
M A N N I N G

KAMIL NICIEJA
FOREWORD BY GOJKO ADŽIĆ

SAMPLE CHAPTER

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

Writing Great Specifications
by Kamil Nicieja

Chapter 6

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

v

brief contents

1 ■ Introduction to specification by example and Gherkin 1

PART 1 WRITING EXECUTABLE SPECIFICATIONS WITH EXAMPLES 29
2 ■ The specification layer and the automation layer 31
3 ■ Mastering the Given-When-Then template 54
4 ■ The basics of scenario outlines 80
5 ■ Choosing examples for scenario outlines 97
6 ■ The life cycle of executable specifications 123
7 ■ Living documentation 148

PART 2 MANAGING SPECIFICATION SUITES 171
8 ■ Organizing scenarios into a specification suite 173
9 ■ Refactoring features into abilities and business needs 195

10 ■ Building a domain-driven specification suite 213
11 ■ Managing large projects with bounded contexts 234

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

123

The life cycle of
executable specifications

In its original meaning in systems theory, feedback is the exchange of data about how
one part of a system is working—with the understanding that one part affects all
others in the system—so that if any part heads off course, it can be changed for the
better. In SBE, a specification suite is the system, every executable specification is a
part of that system, and the delivery team is the recipient of the feedback.

 As anyone who works in a corporate environment knows, there are two kinds of
feedback:

 Supporting that lets people know they’re doing their job well
 Critiquing that’s meant to correct the current course of action

This chapter covers
 Working with an executable specification

throughout its life cycle

 Understanding requirements’ precision level

 Using examples in different development phases

 Understanding what happens after
implementation

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

124 CHAPTER 6 The life cycle of executable specifications

The same rules apply to the systems of feedback in SBE. Back in 2003, Brian Marick
wrote a series of blog posts about the concept of an agile testing matrix.1 The series is
also one of the oldest articles about modern testing methods I know of that suggested
dropping the name tests and replacing it with examples for business-facing testing.

 Marick organized his quadrant into distinct quadrants with two axes (see figure 6.1).
The vertical axis splits the matrix into business-facing tests, such as prototypes and
exploratory testing, and technology-facing tests, such as unit tests and performance
tests. Unit tests deal with low-level testing; they make sure small components of code
run well. Performance tests determine how a system performs in terms of responsive-
ness and stability under workload.

 Our area of interest lies in the upper half of the matrix, though: it’s split into tests
that support the team’s progress and tests that critique the product. Tests that support the team
help the team write new code before they have a working product. Tests that critique
the product look at a finished product with the intent of discovering inadequacies. As
you can see, this is similar to the feedback system that powers any human organization.

 The question we’ll explore throughout this chapter is when examples should sup-
port the team’s work and when they should critique the product. You’ll see how exam-
ples and automation can give delivery teams feedback of both kinds. And you’ll come
to understand how feedback forces at the core of every executable specification suite
work much like a development manager: constantly evaluating the job done by

1 See Brian Marick, “My Agile Testing Project,” on his blog, “Exploration Through Example,” August 21, 2003,
http://mng.bz/TkO1.

Examples
Functional tests

Story tests
Prototypes
Simulations

Acceptance tests
Exploratory testing

Scenarios
Usability testing

Alpha and beta versions

Unit tests
Component tests

Performance tests
Security tests

Critique
the

product

Support
the team

Business facing

Technology facing

Figure 6.1 The agile testing quadrants. I’ve highlighted the tests that will be important
in this analysis.

www.itbook.store/books/9781617294105

http://mng.bz/TkO1
https://itbook.store/books/9781617294105

125

programmers, analysts, designers, and testers; praising the team for their successes;
and pointing out failures.

 To see how feedback loops in SBE help uncover contradictions and uncertainty that
can hide even in well-analyzed requirements, I’ll also talk about the life cycle of an exe-
cutable specification. In product design, life cycle can be defined as the process of bring-
ing a new product or a new feature to market and then maintaining it over time.

 Chapter 1 said that all software development processes follow similar phases as a
functionality progresses from conception to release, such as planning, building,
releasing, and getting feedback. These phases are also a called the software development
life cycle. I also said that, traditionally, specifications belong to the planning phase
because that’s when delivery teams first interact with new requirements (as presented
in figure 6.2).

SBE is different because it doesn’t see specification as a singular phase but rather as a
process that spreads across multiple phases as requirements evolve and change (see
figure 6.3). Specifications become tests; and tests, as you’ll see in chapter 7, become
documentation.

 By evolving requirements, I mean that the precision level of your requirements
changes throughout the life cycle of an executable specification. Every requirement
starts as a vague goal with a high level of uncertainty. As you implement it, uncer-
tainty decreases, because the requirement gradually becomes working code. As you’ll
see, SBE and Gherkin have a different feedback loop at each stage of the life cycle,
which helps decrease uncertainty even further than in other software development
processes.

 To understand this process thoroughly, we’ll track how a raw requirement becomes a
Gherkin specification—from a broad concept to a working implementation. This time

1. Plan

Software
development

life cycle

3. Launch

4. Feedback 2. Build

Traditional specification

Figure 6.2 The software development
process. Traditional specification
belongs to the analysis phase.

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

126 CHAPTER 6 The life cycle of executable specifications

around, you’ll specify a new feature in a simple mapping application called Mapper.
Maps are by definition instruments of changing precision. You can use one to look at
continents and countries from a high-level view, but you can also buy a local map of
your city and use it to find your home. A map is a great metaphor: just as there are
low-resolution and high-resolution maps, there are low-resolution requirements and
high-resolution executable specifications.

6.1 End-to-end overview of the process
In this and the next section, we’ll look at a full overview of what life cycle and precision
level mean. Every software feature goes through several development phases such as
analysis, design, implementation, testing, and maintenance. This is what a life cycle is.
As discussed in chapter 2, Gherkin specifications are also called features, and they go
through similar phases.

