
M A N N I N G

Craig Grummitt

SAMPLE CHAPTER

Covers Swift 4, Xcode 9, and iOS 11

www.itbook.store/books/9781617294075

https://itbook.store/books/9781617294075

iOS Development with Swift
by Craig Grummitt

Sample Chapter 2

Copyright 2018 Manning Publications

www.itbook.store/books/9781617294075

https://itbook.store/books/9781617294075

brief contents
PART 1 INTRODUCING XCODE AND SWIFT 1

1 ■ Your first iOS application 3
2 ■ Introduction to Swift playgrounds 29
3 ■ Swift objects 55

PART 2 BUILDING YOUR INTERFACE .. 81
4 ■ View controllers, views, and outlets 83
5 ■ User interaction 105
6 ■ Adaptive layout 133
7 ■ More adaptive layout 167
8 ■ Keyboard notifications, animation, and scrolling 199

PART 3 BUILDING YOUR APP ... 225
9 ■ Tables and navigation 227

10 ■ Collections, searching, sorting, and tab bars 263
11 ■ Local data persistence 297
12 ■ Data persistence in iCloud 337
13 ■ Graphics and media 371
14 ■ Networking 409
15 ■ Debugging and testing 439

PART 4 FINALIZING YOUR APP ... 479
16 ■ Distributing your app 481
17 ■ What’s next? 513

www.itbook.store/books/9781617294075

https://itbook.store/books/9781617294075

www.itbook.sto
Introduction to Swift
playgrounds
Swift isn’t JavaScript without the semicolons or Objective-C without the square
brackets. Swift is inspired by new philosophies and approaches to programming
that have driven its design and evolution.

 Even the most experienced programmers will encounter new concepts and syn-
tax in Swift. In this chapter and the next, I assume that you have experience in
programming and are mainly interested in what’s new, different, and exciting
about Swift. I’ll also discuss how concepts in Swift relate to shifts in programming
philosophy.

 After looking at data types and collection types in Swift, we’ll look at a type that
may be new to many: the optional. The optional, tied closely to the idea of type

This chapter covers
 Exploring Xcode playgrounds

 Using type safety in Swift

 Understanding simple Swift data types

 Working with collections and tuples in Swift

 Working with optionals
29

re/books/9781617294075

https://itbook.store/books/9781617294075

30 CHAPTER 2 Introduction to Swift playgrounds

www.itboo
safety in Swift, can be unfamiliar at first, but do stick with it—the optional is essential
to understanding programming in Swift.

 There’s much to look at in Swift, but don’t worry; as you progress in the book, or
for those of you who may already have some experience with Swift, you can always
refer to the cheat sheets in appendix B. This chapter is summarized in the first two
pages of the cheat sheets.

2.1 Xcode playground
When Apple introduced Swift, they also introduced a special environment in Xcode
called the Swift Playground. In a playground, you can experiment and play with Swift
concepts and syntax, without the distractions of peripheral concerns such as the archi-
tecture of your project, storyboards, or the simulator.

 A programmer new to Swift has new syntax and concepts to discover and explore.
In addition to the current body of Swift concepts, updates to the language occur rea-
sonably frequently, with more to learn and discover.

 An Xcode project can be an unwieldy environment if all you want to do is explore
a new Swift concept. As you’ve seen, a project comes by default with all sorts of addi-
tional files, and if you want to see the result of a short code block, you first need to
build your project and run it on either a simulator or a device. If, for example, all you
want to do is explore how dictionaries work in Swift, this process is overkill. Play-
grounds solve this problem by simplifying the environment.

 Create a playground now by selecting either Get Started With a Playground on the
Xcode welcome screen, or by selecting File > New > Playground.

 You should see a playground appear with default code (see figure 2.1).

Figure 2.1 Playground

Comment

Results sidebarDefine String
variable

Import
framework
k.store/books/9781617294075

https://itbook.store/books/9781617294075

31Xcode playground

www.itbook.
You’ll notice the value of your str variable, "Hello, playground", appears in the
area on the right side of the playground. This area shows the result of each line of
code, and is called the results sidebar.

2.1.1 Results sidebar

The results sidebar is a feature playgrounds have that Xcode projects don’t—use it to
view the result of every line of your code. In the default playground, you can see the
result of initializing the “Hello, playground” string in the sidebar. If you aim your
mouse pointer at the line containing the result, you’ll see two additional buttons that
give you two additional techniques for viewing the result.

QUICK LOOK

If you tap the eye button, the result appears in a bubble pop-up called a Quick Look.
This obviously isn’t necessary for the default string, but could in other circumstances
give you additional information that isn’t available or doesn’t fit in the limited space
in the sidebar (see figure 2.2).

Figure 2.2 Quick Look

SHOW RESULT

If you tap the filled, rounded, rectangle button a result view is anchored directly
below the line of code. Tap the same button to remove the Show Result view again.

 Quick Look and Show Result go beyond text information that you see in the side-
bar, giving you useful visual representations of the result. You can display UI views and
controls, visualize images and colors, and graph numeric calculations in for loops.

 See figure 2.3 for examples of visual result views.
 Result views of URL variables even give you a preview of the web page at that URL!

Add a URL variable to your playground, with your own URL:

var url = NSURL(string: "http://www.craiggrummitt.com")

Note how the string of the URL appears in the results sidebar.
 Tap the Quick Look and Show Result buttons and note how your actual website is

rendered in the Show Result view.
store/books/9781617294075

https://itbook.store/books/9781617294075

32 CHAPTER 2 Introduction to Swift playgrounds

www.itboo
2.1.2 Automatic compiling

Note how the results automatically appeared in
the results sidebar, and you didn’t have to request
the playground to run. By default, playgrounds
automatically compile and run after every
change you make, meaning you don’t need to do
anything to see the results of your code immedi-
ately. Occasionally, in a large or complex play-
ground, these constant compilations can cause
your playground to slow down or even crash Xcode. If you prefer to manually request
your playground to run, hold your mouse button down over the Play button, and
choose Manually Run. The Play button toggles to an outline, and the playground
switches to run only when you press Play (see figure 2.4).

