments
 Unit tests and UI tests

This chapter covers
 Debugging using different techniques, tools,

gauges, and instruments in Xcode

 Testing your app

 Testing your app interface
439

re/books/9781617294075

https://itbook.store/books/9781617294075

440 CHAPTER 15 Debugging and testing

www.itboo
15.1 The setup
A friend has kindly offered to look at your app and see if they can find any bugs. You
sent them a link to the GitHub repo for your Xcode project, and a few days later you
got this email in return:

Hey—I’ve had a look at the app for you. It’s looking good, but I also found a few odd
problems:

 The book edit form was working well to begin with, but then it started crashing.
Don’t know what that’s about.

 The Cancel button in the book edit form crashes the app.
 After you add an image and save it, the next time you edit the book and save it, the

book cover seems to disappear ... strange?

Oh, I also made a couple of little improvements here and there. Hope that’s okay!

 I used a cool third-party framework to detect a nice color palette in the cover art of
each book, to use in styling the table view cells and the book edit form. I’ve also
added properties for these colors in the Book class. The app seems to freeze, though,
for a couple of seconds when you add an image. Is there something you can do
about that?

 I added a nice little three-page help section to onboard the app, using a page view
controller. It automatically triggers when you first open the app, and you can
reopen it with a Help button. There should be a title, blurb, and image, but for
some weird reason, only the images are displaying.

Oh, and you should probably add some tests.

Sorry I ran out of time to fix everything up. All the best with it, I look forward to
downloading it from the App Store!

Oh, here’s the repo with my updates: https://github.com/iOSAppDevelopmentwithSwift-
inAction/Bookcase.git (Chapter15.1.UpdatesNeedFixing).

Well, that was a nice surprise. Your friend made a couple of nice additions to the app.
Great! But it seems the app has been left in a buggy state. That email contains a lot of
information; let’s go through it step by step, check out what they’ve done, and explore
what needs fixing.

15.2 Debugging mode
The book edit form was working well to begin with, but then it started crashing. Don’t
know what that’s about.

Let’s confirm what your friend is saying about the app crashing.

1 Download your friend’s repo update.
2 As usual, run carthage update in the Terminal to update third-party code in

the project.
3 Run the app. Your friend’s onboarding section should appear.
4 Select the Skip button.
5 Select the + button to add a book.
k.store/books/9781617294075

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://itbook.store/books/9781617294075

441Debugging mode

www.itbook.
Bam! Your friend was right—the app crashes!
 When Xcode crashes, it automatically enters debugging mode (see figure 15.1).

Debugging mode can be intimidating, especially at first. Let’s break it down.

Figure 15.1 Xcode debugger in a crash

Debugging mode consists of

 A red line that appears in the source editor indicating the most recent line of
your code that ran before the crash occurred.

 The debug navigator appears in the navigator panel, consisting of

– Gauges for measuring the current state of your device or simulator’s CPU,
memory, disk, and network activity.

– A path of how you arrived at the current line of code in each active thread.
This is called the backtrace (people also call this the call stack or stack trace).

 The debug area appears below the source editor, consisting of

– The debug bar with several debug controls including stepping through your app.
– The variables view showing the current state of variables from the scope of the

line in the source editor.
– The console, which outputs the reason for the crash and a printed call stack.

Debug gauges

BacktraceDebug
navigator

Crash line
Hide or show
debug area

Debug areaDebug
bar

Variables
view

Console
store/books/9781617294075

https://itbook.store/books/9781617294075

442 CHAPTER 15 Debugging and testing

www.itboo
Don’t worry, this has only been a short summary of these tools. In a moment, we’ll
look at each in turn.

Xcode behaviors
How does Xcode know to automatically show you the debug navigator and the debug
area when the app crashes? Well, it’s all defined in special Xcode preferences called
behaviors. Use behaviors to request that Xcode performs specific actions when spe-
cific events occur. Xcode comes with certain behaviors already set up for you by
default.

Let’s look at the default behavior that opens the debug navigator and debug area.
Select Xcode > Behaviors > Edit Behaviors. In the events menu on the left, select
Running > Pauses. This behavior is triggered when a running app is paused, such as
when the app crashes! In the actions menu on the right, you can specify actions to
perform when this event occurs. In addition to showing the debug navigator and
debug area, you could, for example, play a sound, display a system notification, or
even have an announcement spoken to you.

Events

Show debug area

Actions
Show debug
navigator
k.store/books/9781617294075

https://itbook.store/books/9781617294075

443Debugging crash logs in the console

www.itbook.
Sometimes, such as in this case, the red line freezes on your AppDelegate class, indi-
cating that the problem probably occurred in initial setup. One common reason for
this is a problem with the storyboard. Let’s look at the console for clues.

15.3 Debugging crash logs in the console
At first glance, the output in the console after a crash looks crazy complicated. To give
yourself a shock, take a glance at figure 15.2. But don’t panic! You’ll see a number of
strange symbols, numbers, and unfamiliar syntax. Where to start?

Figure 15.2 Crash log in console

The trick in interpreting this output is learning what you can ignore 90% of the time
and where to find the most relevant information.

 The text that automatically outputs to the console when your app crashes is made
of two main parts that answer two important questions:

 Exception information—What caused the problem?
 Call stack—What was happening at the time?

I’ve organized the console output in figure 15.3. I separated the two main parts and
emphasized part of the output to help you focus on what’s most important.

 First, what caused the problem? The exception information should answer this impor-
tant question, and ironically, it’s often scrolled offscreen by the call stack! Ignore the
time codes and memory addresses and look for the description of the exception in
English. According to the exception information in this case, there was an
NSUnknownKeyException for the key titleL in the BookViewController.
store/books/9781617294075

https://itbook.store/books/9781617294075

444 CHAPTER 15 Debugging and testing

www.itboo
Figure 15.3 Crash log in console

Great—the English description of the exception information is often all you’ll need to
look at after a crash, but sometimes it helps to also look at what was happening at the
time of the crash. The call stack is a path of method calls called frames that lead to a
certain location in the code. You can use the call stack to trace the path backward
from the most recent frame marked with a 0 at the top, down to the least recent frame
at the bottom.

 To identify each frame in the call stack, each line gives you the framework, origin
(usually object and method), line number, and even the memory address of each call.
See figure 15.4 for a close-up of frame 5.

Figure 15.4 Frame in call stack

Call stack

Exception
information

Frame
number Memory address

Framework Line
number

Object name Method name
k.store/books/9781617294075

https://itbook.store/books/9781617294075

445Debugging crash logs in the console

www.itbook.
Calls originating from your own code will have your project name at the left. Note in
the call stack that only one call originates from your project, indicated by the project
name Bookcase. Look for main at line 29 of figure 15.3.

NOTE The main call is a special one—main represents the main entry point
for your app, which in your project (and most others as well) is the App-
Delegate class. If you take a close look at the AppDelegate class in your
project, you’ll notice that it’s preceded by the keyword @UIApplication-
Main. This keyword defines the AppDelegate as your app’s entry point.
You’ll find this in the call stack too, at line 28.

