KAMIL NICIEJA
Foreworn BY Gosko Apiic

) . SN
v % ™ . %
¥ ~ |\ N . X

WRITING GREAT
SPECIFICATIONS

SAMPLE CHAPTER

/Ill MANNING

https://itbook.store/books/9781617294105

Writing Great Specifications
by Kamil Nicieja

Chapter 1

Copyright 2018 Manning Publications

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

brief contents

1 =

Introduction to specification by example and Gherkin 1

PART 1 WRITING EXECUTABLE SPECIFICATIONS WITH EXAMPLES 29

2 m

N O oA W
n

The specification layer and the automation layer 31
Mastering the Given-When-Then template 54

The basics of scenario outlines 80

Choosing examples for scenario outlines 97

The life cycle of executable specifications 123
Living documentation 148

PART 2 MANAGING SPECIFICATION SUITES 171

8 m
9 =
10 =
11 =

www.itbook.store/books/9781617294105

Organizing scenarios into a specification suite 173
Refactoring features into abilities and business needs 195
Building a domain-driven specification suite 213
Managing large projects with bounded contexts 234

https://itbook.store/books/9781617294105

Introduction to specification

by example and Gherkin

This chapter covers

= Examining why teams need specifications
= Recognizing common specification pitfalls

= Understanding the basics of specification by
example and Gherkin

= Solving common delivery problems with
specification by example and Gherkin

How well we communicate is determined not by how well we say things, but how well
we are understood.

—Andy Grove

The money is all on the right [side of the product life cycle], in the area of certainty
[where the product is mature]. I work on the left, with uncertainty. I'll never be rich.

—Chris Matts

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

2 CHAPTER 1 Introduction to specification by example and Gherkin

Humanizing technology is perhaps the greatest challenge of software engineering.

The technology industry must strive to show tremendous empathy for other people’s

problems. We’re making tools for everyone out there. In the messy world of organiza-

tional politics, broken workflows, human errors, and biases, technology experts must

figure out how to successfully deliver great software. It’s an important responsibility.
To do our job well, we have to

Make sure we deliver the right software
Deliver it the right way

Delivery teams are naturally competent in delivering software the right way. As an
industry, we’ve developed tools, standards, and methodologies that make our designs
beautiful and usable—and our code performant, secure, and easy to maintain. We
keep getting better at refining and reinventing our best practices.

“The right software” part, though ... what does that even mean? Every time I
explain to someone what this book is about, I tell them that, as programmers, we’re
taught to write code—algorithms, design patterns, abstractions. Or, as designers, we’re
taught to design—organize information and create beautiful interfaces. But when we
get our entry-level jobs, our employers expect us to “deliver value to our clients.” And
the client may be, for example, a bank. If I'd been working for a bank when I started
my career, it would have quickly come up that I know next to nothing about bank-
ing—except how to efficiently decrease my account balance. So I would have had to
somehow translate what was expected of me into code. I would have needed to build a
bridge between banking and my technical expertise if I wanted to deliver any value.
“This,” I say, “is what the book is about: building bridges between technology and busi-
ness.” Over the course of multiple projects I've had the privilege to work on, I've come
to believe that these bridges can only be built with empathy—understanding other
people’s problems—and inclusive communication.

Even though engineers should be good at building bridges, our industry seems to
have a problem with delivering the right software. In practice, delivering the right soft-
ware requires securing the right requirements. I’ll talk more about requirements in a
moment. For now, I'll say the following:

A 1994 study showed that 31.1% of projects were canceled before they were
completed, and 52.7% of projects cost 189% of their original estimates. '

In larger companies, rare successful projects had only 42% of the originally pro-
posed features.?

In 2000, IBM and Bell Labs studies showed that 80% of all product defects are
inserted at the requirements-definition stage.S

! The Standish Group, “The CHAOS Report” (1995), http://mng.bz/40M3.

2 Ibid.

% Ivy Hooks and Kristin Farry, Customer-Centered Products: Creating Successful Products Through Smart Requirements
Management (AMACOM/American Management Association, 2001).

www.itbook.store/books/9781617294105

http://mng.bz/40M3
https://itbook.store/books/9781617294105

Requirements errors consume from 28% to more than 40% of a typical pro-
ject’s budget.*

Requirements defects account for the vast majority of the total cost of all
defects—often 70% or more.”

In 2008, almost 70% of companies surveyed set themselves up for both failure
and significantly higher costs by their use of poor requirements practices.’®

What are the consequences? Commercial organizations across the European Union
lost €142 billion on failed IT projects in 2004 alone, mostly because of poor alignment
with business objectives or business strategies becoming obsolete during delivery.” So
although we’re pretty good at maintaining our technical standards of excellence, we
apparently still have a lot to learn when it comes to understanding what businesses
need from us.

In this chapter and throughout the book, I'll introduce you to a selection of
bridge-building methods for translating business objectives into working software
that, in my experience, results in great and meaningful products and services. This
chapter will begin your in-depth journey of learning to write executable specifications in
Gherkin according to the key practices of specification by example.

Specification by example (SBE) is a collaborative software development approach
that facilitates collaboration by illustrating software requirements with concrete exam-
ples and automated acceptance tests. Because SBE is a process, you’ll need some tools
that will help you implement that process. This is why you’re going to learn Gherkin.
Gherkin is a business-readable, domain-specific language that’s easy for nontechnical
folks to understand. As such, it makes translating requirements into code easier.

In a way, the book is an advanced Gherkin tutorial with some product-design ambi-
tions. I'll talk more about the reasons for choosing Gherkin later in the chapter. But
when I was first learning SBE’s key patterns, I found that, although locating material
on automated acceptance tests and eliciting better requirements is easy, there aren’t
many resources available on writing great executable specifications. By great, I mean
well-written and easy to read in terms of sentences and words, not code. That makes
my ambition small, because I chose a specific topic for the book. I care about making
sure that well-elicited requirements aren’t misrepresented by poorly written specifica-
tions. At the same time, I realize that writing executable specifications is a cross-
disciplinary matter. Whenever I can, I'll talk about making your requirements better
and more specific with clever Gherkin techniques. Other times, I'll point you toward
specific books that talk about requirements, product design, or marketing, in hopes
they will answer your further questions.

* Ibid.

Dean Leffingwell and Don Widrig, Managing Software Requirements: A Use Case Approach, 2nd ed. (Addison-Wes-
ley Professional, 2003).

 TAG Consulting, “Business Analysis Benchmark” (2008).

Gojko Adzi¢, Impact Mapping (Provoking Thoughts, 2012).

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

4 CHAPTER 1 Introduction to specification by example and Gherkin

This chapter offers an overview of what a specification is and how SBE and Gherkin
fit into the software development landscape. If you’re a non-engineer, you’ll learn
how to make essential contributions to automated testing without having to learn to
write testing code. (Don’t worry about technical lingo. I use it rarely and explain it
when I do.) Engineers and testers will find SBE and Gherkin helpful in striking a
stronger chord with nontechnical audiences through automated specifications. You'll
also begin to see SBE as a single process to guide product development through
requirements analysis, design, development, testing, and so on.