 At its core, every executable specification is the result of a five-step process (see fig-
ure 6.4):

1 Understanding business goals
2 Analyzing the scope of requirements through examples
3 Designing the solution by deriving scenarios from acceptance criteria and

examples
4 Refining scenarios until you can implement the behaviors from the specification
5 Iterating the specification over time

1. Plan

Software
development

life cycle

3. Launch

4. Feedback 2. Build

Specification by example

Figure 6.3 SBE in the software development process. Specification spreads throughout
multiple phases.

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

127Understanding business goals

As you cross each threshold, the precision level of your analysis increases (see figure
6.5). The more precise you are, the better you understand the implications of imple-
menting a requirement.

 Business goals are broad directives that sometimes don’t provide a specific solu-
tion. Requirements are less abstract; they define what needs to be built for whom in
order to achieve the high-level goal. Solutions are precise plans for features, interac-
tion flows, and user interfaces. Because software is comprised of thousands of moving
parts, no solution is fully precise until it’s implemented as working code. And only
after the code is released to production do you get the feedback needed to asses
whether a business goal has been met, which removes any remaining ambiguity.

6.2 Understanding business goals
To see how the precision level increases throughout the life cycle of an executable
specification, we need to start with the least specific phase: discussing business goals
(see figure 6.6). For this example, assume on the Mapper project, your responsibility
is to lead a team of developers, designers, and testers. Management is looking for a
way to increase Mapper’s presence among small businesses and get smaller enterprises
to pay to be featured on your online maps. Right now, your maps feature only a few of
the most popular outlets of international companies located at prominent locations,
but management would like to include more firms. Your team has been tasked with
making that change happen.

Understanding
business goals

Refining
scenarios

Analyzing
requirements
with examples

Deriving
scenarios from

examples

Iterating
specifications

over time

Figure 6.4 The life cycle of executable specifications

Need for
detail

Priorities,
solutions, scope,

estimates

Opportunities,
risks, goals,
objectives

Documentation,
regression tests,

customer feedback

Design rules,
acceptance tests

Analysis Planning Implementation

Stage

Maintenance

Figure 6.5 As the need for
detail increases, so does the
precision of artifacts that
appear during development.

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

128 CHAPTER 6 The life cycle of executable specifications

TIP When you’re trying to elicit requirements, raising the discussion to the
level of business goals lets you deal with scope and priorities more efficiently.
As you raise the discussion to the level of goals, the number of things you have
to talk about decreases. That makes it easier to focus on the essentials.

You and management agree on actionable goals that the team should aim to meet in
the next six months; see table 6.1. You have to understand both the short-term and
the long-term contexts. If you knew only the short-term goal, you’d devise a tempo-
rary solution. For example, your team could add new businesses to the platform man-
ually and still achieve the goal. Because the absolute number of businesses featured
on Mapper is low at the moment, doubling that number would take only a few min-
utes of work.

Only when you also look at the long-term goal you can see that the company is look-
ing for a solution that will let it achieve sustainable growth in a new market segment.
Meeting such a goal will require you to take different actions.

Table 6.1 High-level goals for the next six months

Perspective Goal

Short-term 2x increase in businesses featured on Mapper’s platform

Long-term Establish presence in the unsaturated segment of small
businesses in order to seek growth

Understanding
business goals

Refining
scenarios

Analyzing
requirements
with examples

Analyzing
long-term

goals

Analyzing
short-term

goals

Deriving
scenarios from

examples

Iterating
specifications

over time

Figure 6.6 To understand why a feature request arises, you
need to understand the business goals it aims to achieve.
Understanding business goals will let you define proper scope.

Other resources for strategic planning
Impact mapping is one of the best methods I know for creating medium-term strategic
plans. An impact map is a visualization of scope and underlying assumptions, created
collaboratively by senior technical and business staff. It’s a mind map that’s grown
during a discussion that considers the following four aspects:

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

129Understanding business goals

 Goal—Why are we doing this?
 Actors—Who can produce the desired effect? Who can obstruct it? Who are

the consumers or users of our product? Who will be impacted by it?
 Impacts—How should our actors’ behavior change? How can they help us to

achieve the goal? How can they obstruct us or prevent us from succeeding?
 Deliverables—What can we do, as an organization or a delivery team, to sup-

port the required impacts?

I like impact maps because they make assumptions hierarchical and testable. What
does that mean? Let’s say you have an impact map with a goal to grow mobile adver-
tising for a website.

First, you define the success metrics for your goal. Then, you identify several actors
who can help reach you that goal, including super-fans with mobile devices. One pos-
sible impact could be that they stay longer on your website and increase advertising
exposure. You figure that features such as forums and chats, among others, might
help achieve that impact.

Let’s say that after implementing several deliverables, you realize that you were
wrong in thinking that forums and chats would increase engagement. You may have
several other, similar deliverables on your map, but now you know that this branch of
the map isn’t as impactful as you thought it would be—so you might discard that
impact or even discard that actor. If you did the latter, all the other deliverables for
super-fans with mobile devices would be automatically discarded as well, because
the map is hierarchical. Thus you can treat the map as an easy-to-maintain, visual,
testable product backlog that keeps changing its shape as your knowledge about the
world grows.

You can read more about impact maps in Impact Mapping by Gojko Adžić (Provoking
Thoughts, 2012).

Example of an impact map
from www.impactmapping
.org/drawing.html

www.itbook.store/books/9781617294105

www.impactmapping.org/drawing.html
www.impactmapping.org/drawing.html
https://itbook.store/books/9781617294105

130 CHAPTER 6 The life cycle of executable specifications

6.3 Analyzing requirements with examples
As you may recall from chapter 1, an SBE process starts with deriving scope from goals.
The previous section provided you with a goal. Now you need the scope. There are
several methods to derive scope (see figure 6.7). In recent years, user stories have
risen to become the most popular method for defining and discussing scope among
agile teams; this section will guide you through the process of creating user stories,
illustrated with examples.