Sometimes the call stack can give you a peek behind the curtain of certain classes in
the iOS SDK that aren’t available to developers. If you look through the objects and
method calls in the call stack, you might get an idea as to what was happening when
the unknown key exception occurred. Perhaps the connect call to the UIRuntime-
OutletConnection object at line 5 could be a clue. Although you don’t have docu-
mentation for this object, you could make a reasonable guess by its name that this
object is involved in connecting outlets, and perhaps this has something to do with
your crash. The plot thickens!

15.3.1 Solving a crash caused by an outlet

Let’s revise your clues. You know that an outlet problem likely exists in BookView-
Controller related to the key titleL. Let’s look at the storyboard and try to dig
deeper.

1 Open the storyboard, and select the book edit form scene.
2 Open the Connections Inspector to explore problems with outlets. As

expected, it appears there’s a problem with the titleL property—the Connec-
tions Inspector shows it with an exclamation mark within a yellow triangle, indi-
cating a broken connection (see figure 15.5).

Figure 15.5 IBOutlet issues

Below the broken outlet connection is another outlet called titleLabel with
a hollow circle, indicating that a property in the BookViewController class
called titleLabel has been defined with the @IBOutlet keyword, but hasn’t
been connected to a view in the storyboard.

Broken connection

No connection
store/books/9781617294075

https://itbook.store/books/9781617294075

446 CHAPTER 15 Debugging and testing

www.itboo
It appears that your friend set up an outlet called titleL and then decided to
give it the name titleLabel, probably to ensure good naming practices. They
renamed it in the code, but didn’t update the connections! Let’s fix it and see if
that resolves the crash.

3 Remove the old connection by selecting the X next to TitleL.
4 Now, set up a new connection to titleLabel in the Connections Inspector.

You could do this in the Assistant Editor as you’ve done previously, but since
you’re already in the Connections Inspector, drag from the circle beside
titleLabel to the title label in the storyboard (see figure 15.6).

Figure 15.6 Connect IBOutlet into the Connections Inspector.

You should see the title label with a filled circle in the Connections Inspector,
indicating that it’s now connected to a view in the storyboard. If you open the
BookViewController class, you’ll see the same filled circle indicator there as
well (see figure 15.7).

Figure 15.7 IBOutlet connected in the source editor

Drag from Connections Inspector to
appropriate element in storyboard

Connected
k.store/books/9781617294075

https://itbook.store/books/9781617294075

447Debugging crash logs in the console

www.itbook.
Now, all that’s left is to run the app and see if you’ve solved the problem!

5 Run the app, select or add a book, and ... no crash!

First problem solved, what’s next?

15.3.2 Solving a crash caused by an action

The Cancel button in the book edit form crashes the app.

With the app running and the book form open, select the Cancel button. Your friend
was right!

 Another long crash log fills the console, but this time you have a better idea of
what to look for. Let’s start with what caused the problem. With memory addresses
removed, the exception information reads thus:

-[Bookcase.BookViewController touchCancel:]: unrecognized selector sent to
instance

It appears that in the BookViewController class, a selector (that is, a method)
called touchCancel is being called but not recognized. Why would that be, and what
was happening at the time? You probably have enough information to take a good,
educated guess, but let’s look at a portion of the call stack for more clues. See figure
15.8—again, I’ve emphasized part of the output to help you focus on more-interesting
details.

Figure 15.8 Crash log in the console

Note that sending an action for an event triggered by a UIControl seems to be a
theme. The event itself seems to be a touch, according to frame 11, and the control
seems to be a UIBarButtonItem.

 Let’s revise all of our clues again. When a bar button item in the scene connected
to the BookViewController class (assumedly the Cancel button) tries to call the
touchCancel method, it’s not recognized. Let’s look at the storyboard to get a
clearer idea of the problem.

1 Open the storyboard, select the book edit form scene, and open the Connec-
tions Inspector to explore problems with actions. Similar to earlier, there seems
to be a problem with the touchCancel method (see figure 15.9).
store/books/9781617294075

https://itbook.store/books/9781617294075

448 CHAPTER 15 Debugging and testing

www.itboo
Figure 15.9 IBAction issues

There seems to be a broken connection between the Cancel button and the
touchCancel action method. Curiously, there seems to be an unconnected
action method called touchCancelzzzz!

2 Open the BookViewController class and see what’s going on in the code (see
figure 15.10).

Figure 15.10 IBActions in the source editor

It’s true! There’s a touchCancelzzzz method in the BookViewController,
and there isn’t a touchCancel method to be seen. Your “helpful” friend must
have leaned on the keyboard and inadvertently renamed the method. As the
hollow circle indicates, this caused the touchCancelzzzz method to discon-
nect from the storyboard.

3 Remove the extra z’s from the method name and rebuild the project. The circle
should fill in, indicating that all is well in the world again, and the Cancel but-
ton in the storyboard is reconnected with the touchCancel action in your
BookViewController class.

4 To be sure, rerun the app, open a book, and select Cancel.

This time, the app should act as expected, closing the book edit form scene.
 What’s next, detective?

15.4 Examining variables and breakpoints
After you add an image and save it, the next time you edit the book and save it, the book
cover seems to disappear ... strange?

First, check that you can replicate the problem.
 Run the app, open a book with a cover image (you’ll have to add a cover image for

a book first if none of your sample books have cover art), and select Save. The book
image returns to the default cover image. “Strange” is right! What could be happening?

Broken connection

No connection

Connected

Not connected
k.store/books/9781617294075

https://itbook.store/books/9781617294075

449Examining variables and breakpoints

www.itbook.
 Your immediate suspicion is that for some reason, an existing book cover isn’t
being used when the BookViewController generates a book to save. Let’s confirm
that by examining the bookToSave variable in the BookViewController class in
the touchSave method.

 As is so often the case in Xcode, there are many different ways to examine the con-
tents of a variable. Let’s look at a few now, beginning with a method that you’ve seen
before, the print method.

15.4.1 Examining a variable with print

To examine the bookToSave variable, let’s print its contents to the console with the
print method.

1 Before the touchSave method calls dismissMe, print the bookToSave variable.

print("Saving book: \(bookToSave)")

2 Run the app again, once again open a book with a cover image, and select Save.
This time, the book object should print to the console, looking something like
this:

Saving book: Book(title: "Five on Brexit Island", author: "Enid
Blyton", rating: 3.0, isbn: " 9781786488077", notes: "", image:
Optional(<UIImage: 0x1c02aeb20>, {128, 202}), backgroundColor:
UIExtendedGrayColorSpace 1 1, primaryColor: UIExtendedGrayColorSpace 0
1, detailColor: UIExtendedGrayColorSpace 0 1)

Well, that’s great. By default you’re seeing the value of every property of the
object, down to its background color. Sometimes, however, when you print an
object, you might not need to see its every last detail. You might prefer to see
just the important stuff. It would probably be sufficient detail to identify a book,
for example, by the title and author. To resolve this bug, you might also want to
see whether or not this book has a cover image.

There’s a neat little trick for adjusting the string that’s output when you print
an object. If your custom type adopts the CustomStringConvertible proto-
col, you can provide a description property that describes your object as a
String, and it will automatically be used by print.