1.1 What’s a specification?

Imagine that you and the team you work with have been brought in to work on a new
version of a management system for a local public transport company. To get on with
work, you need a list of functionalities, user stories, blueprints, sketches—anything
that will let you write some code or make a UI mock-up. You need a specification.

DEFINITION Specification—An analysis of a system and its design, made to plan
and execute the implementation

The word specification can mean a written document or an act of specifying. You'll see
that I switch freely between both meanings. Whenever it’s important to make a clear-
cut distinction, I'll use a term like specification document or specification process. But you
can assume that most of the time, I have the broad meaning of the word in mind.

In the case of the example public transport company, to devise a specification, you
have to agree on a list of requirements and functionalities the new release must satisfy.

DEFINITION Requirement—A capability or condition that must be met or pos-
sessed by a solution to satisfy market needs or a contract, a standard, a specifi-
cation, or other formally imposed documents

For example, you and the business owners may agree that a good requirement would
be to apply discounts when students or retirees buy tickets. Other examples could
relate to handling season tickets, performing online payments, managing customers,
and reports.

Delivery teams can write down their requirements in a functional requirements
document, but they may also encapsulate requirements in use cases, which are
shorter, or use user stories as tickets for a future in-depth conversation about the
requirements. The final method depends on the software development process cho-
sen by the team.

12 Why do teams need specifications?
Traditionally, specifications have had a bad reputation in the software development
community. The reason is half psychological, half practical.
Psychologically, specifications seem to promise the same success as following a cook-
ing recipe. They invite a “Follow the steps, and everything will be all right” mindset. The

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

Why do teams need specifications? 5

promise is as reassuring as it is deceiving. In practice, creating a complete specification
is extremely difficult, if not impossible.

No software development team functions without specifications, though. Whether
you write an official document or have a casual conversation about the requirements
during a workshop, you’re still specifying.

The one and only reason teams need specifications is information asymmetry. Teams
need to distribute information evenly among the stakeholders to create the best possi-
ble product. If they don’t, they’ll miss critical requirements and make an incomplete
product—or even a broken one.

DEFINITION Information asymmetry—A situation in which one party has more
or better information than another

To reduce information asymmetry, teams create specifications—recipes defining what
needs to be done or how it needs to be done. Specifications can help fight information
asymmetry in two ways:
A specification can define acceptance criteria that help examine whether a
team has delivered a complete system that works.
A specification can provide a common language that allows technical and
nontechnical stakeholders to understand each other when they talk about
requirements.

We’ll now go into more depth on both of these topics.

1.2.1 Defining acceptance criteria in specifications

Assume that you and the public transport company’s management team have agreed
that the system you’re building should include two subsystems:

An internal management application for updating bus schedules
A mobile timetable application with journey-planning functionality

Sounds reasonable, doesn’t it? The capabilities for both the employees of the com-
pany and its customers are clearly defined. But are they really?

Every time you analyze a requirement, you’ll eventually stop talking about general
capabilities of the system and start thinking in terms of concrete, discrete quality mea-
sures that the application must meet. When discussing our public transport company,
I said that a good requirement would be to apply discounts when students or retirees
buy tickets. But how can you determine whether that requirement is satisfied without
going into more detail? For example, you’d need to declare that students can have a
30% discount and retirees can have a 95% discount. These two declarations would
allow you to say that the requirement was in fact satisfied and implemented correctly.
Such quality measures are called acceptance criteria.

DEFINITION Acceptance criterion—A condition or quality measure that a soft-
ware product must meet to satisfy requirements

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

6 CHAPTER 1 Introduction to specification by example and Gherkin

Acceptance criteria illustrate requirements. You should be able to use a criterion to
evaluate the system and get an unambiguous confirmation that the system either
passes or fails your test: for example, “A bus road should consist of at least two bus
stops.” Right, and that’s how the system behaves. “Timetables for work weeks should
be different than timetables for weekends.” Oops, we forgot about that; let’s go back
to the drawing board. You should be able to get a binary response to every criterion—
as in yes or no questions. Without that binary response, you can’t say whether the sys-
tem is complete and works as it should.

Raw requirements are often too difficult to comprehend without further analysis.
Without clear acceptance criteria for each of the requirements, delivery teams can’t
plan any work ahead and deliver any value in a predictable way. When there’s not a
good specification, functionality usually suffers from rework or bugs that cause delays
and cost a lot. Good acceptance criteria ensure that the implemented solution meets
the demands of your stakeholders.

1.2.2 Building a ubiquitous language into specifications

Imagine for a moment that after you finish the beta version of the mobile journey plan-
ner, the customer support department receives a phone call from an angry customer:

The customer begins, “T downloaded the app to help me during my two-day stay in the
city. But I can’t get where I want!”

“What street are you on? What’s wrong?”

“T've got a meeting in Edison. I used your app to get there, but I can’t find the building
I'm supposed to enter. I’s all wrong!”

“Wait
places.”

do you mean Edison Street or Edison Business Center? They’re two different

The customer wanted to plan the journey without knowing what street the destination
building was on, but the application didn’t support such a behavior. To add insult to
injury, the mobile app chose Edison Street, located elsewhere in the city, as the final
destination, because it couldn’t find Edison Business Center in the database.

The result? The user and the application spoke two different languages, and the
confused customer got lost. The dictionary of the developers who built the app was
restricted to streets; after all, bus stops inherit their names from where they’re located.
That’s how the system works, the team said. What they didn’t know was that their cus-
tomers don’t think about the rules of a system—they only want to arrive on time.

To avoid similar mistakes, delivery teams should strive to grasp the language their
users speak and align their language with this language. The result of this alignment is
often called a ubiquitous language.

DEFINITION Ubiquitous language—A common language between developers
and domain experts

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

Why do teams need specifications? 7

A ubiquitous language is “a language cultivated in the intersection of [technical and
business] jargons.” The development of journey-planning software requires knowl-
edge in two different domains: journey planning and software. Experts in both areas
must communicate understandably.

DEFINITION Domain—What an organization does, and the world it does it in

The journey planners will use the jargon of their field and have limited understanding
of the technical dictionary of software development. Developers, on the other hand,
will understand and discuss the system in terms such as objects, methods, and design
patterns. Having a single common language eliminates the cost of mental translation
and reduces the number of misunderstandings—the ratio of noise in the signal—in
discussions between technical and nontechnical stakeholders. Translation blunts com-
munication and makes domain learning anemic.

The journey planners from the example can also be called domain experts. Domain
experts help you create a ubiquitous language. When either the business side or the
technical side discovers a misunderstanding, they can use the opportunity to improve
their shared dictionary and avoid the same mistake the next time. This way, they build
a shared domain model, which will improve in quality over time.

DEFINITION Domain expert—A person who is an authority in a particular area
or topic. The term usually refers to a domain other than the software domain.