6.3.1 Conveying requirements as user stories

A user story lets you convey a glimpse of a requirement as a product backlog item. The
item becomes a ticket for a future conversation. Through user stories, you can negotiate
the priority of any given requirement, discuss possible solutions and scope, and make
some estimates. They’re used for planning.

 The previous section talked about short- and long-term business goals. Even if you
acknowledge both contexts that are important to your company, that’s only one side
of the story. Customers don’t care about the goals of businesses; they want businesses
to bring them value. Customer-oriented firms know that and use user-centered tools
to align their strategies to their customers’ interests.

 That’s what user stories are for. Writing a user story lets you restate your business
objective as a customer benefit.

In order to let new customers discover my company
As an owner of a small business
I want to add my company to Mapper's platform

Listing 6.1 [OK] Your first user story

Refining user
stories with
examples

Understanding
business goals

Refining
scenarios

Analyzing
requirements
with examples

Collecting
examples

Conveying
requirements in

user stories

Deriving
scenarios from

examples

Iterating
specifications

over time

Figure 6.7 Teams hold collaborative
specification workshops to find examples that
illustrate requirements. The examples help the
team to refine the scope of their user stories.

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

131Analyzing requirements with examples

TIP I talk more about user stories in chapter 8. You’ll learn alternative for-
mats to express your stories so that you’ll be able to aim for understanding
rather than strict conformance to any single format. Stay tuned! Right now,
you only have to focus on the three key elements that all user stories share—
who, what, and why.

Thanks to your knowledge about your market, you know that making Mapper a new
distribution channel will encourage small businesses to add themselves to the plat-
form. They will essentially do the job for you, if you help them find new clients.

 User stories are crucial to increasing precision to the level an executable specifica-
tion needs. But stories and scenarios are separate creatures, as shown in table 6.2.
User stories have acceptance criteria. Executable specifications have acceptance tests.
Without the criteria, there can be no tests. A delivery team derives new executable
specifications and new scenarios from user stories.

At this stage, you already suspect that your team will have to build some kind of a form
that will allow companies to sign up and mark themselves on your maps. You know that
because analyzing business goals and writing the user story increased the precision
level of the requirement to the point that you can begin to devise a specific solution.

 Placing the responsibility for a solution on the development team is a great way to
obtain the right scope for a goal. The executive team may already have ideas about the
solution, derived from their intuitions and expertise; but they made you the product
owner, so you’re the decision maker.

 When a requirement or a business objective contains implementation details, it
usually means somebody’s trying to slip in a predetermined solution, binding it
unnecessarily with the problem your organization is trying to solve. It could be a team
member, a manager, someone from marketing and sales, or even a bossy customer.

 Henry Ford famously said, “If I had asked people what they wanted, they would
have said faster horses.” Visionaries use this quote as a beaten-to-death excuse for
ignoring customer feedback. I think customers clearly told Ford what they wanted:
they told him that speed is the key requirement for transport. But because they
weren’t engineers, they weren’t able to say that cars would satisfy the requirement.

 People will always use solutions to help themselves imagine consequences of any
given requirement, because it’s a natural way of thinking. But as someone who works

Table 6.2 A comparison of user stories and executable specifications

User story Executable specification

Discarded after implementation Kept after implementation

A unit of change An effect of the change

Has acceptance criteria Is an acceptance test

Produces short-term results, such as cards or tasks Produces long-term, living documentation

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

132 CHAPTER 6 The life cycle of executable specifications

with technology, you should strive to extract unbiased, pure requirements from their
solutions. Only when you decide what will work best for the company should you
move on to writing down an executable specification.

Storing user stories in a product backlog
A user story is only a token for a future conversation. It’s a reminder that when the
right time comes, you’ll have to discuss the such-and-such requirement with your
stakeholders in order to implement it correctly.

Even though user stories shouldn’t by any measure replace conversations, you can
prepare notes in advance that will help you get up to speed after you pull a story out
of the product backlog. (A backlog is a lot like a freezer: some stories don’t age well.)
You don’t want to be overly specific, of course. Specificity at this stage could con-
strain your flexibility in the future. You should never treat user stories as a to-do list.
They’re more like a list of guidelines: directions that you suspect you might explore
in the future. But stories can stay in the freezer for months, so you may want to pro-
vide some details to remind you of its purpose back when you put that particular story
in the backlog.

To specify my stories, I use a four-element template based on a simplified story-
elements template first shown to me during a workshop by David Evans, who is a vet-
eran of agile testing and an active member of the agile community. For each story, I
write down the following:

 Stakeholders and their interests—Along with the primary actor who has the
most interest in the story and is featured in the story, I sometimes list other
stakeholders who could be affected by the story.

 A trigger—The event that causes the new behavior to be initiated or invoked
by a user or by the system itself.

 The main success scenario—Intentions and outcomes that should guarantee
the primary actor’s success (remember not to over-specify UI or implementa-
tion details!).

 Acceptance criteria—Two to five one-line descriptions that sufficiently identify
each testing condition for the story to be verified.

I put these notes in the description of the story in the backlog.

You can see that each of the four notes will help me prepare Gherkin scenarios more
quickly after I pull the user story from the backlog. I’ll already know the primary actor.
From the trigger, I’ll have some idea about the Givens. The main success scenario
will help me imagine the Whens and Thens. And from the list of acceptance criteria,
I’ll be able to estimate how many scenarios an executable specification for this user
story will have.

Sometimes notes don’t age well. Requirements can change over time. But notes can
still help you in such situations: you can always compare your past notes with your
current direction. The difference between the former and the latter will be the sum of
the learning your team has accomplished during the freezer time.

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

133Analyzing requirements with examples

6.3.2 Collecting examples

You now have a user story that you can put in your team’s backlog. You also have a
rough sense of the amount of work you’ll face: you know what’s expected of you, and
you’ve shared the news with the engineers, who told you their first impressions and
initial ideas of what could be done to meet the requirements. What happens next?