2.1.3 Console

As with Xcode projects, playgrounds have access to a console. If you’d like to go old-
school when visualizing the results of your code, you can use the console, for example,

Graph of for
loop calculation

Representation
of color

UI control

Figure 2.3 Examples of visual result views

Figure 2.4 Automatically Run and
Manually Run
k.store/books/9781617294075

https://itbook.store/books/9781617294075

33Type safety and type inference

www.itbook.
to display results of the print function. Use the print function to display the str
variable:

print(str)

Tap the arrow in a rectangle at the bottom left of the playground to open (or close)
the console. You should see the value of the string in the console (see figure 2.5).

Figure 2.5 Playground console

Occasionally, a runtime error can occur that isn’t anticipated by the compiler and
leaves your playground unresponsive or not working as expected. In these cases, it
pays to check the console to see if an error was reported there.

 Now that you’re more familiar with playgrounds, you’re ready to use them to begin
exploring Swift concepts.

 Where we explore Swift concepts in this book, you’ll find links to playgrounds to
follow along with the text. You can also experiment in your own playground. No need
to worry about saving playgrounds, Xcode keeps them saved automatically!

 Let’s get started!

2.2 Type safety and type inference
One of the key philosophies of Swift is safety, and one of the key components of safety
in Swift is type safety. Type safety ensures that all variables are defined with a specific
type. After a variable is defined as a specific data type, it can’t later store values of a dif-
ferent data type. A String variable, for example, can never contain an Int value.

CHECKPOINT You might prefer to examine the code listings in this sec-
tion in the TypeInference.playground. You can download all the code for

this chapter by selecting Source Code > Clone and entering the repository loca-
tion: https://github.com/iOSAppDevelopmentwithSwiftinAction/Chapter2.

Show/Hide console
store/books/9781617294075

https://github.com/iOSAppDevelopmentwithSwiftinAction/Chapter2
https://itbook.store/books/9781617294075

34 CHAPTER 2 Introduction to Swift playgrounds

www.itboo
But wait—when you create a playground, by default you have a variable str containing
a string value, but the data type isn’t mentioned in the definition. How could this be?

 If you leave the data type out of the definition, Swift determines the data type of
the variable using a process called type inference. If Swift has enough information to
infer the correct type, this is as safe as specifically defining the data type. You can con-
firm the type that has been inferred for your variable by holding down the Alt key and
clicking on the variable (see figure 2.6).

Figure 2.6 Press Alt and click on the variable to see an inferred variable’s data type.

Usually you can leave out the data type when you define a variable and let Swift infer
the data type for you—in fact, it’s good practice. There are cases, however, where
you’ll need to define a variable’s data type.

 Sometimes, you want to declare a variable without passing a value to it yet.
Xcode doesn’t have a value to infer the variable’s data type, so it needs to be
specified in the definition:

var feedback:String
if soupPaymentSuccessful {
 feedback = "Soup payment processed"
} else {
 feedback = "No soup for you!"
}

 Sometimes, the data type that Xcode infers isn’t the data type you intended. For
example, if you define a number without a decimal component, it will be
inferred to be of data type Int. You may prefer it to be defined as a number
with a decimal component, known as Double, so that you can easily perform
calculations with other decimal numbers.
If you declare the data type, Xcode will better understand your intention:

var quantitySoup:Double = 2
var priceSoup = 2.99
var total = quantitySoup * priceSoup

Variable definition

Declares variable’s
data type

Passes it a value

Clarifies data
type as Double

Double is
inferred
k.store/books/9781617294075

https://itbook.store/books/9781617294075

35Type safety and type inference

In

www.itbook.
This example explicitly specifies that you want the data type of quantity to be
inferred as a Double. If you don’t do this, quantity is automatically inferred to be
an Int, and calculations between an Int and a Double aren’t permitted without con-
verting the data type of one of the variables.

TIP An alternative to clarifying the data type in the declaration is giving
extra hints in the value as to the data type to be inferred. In the code snippet,
you could have declared the quantity as 3.0, and it would have been inferred
as a Double.

2.2.1 Converting numeric types

Because performing calculations between numbers of different types isn’t permitted,
sometimes data type conversion is necessary. To divide an Int from a Double, for
example, you first need to convert the Int to a Double, as shown in the following list-
ing.

var restaurantRent = 809.10
var daysInMonth = 31
var dailyRent = restaurantRent / daysInMonth
var dailyRent = restaurantRent / Double(daysInMonth)

Here’s a question for you: in the following listing, what’s the value of slicesPer-
Person?

var totalPizzaSlices = 8
var numberOfPeople = 3
var slicesPerPerson = totalPizzaSlices / numberOfPeople

Try it out in the playground. You’ll find that slicesPerPerson is equal to 2. All I can
say is that I hope I’m third in line for pizza slices, and I get whatever’s left!

 Be aware of this common pitfall. The result of an equation will be the same data
type as the data types in the equation. If you divide one Int from another Int, your
answer is an Int. If you want the answer to be a Double, you need to ensure you first
convert your Int variables to Doubles:

var slicesPerPerson = Double(totalPizzaSlices) / Double(numberOfPeople)

NOTE Several other number data types are available. For example, you’ll also
find an unsigned integer data type called UInt, and a data type called Float
that has a decimal component, but with much smaller precision than Double.
Unless you have a good reason to do otherwise, it’s best to use an Int and
Double for compatibility and to minimize data type conversion.

Listing 2.1 Convert Int to a Double

Listing 2.2 How many pizza slices per person?

Inferred as Doubleferred
as Int Error. Double can’t

be divided by Int.