DEFINITION Domain model—A simplification of the real-world business
domain. It’s an interpretation of reality that abstracts the aspects relevant only
to solving the problem at hand.

The ubiquitous language fuels the domain model. Having a shared dictionary of
important business concepts creates a platform for discussing data, behaviors, and
relationships within the model in a meaningful way, with a certainty that everybody is
on the same page. In the journey-planning example, the team thought that a destina-
tion was the same as a street; but it turned out that users assumed there are other kinds
of destinations, such as buildings and points of interest. Having established a baseline,
the team can use the common language to establish clear relationships between the
concepts of destinations, streets, buildings, and points of interests.

A specification can help develop the ubiquitous language. It’s a container where
all important domain concepts can be stored after they’re encountered and analyzed
by the team. When that happens, and the process is thorough and successful, the spec-
ification becomes a documentation of the domain, the knowledge base of the delivery
team. When a specification fails to contribute to the ubiquitous language or doesn’t
create a truthful domain model, the team may misunderstand requirements, which
often leads to expensive rework.

8 Eric Evans, Domain-Driven Design (Addison-Wesley, 2003).

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

8 CHAPTER 1 Introduction to specification by example and Gherkin

1.3 Common specification pitfalls

Much of software engineering is about building systems right, but specifications,
requirements, and acceptance criteria are about building the right system. From time
to time, every software engineer experiences a painful push-back caused by a sloppy
analysis of the requirements. You, too, know what’s at stake. This section should help
you identify some pitfalls you yourself may have encountered.

I want to discuss these five anti-patterns:

Over-specification
Hand-offs
Under-documentation
Speci-fiction
Test-inability

I named each anti-pattern in a distinctive way that will help you remember what it’s
about. Hopefully, as you go through the sections that follow, the names of the anti-
patterns will become clearer to you, and I’ll achieve my goal.

1.3.1 Over-specification

A popular first instinct meant to defend a project against ambiguity and insufficient
planning is to try to design and plan as much as we can up front. I call that over-
specification.

DEFINITION Over-specification—Doing too much specification up front

It’s definitely easier to remove or change a requirement during an analysis phase; the
more time we invest in implementing it, the more unmotivated we become when we
have to kill it. The up-front approach aims to remove useless implementations, design
flaws, and predictable errors as early as possible in exchange for a longer analysis
phase. But software development teams must also understand that over-specification
can lead to a state of analysis paralysis.

DEFINITION Analysis paralysis—A productivity block created in search of the
perfect—unattainable—design

In extreme cases, bureaucratic or regulated environments may demand over-specifica-
tion by requesting specification documents that can run into thousands of pages.
(Bear in mind, though, that analysis paralysis isn’t limited to written specifications.)
But unless you’re making software for surgeons, analyzing every single detail in
advance often feels unnecessary—even harmful.

1.3.2 Hand-offs

Handing off requirements looks like a classic waterfall mistake—an artifact from the
past—but I still see agile teams struggling with hand-offs, often due to their organiza-
tion’s internal politics. Any requirement can be handed off.

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

Common specification pitfalls 9

DEFINITION Hand-off—A situation in which somebody analyzes requirements
without the input of the delivery team, signs off on the scope by writing down
the analyzed requirements, and later hands off those requirements to the
delivery team to complete

Hand-offs result in a fragmented communication flow between business and delivery.
In my experience, people who hand off requirements are often business users, manag-
ers, analysts, product owners, or designers, depending on the chain of command in a
given organization. In a management-oriented company, managers are more likely to
create an environment where they can decide on the list of requirements and the
scope, trying to maintain control over important decisions. I've seen the same thing
happen with design teams in design-oriented organizations. And engineers, too, can
hand off requirements if they’re within their areas of expertise. (Think of technical,
nonfunctional requirements such as performance, security, or low-level integrations.)
Nobody’s a saint.

Such organizations mistake the communication structure for the organizational
structure. A company can be management-oriented, design-oriented, or engineering-
oriented and still have a healthy, collaborative, and inclusive process.

Hand-offs cause various problems with delivery. A team that only receives a specifi-
cation won’t understand the context in which the requirements were collected. Their
decision-making abilities will be impaired when it comes to split-second decisions. The
team won’t be able to make on-the-fly decisions because they won’t know the thought
process that led to making the requirements the way they are. They will only see the
final result—the specification. They may also be too afraid to change anything. And in
over-specified documents, contradictions and ambiguities can occur easily. When
hand-offs like these happen, misunderstandings creep in and cause expensive rework
to appear later in the process.

TIP Don’tlet documentation replace communication.

1.3.3 Under-documentation

Many delivery teams burnt by over-specification discard it in favor of an implementation-
first approach, eradicating any up-front practices. An implementation-first approach
optimizes for writing software without dealing with wasteful documentation and speci-
fications. It rejects huge design commitments before customers prove they want the
solution—and the only way to prove it is to hack some code together and release it as
soon as possible, rejecting any process that doesn’t help write production code. For
example, Extreme Programming advocates use no extra design documents and let the
code speak for itself. Running code doesn’t lie, as a document might. The behavior of
running code is unambiguous.

Initially, the implementation-first approach feels efficient, especially in young com-
panies—but as the organization grows and the product matures, diseconomies of scale
kick in. Not everyone is a coder. Communication and decision-making start causing

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

10 CHAPTER 1 Introduction to specification by example and Gherkin

trouble, and adding new people to the team slows work instead of making it faster. I
call such a specification anti-pattern under-documentation.

DEFINITION Under-documentation—Discarding documentation and letting
code speak for itself in order to speed up development

Underdocumented teams are left with no clear path to track decisions made in the
past. Institutional memory suffers; when people who worked on implementation
become unavailable, temporarily or permanently, they take their knowledge with
them. Building long-term understanding within the company often requires addi-
tional facilitation. Many teams hurting from under-documentation realize its down-
sides too late when fixing the problem gets painful.

TIP Don’tlet agile be an excuse to ignore documentation.

1.3.4 Speci-fiction

Documentation and specification artifacts grow obsolete easily. As your product
evolves over time, requirements often evolve, flat-out change, or turn out to be poorly
defined and have to be refined. Documentation and specifications, like all internally
complex documents, are often too difficult to update on a regular basis without intro-
ducing some inconsistencies. Outdated and unwanted, they become speci-fiction. (Yes,
I invented the word. No, I'm not a poet.)

DEFINITION Speci-fiction—A specification that poses as a single source of truth
but that can’t be one because nobody cares to update it

If you’ve ever struggled with outdated documentation, you're already familiar with the
phenomenon of speci-fiction. Sometimes documents are left outdated because of
multiple last-minute changes. In this case, the fiction in speci-fiction is that a new
reader would be led to falsely believe that the specification or documentation
describes the entire system as it is, when the working system is, in fact, different,
because the requirements were changed during the release frenzy. Specifiction is
only an illusion of correctness—an illusion that occurs when no single, reliable source
of truth exists.