3 Add a description property to the Book class that returns the title, author,
and a message about whether the book has a cover image.

override var description: String {
 return "\(title) by \(author) :
 ➥ \(hasCoverImage ? "Has" : "No") cover image"
}

4 Run the app again, and save a book with a cover image. This time, you should
see more meaningful information about the book being saved in the console:

Saving book: Five on Brexit Island by Enid Blyton : No cover image
store/books/9781617294075

https://itbook.store/books/9781617294075

450 CHAPTER 15 Debugging and testing

www.itboo
It appears that your suspicion was correct. For some unknown reason, the book
object to be saved isn’t being generated with its cover image.

TIP Classes that subclass NSObject, such as UIView, automatically adopt
the CustomStringConvertible protocol and contain a description
property. To provide your own description, you'll have to override the
default description property.

Sometimes, adding print statements everywhere in your code to help diagnose a
problem can get out of hand, and more-sophisticated debugging techniques would be
more appropriate.

TIP An alternative approach to print that certain developers prefer is the
NSLog statement. While NSLog is a little slower, it does add a timestamp to
the log and stores logging data to disk. Having a log history can be useful,
but makes it even more important to ensure you remove all NSLog calls from
your code before publishing your app to the App Store.

Remove the print statement now. We’re going to explore other debugging tech-
niques to diagnose the source of this problem further.

15.4.2 Pausing your app with a breakpoint

To diagnose problems in your app, sometimes it can help to use a file and line break-
point to pause execution at a line in your code. File and line breakpoints are ultra-
useful for

 Checking the current state of the app. This is useful for taking a closer look at vari-
ables, the call stack, threads, the user interface (UI), or the app’s use of system
resources at a specific point in time.

 Stepping through your app. You can use the step controls to run your app step by
step and diagnose any problems with the flow of your app.

You’ll use file and line breakpoints to analyze why books aren’t being saved with their
images. Let’s start by looking at right after a book object is generated for saving data
from the book edit form.

1 Add a breakpoint to your code after setting the bookToSave variable in the
touchSave method in BookViewController. Adding a breakpoint is simple;
click to the left of the line where you want execution to be paused. A dark blue
pointed rectangle should appear where you clicked, indicating an active break-
point (see figure 15.11).

Figure 15.11 File and line breakpoint

Breakpoint
indicator
k.store/books/9781617294075

https://itbook.store/books/9781617294075

451Examining variables and breakpoints

www.itbook.
NOTE Be careful not to click on the breakpoint again; this will cause the
indicator to turn light blue and the breakpoint will toggle to a disabled state.

Another place that could be interesting to analyze is when a view is loaded and
the BookViewController class receives a Book object to edit.

2 Using the same technique, add a second breakpoint to the viewDidLoad
method of BookViewController after unwrapping the book object.

3 Run your app again, and this time tap on a book that does not have a cover
image. The app should pause immediately at the breakpoint you specified in
the viewDidLoad method.

The same way it did earlier when the app crashed, the Running > Pauses behavior
launches into action, automatically opening the debug navigator and debug area for
you. One difference you may notice is that the paused line of execution is green this
time (see figure 15.12).

Figure 15.12 Breakpoint pausing execution

Now that your app has paused execution, you can examine the state of the app’s vari-
ables. Checking the book object at this point may help diagnose the problem with sav-
ing a book cover.

Advanced breakpoints
Most commonly, you’ll use breakpoints to pause execution at a specific line of code,
but they’re capable of doing so much more.

For example, exception breakpoints break execution whenever specific types of
exceptions occur, and symbolic breakpoints break execution whenever a specific
method is called on all subclasses of a certain type of class. You have to add these
types of breakpoints in the breakpoint navigator.

Your breakpoint could be set up to trigger only if a certain condition is true or after a
certain number of times. Breakpoints can also be set up to perform one or more
actions, such as output to the console or play a sound. Ironically, breakpoints don’t
necessarily break execution. If you like, after performing an action, a breakpoint can
automatically continue.

Edit your breakpoints by double-clicking on the breakpoint indicator in the source edi-
tor or the breakpoint navigator.

Execution paused
store/books/9781617294075

https://itbook.store/books/9781617294075

452 CHAPTER 15 Debugging and testing

www.itboo
 You can use several approaches for examining the state of variables while the app is
paused:

 The variables view
 Quick Look
 Print description
 Command line in the lower-level debugger
 Datatips

We’ll look at each of these in turn. Let’s look first at the variables view.

15.4.3 Examining a variable with the variables view

The variables view contains variables in the context of where the app is currently
paused. Instance variables of BookViewController will be contained within the
self property, while local variables are shown at the top level. As the book object is
unwrapped with optional binding, it’s considered a local variable.

 At the left of several variables, you’ll see a disclosure triangle, indicating that you can
“open up” the variable to have a closer look at its contents.

1 Click on the disclosure triangle for the book object to inspect the value of its
properties (see figure 15.13).

Figure 15.13 Variables view

2 Note that the book image is nil.

This makes sense, as you selected a book with no cover.
 Now, let’s resume execution so that you can add an image to this book.

15.4.4 Controlling the app’s execution using the debug bar

Above the variables view, you’ll find the debug bar, which contains several controls
useful for controlling the execution of your app (see figure 15.14).

Disclosure
triangle

Book image
k.store/books/9781617294075

https://itbook.store/books/9781617294075

453Examining variables and breakpoints

www.itbook.
Figure 15.14 Debug bar

Table 15.1 lists several elements that could use extra explanation.

Let’s use the controls in the debug bar to resume execution of the app.

1 Tap the Continue button.
2 Add a cover image to the app.
3 Save the book with the new image by tapping the Save button.

Table 15.1 Debug bar elements

Element Description

Toggle breakpoints For convenience, toggle all breakpoints on or off.

Continue/Pause Continue execution of the app.

Step buttons Three skip buttons allow you to execute your code step by step.
Step over and step into differ as to how they act when there's a method call
in the current line. Step into will step through every line of the method,
whereas step over will interpret the entire method as one step. Step out, on
the other hand, executes the rest of the current function as one step and
pauses execution again when it exits the function.

Debug view hierarchy View the hierarchy of views in the app. We’ll come back to this soon.

Memory graph Visualize the memory allocations in the app.

Simulate location Simulate that your app is running from an alternative location.

Jump bar Use the jump bar to examine your app state from the context of different
threads and stack frames.

Step
over

Step
out

Step
into

Memory
graph

Jump bar

Simulate
location

Show/Hide
debug bar

Debug view
hierarchy

Toggle
breakpoints

Continue/
Pause
store/books/9781617294075

https://itbook.store/books/9781617294075

454 CHAPTER 15 Debugging and testing

www.itboo
The app should pause execution again after generating a new book to save in the local
bookToSave variable. Let’s examine this variable for more clues.

15.4.5 Examining a variable with Quick Look

Let’s explore examining variables using another technique, called Quick Look.

1 First, focus once again on the variables view, and select the disclosure triangle
beside the bookToSave variable to open it up.

2 Note that this time, the book image shows a memory address. You can reason-
ably assume that this means that your book contains an image, but how can you
know which?
Certain variables are visual in nature, and the variables view may not be suffi-
cient to describe a variable. Quick Look provides you with a visualization of the
contents of a variable. (You may remember Quick Look from playgrounds, way
back in chapter 2.)