 Chapter 1 taught you that after you derive scope from goals, you should start speci-
fying collaboratively to illustrate requirements with examples. Specifying collaboratively
means domain experts, product managers, developers, testers, and designers working
together to explore and discover examples that will become Gherkin scenarios. Let’s
assume that in the Mapper example scenario, you decide to organize a workshop.

TIP It’s your job to be a facilitator and to extract relevant information from
whatever is said. Starting by asking for rules is okay as long as you don’t expect
the rules to be a fully developed list of acceptance criteria. They’ll be messy
and, probably, contradictory or inconsistent. As a technologist, you should
constantly challenge and refine the requirements your team takes on.

During the workshop, your team comes up with examples of small businesses based in
your town that would be most likely to join Mapper’s platform (see table 6.3). You also
add a few ideas of how particular businesses may use Mapper to lead new customers
through their conversion channels.

Table 6.3 Examples of relevant small businesses

Business name Business type Features for lead generation

Deep Lemon Restaurant Showing customers business hours

The Pace Gallery Art gallery Advertising expositions

French Quarter Inn Hotel Booking rooms

Green Pencil Bistro Showing customers business hours

Radio Music Hall Concert hall Advertising concert programs

City Cinema Movies Showcasing new films and ticket prices

Christie’s Pub Showing customers business hours

The template can also be useful when you gain new insights about the story, but it’s
still not the right time to implement that story—for example, when you gather new
customer feedback, but have other priorities at the moment. Updating the template
can preserve your new insights for the future discussion.

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

134 CHAPTER 6 The life cycle of executable specifications

What a diverse bunch of businesses! Having them sign up to Mapper would lead to a lot
of healthy growth. The difficult part is that they would require different features in order
to find the platform valuable, and some of those features would be as complex as inte-
grating with external booking systems and payment processors. But for now, Mapper’s
customers will have to deal with the limited scope that we’ll implement in this chapter.

 At the analysis stage, delivery teams use examples to understand the business con-
text of their requirements—just as you did when you illustrated your business goals
with examples of use cases that might help you achieve those goals. Delivery teams can
also use examples to check whether the designers, programmers, and testers are in
sync with the domain experts—again, just as you did during your specification work-
shop. This is clearly the supporting role of examples that I talked about when I introduced
the agile testing matrix in figure 6.1. Is there a relationship between the two critical
diagrams in this chapter—the matrix from figure 6.1 and the life cycle diagram from
figure 6.5? As you can see in figure 6.8, you could easily rework the life cycle diagram
to show the supporting role of examples in the early stages of development.

The supporting role of early examples means delivery teams can use them to support
writing new code when they work on new functionalities. In a way, the right examples
provoke the right code, guiding the development process.

 But as the requirements become more precise, the supporting role becomes less
important than the critiquing role (see figure 6.9). By critiquing, I mean that examples
begin to challenge the requirement. For example, what if the examples collected by the
delivery team are wrong? Some surely will be.

 Examples at the critiquing stage usually have something they didn’t have earlier:
an actual iteration of working software. When working software becomes available, it’s

Support role
important at first,
diminishes later

Support

Critique

Analysis Planning Implementation

Stage

Maintenance

Figure 6.8 Before they’re automated, examples support delivery teams
in understanding the scope of requirements—which is important at the
beginning of the life cycle.

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

135Analyzing requirements with examples

easier to verify whether your initial analysis was right. Sometimes, the business expert
will forget things that real users will need. They may also be misguided or may cham-
pion a preferred solution due to a personal agenda. And sometimes, you can end up
overengineering the solution and worrying about too many examples that aren’t use-
ful in the real world.

6.3.3 Refining user stories with examples

Let’s assume that building a feature for so many kinds of businesses proved to be too
difficult for Mapper. Having a deadline to meet and limited resources you can use,
you decide to reduce the scope. To choose a customer segment that will allow you to
easily expand to other businesses in the future, you must look for a carryover customer.

DEFINITION Carryover customer—An example of a real customer who shares
behavioral traits with as many other customers as possible and becomes a
model for an average consumer. If you design a product or a feature for the
right carryover customer, other segments of the market should find it valu-
able, too.

Did you notice that all of the gastronomy businesses in table 6.3 share the same feature—
showing customers business hours—that would drive their conversion rates? Other busi-
nesses, such as shops, pubs, and clubs, share this trait, too. After some discussion, the
Mapper team agree that restaurants and bistros make good carryover customers.

In order to let my customer know where and when they can come in
As an owner of a gastronomy business
I want to add my company to Mapper's platform

Listing 6.2 [BETTER] Refined user story

When a functionality is implemented,
acceptance tests start to critique the product.

Support

Critique

Analysis Planning Implementation

Stage

Maintenance

Figure 6.9 As requirements get more precise, examples are challenged
by the working product.

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

136 CHAPTER 6 The life cycle of executable specifications

You believe that implementing this user story will fulfill the short-term business goal
you were tasked with. While you test the waters with gastronomy, the user stories for
other businesses will wait patiently in the backlog for their turn.

TIP Features can usually be split only based on technology. This is a limiting
approach. For example, if you wanted to split a report-generating feature into
smaller portions, your first instinct would probably be to split it based on its
technological ability to generate reports in different formats such as .pdf, .csv,
and .xls. User stories and requirements, on the other hand, can be split by
value. In your analysis of Mapper’s platform, you choose the most valuable
customer segment and split a small capability that would bring this segment a
lot of value without a lot of effort on your side.

You wouldn’t be able to make a confident decision without the validation provided by
the examples you collected. That’s their power.

 Collecting, analyzing, and refining examples creates a powerful feedback loop
within any project that uses SBE. Examples helped you define the scope of the features
and split user stories into smaller, more precise backlog items. Even though you’re yet
to see an executable specification that your Mapper team could use, it should already
be clear why examples lie at Gherkin’s center.