1.3.5 Test-inability

The INVEST mnemonic for agile software projects is a common reminder of the char-
acteristics of a good-quality product backlog item such as a user story (see table 1.1).
Much of INVEST is beyond the scope of this discussion; I won’t expand on the topic
directly, but I already talked about such characteristics as valuable and small when I dis-
cussed the difference between the right delivery and the right software at the begin-
ning of this chapter and when I talked about over-specification and long specification
documents.

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

Meet specification by example and Gherkin 11

Table 1.1 The INVEST mnemonic

Letter Meaning Description
| Independent The story should be self-contained.
N Negotiable The story should leave space for discussion about its scope.
\ Valuable The story must deliver value to the stakeholders.
E Estimable The delivery team should always be able to estimate the size of the story.
S Small The smaller the story, the easier it is to analyze and estimate correctly.
T Testable The story should support test development.

I’d like to focus on the testability part, which many teams overlook. I've met many pro-
grammers and testers who, when working on a user story, weren’t sure where to start,
what to test and what not to test, how much to test in one go, what to call their tests,
and how to understand why a test fails.

According to INVEST, testability should be baked into a good user story, because
testability lays the foundation for quality. How can you be sure that you delivered any
business value if you don’t know how to test its implementation? Or how can you know
that you’ll continue to deliver value in the future, regardless of any system changes or
errors? What I call test-inability is a team’s failure to answer questions like these—a fail-
ure that originates in a bad specification process.

DEFINITION Test-inability—Lacking clear measures of value that can support
development

1.4 Meet specification by example and Gherkin

Delivery teams choose the implementation-first approach despite its shortcomings
because it gives them the freedom, agility, and productivity they love. On the other
hand, the up-front approach has the upper hand in consistently producing somewhat
reliable documentation. Is there any method that combines the best of both worlds?
Fortunately, yes. Of the many tools and methodologies introduced by the community
to reshape traditional specification methods, I find two particularly interesting and
explore them in the book: SBE and Gherkin.

Specification by example, a set of practices that sprang from the agile acceptance-
testing tree, is a collaborative approach to defining software requirements based on
illustrating executable specifications with concrete examples. It aims to reduce the
level of abstraction as early in the process as possible, getting everyone on the same
page and reducing future rework.

Gherkin, a business-readable domain-specific language, provides a framework for
business analysis and acceptance testing. Gherkin helps you understand requirements
from the perspective of your customers. By forcing you to think about what a user’s
workflow will look like, Gherkin facilitates creating precise acceptance criteria. The

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

12 CHAPTER 1 Introduction to specification by example and Gherkin

/ Traditional specification

I
'
'
'
'
'
'
'
'
1
'
'
'
'

Software
development
life cycle

4. Feedback

Figure 1.1 The place of specifications in the
traditional software development process

book uses a Cucumber version of Gherkin’s syntax. If you don’t yet know what that
means, don’t worry—I’ll explain everything in chapter 2.

SBE and Gherkin reimagine the traditional software development process. Every
software development process follows similar phases as functionality progresses from
conception to release (see figure 1.1). In most agile software development methodol-
ogies, the phases are as follows:

Planning implementation
Building the product
Launching the product
Getting feedback

Many teams also fall into a trap of treating specifying as a one-time activity that occurs
during the planning phase, instead of as a process that keeps occurring as requirements
evolve and change, which they often do throughout development. Teams that don’t
treat specification as a long-term process often behave like aulomata—machines
designed to automatically follow a predetermined sequence of operations. In such a
case, the sequence is defined during the planning phase and must be followed as long
as no problems occur. But when a problem does occur, it’s often already too late.

With SBE and Gherkin, as shown in figure 1.2, we follow a different paradigm.
This paradigm requires us to use practices that must be performed throughout the
entirety of a project—from analysis to maintenance. You’ll see why when I talk more
about designing acceptance tests (a testing activity) and building living documentation (a
maintenance activity). Instead of creating a static document with requirements, I'll
talk about a system of dynamic specification documents that constantly evolves along
with the product.

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

Meet specification by example and Gherkin 13

Software
4. Feedback development

life cycle

N

Specification by example

Figure 1.2 SBE reimagines the software development process by prolonging
the specification process so that it takes place throughout the entire project.

If you’re curious about what a specification written in Gherkin looks like, look at this
example:

Feature: Setting starting points and destinations
Scenario: Starting point should be set to current location

Given a commuter that enabled location tracking
When the commuter wants to plan a journey
Then the starting point should be set to current location

Scenario: Commuters should be able to choose bus stops and locations

Given a bus stop at Edison Street
And a Edison Business Center building at Main Street
When the commuter chooses a destination
Then the commuter should be able to choose Edison Street
But the commuter should be also able to choose Edison Business Center
In order to help you write specifications like this, the upcoming chapters will apply
SBE’s key process patterns to Gherkin. You’ll be able to offer programmers, designers,
and managers an inclusive environment for clear communication, discovering
requirements, and building a documentation system.

14.1 Key process patterns

Teams that apply SBE successfully introduce seven process patterns into their work-
flow.” In an SBE process that uses Gherkin—which, as you’ll see later, is only one of

¢ Gojko Adzié, Specification by Example (Manning, 2011).

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

14 CHAPTER 1 Introduction to specification by example and Gherkin

Specification by
example and
Gherkin
4 A\ 4 N\ 4 A\
Having Capturing Automating
conversations conversations conversations
S | J S J S J
4 N\ ' | R
Deriving scope Refining Automating tests
from goals specifications based on
examples
- J
Specifying Validating
collaboratively frequently
IIIu.stratmgt Living
rgquwemen S documentation
using examples
~_ @@

Figure 1.3 A high-level look at SBE’s process patterns

several ways of applying SBE—these seven patterns can be split into three distinct
groups revolving about the central concept of conversations (see figure 1.3).

Patterns focused on having conversations aim to increase the knowledge flow between
the delivery team and the business as well as within the delivery team, without sacrific-
ing agility. Patterns that deal with automating conversations ensure that the specifications
stay up to date throughout the project’s life cycle, allowing nontechnical stakeholders
to check whether the use cases they care about work well within the system.

Capturing conversations links analysis and automation. Having conversations can’t
be a separate development activity, just as you can’t write automated tests for the sake
of writing tests. That’s where the real magic begins, and where you’ll meet Gherkin—
it will let you write down your conversations in a form that’s easy to automate.

1.5 Having conversations that identify business needs
The main premise of SBE and Gherkin is that frequent conversations between domain
experts and the delivery team lay a foundation for the entire development process
(see figure 1.4). Here are some examples of conversations:

The public transport company’s management wants to build new modules into
their timetables system, and you discuss their business needs together.

An angry customer explains that your mobile app shouldn’t interpret Edison
Business Center as Edison Street because they’re not the same thing.

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

Having conversations that identify business needs 15

Two engineers discuss whether the system should treat a bus route as a collec-
tion of 2D points on a map or a straight line between the start point and the des-
tination point.

A commuter files a bug report about the bus-scheduling functionality.

You read customer feedback on social media and discover what new functional-
ities users want.