Converts Int to
Double to divide it
store/books/9781617294075

https://itbook.store/books/9781617294075

36 CHAPTER 2 Introduction to Swift playgrounds

www.itboo
2.2.2 Concatenating strings

You may be used to using the addition symbol to generate a String from two values.

var name = "Jerry"
var message = "Welcome " + name

As Swift is type safe, concatenating Strings in this way only works if every element
being concatenated is a String. A String and a Double, for example, by default
don’t concatenate. In the following example, cost is inferred to be a Double, so con-
catenating it with a String produces an error:

var cost = 3.50
var message = "Your meal costs $" + cost

You have two options to generate a String with mixed types:

 Convert a data type—In any situation where you want two different data types to
interact, you can convert one of them to be the same data type as the other. In
the following code, you can add the cost variable by converting it to a String:

var message = "Your meal costs $" + String(cost)

 String interpolation—A much cleaner and easier-to-read approach is a technique
called string interpolation. Using string interpolation, you can integrate vari-
ables or expressions into the body of your String, surrounding it with a back-
slash and a pair of parentheses:

var message = "Your meal costs $\(cost)"

2.3 Collections
Swift has three main data types for storing dif-
ferent types of collections: arrays, sets, and dic-
tionaries. In keeping with Swift’s type-safe
philosophy, collections are only permitted to
store values of a specific data type. You can
either specify the type when you declare the collection, or let Swift infer the type by
analyzing all its elements when you instantiate it.

2.3.1 Arrays

An Array stores values of the same data type in an ordered list. The following listing
shows common Array syntax in Swift.

NOTE Constants are declared with the let keyword.

Error

OPEN Follow along in the
Collections.playground.
k.store/books/9781617294075

https://itbook.store/books/9781617294075

37Collections

Concat

el
t

Com

www.itbook.

var friedChickenRecipe:[String] = []
friedChickenRecipe = ["Mix spices with flour, sugar and salt.",
 "Dip chicken in egg white and flour.",
 "Deep fry chicken.",
 "Drain on paper towels."]
friedChickenRecipe.insert("Check chicken temp.", at: 3)
friedChickenRecipe.append("Serve!")
for step in friedChickenRecipe {
 print(step)
}
for (index, step) in friedChickenRecipe.enumerated() {
 print("Step \(index + 1):\(step)")
}
let firstStep = friedChickenRecipe.first
let secondStep = friedChickenRecipe[1]
let firstTwoSteps = friedChickenRecipe[0...1]
let preRecipeSteps = ["Preheat oven to 350°F"]
friedChickenRecipe = preRecipeSteps + friedChickenRecipe

2.3.2 Sets

A Set stores values of the same data type in an unordered list. As the items in a Set
have no order, Array concepts such as subscripts, indices, and duplicate values are
meaningless. After instantiating a Set of values, take note in the results sidebar that
the elements are probably not displaying in the order they were defined, further illus-
trating that Sets don’t maintain a defined order. The following listing shows common
Set syntax.

var herbsNSpices:Set<String>
herbsNSpices = ["Salt","Thyme","Oregano",
 "Celery Salt","Black Pepper",
 "Dried Mustard","Paprika","Garlic Salt",
 "Ground Ginger", "White Pepper","MSG"]
herbsNSpices.insert("Basil")
herbsNSpices.remove("MSG")
for herbOrSpice in herbsNSpices {
 print(herbOrSpice)
}
var otherIngredients:Set = ["Chicken","Egg white","Brown Sugar"]
var allIngredients = herbsNSpices.union(otherIngredients)

In addition to union, Sets can be combined in creative ways, with the inter-
section, symmetricDifference, and subtracting methods.

Listing 2.3 Using arrays

Listing 2.4 Using sets

Declaring empty array

Instantiating
array

Add elements to array

Iterate over array

Iterate over array
with index

Extract element from array

Extract range of
elements from arrayenating

arrays

Declares a set

Initializes
a setAdds

ement
o a set

Removes element
from a set

Iterates over set

bining
sets
store/books/9781617294075

https://itbook.store/books/9781617294075

38 CHAPTER 2 Introduction to Swift playgrounds

Ch
dict

co

www.itboo
2.3.3 Dictionaries

Like sets and arrays, a Dictionary stores a series of values. Where the values in an
Array are referenced by an index, the values in a Dictionary are referenced by a
key. For example, a series of language names could be referenced by a three-letter lan-
guage code. Like a Set, a Dictionary is unordered.

var abbreviations:[String:String] = [:]
abbreviations = ["tsp":"teaspoon",
 "tbs":"tablespoon",
 "qt":"quarts"]
let teaspoon = abbreviations["tsp"]
abbreviations.isEmpty
abbreviations["qt"] = nil
for (abbreviation,measurement) in abbreviations {
 print("\(abbreviation) is \(measurement)")
}
let abbreviationCodes = Array(abbreviations.keys)
let measurements = Array(abbreviations.values)

Concatenating two dictionaries is, strangely, not available in Swift. In the next chapter,
you’ll add this functionality to Swift by extending the Dictionary type.

2.4 Control Flow
As you’d expect, Swift has several standard
approaches for controlling the flow of a pro-
gram. Several, such as the if statement, or
while, should be familiar enough, as you can
see in the following code listing.

var bottles = 99
while bottles >= 0 {
 if (bottles == 0) {
 print("No more bottles of beer on the wall.")
 } else if bottles==1 {
 print("1 bottle of beer on the wall.")
 } else {
 print("\(bottles) bottles of beer on the wall.")
 }
 bottles -= 1
}

Listing 2.5 Using dictionaries

Listing 2.6 if, else, and while statements

Declares empty dictionary

Initializes
dictionary Extracts element

from dictionary

ecks if
ionary
ntains

data Removes element
from dictionary

Iterates over
dictionary

Extracts keys and values

OPEN Follow along in the
ControlFlow.playground.

Tests condition at
start of each loop
k.store/books/9781617294075

https://itbook.store/books/9781617294075

39Control Flow

www.itbook.
NOTE You can also test a condition at the end of each loop with the
repeat-while loop. Note also that parentheses around the condition of an
if statement are optional. Braces around an if statement’s block of code, on
the other hand, are never optional in Swift.

Other control-flow approaches, such as for-in and switch, may be worth taking a
closer look to familiarize yourself with any differences in Swift.