Eliciting better requirements with Feature Injection
The process you’ve been using throughout the chapter to elicit requirements is sim-
ilar in design to feature injection: a technique that iteratively derives scope from goals
through high-level examples.a In feature injection, teams first “hunt for value” by cre-
ating a model for delivering business value and listing underlying assumptions
instead of trying to describe the value with simple numbers such as revenue goals.
You created a simple model for value delivery when we discussed Mapper’s short-
term and long-term goals, why the goals are important, how they influence Mapper’s
business model, and which stakeholders demand that you achieve the metrics.

Once a model is defined, you do more than just evaluate whether to accept or reject
a suggested feature. You can proactively create a list of features that drive toward
delivery of business value based on your models. You did that when you wrote your
first user story and refined it to better fit the value model.

Injecting features provides a set of happy paths to create the outputs that will deliver
the business value. But doing so doesn’t provide all possible variations of input that
can occur and that may affect the outputs, or all cases that need to be considered
for successful delivery. You may recall happy paths from section 5.3.3, where I talked
about exploratory outcomes. Exploratory outcomes pursue possible unhappy paths,
leading to new testing ideas. When new examples are generated, you can put them
together in an executable specification—which is what you’re about to do for Mapper.

a Feature injection was created by Chris Matts and then expanded with Rohit Darji, Andy Pols,
Sanela Hodzic, and David Anderson over the years 2003–2011. For more information, see
“Feature Injection: Three Steps to Success” by Chris Matts and Gojko Adžić , InfoQ, Decem-
ber 14, 2011, http://mng.bz/E5fS.

www.itbook.store/books/9781617294105

http://mng.bz/E5fS
https://itbook.store/books/9781617294105

137Deriving scenarios from examples

6.4 Deriving scenarios from examples
In this section, you’ll step over another precision threshold as the user story you chose
(listing 6.2) finally transforms into a draft of an executable specification. To do so,
you’ll finally write your scenarios (see figure 6.10).

TIP A story becomes an executable specification when you’re sure it’s worth
investing time and effort in it.

From the examples you collected, you derive a list of acceptance criteria for the user
story:

 Every new business should provide a name and a location to display on the
map.

 Every business should provide business hours for each day of the week.

Let’s take the relevant examples of pubs, restaurants, and bistros from the previous
section to write the first draft of an executable specification.

Feature: New businesses

Scenario Outline: Businesses should provide required data

Given a restaurant <business> on <location>
When <business> signs up to Mapper
Then it should be added to the platform
And its name should appear on the map at <location>

Examples:
business	location
Deep Lemon	6750 South Street, Reno
Matt's	9593 Riverside Drive, St. Louis
Back to Black	8114 2nd Street, Stockton
Green Pencil	8583 Williams Street, Glendale
Le Chef	3318 Summit Avenue, Tampa
Paris	2105 Briarwood Court, Fresno
Christie's	714 Beechwood Drive, Boston
The Monument	77 Chapel Street, Pittsburgh
Anchor	110 Cambridge Road, Chicago

Listing 6.3 [OK] First draft of an executable specification

Writing
scenarios

Understanding
business goals

Refining
scenarios

Analyzing
requirements
with examples

Deriving
scenarios from

examples

Iterating
specifications

over time

Figure 6.10 Examples serve as a basis for all scenarios to come. Over time, the team should
optimize scenarios for readability and remove confusing, redundant examples.

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

138 CHAPTER 6 The life cycle of executable specifications

Straightforward, isn’t it? You take the first acceptance criterion from your list, rework
it to fit the Given-When-Then template, and use a scenario outline to include all the
relevant examples you collected during the previous phase of your analysis.

 The increased precision level allows your team to spot a possible edge case: what if
a restaurant has two establishments in two different locations in the same city? There
might be one Deep Lemon in Reno at 6750 South Street and a second one at 289 Lau-
rel Drive, for example.

 Should you allow that in your application? And if the answer is yes, should you
make that process easier? In the end, you decide there’s nothing wrong with accept-
ing multiple locations, but you don’t have time to optimize the process. Users will
have to make do with what they have. To finalize the decision, you add another exam-
ple to the outline.

Feature: New businesses

Scenario Outline: Businesses should provide required data

Given a restaurant <business> on <location>
When <business> signs up to Mapper
Then it should be added to the platform
And its name should appear on the map at <location>

Examples:
business	location
Deep Lemon	6750 Street South, Reno
Deep Lemon	289 Laurel Drive, Reno
Matt's	9593 Riverside Drive, St. Louis
Back to Black	8114 2nd Street, Stockton
Green Pencil	8583 Williams Street, Glendale
Le Chef	3318 Summit Avenue, Tampa
Paris	2105 Briarwood Court, Fresno
Christie's	714 Beechwood Drive, Boston
The Monument	77 Chapel Street, Pittsburgh
Anchor	110 Cambridge Road, Chicago

This is a fine example of a typical SBE tendency: tests guiding implementation. Only
when you get to the precision level of test cases can you see that you overlooked an
important element of the design. That’s because tests and requirements are essentially
connected. In 1968, Alan Perlis wrote that “a simulation which matches the require-
ments contains the control which organizes the design of the system.”2 A test pre-
defines “ideal” outputs and inputs up front; the application code must then be
designed so that the real inputs and outputs match the ideal ones defined by the test.
Otherwise, the test will fail.

Listing 6.4 [BETTER] Second draft of the executable specification

2 Software Engineering: Report on a conference sponsored by the NATO SCIENCE COMMITTEE, Garmisch, Germany, 7th to
11th October 1968, eds. Peter Naur and Brian Randell (Scientific Affairs Division, NATO, 1969),
http://mng.bz/jn3d.