Specification by
example and
Gherkin
4 A\ 4 A\
Having Capturing Automating
conversations conversations conversations

—L

eriig e Explore possible solutions with

¥—— concrete examples to choose the

from goals . .
best implementations.
Specifying v Find the answers together
collaboratively with business stakeholders.
lllustrating
requirements ¥—— Answer why, who, what, how.

using examples

Figure 1.4 Having conversations should provide delivery teams with
all the answers necessary to understand a project’s goals, and who
customers are and what solutions they need.

From these examples, we can reason that a conversation means a discussion between
the business and the technology. Business domains and technology domains interact
because they have to—if you want to create any software, let alone working software or,
sometimes, even successful software, the team must understand the business context
and have required technical excellence. The sections that follow analyze the topics
that such interactions can follow.

1.5.1 Deriving scope from goals
Conversations typically revolve around four questions:

Why are we building this?

Who are we building this for?
What exactly are we going to build?
How will we build it?

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

16 CHAPTER 1 Introduction to specification by example and Gherkin

Business needs
and problems to solve

Who and why Requirements

The business
domain

Conversation

The technical
What and how domain Solutions Figure 1.5 The business and
technology domains must meet over the
course of a conversation if you want to
understand the business goals and set

the optimal project scope.

Design and
architecture

Some answers come from the business domain and others from the technology
domain (see figure 1.5). Usually, the business domain provides the who and the why,
and the technology domain provides good what and how answers.

In general, answering questions at the top of the list will give you enough input to
ask and answer the questions at the bottom. Such a practice—getting from business
objectives to programmable solutions—is what SBE’s practitioners call deriving scope from
goals. Over the last five years, deriving scope from goals emerged as probably the most
important practice in the modern landscape of software development.

Every major conference now features someone talking about the value of delivery
people understanding business goals and designing software according to their com-
pany’s objectives. Techniques such as impact mapping, feature injection, and user-
story mapping have spread widely, changing the business analysis landscape. I, too,
will talk about these techniques throughout the book.

The questions I listed help delivery teams understand why a solution is needed and
who needs it. Answering them means discussing the company’s goals and establishing
success metrics. The goals and metrics, in turn, allow you to determine the scope of
future work the team must deliver and build a framework that will let the team say
whether they’re making progress in terms of reaching their goals.

1.5.2 lllustrating requirements with examples

SBE and Gherkin require delivery teams to support their conversations with practical
examples. [llustrating requirements with examples helps reduce the level of abstraction
and leads to clearer acceptance criteria—especially if the examples are concrete
instead of vague.

Humans prefer stories illustrated with examples. Say you were a lawyer who wanted
to explain to your friend how splitting royalties works. If you said, “The writers should
split the salary based on their contribution,” your friend might not have a good idea

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

Having conversations that identify business needs 17

of what you meant. Each of you might understand the concept of “contribution” dif-
ferently. But let’s change that to “Here’s an example: John, Gilly, and Robbie wrote a
250-page book together. John and Gilly wrote 100 pages each, so they should get 40%
of the salary, because they each wrote 40% of the book—and Robbie, who wrote only
50 pages, should get 20% of the salary, just as 50 is 20% of 250.” This time, your friend
would probably grasp the full idea in a split second.

Clear storytelling invites good examples, because examples help us build better
mental models of the new concepts we encounter. They’re anchors. Links. Cognitive
shortcuts. Most important, they reduce the likelihood of misunderstanding the pur-
pose of a story. Requirements illustrated with good examples inherit all these benefits.
They’re simpler to digest and easier to keep in your head.

Let’s look at a conversation without any concrete examples and a conversation full
of examples to see if that’s true. Here’s the first conversation:

“Okay, so how should the application work?”

“I suppose that when commuters download our mobile app, they should be able to provide
a starting point and a destination point, and see a timetable with all the bus lines and
departure times they might find helpful in getting to the destination. It’s very simple,
really.”

“Seems that way.”

Such a conversation raises more questions than it answers. What are the starting
points and destination points? Are they streets? Bus stops? Buildings and other places?
And what exactly may a commuter “find helpful in getting to the destination?” There’s
no way we can know for sure.
What would happen, though, if we asked for concrete examples during the discussion?
“OK, so how should the application work?”

“Let’s not jump to conclusions. Imagine for a moment that you’re going to the city, say,
on a business trip. How and when do you get there?”

“Well, I guess I might arrive a day earlier to be sure nothing goes wrong.”
“So we’re going to need a functionality to filter the timetables by date.”

“Yes, we are. But let’s consider what happens if the you’re a bit more happy-go-lucky and
arrive in the city an hour before the meeting. You don’t have enough time to check where
you are. Or maybe you don’t know the exact street you must arrive at.”

“Wow, we might need to implement a GPS geolocation functionality so we could help
users know their current location.”

“Yeah, and there should be an option to search for locations such as parks, buildings,
and restaurants instead of only bus stop names.”

“Seems that way.”

Conversations with examples look similar to short stories about a system’s behaviors.
Good stories are vivid and build a platform for fertile discussion between the people

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

18 CHAPTER 1 Introduction to specification by example and Gherkin

who read them. Bad stories confuse readers and leave people clueless. The same is
true for good and bad specifications.

1.5.3 Specifying collaboratively

As you’ll see in the sections to come, SBE and Gherkin redefine the distinction
between analysis, design, and implementation by building a bridge between require-
ments and code. The practitioners should see the act of specifying as a process of con-
tinuous discovery through reducing their uncertainty about the requirements.
Specifying is not a single activity or a phase to go through. In an agile process, require-
ments evolve as a project progresses because rarely does the knowledge exist up front
to specify an application adequately.

Every time you have a conversation about your product, every time you ask a ques-
tion about a requirement, every time you encounter a bug, every time you hear cus-
tomer feedback—you’re discovering whether your assumptions about the product are
true or false. You're learning.

Sometimes, though, organized effort may be required to produce a reliable,
repeatable specification process in a complex environment with multiple stakehold-
ers. In such cases, SBE encourages specifying collaboratively by inviting the stake-
holders to specification workshops or holding smaller, more regular meetings within
the delivery team.

The participants should use the specification workshops to capture and refine
good, concrete examples that emerged when the delivery team tried to derive scope
from the business goals. They should then match the examples with requirements and
acceptance criteria, letting the examples guide their analysis efforts.

Depending on the size of the team and the complexity of the product, specifica-
tion workshops can range from multiday sessions featuring every important stake-
holder to short, regular meetings between product owners, senior engineers, and
designers. These workshops put a strong emphasis on knowledge sharing. Including
diverse participants guarantees exploring multiple perspectives and covering different
angles. Knowledge should flow freely within the team. Analysts, designers, developers,
and testers should strive to understand what they’re about to build, asking as many
questions as they deem relevant. To achieve a common perspective on how customers
will use the software, participants should learn the ubiquitous language of the busi-
ness owners and the customers. Long story short, they should build a short-term
understanding of the requirements that will guide their efforts in planning and
during implementation.