3 Select the image property of bookToSave.
4 To open a visualization of the image property and select the button that looks

like an eye, located below the variables view (see figure 15.15).

Show Quick Look

Quick Look

Figure 15.15
Quick Look
k.store/books/9781617294075

https://itbook.store/books/9781617294075

455Examining variables and breakpoints

www.itbook.
Well, that seems to have worked correctly. The image you added to the book
edit form is stored in the image you’re saving. But the problem was presenting
itself in books that already have an image. You’ll need to go through this pro-
cess again, with the same book now that you know it contains an image, and
find the source of this problem.

5 Tap the Continue button, which should return you to the main screen.
6 Choose the same book you added a cover image to.

The app should pause once again at the breakpoint in the viewDidLoad method
after unwrapping the book object to edit.

 Let’s use yet another technique for examining the contents of the book object.

15.4.6 Examining a variable with print description

Next to the Show Quick Look button, is another useful button that appears as an “i” in a
circle. This is called the Print Description button. If you select a variable in the variables
view, and select the Print Description button, you get exactly the same output in the
console as you did earlier when you printed a variable in code.

 This time, you’ll examine the contents of the book object with the Print Descrip-
tion button.

1 Select the book object in the variables view.
2 Select the Print Description button.

The description property of the Book object that you set up earlier will output to the
console (see figure 15.16). Covering all bases, the properties of the Book object also
output to the console.

Figure 15.16 Print variable description

Well, according to the output, it seems no problem exists with the book object. You’ll
have to continue execution and save the book to see if the problem is happening there.

 But first, what’s that strange lldb message that crops up in the console?

Print Description button Description
store/books/9781617294075

https://itbook.store/books/9781617294075

456 CHAPTER 15 Debugging and testing

www.itboo
15.4.7 Examining a variable with LLDB

The console is much more than an area for receiving debug logs and outputting print
messages. It’s a window into the powerful command-line debugger called lower-level
debugger (LLDB), and the lldb message is a prompt for you to enter commands.

 Many debugging features in this chapter are GUI representations of lower-level
commands that are available to you as command-line commands in the console.

 For example, the Print Description button you used to explore details on the book
object uses the LLDB po command under the hood.

1 Use the po command to examine the book variable. Type the following after
the lldb prompt and press the Return key:

po book

You should see the same
description appear for Book
that you saw for Print Descrip-
tion (see figure 15.17).

If you want to go beyond the
default description of a vari-
able and print the underly-
ing implementation of an
object, use the p command.

2 Use the p command on the
book variable.

p book

See figure 15.18 for the result from the p command. This time, you should see a
much more detailed output of the contents of the book variable.

Command Response

Figure 15.17 LLDB command po in the console

Command Response

Figure 15.18 LLDB
command p in the console
k.store/books/9781617294075

https://itbook.store/books/9781617294075

457Examining variables and breakpoints

www.itbook.
We’ve barely scratched the surface of what’s possible with LLDB. Apart from
online documentation, you can use LLDB’s help command to get a compre-
hensive listing of debugger commands.

For a change, let’s use LLDB to resume program execution.

3 Type c after the lldb prompt, and press Return. The program should
continue.

4 Tap Save, to test saving this book.

Once again, the app should pause execution right after generating a book to save.
Let’s use one final technique to examine the contents of the book to save.

15.4.8 Examining a variable with data tips

Believe it or not, there’s yet another way to examine the contents of your variable, and
this time, you don’t even need the variables view or the console!

 With app execution paused, you can point your cursor in the source editor at a
variable you want to examine, and a data tip for that variable will pop up. From there,
you can open the variable the way you did in the variables view, select to show Quick
Look, or select the Print Description button.

1 Point to the bookToSave variable now. A data tip for the variable should
appear.

2 Select the disclosure triangle, open the variable, and examine its contents (see
figure 15.19).

Notice that this time, the image property of bookToSave is equal to nil. You seem to
be getting closer to the problem!

Figure 15.19 Examine a variable with data tips

Point to
variable

Data tip
appears

Open up
variable

Quick
Look

Print
Description
store/books/9781617294075

https://itbook.store/books/9781617294075

458 CHAPTER 15 Debugging and testing

www.itboo
15.4.9 Solving the save problem

Why would the image property be nil? Look at how the bookToSave object is gener-
ated—the cover image comes from the coverToSave property. Okay, where’s this
property set?

 A quick search for the coverToSave property uncovers the problem. The cover-
ToSave property is only set in two places: when the user selects a photo or image for the
book or when the booksService returns an image after the user scans a barcode.
What about books that already have an image? The coverToSave property is never set.

1 In the viewDidLoad method, after unwrapping the book object, set the
coverToSave property. Check first that the book has a cover image, to avoid
setting the default cover to the coverToSave property.

if let book = book {
 navigationItem.title = "Edit book"
 bookCover.image = book.cover
 if book.hasCoverImage {
 coverToSave = book.cover
 }
 …

2 Run the app again, select a book with a cover image, and save it. This time (fin-
gers crossed!) the book cover image should stick around. Hooray! Good job,
detective—problem solved. You can remove your two breakpoints now.

3 To remove the breakpoints, click on them, and drag them to the right. They
should disappear—in a puff of smoke!

15.4.10Examining a variable in summary

Many methods exist for examining the contents of a variable, each with their own
advantages, as shown in table 15.2.

Table 15.2 Examining a variable

Element Best for

print If you prefer to not pause execution of your app

NSLog If you want timestamps on your console logs and a log history

Quick Look If you want a visualization of the variable’s contents

Data tips If you’re short on screen space and prefer to hide the debug area, or if you
prefer to explore variables in the context of your source code

p command in LLDB If you need information beyond what the default description returns for the
variable

Variables view If you want a visual representation of the hierarchy of variables in your app
k.store/books/9781617294075

https://itbook.store/books/9781617294075

459Debugging playback with gauges and instruments

www.itbook.
15.5 Debugging playback with gauges and instruments
Let’s check out your friend’s next piece of feedback.

I used a cool third-party framework to detect a nice color palette in the cover art of each
book, to use in styling the table view cells and the book edit form. I’ve also added
properties for these colors in the Book class. The app seems to freeze, though, for a couple
of seconds when you add an image. Is there something you can do about that?

Sounds like quite an interesting addition to the app that your friend has contributed;
see figure 15.20 to see it in action.

The freezing interface isn’t so useful, though!
 If your app is having playback problems such as a stuttering or freezing interface,

the cause may be that you’re performing long operations in the main thread and
therefore blocking your interface from updating.

 Let’s explore this theory with the debug gauges.

15.5.1 Debugging playback with debug gauges

If your app is experiencing performance issues, it can be a good idea to look at your
app’s use of system resources. One way to do this is with the debug gauges that you can
find in the debug navigator. The debug gauges give you a good summary of how your
app is using the device’s CPU, memory, disk access, and network calls. You can click on
a gauge to get a more detailed report on your app’s use of this system resource.

Add photo

Figure 15.20
Color detection
of the book image
store/books/9781617294075

https://itbook.store/books/9781617294075

460 CHAPTER 15 Debugging and testing

www.itboo
 You’re going to examine your app’s use of the CPU when adding an image to diag-
nose why the user interface is freezing temporarily.