2.4.1 for-in

Swift has two main for-in loop approaches. You’ve already seen that you can use a
for-in loop to iterate over the elements of a collection. A second type of for-in loop
can loop over a range, using the range operator, as shown in the following listing.

for index in 1...3 {
 print("\(index) banana")
}

You saw the range operator earlier, when you used it to extract a range of elements
from an Array. You’ll explore another use of range in a switch statement in a
moment.

 There are two main types of ranges, as explained in table 2.1.

The easiest way to remember the difference is that the half-open range ends when it’s
less than (<) the second number.

 To reverse a range, you need to call its reversed method. For example,
(0..<100).reversed()creates a range from 99 down to 0.

 You can also omit one side of the range to make a one-sided range that will continue
as far as possible on the side with the omitted value. This can be useful for iterating
over elements of a collection, for example, until the final element in the collection.

var numbers = [0,1,2,3,4]
for i in numbers[3...] {
 print(i)
}

Listing 2.7 for-in loop with range

Table 2.1 Ranges

Type Example Description

Closed 1...3 (1,2,3) A range of values, including the second number

Half-open 1..<3 (1,2) A range of values, excluding the second number

Iterates until
final element

Prints 3 and 4
store/books/9781617294075

https://itbook.store/books/9781617294075

40 CHAPTER 2 Introduction to Swift playgrounds

www.itboo
2.4.2 switch statement

Most likely, you’re also familiar with the switch statement, which is used for compar-
ing one value against multiple values. Note the several points of difference, though,
between switch statements in Swift and in many other languages:

 Swift by default does not drop down to the next case. This means that the break
statement after every case isn’t necessary in Swift.

 Every case must contain executable statements. If you want two cases to share
the same executable statements, you can make a compound case by separating
the cases with a comma.

 You can compare a value in a case to a range; this is called interval matching.
 Switches must be exhaustive. If you want a case to signify “the rest” to make the

case exhaustive, use the default keyword, as shown in the following listing.

for bottle in (0..<100).reversed() {
 switch bottle {
 case 0:
 print("No more bottles of beer on the wall.")
 case 1:
 print("1 bottle of beer on the wall.")
 case 2...100:
 print("\(bottle) bottles of beer on the wall.")
 default:
 print("Something went wrong! ")
 }
}

Wait, isn’t something missing?
In addition to what’s in Swift, you might be interested to know what’s not in Swift that
you may be accustomed to in other languages.

Two missing operators that might surprise you are the increment (++) and decrement
(--) operators. Swift is an evolving language, and these operators weren’t forgotten;
they were intentionally removed from Swift in Swift 3. You can read the arguments for
their removal in the Swift evolution document at https://github.com/apple/swift-
evolution/blob/master/proposals/0004-remove-pre-post-inc-decrement.md.

Similarly, you may be accustomed to the C-style for loop in other languages. For sim-
plicity, this type of for loop was deprecated in Swift 3:

for(var i=0;i<10;i++)

Again, if you’re interested, you can read the evolution proposal for this change at
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-
style-for-loops.md.

Listing 2.8 switch statement

RIP C-style for loop

No break necessary

Interval
matching

Default makes the
switch exhaustive
k.store/books/9781617294075

https://github.com/apple/swift-evolution/blob/master/proposals/0004-remove-pre-post-inc-decrement.md
https://github.com/apple/swift-evolution/blob/master/proposals/0004-remove-pre-post-inc-decrement.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://itbook.store/books/9781617294075

41Functions

www.itbook.
2.5 Functions
Functions in Swift are defined with the func
keyword, followed by a list of parameters in
parentheses, and an optional return value indi-
cated by an arrow (hyphen and right angle
bracket), as shown in the following listing.

func serve(drink: String, customer: String) -> String {
 return("\(customer), your \(drink) is served")
}

Now that you have a serve function, you can call it by passing it a drink and a cus-
tomer:

print(serve(drink: "beer", customer: "Billy"))

Note that by default you need to pass in the names of the parameters when calling the
function. It’s possible, however, to modify these names.

2.5.1 Modifying external parameter names

Sometimes, you might want your parameter names when calling the function to be
different from the parameter names within the function. Swift makes this possible by
distinguishing between local and external parameter names.

 In listing 2.9, for example, you could make it extra clear to someone calling the
function that they’re serving the drink to the customer by renaming the external
parameter name to. In addition to reasons of clarity, this has the added benefit of sat-
isfying the Swift API design guidelines that method and parameter names should pref-
erably use “grammatical English phrases.”

 Local and external parameter names are the same by default. To split the parame-
ter name into two, specify the external parameter name followed by the local parame-
ter name, as in the following listing.

func serve(drink: String, to customer: String) -> String {
 return("\(customer), your \(drink) is served")
}

While the customer parameter within the function would continue to be referred to
as customer, the call to the function is now much closer to grammatical English:

print(serve(drink: "beer", to: "Billy"))

But wait—you wouldn’t say “Serve drink beer to Billy,” would you? This function call
could sound even closer to grammatical English by omitting the drink parameter name.

Listing 2.9 Function syntax

Listing 2.10 Modify external parameter name

OPEN Follow along in the
Functions.playground.
store/books/9781617294075

https://itbook.store/books/9781617294075

42 CHAPTER 2 Introduction to Swift playgrounds

www.itboo
2.5.2 Omitting external parameter names

If you prefer a function to be called without specifying a parameter name, you can
replace the external parameter name with an underscore: _.

 An explicit external parameter name for the drink parameter is probably not nec-
essary. Remove it with an underscore before the parameter, as follows.

func serve(_ drink: String, to customer: String) -> String {
 return("\(customer), your \(drink) is served")
}

Your call to your function now sounds much cleaner:

print(serve("beer", to: "Billy"))

If you read it back, it now sounds close enough to grammatical English: “Serve beer to
Billy.” Nice!

2.5.3 Default parameter names

Billy is such a regular at your restaurant that you could save time and make him the
default. In fact, he always drinks beer, so let’s make that the default too.