First location
of a business

Second
location of
the same
business

www.itbook.store/books/9781617294105

http://mng.bz/jn3d
https://itbook.store/books/9781617294105

139Refining scenarios

TIP Here’s a rule of thumb: good code designs usually don’t need complex
tests. If your tests are too complicated, you may be missing an important
domain concept or tackling a known concept the wrong way.

For the second time in this chapter, the feedback mechanisms of the SBE process have
led you to discover something you missed in your initial analysis. You should expect to
make such discoveries multiple times during any feature’s development. You’ll proba-
bly go back and forth multiple times during development or even after implementa-
tion (as represented in figure 6.11). SBE practitioners should adopt the mindset that
there’s no such thing as a single moment when a feature is finished—features only get
released. These are two different things.

 You can begin analyzing requirements either by looking for examples, as you did
in Mapper’s case, or by perfecting a list of acceptance criteria. Either way, feedback
lets you spot inconsistencies more quickly and easily. You shouldn’t expect to get
everything right the first time; that’s typical.

6.5 Refining scenarios
With a scenario now in place, your team can implement it. Implementing the behav-
iors described by a scenario is the stage with the highest possible precision before a
feature is released to customers who validate its business value in the real world. This
section will show you what happens when a raw scenario first meets working code, and
how that meeting increases precision to a release-ready level.

 In chapters 1 and 2, you saw that after you write the first draft of a new executable
specification, you often need to refine scenarios and choose key examples to improve the
readability of your executable specification (see figure 6.12). That happens when
teams refine their specifications to merge similar examples, reject the ones that intro-
duce noise, and choose the most meaningful or descriptive ones.

Acceptance
criteria

Generate

Challenge

Examples

Figure 6.11 Collecting,
analyzing, and refining examples
is a continuous, never-ending
process that exists within a
powerful feedback loop.

Choosing key
examples

Understanding
business goals

Refining
scenarios

Refining
examples for

readability

Analyzing
requirements
with examples

Deriving
scenarios from

examples

Iterating
specifications

over time

Figure 6.12 Teams refine their specifications by
extracting key examples and turning scenarios
into clear, unambiguous, organized documents.

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

140 CHAPTER 6 The life cycle of executable specifications

Returning to Mapper, after your team begins to implement the behaviors from the
scenario, they notice that the examples used in the previous section don’t test any
edge cases other than a business with two locations. The examples don’t specify what
happens when any attribute of a business is missing. All the examples in the outline
end with the business successfully joining Mapper’s platform. Why aren’t there any
counterexamples?

 Let’s think for a moment and look for a few counterexamples that would go astray
from the happy path:

 The applicant might forget to fill out the input field with the business name on
the registration form.

 The applicant might forget to mark the location on the map.
 The applicant might make both of the previous mistakes.
 The applicant might provide a location, but it might be inaccurate; for exam-

ple, the user might mark the middle of a river as a location for their business.

Having defined new examples, you should now do two things. First, you need to
remove redundant examples that don’t bring any value to the specification. Second,
add new examples and counterexamples that express the failure scenarios. You can
also split the examples into multiple tables to improve readability.

Feature: New businesses

Scenario Outline: Businesses should provide required data

Given a restaurant <business> on <location>
When <business> signs up to Mapper
Then it <should?> be added to the platform
And its name <should?> appear on the map at <location>

Examples: Business name and location should be required
| business | location | should? |
| UNNAMED BUSINESS | NOWHERE | shouldn't |

Examples: Allow only businesses with correct names
business	location	should?
Back to Black	8114 2nd Street, Stockton	should
UNNAMED BUSINESS	8114 2nd Street, Stockton	shouldn't

Examples: Allow businesses with two or more establishments
business	location	should?
Deep Lemon	6750 Street South, Reno	should
Deep Lemon	289 Laurel Drive, Reno	should

Examples: Allow only suitable locations
business	location	should?
Anchor	110 Cambridge Road, Chicago	should
Anchor	Chicago River, Chicago	shouldn't
Anchor	NOWHERE	shouldn't

Listing 6.5 [BEST] Executable specification with refined key examples

Failure scenario
with no name
or location

Failure
scenario
with no

name

Failure scenario
with an
inaccurate
location

Failure
scenario
with no
location

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

141Iterating specifications over time

TIP You may have noticed that in listing 6.5, UNNAMED BUSINESS and NOWHERE
are uppercase. To be honest, this isn’t a Gherkin convention; but the capital
letters make these examples stand out, which improves readability.

The reworked outline is much easier to read and has more-comprehensive scenarios.
You need only to glance at it to recognize what it tests and why. It clearly distinguishes
between success examples and failure examples. To my eye, the precision level of this
scenario looks like it’s release ready. Congratulations!

6.6 Iterating specifications over time
You don’t stop working on an executable specification after you write it (see figure 6.13).
It’s a continuous process. The team should validate the specification suite frequently to
spot any integration errors as soon as possible, keeping the suite consistent at all times.
This section will show you how.

When the specifications are consistent and up to date, they evolve into a living docu-
mentation system that acts as a single source of truth about the system’s behaviors.
Everybody on the team can use the system freely to solve their disagreements. We’ll
enlarge on that, too.

6.6.1 Validating the specification suite

In the heat of the battle, while revising your scenario outline, you almost forgot that
the user story you wrote at the beginning of this chapter specified two acceptance
criteria:

 Every new business should provide a name and a location to display on the
map.

 Every business should provide specific business hours for each day of the week.

So far, you’ve only taken care of the first criterion. Let’s use what you’ve learned to
write the second scenario.

Understanding
business goals

Refining
scenarios

Evolving the
documentation

system

Validating the
specification

suite

Analyzing
requirements
with examples

Deriving
scenarios from

examples

Iterating
specifications

over time

Figure 6.13 The process of iterating specifications over time
means validating frequently, keeping the specification suite
consistent over time, and evolving a living documentation system.

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

142 CHAPTER 6 The life cycle of executable specifications

Feature: New businesses

Scenario Outline: Businesses should provide required data

[...]