1 Run your app, and select the Debug Navigator.
2 Select the CPU gauge from the debug gauges, to display the CPU report.
3 Select a book, and add an image. You should see something like figure 15.21.

Figure 15.21 Debug gauges and CPU report

Note that the majority of the work is going on in thread 1. Thread 1 is also known as
the main thread and is where the user interface is updated. As you’ve seen, if your app
is busy working on a time-consuming algorithm such as image color detection in the
main thread, the app’s user interface will be prevented from updating and respond-
ing to user interaction.

 It has become clear that a certain operation that your friend introduced needs to be
moved to a background thread. But which operation? You could spend time hunting
down this method in the code, but you have yet another debugging trick up your sleeve!

Debug gauges

Main thread

CPU report
k.store/books/9781617294075

https://itbook.store/books/9781617294075

461Debugging playback with gauges and instruments

www.itbook.
15.5.2 Debugging playback with instruments

Xcode provides developers with a library containing debugging tools called instru-
ments that build on and supplement the performance and testing tools that are avail-
able in debug gauges.

 To get a feel for instruments, we’ll have a look at the time profiler instrument. The
time profiler measures how frequently your app performs different processes. You
could use the time profiler to find any long-running processes that could be holding
up the main thread.

 Although you could open the time profiler up by selecting Xcode > Open Devel-
oper Tool > Instruments > Time Profiler, you have a shortcut right in front of you in
the CPU debug report—at the top-right corner is a Profile in Instruments button.

1 Select the Profile in Instruments button. Xcode will offer to transfer or restart
the debug session.

2 Select Transfer.
3 The time profiler opens and automatically begins recording the time spent on

various processes in your app.
4 Back in the simulator, add an image to a book again.
5 Once the image has been added to the book, you can select the Stop button in

the time profiler. The processes that you want to debug have been profiled, and
now you can explore the time profiler (see figure 15.22).

Figure 15.22 Time profiler

CPU track

Call tree

Controls

Display settings
store/books/9781617294075

https://itbook.store/books/9781617294075

462 CHAPTER 15 Debugging and testing

www.itboo
While you were recording your app, the time profiler sampled CPU percentage
usage (indicated in the CPU track) and call stacks (detailed in the call tree) at
regular intervals. Each call in the call tree indicates what’s called a weight, which
is an approximation of the amount of time spent in this process.

6 Because you’re interested in finding problems in your own code rather than
Apple’s, select the Call Tree menu in the bar along the bottom, and check Hide
System Libraries.

7 Now, your detective work involves digging down through the call tree hierarchy,
following the process with the greatest amount of sample time. You should find
a clear path in the main thread down to the receiveImage method in the
BookViewController class, which in turn calls the UIImage object’s get-
Colors method.

8 Double-click the line that reads BookViewController.receiveImage. This
will show you the problem line of code, indicating the number of samples
recorded containing this process (see figure 15.23).

Figure 15.23 Time profiler

If there was any question which line of code was taking up processing time, it
seems to be resolved now! This line definitely needs to be moved to a back-
ground thread.

9 Select the Open in Xcode button at the top right of the time profiler. This
should take you straight to the problem line of code, ready for you to solve the
problem.

Open in XcodeHeavy processing
k.store/books/9781617294075

https://itbook.store/books/9781617294075

463Debugging the user interface

www.itbook.
15.5.3 Solving the playback problem

Now that you know for sure what was causing the app to freeze, let’s move it to a back-
ground thread.

1 Move the getColors call to a background thread using Grand Central Dispatch.
2 Move the receiveColors call to the main thread, so that it can update the

user interface.

DispatchQueue.global().async {
 let colors = image.getColors()
 DispatchQueue.main.async {
 self.receiveColors(colors:colors)
 }
}

3 Run your app again and add an image to a book. You should find that the app
no longer freezes while the colors are being detected in the image. You’re free
to interact with the app, and when the algorithm has finished its work on a
background thread, the colors in the interface smoothly animate to the colors
detected in the image. Nice!

I think you’re ready for your final debugging challenge!

15.6 Debugging the user interface
I added a nice little three-page help section to onboard the app using a page view
controller. It automatically triggers when you first open the app, and you can re-open it
with a Help button. There should be a title, blurb, and image, but for some weird reason
though, only the images are displaying.

Again, this is a nice improvement that your friend has contributed. However, as men-
tioned, there’s a visual issue—the title and blurb for each page aren’t appearing. Your
friend sent through an image showing how the help pages should look, and how they
do look (see figure 15.24).

 Your friend isn’t a fan of the storyboard and has set up the three pages entirely in
code. These three view controllers make use of convenience methods in a structure
called InstructionFactory to perform the repetitive tasks of building their inter-
face. They then use a convenience method in another structure called Content-
LayoutMachine that automatically sets up their auto layout constraints.

 It’s all sophisticated, but what’s going wrong—where’s the title and blurb?

Runs on
background thread

Runs on
main thread
store/books/9781617294075

https://itbook.store/books/9781617294075

464 CHAPTER 15 Debugging and testing

www.itboo

What we want to be seeing

What we are seeing

Figure 15.24 Help page view controller
k.store/books/9781617294075

https://itbook.store/books/9781617294075

465Debugging the user interface

www.itbook.
15.6.1 Debugging the user interface with the Debug View Hierarchy

When there’s a visual problem with your app, a good place to look for answers is the
Debug View Hierarchy. The Debug View Hierarchy helps you visualize your app’s inter-
face and interact with it by separating the layers of the interface and rotating them in
3D space.

 You’ll use the Debug View Hierarchy to see if you can get a better idea of what’s
going on in the interface of the help pages.

1 Run the app, and select the Help button.
2 Back in Xcode, select the Debug View Hierarchy button in the debug bar (see

figure 15.25).

Figure 15.25 Debug View Hierarchy button in the debug bar

Onboarding and page view controllers
It’s a good idea to walk your users through how to use your app. This sort of introduc-
tion is called onboarding your users. Frequently, onboarding requires multiple pages,
and the most common approach for displaying these pages is with a page view con-
troller. Rather than the default page turn, it’s more common to use a scroll transition
style and a page control at the bottom of the screen, indicating the page you’re cur-
rently viewing.

Pages are represented by view controllers, and the next and previous pages are
loaded, ready for the user to scroll to them.

Your friend has been kind enough to set up such a page view controller for you in the
Bookcase project, but for future reference, these are the general steps you’d take:

1 Add a page view controller to the storyboard that’s connected to a custom
class that subclasses UIPageViewController.

2 In the viewDidLoad method, set the initial view controller to display with
the setViewControllers method.

3 Adopt the UIPageViewControllerDataSource protocol, set the data
source, and implement data source methods that return the next and previ-
ous view controllers.

4 Also implement data source methods that return the number of pages, and
the number of the initial page.
store/books/9781617294075

https://itbook.store/books/9781617294075

466 CHAPTER 15 Debugging and testing

www.itboo
The app will automatically pause. A rendering of the views in your app will
appear in the editor window with controls below it for adjusting the view. A hier-
archy of views will appear on the left in the Debug Navigator. The object and
size inspectors become available in the inspector panel, with additional infor-
mation on currently selected views (see figure 15.26).