 Function parameters can define default values, as in the following listing.

func serve(_ drink: String = "Beer",
 to customer:String = "Billy") -> String {
 return("\(customer), your \(drink) is served")
}

A parameter with a default value can be left out of the function call, and the default
value will be assumed:

print(serve())

We’ll look more closely at types of functions in the next chapter. For now, we’ve had a
bit too much to drink with Billy, so we should be ready to discuss metaphysical philos-
ophy! Let’s enter the realm of optionals.

2.6 Optionals
It sounds like a Seinfeld routine, but imagine
being well known as the inventor of nothing.

 That’s the plight of Sir C. A. R. Hoare (Tony
Hoare), who implemented the null reference
into a language called ALGOL W in 1965. In 2009, he called it his “billion-dollar
mistake”:

Listing 2.11 Omit external parameter name

Listing 2.12 Default parameter name

OPEN Follow along in the
Optionals.playground.
k.store/books/9781617294075

https://itbook.store/books/9781617294075

43Optionals

www.itbook.
My goal was to ensure that all use of references should be absolutely safe, with checking
performed automatically by the compiler. But I couldn’t resist the temptation to put in a
null reference, because it was so easy to implement. This has led to innumerable errors,
vulnerabilities, and system crashes, which have probably caused a billion dollars of pain
and damage in the last forty years.

As mentioned earlier, a key component of Swift is type safety. A variable defined as a
String, for example, can never contain a value that isn’t a String.

 If you have experience in other languages, you’re probably familiar with the
absence of value—this concept is known in Swift as nil.

 But wait, I said “a variable defined as a String can never contain a value that isn’t
a String.” nil isn’t a String. Therefore, a variable defined as a String can never
contain nil! Figure 2.7 illustrates what happens if you try to assign nil to a String.

Figure 2.7 Strings can’t be nil.

The question is this: what sort of variable can be
equal to nil? Swift introduces the optional type
to address this question—and the billion-dollar
mistake.

 Imagine you have a box with the word “CAT?”
written on it (see figure 2.8). You’re 100% certain
that this box contains either a cat or no cat. You
can’t know which without unwrapping the box.

 What you’ve imagined is a cat optional!
 An optional contains either

 A thing of a certain type (for example, a cat)
 nil (that is, no cat)

So, a String optional, for example, contains either

 A String
 nil

Using an optional to represent a variable that may or may not be equal to nil is how
Swift stays type safe while allowing the concept of nil.

 When would you declare a variable as an optional? You should declare a variable as
an optional if it may be equal to nil at some point in its lifetime. Perhaps the variable
is declared before it can be defined; perhaps a function can fail and needs to be able

Figure 2.8 A cat optional
store/books/9781617294075

https://itbook.store/books/9781617294075

44 CHAPTER 2 Introduction to Swift playgrounds

www.itboo
to return nil; or perhaps a property of an object may or may not exist, and this needs
to be expressed in code.

2.6.1 Declaring an optional

Declaring an optional is straightforward. You’re unlikely to pass a value to your optional
when declaring it, so type inference won’t be possible. Explicitly declare its type, fol-
lowed by a question mark to indicate it’s an optional. Here’s a String optional:

var main:String?

Initializing an optional later is no different from initializing a non-optional.

main = "Steak"

Let’s say you want to print your main meal in uppercase. Where an optional is differ-
ent is in how to retrieve its value. You can’t access an optional like any other variable:

print("Your \(main.uppercased()) is served!")

As with the cat in the box, you need to unwrap your main optional to access its
contents.

2.6.2 Unwrapping an optional

Unwrapping an optional refers to extracting its contents. There are two main tech-
niques available for unwrapping an optional: forced unwrapping assumes the optional
can’t contain nil, while optional binding (combined with an if or guard state-
ment) performs a check.

FORCED UNWRAPPING

I’m a little reluctant to go into forced unwrapping. It’s a powerful feature, but used
incorrectly, we’re right back at the billion-dollar mistake that Tony Hoare bemoaned.

 Okay, you’ve twisted my arm—here’s the secret. Add an exclamation mark after
the optional, and the optional will be unwrapped with the expectation that it will be
the appropriate data type (that is, not nil).

print("Your \(main!.uppercased()) is served!")

Use forced unwrapping with caution—you must be 100% certain that the variable
can’t equal nil or you’ll cause a runtime error. How can you be certain that your vari-
able isn’t equal to nil? Well, one way is to surround your forced unwrapping of an
optional with an if statement verifying first that your optional contains a value:

if main != nil {
 print("Your \(main!.uppercased()) is served!")
}

This structure is so common that an alternative syntax has been developed to unwrap
your optionals called optional binding.

Error
k.store/books/9781617294075

https://itbook.store/books/9781617294075

45Optionals

www.itbook.
OPTIONAL BINDING

Use optional binding with an if statement to bind the value in an optional to a vari-
able, if it exists. The previous if statement could be rewritten as

if let mainValue = main {
 print("Your \(mainValue.uppercased()) is served!")
}

I’ve used two names to indicate which is which. The if statement checks if the main
optional contains a value. If it does, its value is extracted to the mainValue variable
and execution continues inside the if block.

 Commonly, the same name is used for the bound variable and the optional. The
extracted value will override the optional inside the if block:

if let main = main {
 print("Your \(main.uppercased()) is served!")
}

Sometimes, you may want to perform optional binding on several optionals. Prior to
Swift 1.2, this situation grew in infamy, as the nested if let statements could go on
and on, forming a triangular shape. This became known as the optional pyramid of
doom (see the following listing).

var drink:String? = "Malbec"
if let main = main {
 if let drink = drink {
 print("Your \(main.uppercased()) pairs well with

 ➥\(drink.uppercased())")
 }
}

This scenario was resolved with Swift 1.2. Finally, multiple variables could be option-
ally bound in the same line, as shown in the following listing.

if let main = main, let drink = drink {
 print("Your \(main.uppercased()) pairs well with
 ➥\(drink.uppercased())")
}

One drawback of optional binding is that the variable that contains the extracted
value is only available inside the if block. If you need to use your optional later in the
code, you need to unwrap it again. The guard statement resolves this problem.

GUARD STATEMENT

While an if statement performs a block of code if a condition is met, a guard else
statement performs a block of code if a condition is not met.