Scenario Outline: Businesses should be able to set their hours

Given a restaurant <business> on <location>
When it schedules its hours to be <times> every day
Then the hours should appear on the map at <location>

Examples: Restaurants
| business | location | times |
| Deep Lemon | 6750 Street South, Reno | 7 AM-8 PM |

Examples: Bistros
| business | location | times |
| Le Chef | 3318 Summit Avenue, Tampa | 9 AM-9 PM |

Examples: Pubs
| business | location | times |
| Anchor | 77 Chapel Road, Chicago | 3 PM-3 AM |

After you agree on the shape of the scenario, the team proceeds to automate it. They
write new application code and generate the step definitions required to test the
code. Having done that, they run the test-execution engine to make sure the modified
system works as they expect it to.

 And that’s when they find out that implementing the behavior from the new sce-
nario breaks another scenario in the specification suite.

Feature: Show sightseeing objects on the map

Scenario: Tourists should be able to see sightseeing objects

Given a sightseeing object:
| name | location |
| Memorial Monument | Oak Street |

When Janet, who is a tourist, looks at Oak Street
Then she should see Memorial Monument on the map

It turns out that the new attributes of business hours don’t work well with other types
of entities that Mapper features on its maps, such as sightseeing objects. Not all sight-
seeing objects—such as monuments—have opening and closing times.

 Your team forgot about that, and the validations they added prevented sightseeing
objects from being created in the database. To fix that, you decide to make the valida-
tions optional instead of required. As soon as you do, the system starts working again,
and the feature is ready to be deployed to production.

 Before we move on, let’s dissect what happened. The specification suite has to be con-
sistent. When the team implements the behaviors from a new executable specification,

Listing 6.6 Adding another scenario to the specification

Listing 6.7 Broken scenario

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

143Iterating specifications over time

they should execute the existing specifications in order to check whether they still
work. The team must test the existing specifications every time changes are introduced
to the system.

 If a scenarios breaks after you introduce a new feature, you can take only two
actions:

 Update the broken scenario so it complies with the changes.
 Change the new feature so it won’t break the scenario.

As you can see, whereas new scenarios influence old scenarios, the old ones can also affect
new features (see figure 6.14). It’s another feedback loop within the process of SBE.
I’ve already talked about it in chapter 1, which listed validating frequently as one of SBE’s
key practices.

When you validate frequently, you once again operate in the product-critique quad-
rant of the testing matrix. As soon as you automate the critiques, the test-execution
engine will check the application regularly against new examples, protecting the qual-
ity of your product (see figure 6.15). Modern development practices take advantage of
that in various ways. For example, teams that employ continuous integration (CI)
practices will integrate as often as possible, leading to multiple integrations per day.
Each integration will then be verified by an automated build that can detect errors
almost instantly. Some teams trust their specification suites so much that they let every
change be automatically deployed to production if the tests pass—a practice known as
continuous deployment.

The specification
suite

The new changes the old.

The old influences the new.
The new feature

Figure 6.14 The feedback loop
between new features and the
existing specification suite

Continuous
integration

Support

Critique

Analysis Planning Implementation

Stage

Maintenance

Figure 6.15 After release, examples become automated tests that
critique the finished product, if they’re validated frequently.

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

144 CHAPTER 6 The life cycle of executable specifications

Most often, integration tests are followed by user acceptance testing (UAT). A popular
argument for performing UAT manually is that getting your hands on the product
activates a different type of perception and judgment than thinking about automa-
tion. Manipulation is different than cogitation. For example, when you test-drive a car,
you notice things you wouldn’t spot when poring over its specs, like the seats being
too stiff or the leather not looking right.

DEFINITION User acceptance testing (UAT)—The last phase of the software-test-
ing process. During UAT, actual end users test the product to make sure it can
handle the tasks required by the specifications.

But when business stakeholders trust in their executable specifications, they can
replace simple, manual, boring checks with automated tests from the specification
suite, streamlining the UAT process. (I’m not saying they should remove manual tests
altogether; they can just have fewer trivial ones.) Such trust is an ultimate sign that
you’re doing SBE well and that the stakeholders understand why examples and scenar-
ios are important.

6.6.2 Evolving the documentation system

After you deploy the feature to production, it starts living a life of its own. A bug may
occur from time to time; you fix it, write a regression test, and move on. As with any
other feature, when development ends, maintenance begins. This section covers what
happens with an executable specification at the end of its life cycle, when it reaches
the highest precision level.

 The Mapper features turn out to be a success. Gastronomy businesses sign up like
crazy. You hope that implementing the user stories about other types of businesses will
happen in the future. For now, management is happy. You’re proud of your team, too.
The code is good; the specification looks fine.

 At least, you think so, until your team comes back to the specification two months
later. That’s when Martha, a fresh hire on your team, takes on a new user story con-
nected to small businesses. To implement it, she needs to understand the feature bet-
ter, so she reads the specification the team created a few months ago. She still has
some questions, though, so she talks to you:

“Hey,” she says. “What are popular hours?”

“No idea. Why?”

“Here’s a user story you created two months ago, before I joined the team. It only mentions
that you might also want to consider letting gastronomy businesses specify popular
hours.”

“OK … that does ring a bell. But I’m not sure …”

“If it helps, I read the specification, and it already has a scenario that allows businesses
to schedule some kind of hours. Maybe somebody already implemented that user story but
forgot to mark it as done.”

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

145Iterating specifications over time

“Let’s ask Gus. I think he was the last one to work with this feature. Hey, Gus, have you
already implemented something called popular hours?”

“Didn’t we do that two months ago? Or wait, maybe it was business hours, not popular
hours. Let me check the code …”

You get the gist.
 Two months ago, you made a frequent development mistake: mid battle, you

thought the specifications you wrote were perfectly clear, because you still had all
the domain concepts in your short-term memory. After the dust settled, you realized
that your feeling of clarity was illusionary. Martha bravely brought a fresh perspec-
tive that helped you realize that issue. You cringe at the thought of how many other
decisions were made without clear distinctions between domain concepts like the
one she noticed.