Figure 15.26 Debug View Hierarchy

This is where it gets interesting!

3 Click on the rendering of views and drag to the right. The layers will separate
and rotate in 3D orientation, giving you a clearer perspective on what’s happen-
ing in the scene (see figure 15.27).

Debug View Hierarchy View controls Object Inspector

Rendering of views
k.store/books/9781617294075

https://itbook.store/books/9781617294075

467Debugging the user interface

www.itbook.
That’s interesting! Two text labels are hiding behind the navigation bar. They
must be the title and blurb that you’re looking for! But what could be causing
the layout issue?

4 Select one of the labels. If you find it difficult to select, you can use one of the
two sliders in the view controls. The slider on the left adjusts the spacing
between views, and the slider on the right adjusts the range of visible views.

The label should automatically highlight in the view hierarchy. Notice the purple
exclamation mark beside the view. This indicates a runtime issue with this view.

5 To get more clues on this issue, open the Issue Navigator.

15.6.2 Debugging the user interface with runtime issues

The Issue Navigator gives you more detail on any pending issues. Until now, you’ve
probably only noticed build-time issues, but Xcode can also report runtime issues.
Ambiguous layouts, problems with threading, and problems with memory allocation
can all trigger runtime issues.

 Let’s examine the runtime issues to further diagnose the problem with your app’s
layout.

Orient to 2D Orient to 3D

Click-drag 2D view to right

Figure 15.27 Debug view oriented to 3D
store/books/9781617294075

https://itbook.store/books/9781617294075

468 CHAPTER 15 Debugging and testing

www.itboo
 Select the Runtime Issues tab in the Issue Navigator. You should find that several
labels have ambiguous vertical positions (see figure 15.28).

Select one of the issues and open the Size
Inspector. Look at the Constraints section. In
addition to reiterating the layout issue, the
existing constraints are specified. The descrip-
tion of the ambiguous layout issue makes
sense; there doesn’t appear to be a constraint
specified for vertical position! See figure 15.29.

 Now that you know that certain views
aren’t being provided with vertical position
constraints, you have an idea of the problem
to look for in the layout code.

15.6.3 Solving the user interface problem

1 Open the ContentLayoutMachine.swift file where your friend defined the
layout for the help pages.
It appears that the verticalLayout method your friend wrote loops through
all the views in the page, attaching their topAnchor to the bottomAnchor of
the previousView:

static func verticalLayout(to rootView: UIView,views: [UIView]) {
 …
 var previousView: UIView?
 …
 for view in views {
 if let previousView = previousView {

Issues Navigator

Runtime Issues tab

Ambiguous layout issues

Figure 15.28 Runtime issues

Figure 15.29 Constraints in the Size
Inspector

Declares
previousView optional

Loops through
views

Unwraps
previousView
k.store/books/9781617294075

https://itbook.store/books/9781617294075

469Testing your app

www.itbook.
 constraints += [view.topAnchor.constraint(
 equalTo: previousView.bottomAnchor)]
 }
 …
 }
 …
}

Going through the logic, you see a significant problem. The previousView is
never set, so the constraint is never added!

2 Set the previousView at the end of the for loop:

static func verticalLayout(to rootView:UIView,views:[UIView]) {
 var previousView:UIView?
 for view in views {
 if let previousView = previousView {
 constraints += [view.topAnchor.constraint(
 equalTo: previousView.bottomAnchor)]
 }
 previousView = view
 }
}

Vertical constraints should be added to views now, pinning them to the previous
view.

3 Run the app to check, and select Help. The help pages should appear as
expected, and if you open the debug view hierarchy, you shouldn’t find any run-
time issues. Hooray!

Well, you solved all the bugs your friend reported in their email, detective. Congratu-
lations! But what was that your friend said about testing?

15.7 Testing your app
It’s so easy to make changes to your app to make a minor fix or improvement, only to
realize later that you’ve inadvertently caused a major problem elsewhere in your app.
Solving one problem can create another, or, like your friend earlier in this chapter,
even resting your hand on the Z key for a second could cause it to crash!

 Testing your app manually but comprehensively after every small change would be
a tedious prospect. Xcode provides you with the tools for automating this testing process.

 Xcode can perform two types of tests:

 Unit tests test that your code is doing what it’s intended to do.

CHECKPOINT If you’d like to compare your project with mine at
this point, you can check mine out at https://github.com/iOSApp-

DevelopmentwithSwiftinAction/Bookcase.git (Chapter15.2.Debugged).
Don’t forget to run carthage update to update third-party code.

Attaches top anchor
to previousView

Sets previous
View
store/books/9781617294075

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://itbook.store/books/9781617294075

470 CHAPTER 15 Debugging and testing

www.itboo
 UI tests test that your app is doing as expected from the perspective of the user
interface.

Within both categories, Xcode can focus from two perspectives:

 Functional—Is it working correctly? For example, in a calculator app, does 2+2 = 4?
 Performance—Is its performance acceptable compared against a benchmark

time? For example, in a calculator app, is a complex calculation taking a reason-
able time to process?

Let’s add tests to the Bookcase app to help prevent the sort of bugs you’ve seen so far
in this chapter and to keep the app working in tip-top shape!

15.7.1 Testing for functionality

Let’s start by adding unit tests to test that the BooksManager is sorting and searching
the books array correctly.

 Tests are performed in special targets in your project: one test target for unit tests
and another test target for UI tests. Targets can contain multiple test classes, which are
useful for grouping related tests. Each test class can contain multiple test methods, each
performing a single test.

 When you create a project, the project option screen gives you two checkboxes to set
up your project with unit tests and UI tests. Selecting these checkboxes automatically
adds appropriate testing targets to your project and a test class containing test methods.

 Open the Test Navigator to see the tests that come in your project by default (see
figure 15.30).

Test Navigator

Unit test target

Test class

Test methods

Add test targets
and classes

UI test target

Figure 15.30 Default tests
in the Test Navigator
k.store/books/9781617294075

https://itbook.store/books/9781617294075

471Testing your app

www.itbook.
If by chance you didn’t select the testing checkboxes when you created your app,
don’t despair—it’s easy enough to add test targets to your project. Select the + symbol
at the bottom of the Test Navigator, give the target a name, and select the target to be
tested. A test class will automatically be created with the same name as the target.

 Let’s use the same menu to add another test class (see figure 15.30) to test the
BooksManager class.

1 Select the + symbol, and then select New Unit Test Class.
2 Name the test class “BooksManagerTests.” A unit test class will appear with two

default test methods: testExample and testPerformanceExample.
3 You can delete these two default test methods.

SETTING UP YOUR TEST CLASS

To perform tests on the BooksManager class, you first need to set it up. To have com-
plete control over the test data, it’d be a good idea to set that up in the test class, too.

 You may have noticed your test class has a setup method. This is a good place to
specify any code that you want to run before each test method. This’ll be the perfect
place to instantiate the BooksManager and pass in test data to the books array.
Because you know that these variables will necessarily be instantiated prior to the test
methods, you can confidently set these to implicitly unwrapped optionals.