Listing 2.13 Pyramid of doom

Listing 2.14 Multiple optional binding

Declares another
optional for drink
store/books/9781617294075

https://itbook.store/books/9781617294075

46 CHAPTER 2 Introduction to Swift playgrounds

www.itboo
 The serve function in the following listing serves a drink based on the drink
argument. It ensures that the drink argument is not Kool-Aid before continuing.

func serve(drink: String) -> String {
 guard drink != "Kool-Aid" else {
 return("Don't drink the Kool-Aid!")
 }
 return("Your \(drink) is served")
}

There’s another key difference between the guard and if statements. After if or
if else blocks, program execution can continue in the current scope. If a program
enters a guard else block, when it exits the block it must exit the current scope. For
example, it could return out of a function, continue to the next cycle of a loop,
break out of a block of code, or throw an error.

 You can use this knowledge to combine the guard statement with optional bind-
ing to ensure a variable stays valid for the remainder of the current scope. With the
guard statement, what gets bound in the scope, stays in the scope, so to speak.

 Let’s say your serve function can accept an optional drink parameter that
defaults to nil, making this parameter truly optional (see listing 2.16).

 You can then extract the drink value through the process of optional binding. If
no drink parameter is passed into the function, this is trapped by a guard statement,
and a message is returned. If a drink parameter is passed in, the function continues
to the original guard statement checking that the drink isn’t Kool-Aid.

func serve(drink: String? = nil) -> String {
 guard let drink = drink else {
 return("No drink for you!")
 }
 guard drink != "Kool-Aid" else {
 return("Don't drink the Kool-Aid!")
 }
 return("Your \(drink) is served")
}

If you like, you can merge these two guard statements together, as shown in the fol-
lowing listing.

func serve(drink: String? = nil) -> String {
 guard let drink = drink, drink != "Kool-Aid" else {
 return("No drink for you!")
 }
 return("Your \(drink) is served")
}

Listing 2.15 The guard statement

Listing 2.16 The guard let statement

Listing 2.17 Merge guard statements

Optional function
parameter
k.store/books/9781617294075

https://itbook.store/books/9781617294075

www.itbook.store/b
47Optionals

UNWRAPPING WITH OPERATORS

You’re probably familiar with the ternary conditional operator that gives you shortcuts
where if or guard statements would be used:

 condition ? if true do this : if false do this

You could use the ternary conditional operator to unwrap an optional, by doing the
following:

 optional != nil ? optional! : alternative value

If an optional doesn’t contain nil, the optional is force unwrapped. If the optional
does contain nil, an alternative value appropriate to the data type is suggested.

 Let’s say that unless there’s been a special request, martini cocktails are generally
mixed by stirring. In the following listing, you’ll use the ternary conditional operator
to determine how the martini should be prepared. (The ternary conditional operator
is in bold.)

var defaultMix = "Stirred"
var specialMix:String?
specialMix = "Shaken"
let prepareMartini = specialMix != nil ? specialMix! : defaultMix

When setting the prepareMartini constant, we first check if the specialMix
optional contains nil. If specialMix doesn’t contain nil, the ternary conditional
operator force-unwraps specialMix. If specialMix does contain nil, it uses the
defaultMix.

 This approach is so common that an alternative operator syntax is available within
Swift that makes the above syntax even more succinct, called the nil coalescing oper-
ator. That’s quite a mouthful, but don’t worry, the concept is simple. The syntax is the
following:

 optional if not nil ?? alternative value

If the optional doesn’t contain nil, it’s automatically unwrapped. If it does, the alter-
native value is used.

 Let’s prepare another martini, but this time using the nil coalescing operator, as
shown in the following listing. (The nil coalescing operator is in bold.)

Listing 2.18 The ternary conditional operator

Defines string optional

Sets optional
let prepareMartini = specialMix ?? defaultMix

IMPLICITLY UNWRAPPED OPTIONALS

Occasionally, you may need to make a variable an optional because you don’t have
access to all the necessary information to initialize it when it’s defined. But you may
have 100% confidence that the variable will be initialized by the time it’s needed.

Listing 2.19 The nil coalescing operator

ooks/9781617294075

https://itbook.store/books/9781617294075

48

2.6.3

www.itbook.store
CHAPTER 2 Introduction to Swift playgrounds

 In these cases, unwrapping the optional whenever you need to access it can seem
unnecessary. Instead, you can indicate to the compiler that an optional should be
implicitly unwrapped by using an exclamation mark instead of a question mark when
defining it.

 Let’s make your first optional example implicitly unwrapped, as shown in the fol-
lowing listing.

var main:String!
main = "Steak"
print("Your \(main.uppercased()) is served!")

As with forced unwrapping, be extra careful with your use of implicitly unwrapped
optionals. Accessing one before it has been initialized will cause a runtime error.

Optional chaining

Any object or data type could have optional properties or methods that return option-
als. Arrays, for example, have an optional first property, which will return the first
value in the array. If the array is empty, the first property returns nil.

 Imagine you have nine tables in your restaurant in a 3-by-3 grid. You have a two-
dimensional array (for those who came in late, that’s fancy talk for an array of arrays)
of Bools that represent whether each table is reserved for tonight’s dinner:

var reserved = [[true, true, false],
 [false, false, false],
 [true, true, false]
]

Imagine now that you’d like to display a message if your favorite table (first row, first
table) is available. You could extract this info using Array’s first property and multi-
ple optional binding, as you saw earlier:

if let firstRow = reserved.first, let firstTable = firstRow.first {
 let reservedText = firstTable ? "reserved" : "vacant"
 print("Best table in the house is \(reservedText)!")
}

But you have a more succinct and legible alternative when traversing multiple option-
als in a chain, called optional chaining. You can chain together multiple optionals into
one optional binding statement.

Listing 2.20 Implicitly unwrapped optional

Implicitly unwrapped optional

No error now!
if let firstTable = reserved.first?.first {
 let reservedText = firstTable ? "reserved" : "vacant"
 print("Best table in the house is \(reservedText)!")
}

Your chain could keep going! You just need to append optionals with a question mark
that you traverse en route to the optional you’re binding.