WARNING The topic of organizing and facilitating specification workshops,
although important, is beyond the scope of the book, which focuses on writ-
ing skills. T only talk about workshops briefly in section 7.4. Chapter 7 is also
where I mention a few resources and techniques for organizing workshops.
For now, I advise you to read Gojko Adzi¢’s original Specification by Example,
chapter 6 talks about collaborative specification.

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

Long-term benefits of automating conversations 19

1.6 Long-term benefits of automating conversations

After the delivery team collects examples, team members create specifications out of
conversations recorded in Gherkin. They automate the conversations and examples
with software tests, validating the tests frequently to make sure the specifications stay
up to date (see figure 1.6).

Specification by
example and
Gherkin
4 A\ 4 A\
Having Capturing Automating
conversations conversations conversations
S J S J

Conversations and examples are Automating tests

automated as software tests. ERRiEn

examples
Tests based on examples can ., Validating
be run upon each build when frequently

any errors are signaled. ::

Tests and their conversations Living
become documentation. documentation
~ @@

Figure 1.6 Automation turns conversations into executable test cases
that, if validated frequently, become long-term system documentation.

I’ll now talk about the elements of the automation process and why automating speci-
fications gives delivery teams an enormous advantage. Don’t be surprised that I
haven’t yet discussed recording conversations in Gherkin, even though the translation
process is a prerequisite for automation. I want you to understand the benefits and
challenges of team specification and automation first, so that you’ll be free to draw
your own conclusions when we explore Gherkin.

1.6.1 Automating tests based on examples

SBE requires delivery teams to use conversations to collect meaningful examples that
help the team understand the requirements. From examples, tests are created. Good
examples make tests better and more business-driven by covering real-world use cases
provided by business stakeholders and customers. In the end, tests verify whether the
delivery team implemented requirements correctly. You can see the schematics of this
process in figure 1.7.

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

20 CHAPTER 1 Introduction to specification by example and Gherkin

Elaborate

Can become

Figure 1.7 Collecting examples that illustrate
Requirements requlr.ements is _the flrst_ step to create
meaningful, business-driven, automated tests.

Automating ties conversations and examples to system behaviors. Tests return binary
responses about every conversation you capture. A conversation either passes your
test, meaning the behavior was implemented correctly, or it fails the test, meaning the
system is incomplete or broken.

If an example passes the test, you know that the acceptance criterion illustrated by
the example is still relevant. If the test is failed, you’re notified that the changed code
base no longer satisfies the acceptance criteria. If that’s the case, the examples should
change to reflect that—and sometimes the code has to change, too. (The code could
be right and the example now outdated, or the example could be right and the code
wrong. In each case, you fix a different thing.)

Why is that? Imagine that the example public transport company introduces new
express buses. These vehicles skip most of the bus stops on their way, in order to get to
the destination point more quickly. Your team now needs to add express buses to the
mobile app. It’s a simple change in terms of code: somebody must add a new attribute
to the database that determines whether a bus line is an express line or a regular one.
Easy peasy. You make the change quickly and then take a lunch break.

That’s when all hell breaks loose. (Almost.)

The team forgot that the timetables module isn’t the only one affected. The mobile
app also features a live map that shows how the buses closest to the user move around.
A commuter can check which buses are which in the legend on the map. The legend
is generated automatically, but adding the new type of express bus broke the program-
ming logic behind it. As a result, the legend has disappeared. For the few days before
you notice the problems, commuters not only aren’t able to distinguish express buses
from regular buses—they aren’t able to find any buses on the map.

If you had any documentation in place, the change made it inaccurate and out-
dated. Nobody updated the document, because your team wanted to have lunch.
That’s what usually happens: people forget, production hotfixes creep in, the Four
Horsemen of the Apocalypse drop by. And when the dust settles, your carefully pre-
pared documentation no longer reflects the current state of the system. In this case, it
doesn’t tell the reader that there are two types of buses, and it doesn’t explain the dif-
ference between them. Step by step, with every hotfix and every negligent change, the
documentation becomes irrelevant.

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

Long-term benefits of automating conversations 21

1.6.2 Validating frequently

None of these problems would arise if your conversations and examples were auto-
mated. When conversations are run as tests, you can regularly track which ones
behave correctly and which ones don’t. If you test frequently and your specification is
exhaustive, you’ll get instant feedback after you make a change to the code base.

You can validate during the development process or before a release—what mat-
ters is that you must do it often. The more often you test, the sooner you can spot pos-
sible errors.

Captured conversations should be validated against both the existing system and
new code as it’s being written. If you validate conversations frequently, you can have as
much trust in the specification as you have in the code. This way, you create a more
accessible way to review implemented requirements for all stakeholders.

Because SBE and Gherkin see development as a process of constant discovery
through reducing uncertainty about requirements, the model of the system is, by defi-
nition, not fully defined from the beginning—it’s only defined well enough. It evolves
continuously based on feedback from stakeholders, and new examples and domain
concepts enter the specification as new elements are added to the code. To make sure
these new examples fit into the system, delivery teams need a process of continuous
integration.

DEFINITION Continuous inlegration—A software development practice where
members of a team integrate their work frequently. Each team member
should integrate as often as possible, leading to multiple integrations per day.
Each integration is verified by an automated build to detect integration errors
quickly.

If the team uses a testing tool (like Cucumber, a Gherkin-compatible test runner),
the tests can be run on each software build. If any errors are signaled, they can be
caught early and fixed, letting the “integrate, build, test” process start again—this
time, successfully.

1.6.3 Living documentation

As much as we’d like it to be otherwise, only working production code holds the truth
about the system. Most specifications become outdated before the project is delivered.
Because every product is a machine made out of thousands of moving parts, the dat-
ing problem becomes a curse of all software projects.

Outdated documentation may seem like a reliable source of knowledge about the
system, but it only misleads its readers. An automated, frequently tested specifica-
tion—as well as the examples included in it—is resistant to such problems. The direct
connection between scenarios and code often reduces the damage by cultivating a sys-
tem of living documentation.

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

22 CHAPTER 1 Introduction to specification by example and Gherkin

DEFINITION Living documentation—Documentation that changes along with
the system it documents, thanks to the link between the text and the code as
well as frequent validation.

When tests keep specifications in check, they let specifications with examples evolve
into a documentation system. Using executable specifications as living documentation
means taking advantage of automation to facilitate learning within the team and their
decision-making abilities. When Gherkin scenarios are free of unnecessary technical
bloat, well written, accurate, and full of business-oriented examples and domain
vocabulary, they can serve as a single source of truth that everyone uses to learn about
the functionalities in question.

Thanks to frequent validation, you know that your tests, examples, and conversa-
tions are up to date; and when you trust your tests, you can use them as documenta-
tion for the entire system. You can track every test back to its origin—the conversation
you had with your stakeholders about the requirement. When in doubt, you or any-
one else on your team can always check the captured conversation. Frequent valida-
tion also guarantees that the documentation must change every time the underlying
code changes, because the documentation is connected to the code through tests.