1 Set up the BooksManager and test data.

var booksManager: BooksManager!
var bookDaVinci: Book!
var bookGulliver: Book!
var bookOdyssey: Book!

override func setUp() {
 super.setUp()
 bookDaVinci = Book(title: "The Da Vinci Code",
 author: "Dan Brown", rating: 5, isbn: "", notes: "")
 bookGulliver = Book(title: "Gulliver's Travels",
 author: "Jonathan Swift", rating: 5, isbn: "", notes: "")
 bookOdyssey = Book(title: "The Odyssey",
 author: "Homer", rating: 5, isbn: "", notes: "")
 booksManager = BooksManager()
 booksManager.addBook(bookDaVinci)
 booksManager.addBook(bookGulliver)
 booksManager.addBook(bookOdyssey)
}

NOTE You’ve probably noticed a teardown method as well. You can specify
any code you want to run after each test method here.

You’ll see errors basically on every line, for example: Use of undeclared type ‘Books-
Manager’.

By default, files in one target don’t have access to files in another. If you select
the BooksManager file in the Project Navigator, and select the File Inspector,
store/books/9781617294075

https://itbook.store/books/9781617294075

472 CHAPTER 15 Debugging and testing

www.itboo
you’ll find that this file is only set to be accessi-
ble from within the Bookcase target (see figure
15.31).

You could add test target membership checking
the checkboxes in figure 15.31 for every file your
test class needs to access, but there’s a much
quicker and easier solution! You can give your
test class access to your app target files by simply importing the app target with a
@testable attribute.

2 Add a testable import at the top of your BooksManagerTests file to make classes
in the Bookcase target visible to your test target.

@testable import Bookcase

The errors should go away, and you’re ready to start filling out your test methods.

ADDING TESTS TO YOUR TEST CLASS

Let’s start by creating a test method that tests that the booksManager is sorting the
books correctly by title.

1 Add a method called testSortTitle.

func testSortTitle() {
}

2 Because you want to test sorting by title in this method, set the sortOrder prop-
erty in the BooksManager to title.

booksManager.sortOrder = .title

Great, so your test method is set up, but how does it perform a test?

To create a test, first consider what you’re expecting as the correct result. In this
case, after sorting by title, you would expect that the books array will be sorted
in a certain order: “Gulliver's Travels,” “The Da Vinci Code,” then “The Odyssey.”

In Xcode, you express this expectation with what’s called an assertion. The basic
assertion is expressed with the XCTAssert method. This method requires a
Boolean expression—if it returns true, the test has passed. Conversely, if it
returns false, the test has failed.

3 Assert the order of the sorted array:

XCTAssert(booksManager.getBook(at: 0) == bookGulliver)
XCTAssert(booksManager.getBook(at: 1) == bookDaVinci)
XCTAssert(booksManager.getBook(at: 2) == bookOdyssey)

That’s it—you’re ready to run your test! Because your method starts with the
word “test,” Xcode automatically recognizes that it’s a test method and indicates
this with a diamond beside the method.

Figure 15.31 Books-
Manager.swift target
k.store/books/9781617294075

https://itbook.store/books/9781617294075

473Testing your app

www.itbook.
4 Hover over this diamond, and it should become a Play button. Click on this Play
button, and the test method you just created should run.

If the test is successful, the diamond will display a green tick, while an unsuc-
cessful test will display a red cross (see figure 15.32).

Figure 15.32 Test method

Several assertion methods expand on the basic XCTAssert method, perform-
ing various common test assertions such as equality, inequality, greater than,
less than, and so on.

5 Add another test method to test the sort by author function. This time, use the
XCTAssertEqual method:

func testSortAuthor() {
 booksManager.sortOrder = .author
 XCTAssert(booksManager.getBook(at: 0) == bookDaVinci)
 XCTAssert(booksManager.getBook(at: 1) == bookOdyssey)
 XCTAssert(booksManager.getBook(at: 2) == bookGulliver)
}

6 This time, run both tests in this class by selecting the Run test button next to
the class declaration. You should end up with two successful tests. You can also
see your successful and unsuccessful tests in the test navigator.

CHALLENGE Create a functional test method to test searching the books
array. You’ll find my solution in the repo coming later in this chapter!

Great! If you make changes to your app now, you can be sure by running your tests
that your books should still sort and search correctly.

15.7.2 Testing for performance

Unit tests aren’t only about whether a unit of code is correct or incorrect—performance
unit tests permit you to accurately analyze the efficiency of a unit of code. Perfor-
mance tests run a unit of code 10 times and give you the average execution time.

Successful test indicator

Test method indicator: hover over to change to Play button

Play button: click to run test method
store/books/9781617294075

https://itbook.store/books/9781617294075

474 CHAPTER 15 Debugging and testing

www.itboo
 Let’s add a performance unit test to analyze the efficiency of the image color
detection algorithm that your friend introduced.

1 As you did in the previous section, add a new unit test class called UIImage-
ColorDetectionTests to test the UIImageColors framework, and remove
the default test methods.

2 You’re going to need an image to detect colors. Add an image variable and set it
up in the setUp method.

var image: UIImage!
override func setUp() {
 super.setUp()
 image = UIImage(named: "book")
}

To analyze the performance of a unit of code, run it in a closure passed to the
measure method.

3 Create the testColorDetection test method, and measure the performance
of the getColors method.

func testColorDetection() {
 self.measure {
 self.image.getColors()
 }
}

Because this UIImage extension comes from a third-party binary framework
that's not compiled by Carthage for testing, the @testable attribute won’t
work.

4 Instead, select the UIImageColors framework in the Project Navigator, and
check the BookcaseTests target in the File Inspector to make this framework
available to your unit tests.

5 Run the test by clicking the Play button beside the test method. An average time
will appear after the measure closure, along with a gray diamond.

6 Click to the left of the Play button for more information about performance
(see figure 15.33).

7 Select the Set Baseline button in the performance result.
Future tests will now be based on this baseline. If something changes in this
third-party code in the future, and it becomes significantly less efficient than
this baseline, you’ll know about it when this performance test fails.
k.store/books/9781617294075

https://itbook.store/books/9781617294075

www.itbook.
475Testing your app

15.7.3 Testing your user interface

User interface testing tests your app from a different perspective than unit testing.
While functionality and performance can still be tested, UI testing shifts the focus
from testing units of code to testing the user experience of your app.

 Let’s explore UI tests by creating one to test a user experience in your app. If you
select the Info button in the book edit form, the ISBN field should appear. If you select
the Info button again, it should disappear. Let’s test that this functionality is working
correctly.

 UI tests are created in a separate target to the app and unit tests.

1 Find the BookcaseUITests test target that was generated when the Bookcase
project was created, and open the default test class BookcaseUITests.