/books/9781617294075

https://itbook.store/books/9781617294075

49Tuples

www.itbook.
2.6.4 Final comments on optionals

At first, optionals may appear strict, and the syntax may seem new and unfamiliar.
They represent a new approach to ensuring the safety of your variables that can take
some getting used to. But many who have worked with Swift do find that going back to
languages without optionals can feel strangely unsafe.

 Optionals are an integral part of the Swift language, and it’s worth investing time
in becoming comfortable working with them. They’re trying to solve a billion-dollar
problem, after all!

2.7 Tuples
A tuple is a strange beast—it’s a group of
related data, but it is not a collection. Sounds a
bit like an array or a dictionary on the surface,
but a tuple differs from other collections in
three important ways:

 The number of items in a tuple is defined when it’s instantiated. While the
number of elements in an array can grow or shrink, if a tuple is defined as a
group of three items, it will never contain more or fewer items.

 Elements in a tuple are related, but aren’t necessarily of the same data type. A
tuple could contain an Int and a String, for example, and that’s fine.

 Though a tuple maintains a group of related data, it isn’t a Collection, and
therefore doesn’t have access to the higher-order functions mentioned in the
last section.

The types of data you might use tuples for are different as well. Tuples are a good fit
for finite related data. Examples of tuples:

 A geolocation with two Doubles representing latitude and longitude
 A dice-roll of two dice, with two Ints representing the top face of each individ-

ual die
 A playing card, with an Int representing the number and a String represent-

ing the suit

Declare a variable as a tuple with parentheses, with the data type of every element
specified. The following listing demonstrates standard syntax for initializing a tuple
and setting and retrieving tuple values.

var meal1:(String,Double)
var meal2 = ("Turkey chili soup",2.99)
print("\(meal2.0) costs \(meal2.1)")

Listing 2.21 Using tuples

OPEN Follow along in the
Tuples.playground.

Declares a tuple. Specifies
data types of elements. Initializes a tuple.

Infers data types.
Set/Get tuple

elements with
index numbers
store/books/9781617294075

https://itbook.store/books/9781617294075

50 CHAPTER 2 Introduction to Swift playgrounds

www.itboo
var meal3:(name:String,price:Double)
var meal4 = (name:"Bread",price:2)
meal4.price = 3

2.7.1 Tuples as return values

Tuples can be useful when you have small pieces of data that you need to return from
a function. You could, for example, return a tuple of the number and suit of a card
from a function:

func chefSpecial() -> (name: String, price: Double) {
 return (name:"Crab bisque",price:3.99)
}
var meal = chefSpecial()

If you plan to use a tuple frequently, it can be a good idea to set up a type alias. A type
alias lets you define an alias for a type. A type alias for the meal tuple we’ve been work-
ing with would look like this:

typealias Meal = (name: String, price: Double)

You could then rewrite the chefSpecial method definition as

func chefSpecial() -> Meal {

2.7.2 Tuple magic

If you’re not yet impressed with tuples, here are several magic tricks tuples can per-
form that could convince you that tuples are worth looking into.

INITIALIZING VARIABLES BASED ON A TUPLE

You can initialize variables inside a tuple, retrieving values from another tuple. The
following initializes a soupName and a soupPrice variable based on the elements of a
tuple variable called soup:

var soup = (name:"Jambalaya",price:2.99)
var (soupName,soupPrice) = soup

DEFINING TWO VALUES AT ONCE USING A TUPLE

Similarly, you could define two values at once using a tuple structure:

var (soupName,soupPrice) = ("Tomato soup",1.99)

This effectively becomes shorthand for

var soupName = "Tomato soup"
var soupPrice = 1.99

Optionally gives elements
of tuple a name

You can also initialize
tuple with names.Set/Get tuple elements

with names if available
k.store/books/9781617294075

https://itbook.store/books/9781617294075

51Higher-order functions

www.itbook.
SWAPPING TWO VALUES USING TUPLES

Using this knowledge, you can easily swap two values. Say you have a variable repre-
senting a meal in your left hand and another variable representing a meal in your
right hand:

var mealLeftHand = "Fish and chips"
var mealRightHand = "Burger and fries"

Believe it or not, swapping the variables is as easy as

(mealLeftHand, mealRightHand) = (mealRightHand, mealLeftHand)

Shazam! The meals have switched. Now go and impress your friends!

2.8 Higher-order functions
Higher-order functions are functions
that can receive functions as parame-
ters. This can result in more succinct
and highly optimized code, and can be
a powerful weapon for your program-
ming arsenal. Because every Array, Set, and Dictionary is a Collection, they
have support for a number of shared higher-order functions. Let’s look at one now,
the map function.

2.8.1 map

Say you have an Array of all the prices of the soup in your restaurant:

var prices = [3, 1.99, 2, 1.99, 1.70]

One day, you realize that you’ve been undercharging for soup and need to add 10%
to all your prices. One solution could be to set up a for-in loop to generate the sec-
ond array:

var updatedPrices:[Double]=[]
for price in prices {
 updatedPrices.append(price * 1.1)
}

Not bad, but a little verbose. Let’s look at an alternative solution, using the map
higher-order function. The map function is a powerful tool that allows you to perform
an action on every element of a collection and return a new collection.

 First, create a function that returns one updated price. The following function
receives a price argument, calculates the updated price, and returns the value:

func updatePrice(price: Double) -> Double {
 return price * 1.1
}

OPEN Follow along in the Higher-
OrderFunctions.playground.
store/books/9781617294075

https://itbook.store/books/9781617294075

52 CHAPTER 2 Introduction to Swift playgrounds

www.itboo
Now that you’ve created this function, you can pass it into the map higher-order function.

var updatedPrices = prices.map(updatePrice)

The map function uses the updatePrice method to calculate a new price on every
element of your prices Array and return a new Array with updated prices.

 Great! That works fine, but it isn’t any more succinct. An alternative approach is to
pass a closure into the map function.