A living documentation system should benefit everyone. Specifying collaboratively,
illustrating requirements with examples, and refining specifications for readability—
all these measures should involve everyone who matters in the requirement-analysis
process, or a few dedicated people can make the requirements as easy to understand
as possible for everyone else. Everyone involved should be able to read the results,
too. Tools such as Relish, Cucumber Pro, and CukeHub can even integrate with a
code repository of your choice and publish the scenarios in a private cloud where you
can collaborate and share executable specifications and test results with other team
members, as easily as you can share a document in Google Docs.

1.7 Capturing conversations as executable specifications

Okay, so automating conversations offers a lot of benefits. But how do we automate
them? At the beginning of section 1.6, I promised that we’d come back to the topic of
recording conversations in a language that will help you optimize them for automa-
tion. This section discusses the refinement process that makes free-flowing conversa-
tions easy to automate (see figure 1.8).

Specification workshops allow for having conversations. Programmers and testers
are responsible for automation. How does the translation process happen? Should
programmers store conversations as comments in their testing code? That would be
ridiculous—but the records have to be written somewhere, don’t they? A free-flowing
conversation is, by definition, an unreliable medium that only stimulates short-term
memory. We need long-term storage.

As introduced earlier, Gherkin is the tool for capturing conversations about
requirements in a formalized way, clarified by extracting essential information and
removing noise. Gherkin facilitates knowledge sharing among all stakeholders,

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

Capturing conversations as executable specifications 23

Specification by
example and
Gherkin
4 N\
Having Capturing Automating
conversations conversations conversations

Refining
specifications

Conversations must be written
explicitly in an automation
template and refined to feature
only key examples.

Figure 1.8 The capture process aims to preserve verbal product-design chats and
translate them to lightweight, long-term, formalized stories that, in time, can be used
to put together system documentation.

regardless of their technical skill. It does so by conveying tests and requirements in a
ready-for-automation template that’s expressed in plain English and that uses the
ubiquitous language of a product.

Gherkin focuses on capturing conversations as scenarios. Scenarios preserve essen-
tial information and remove noise by extracting concrete actions from conversations.

DEFINITION Scenario—A concrete example that illustrates a business rule

Following is an example of a scenario. Remember the conversation about how the
mobile app for journey planning should work?

“Let’s imagine that you re going to the city on a business trip. When do you get there? ...
If youre a bit happy-go-lucky and arrive in the city an hour before the meeting, you don’t
have enough time to check where you are.”

“Wow, we might need to implement a GPS geolocation functionality, so we could help
users know their current location.”

Here’s the same conversation expressed in Gherkin:

Given a commuter that enabled mobile location tracking

When the commuter wants to plan a journey

Then the starting point should be set to current location

This sequence is called the Given-When-Then template. I’ll talk about it in detail in
chapter 2, where you’ll learn the basics of using the template.

Thanks to its focus on user actions, Gherkin is a great language for conveying
behavioral requirements. Just as having conversations improves a delivery team’s short-
term understanding, capturing conversations ensures that they don’t let that knowl-
edge slip through their fingers in the future. Scenarios achieve that and remind us

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

24 CHAPTER 1 Introduction to specification by example and Gherkin

that we don’t need 100-page functional requirements documents to capture what’s
valuable. We don’t even have to write all the scenarios up front. We can capture a few
scenarios at a time, as we discuss each new requirement. A few months in, we’ll have a
huge library of relevant scenarios. We only need to be consistent.

DEFINITION Behavioral requirement—A requirement formed as a story about
how users behave when they interact with the system. Whereas normally
requirements can be formed as abstract statements, behavioral requirements
always talk about examples of using the system.

The contents of the template should use nontechnical language that relies heavily on
real-world business concepts. Notice how the example mentions commuter, journey, and
the starting point—concepts borrowed from the business vocabulary of the public
transport company—but doesn’t say anything about low-level development proce-
dures or the application’s user interface. Scenarios captured using the Given-When-
Then template should stay at a business-readable, code-free level at all times, improv-
ing the domain model and building its ubiquitous language.

WARNING If you see anything about a connection to the database in a Gher-
kin scenario, or read about buttons or any other UI element, somebody made
a huge mistake.

Because programmers and testers can automate anything put in the Given-When-
Then template, scenarios written in Gherkin become executable specifications. This book
will teach you to write executable specifications in Gherkin and use the Given-When-
Then template. You’ll also learn the rest of the Gherkin syntax required to capture
design conversations in a form that easily translates to executable specifications.

DEFINITION Executable specification—A specification that can be run as an auto-
mated test

The syntax serves as a link between speech, text, and automated code. It lets you prog-
ress naturally from one to another. Gherkin also provides techniques to organize sce-
narios into full documents, link similar behaviors, and simplify capture and
automation, all while keeping things at a business-readable level derived from the
ubiquitous language.

Most executable specifications contain many scenarios, and every scenario needs
multiple examples. In its rough form, an example is like a quick note or a doodle. It
makes sense when you look at it a day after you made it, but try examining it six months
later—not so meaningful anymore, right? That’s why successful teams don’t use raw
examples; they refine them. A team extracts the essence of key examples and turns it
into clear, unambiguous, organized specification documents, as shown in figure 1.9.

As new requirements appear, acceptance criteria generate new examples, and
every example generates a new scenario. To refine executable specifications, teams
merge similar examples, reject examples that introduce noise, and choose the most

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

Raw examples generate
raw scenarios that often
have similar structure.

-

Acceptance
criterion

v

Making software that matters 25

An acceptance criterion
needs examples that pass
or fail the criterion.

‘ Raw examples ’

Raw examples

Y

Y

18

Raw scenario

‘ Raw scenario ’

1
1
1
e Y e
Refined scenario

Refined example

Refined example

Refined scenarios contain
only key examples needed to
understand the criterion.

Figure 1.9 The process of refining raw examples extracted from collected acceptance
criteria into refined scenarios with key examples

meaningful or descriptive examples. The result is an executable specification in its
final form, ready to become the foundation for the living documentation system.

Making software that matters

You’ve now begun the journey of mastering executable specifications written in Gher-
kin according to SBE’s key practices. As you learn more about SBE and Gherkin, we’ll
focus on practicing techniques that help you avoid common specifying pitfalls. When
software engineers and designers don’t put enough thought into their specifications,
the cost is measured in weeks of work and hundreds of thousands of dollars wasted.
The benefits of SBE and Gherkin go far beyond reducing rework. You’ll get better
insight into your business domain and reduce friction caused by inevitable translation
costs that come up when a business requirement becomes working software. People
made these tools and processes because they wanted to guarantee that the software they
help build will make sense to customers. They wanted to make software that matters.

SBE, BDD, or ATDD?

When | started my journey with executable specifications, like many other practitioners
| was confused by the naming issues around the topic of agile acceptance testing.
When | found out that many people call SBE behavior-driven development (BDD) or
acceptance test-driven development (ATDD), | didn’t understand the difference.