2 Create a new test method called testToggleISBN.
Your test class accesses the application via the XCUIApplication object, which
is launched by default in the setUp method. You can use this object to access

Silence the warning!
Because you’re only testing the performance of the method, you aren’t interested in
the returned result. The Xcode compiler finds this strange and warns you of the
unnecessary function call. To silence the warning, you can explicitly ignore the result
by assigning it to an underscore:

_ = self.image.getColors()

Click to set result as
baseline for future tests Average time

Performance result

Figure 15.33 Performance result
store/books/9781617294075

https://itbook.store/books/9781617294075

476 CHAPTER 15 Debugging and testing

www.itboo
interface elements in various ways. For example, to get a reference to the Add
button in the navigation bar, you could type

let addButton = XCUIApplication().navigationBars["Books"].buttons["Add"]

This gets a reference in the application to the navigation bar with the title
Books, and then within the navigation bar finds a reference to the Add button.
With this reference, you can now simulate the user tapping the button.

addButton.tap()

This is great, but with all this syntax, all you’ve achieved is a button tap. What
happens when you want to test a longer and more complex user experience
with multiple interactions? Setup would be a time-consuming and frustrating
process.

Fortunately, Xcode allows you to record a user experience live and automatically
convert to UI test sequences of code. If you entered the addButton code,
delete it now. You’re going to set up this UI test by recording it!

3 Ensure your cursor is inside the testToggleISBN method, and press the
Record button (see figure 15.34).

The app will launch, and the Stop Recording button will replace the Record
button in the debug bar.

4 Select the Add button. A UI test action will automatically be added to the test-
ToggleISBN method:

XCUIApplication().navigationBars["Books"].buttons["Add"].tap()

5 Now that you’re in the book edit form, select the Info button. Again, Xcode will
automatically add this action to your test, even refactoring the first line to set up
a convenience variable to hold the application object:

let app = XCUIApplication()
app.navigationBars["Books"].buttons["Add"].tap()
app.scrollViews.otherElements.buttons["More Info"].tap()

Cursor is inside
test method

Click to record

Figure 15.34 Record UI test
k.store/books/9781617294075

https://itbook.store/books/9781617294075

477Testing your app

www.itbook.
To check that the ISBN field has been toggled, you’ll need a reference to the
ISBN field.

6 To find how to reference the ISBN label, click on it. You’ll find that Xcode once
again has refactored your code, setting up a property to hold the elements in
the interface:

let elementsQuery = app.scrollViews.otherElements
elementsQuery.buttons["More Info"].tap()
elementsQuery.staticTexts["ISBN:"].tap()

Great, with little effort on your part, you know how to reference the ISBN field!
You can stop the recording now, because you’re going to finish writing the test
yourself!

7 Press the Stop Recording button. You’re going to refactor the test yourself. You
only tapped the ISBN field to get a reference to it.

8 Remove the line tapping the ISBN label and instead use the reference to deter-
mine whether the ISBN label exists in the interface prior to tapping the Info
button. You can do this with the exists method:

elementsQuery.staticTexts["ISBN:"].tap()
let isbnExists = elementsQuery.staticTexts["ISBN:"].exists
elementsQuery.buttons["More Info"].tap()

Now, you’re ready to make an assertion. Tapping the Info button should have
toggled the existence of the ISBN field in the interface.

9 Confirm that the ISBN field’s existence has toggled with a call to XCTAssert-
NotEqual.

XCTAssertNotEqual(elementsQuery.staticTexts["ISBN:"].exists, isbnExists)

You’ve set up your first UI test!

10 As you did with unit tests earlier in the chapter, run the test by tapping the Play
button beside the method.

The app will run in the simulator, automatically performing the actions defined in the
test method. With any luck, it should eventually highlight a successful test with a green
tick.

Accessibility
For a user interface to be testable, its interface elements need to have accessibility
enabled. But even if accessibility wasn’t required for UI testing, it’s still best practice
to ensure that your interface is accessible.
store/books/9781617294075

https://itbook.store/books/9781617294075

478 CHAPTER 15 Debugging and testing

www.itboo
15.8 Summary
In this chapter, you learned the following:

 Different methods exist for examining the contents of a variable, each with
their own advantages. Check table 15.2 for a summary.

 Debugging in Xcode is a massive topic, and the tools available for exploring
your app are extensive. One chapter can’t cover everything—if you’d like to
explore further, check out the memory graph debugger, instruments tools, and
type “help” into the lldb command line.

 Use functional tests to test that something does what it should, and use perfor-
mance tests to confirm that a process is taking an appropriate amount of time,
compared with a baseline.

 Unit tests test from the perspective of units of code, while UI tests test from the
perspective of the user experience of your app.

 Ensure that the elements in your app are accessible.
 For further reading on testing, check out Apple’s documentation on testing at

https://developer.apple.com/library/content/documentation/Developer-
Tools/Conceptual/testing_with_xcode. Look at how to perform asynchronous
testing.

(continued)

Select an interface element and open the Identity
Inspector. There, you’ll find the accessibility panel.
Here, you can provide a label to describe the ele-
ment, a hint to describe the result of interacting
with the element, and a unique identifier for the
element.

Beneath these properties are a number of trait checkboxes, such as Button,
Selected, Image, Search Field, and Static Text. These properties give the operating
system a better understanding of how the element is expected to behave.

Adding accessibility properties to the visual elements in your app will open them up
to be described by the VoiceOver accessibility app, and enable users with impaired
vision to use your app.

CHECKPOINT If you’d like to compare your project with mine at this
point, you can check mine out at https://github.com/iOSApp-

DevelopmentwithSwiftinAction/Bookcase.git (Chapter15.3.Tested).
k.store/books/9781617294075

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/testing_with_xcode
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/testing_with_xcode
https://itbook.store/books/9781617294075

Craig Grummitt

O
ne billion iPhone users are waiting for the next amazing
app. It’s time for you to build it! Apple’s Swift language
makes iOS development easier than ever, offering

modern language features, seamless integration with all iOS
libraries, and the top-notch Xcode development environment.
And with this book, you’ll get started fast.

iOS Development with Swift is a hands-on guide to creating
iOS apps. It takes you through the experience of building
an app—from idea to App Store. After setting up your dev
environment, you’ll learn the basics by experimenting in Swift
playgrounds. Then you’ll build a simple app layout, adding
features like animations and UI widgets. Along the way,
you’ll retrieve, format, and display data; interact with the
camera and other device features; and touch on cloud and
networking basics.

What’s Inside
● Create adaptive layouts
● Store and manage data
● Learn to write and debug Swift code
● Publish to the App Store

Written for intermediate web or mobile developers. No prior
experience with Swift assumed.

Craig Grummitt is a successful developer, instructor, and
mentor. His iOS apps get over 100,000 downloads.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/ios-development-with-swift

$49.99 / Can $65.99 [INCLUDING eBOOK]

iOS Development with Swift

iOS DEVELOPMENT

M A N N I N G

“A practical approach, with
lots of real-world examples.”

—Andrea Prearo, Capital One

“More than just a guide
to learning Swift, this book

demonstrates concepts useful
for any language.”

—Becky Huett, Big Shovel Labs

“A self-contained
step-by-step tutorial

 with plenty of examples.”—Ghita Kouadri
University College London

“Provides comprehensive
knowledge of Swift 4
combined with clear

explanations of iOS key
concepts and APIs.”

—Žarko Jovičić, Quandoo Berlin

SEE INSERT

www.itbook.store/books/9781617294075

https://itbook.store/books/9781617294075

	SCGrummitt-front
	SampleChapterPages-15
	Ch-15
	SCGrummitt-back

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