2.8.2 Closures

A closure is a block of functionality. You can think of a closure as a function without a
name. In reality, it’s the other way around—a function is a type of closure with a
name! Like functions, closures can accept arguments and return values.

CONVERTING A FUNCTION TO A CLOSURE

The syntax for closures is a little different from functions, and it can be difficult to
remember initially. There are ways to make the syntax of a closure more succinct
(we’ll get into that in a moment), but converting a function to a basic closure isn’t bad
if you follow two simple steps.

 Let’s explore the two steps now while you convert the updatePrice function to a
closure.

1 Remove the keyword func and the function name:

(price:Double)->Double {
 return price * 1.1
}

2 Move the brace to the beginning and replace where it was with the keyword in:

{ (price:Double)->Double in
 return price * 1.1
}

That’s it! As I mentioned, in certain cases you can make your closure more concise,
but you’ve arrived at the base structure of a closure.

SIMPLIFYING A CLOSURE

The updatePrice closure can now be passed directly into the map function:

var updatedPrices = prices.map(
 { (price:Double) -> Double in
 return price * 1.1
 }
)

This still doesn’t look too succinct. Fortunately, there are several improvements you
can make:

 As the type of the price parameter and the closure return value can be inferred
by the type of the prices Array, these types don’t need to be specified.
k.store/books/9781617294075

https://itbook.store/books/9781617294075

53Higher-order functions

www.itbook.
After shedding the data type, you can also remove the parentheses around the
parameter:

var updatedPrices = prices.map({ price in return price * 1.1 })

 If you leave out argument names in a closure, you’re provided with default
argument names. The first argument is $0, the second is $1, and so on. With
this knowledge, you can make your code even more concise.

var updatedPrices = prices.map({ return $0 * 1.1 })

 Believe it or not, you can go further! If the closure contains only one line of
code, Swift can infer that you want to return the result of this line, so you can
remove the return keyword.

var updatedPrices = prices.map({ $0 * 1.1 })

That’s it! Compare that line of code with the for-in loop we began with:

var updatedPrices:[Int] = []
for price in prices {
 updatedPrices.append(price * 1.1)
}

Note the difference in conciseness without sacrificing clarity. The line still clearly
returns a version of the updatedPrices array that has been doubled.

 The map function is a powerful tool. All the higher-order functions are great exam-
ples of Swift’s expressiveness and performance. In addition to the map higher-order
function, Collections have access to many more, including filter, reduce, and
sorted.

2.8.3 filter

The filter function extracts the elements of a collection that satisfy a condition. It
accepts a closure that receives an element to check, and returns a Bool.

 Perhaps you might want to filter only meal prices that are greater than $5, to put
on the specials board:

var filteredPrices = prices.filter({ $0 >= 5 })

2.8.4 reduce

Use the reduce function to generate a single value by performing an operation on
every value of a collection.

 Maybe you’re interested to know how much you would make if someone came into
your restaurant and ordered everything on the menu:

var totalPrice = prices.reduce(0, {$0 + $1})
store/books/9781617294075

https://itbook.store/books/9781617294075

54 CHAPTER 2 Introduction to Swift playgrounds

www.itboo
2.8.5 sorted

The sorted method accepts a closure that determines which of two elements should
come first in the order. The closure receives two elements to compare and returns a
Bool.

 Say you’re interested in seeing the prices of meals in your restaurant by sorting
them from largest to smallest:

var sortedPrices = prices.sorted(by: { $0 > $1 })

2.9 Summary
In this chapter, you learned the following:

 Xcode playground is a useful environment for experimenting with new Swift
concepts and syntax.

 Variables in Swift are type safe, but their type can be inferred.
 Variables of different types need to be converted to the same type to interact.
 Use for-in loops to loop through the elements of a collection.
 Use higher-order functions on your collections for succinct and optimized

code.
 Use closures to pass functionality to a function.
 Use tuples to pass multiple values around.
 Use optionals to store variables that may equal nil.
 Unwrap optionals with optional binding (if let or guard let else) or the

nil coalescing operator.
 Only unwrap optionals with forced unwrapping or implicit unwrapping if you

are 100% sure an optional contains a value.
k.store/books/9781617294075

https://itbook.store/books/9781617294075

Craig Grummitt

O
ne billion iPhone users are waiting for the next amazing
app. It’s time for you to build it! Apple’s Swift language
makes iOS development easier than ever, offering

modern language features, seamless integration with all iOS
libraries, and the top-notch Xcode development environment.
And with this book, you’ll get started fast.

iOS Development with Swift is a hands-on guide to creating
iOS apps. It takes you through the experience of building
an app—from idea to App Store. After setting up your dev
environment, you’ll learn the basics by experimenting in Swift
playgrounds. Then you’ll build a simple app layout, adding
features like animations and UI widgets. Along the way,
you’ll retrieve, format, and display data; interact with the
camera and other device features; and touch on cloud and
networking basics.

What’s Inside
● Create adaptive layouts
● Store and manage data
● Learn to write and debug Swift code
● Publish to the App Store

Written for intermediate web or mobile developers. No prior
experience with Swift assumed.

Craig Grummitt is a successful developer, instructor, and
mentor. His iOS apps get over 100,000 downloads.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/ios-development-with-swift

$49.99 / Can $65.99 [INCLUDING eBOOK]

iOS Development with Swift

iOS DEVELOPMENT

M A N N I N G

“A practical approach, with
lots of real-world examples.”

—Andrea Prearo, Capital One

“More than just a guide
to learning Swift, this book

demonstrates concepts useful
for any language.”

—Becky Huett, Big Shovel Labs

“A self-contained
step-by-step tutorial

 with plenty of examples.”—Ghita Kouadri
University College London

“Provides comprehensive
knowledge of Swift 4
combined with clear

explanations of iOS key
concepts and APIs.”

—Žarko Jovičić, Quandoo Berlin

SEE INSERT

www.itbook.store/books/9781617294075

https://itbook.store/books/9781617294075

	SCGrummitt-front
	SampleChapterPages-02
	Ch-02
	SCGrummitt-back

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