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

26 CHAPTER 1 Introduction to specification by example and Gherkin

(continued)

My confusion was deepened by the fact that | became interested in SBE after reading
Gojko’s book, but the first project where | was able to practice writing executable
specifications used Gherkin. In his book, Gojko wrote that he didn’t “want to use any
of the Driven Development names, especially not Behavior-Driven Development.” But
Gherkin was invented by Dan North and Chris Matts, and Dan North is the main face
of BDD. | was perplexed.

| wanted to avoid naming controversies, because they aren’t key to what you're going
to learn. | honestly admit that | borrowed freely from both fields, trying to create a mix
that will maximize benefits and minimize mental load. Dan North calls BDD a meth-
odology; but, quoting Gojko, what | wrote here doesn’t form a fully fledged software
development methodology. My only goal is to teach you to write great Gherkin speci-
fications using SBE practices. So whenever | talk about a practice or an idea derived
from SBE, I'll tell you that up front. Everything else will appear under the umbrella
term of Gherkin and good Gherkin practices; if you want to read more about it, you
can assume it comes from the field of BDD.

Because this is a book about practical application of executable specifications with
examples, it mainly deals with capturing conversations in Gherkin and refining exam-
ples. It’s a long-ignored topic due to Gherkin’s seemingly easy syntax and elusively low
entry barrier. Many software engineers and designers think they need a quick tutorial
and then can start writing. It’s only a simple Given-When-Then sequence, right?

Yes and no. Everything depends on the project you’re dealing with. At first, having
executable specifications will yield better alignment without much training—but com-
plex products with complicated business domains can go astray quickly. Hundreds of
requirements will produce hundreds of Gherkin files you have to manage. And every
file will contain multiple scenarios, and every scenario will attach additional example.
That sounds like Gherkin and SBE don’t fit huge projects well; but, truth be told, huge
projects will stretch every process and tool. As you’ll see, executable specifications
with examples shine the brightest in complex environments—but that’s why I'm writ-
ing a book, and not a blog post.

You don’t have to be able to write testing code to read the book. I’ll cover automat-
ing conversations only as long as it introduces good patterns that will make life easier
for your engineers. Having said that, we should always value business-oriented specs
over specs that are easy to automate. Similarly, I won’t talk about anything related to
having product-design conversations during specification workshops, unless it directly
impacts you when writing specifications in Gherkin. There are other resources that
teach these skills well enough.

I do expect you, however, to understand the basics of the automated testing process
and why it matters. Practical knowledge about the QA process will be helpful in some
of the later chapters. If you have a technical background or are experienced in work-
ing with developers and QA engineers in any agile methodology, you’ll be fine. I also

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

Summary 27

expect you to understand what it takes to release a product, from its conception
through the public announcement to long-term maintenance. Some of the things
we’ll discuss will cover not only initial requirements but also possible changes in scope
that a product can face at a later stage of its life cycle.

What will you learn? The next chapter explores Gherkin and SBE in practice. You’ll
begin by capturing requirements and acceptance criteria as executable test cases. As
you progress through the book, you’ll tackle more-advanced topics. You’ll learn to
write good scenarios. You'll see how to choose good examples. You’ll design business-
oriented error checks. When the time comes, you’ll move on from thinking about
suites of specifications, and you’ll learn to organize scenarios into groups of coherent
specification documents that readers can navigate easily. I’ll also talk about how the
ubiquitous language shapes examples and scenarios, and how to evolve specifications
into a living documentation system over time.

Right now, though—right now, welcome to specification by example and Gherkin.

19 Summary

A specification is a description of the system design required to implement the
system.

Acceptance criteria let you review whether you’ve built a complete system.

A ubiquitous language is a common language among developers, business
stakeholders, and end users. It makes every stakeholder sure they're talking
about the same things.

Specification by example is a business-analysis process aiming for “just enough,”
just-in-time software design. Lightweight examples provide enough initial con-
text to start development and are later refined into more-sophisticated forms.
Gherkin is a business-readable language for writing specification documents.
Gherkin’s practitioners capture conversations about requirements in the form
of behaviors—also called scenarios—which are examples of how the system is
expected to behave.

An executable specification is a conversation captured using the Given-When-
Then template with a corresponding acceptance test. The acceptance test
makes sure the delivery team has implemented the underlying requirement
correctly.

Every executable specification’s life cycle starts with a specification that later
becomes an automated test. Automating the specification ensures that it stays
up to date, because the captured conversation is directly tied to testing code.
This way, tests become documentation.

Gherkin and SBE arm you with software development techniques that facilitate
knowledge sharing, reduce short-term waste without sacrificing long-term docu-
mentation, and help the delivery team deliver software faster and without
rework thanks to meaningful, concrete examples of system behaviors that
ensure everyone’s on the same page.

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

SOFTWARE ENGINEERING

qeee ehlog,

SEE INSERT

¢¢Does a great job taking
concepts from good architec-
tural practices and applying
them to the world of collab-
orative specifications.)

—From the Foreword by
Gojko Adzi¢, author of
Specification by Example

¢¢The missing manual for
writing great specifications.
I wish this book had existed
five years ago!”?

—Craig Smith, Unbound DNA

CCWill jolt you into best
practices, give you fresh
perspectives, and reinvigorate
your commitment to this
business-critical skill.”?

—Dane Balia, Hetzner

¢¢The complete book on
how to write great specifica-
tions. Most of us know bits
and pieces, but to truly grok
it, you need this excellent
guide.”?

—Kumar Unnikrishnan
Thomson Reuters

/III MANNING $44.99/ Can $59.99 [INCLUDING eBOOK]

WRITING GREAT SPECIFICATIONS

Kamil Nicieja

to provide examples of how it should work. Turning these

story-based descriptions into a well-organized dev plan is
another matter. Gherkin is a human-friendly, jargon-free lan-
guage for documenting a suite of examples as an executable
specification. It fosters efficient collaboration between business
and dev teams, and it’s an excellent foundation for the specifica-
tion by example (SBE) process.

T he clearest way to communicate a software specification is

Writing Great Specifications teaches you how to capture execut-
able software designs in Gherkin following the SBE method.
Written for both developers and non-technical team members,
this practical book starts with collecting individual feature sto-
ries and organizing them into a full, testable spec. You'll learn to
choose the best scenarios, write them in a way that anyone can
understand, and ensure they can be easily updated by anyone.

What's Inside
* Reading and writing Gherkin

* Designing story-based test cases
¢ Team collaboration

* Managing a suite of Gherkin documents

Primarily written for developers and architects, this book is
accessible to any member of a software design team.

Kamil Nicieja is a seasoned engineer, architect, and project man-
ager with deep expertise in Gherkin and SBE.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit
www.manning.com/books/writing-greatspecifications

ISBN-13: 978-1L-51729-410-5
SBN-10: 1-b1729-410-1

“ H “H" Il
7816171294105

I
9

https://itbook.store/books/9781617294105

	cover
	Copyright
	SampleCh01
	coverB

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