 You decide to rewrite the scenario in question and include some clarifying definitions.

Feature: New businesses

Scenario Outline: Businesses should provide required data

[...]

Scenario Outline: Businesses should be able to set relevant hours

BUSINESS HOURS define when a business opens and closes.

Businesses provide POPULAR HOURS to help their customers
decide when it's the best time to come in.

Given a restaurant <business> on <location>
When it schedules <hours> to be <times>
Then the <hours> should appear on the map at <location>

Examples: Restaurants
business	location	hours	times
Deep Lemon	6750 Street South, Reno	business hours	7 AM-8 PM
Deep Lemon	6750 Street South, Reno	popular hours	3 PM-5 PM

Examples: Bistros
business	location	hours	times
Le Chef	3318 Summit Avenue, Tampa	business hours	9 AM-9 PM
Le Chef	3318 Summit Avenue, Tampa	popular hours	8 PM-9 PM

Examples: Pubs
business	location	hours	times
Anchor	77 Chapel Road, Chicago	business hours	3 PM-3 AM
Anchor	77 Chapel Road, Chicago	popular hours	9 PM-2 AM

Building and evolving a documentation system is the last step in the life cycle of any exe-
cutable specification. Your work on a specification is rarely finished after you deploy

Listing 6.8 [BETTER] Executable specification with clarifications

Added
definition

for business
hours

Separate
definition for
popular hours
that explains
the difference

Examples
of

business
hours

Examples of popular hours

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

146 CHAPTER 6 The life cycle of executable specifications

the new feature to production. You’ll likely come back to rewrite the steps, or change
the structure of the scenarios, or, as in the case we just discussed, add clarifications to
the specification layer. Chapter 7 goes into depth on these topics.

As the application changes and you discover new requirements, you may realize that
some of the scenarios you thought were distinct are parts of a bigger whole and
should be combined in a single specification. Sometimes the scenarios you thought
were connected will branch out into their own requirements. As the business evolves,
your specification suite should evolve with it. Changes in a specification suite often
directly reflect the changes in a delivery team’s understanding of the business
domain. It’s a fascinating subject that we’ll explore deeply in chapters 8–11.

 Before we finish this chapter, figure 6.16 takes another look at the full life cycle of
any executable specification. The next chapter focuses on the last box in this life
cycle. As you may remember from chapter 1, fully fledged executable specifications
are also called living documentation. Living documentation is always up to date because
it changes alongside the system, thanks to the link between the documentation and
automated tests. When an executable specification evolves into living documentation,
its active life cycle ends. That doesn’t mean the specification won’t change anymore, of
course, but it’ll be more passive from now on. Usually, it’ll be changed and influenced
by new specifications that enter the specification suite as the product matures. In
chapter 7, which talks about the details of building a living documentation system, I
discuss techniques that help you manage and maintain specifications in the passive
stage of their life cycle (see figure 6.16).

Gall’s Law
Why do I keep talking about gradual evolution of requirements and domain concepts
instead of trying to find the perfect system design from scratch? Gall’s Law is the
reason.

Gall’s Law is a rule of thumb for systems design that comes from John Gall’s book
Systemantics: How Systems Really Work and How They Fail (General Systemantics
Press, 2002):

A complex system that works is invariably found to have evolved from
a simple system that worked. A complex system designed from
scratch never works and can’t be patched up to make it work. You
have to start over with a working simple system.

—Gall’s law

I’m a strong believer in the power of this law. That’s why I keep repeating that you
should look for simple things that work, in terms of both the requirements and the
implementation, and then build on them. Moreover, SBE’s feedback loops will help
you spot systems that work, and thus never break, and systems that don’t work, and
thus break constantly.

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

147Summary

6.7 Summary
 An executable specification evolves throughout a project’s life cycle.
 As the project progresses, executable specifications become more precise. The

later the life cycle’s phase, the greater the need for detail.
 Exploring examples is a process of discovery: you start with little certainty about

the examples’ completeness, and as you contest them and improve the list, you
become more certain that your understanding is sound.

 Key examples should be chosen to illustrate the acceptance criteria clearly and
completely. As acceptance criteria change, the list of key examples evolves.

 Some examples support the team in their attempts to write new code, and some
examples critique the product, aiming to improve its quality.

 New features add new specification documents to the specification suite, but
the existing specification suite can also cause changes in new features. The new
influences the old, but the old can also change the new.

Refining user
stories with
examples

Writing
scenarios

Choosing key
examples

Understanding
business goals

Refining
scenarios

Refining
examples for

readability

Evolving the
documentation

system

Validating the
specification

suite

Analyzing
requirements
with examples

Collecting
examples

Conveying
requirements in

user stories

Analyzing
long-term

goals

Analyzing
short-term

goals

Deriving
scenarios from

examples

Iterating
specifications

over time

Figure 6.16 The full life cycle of
an executable specification

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

$44.99 / Can $59.99 [INCLUDING eBOOK]

Kamil Nicieja

T
he clearest way to communicate a software specifi cation is
to provide examples of how it should work. Turning these
story-based descriptions into a well-organized dev plan is

another matter. Gherkin is a human-friendly, jargon-free lan-
guage for documenting a suite of examples as an executable
specifi cation. It fosters effi cient collaboration between business
and dev teams, and it’s an excellent foundation for the specifi ca-
tion by example (SBE) process.

Writing Great Specifications teaches you how to capture execut-
able software designs in Gherkin following the SBE method.
Written for both developers and non-technical team members,
this practical book starts with collecting individual feature sto-
ries and organizing them into a full, testable spec. You’ll learn to
choose the best scenarios, write them in a way that anyone can
understand, and ensure they can be easily updated by anyone.

What’s Inside
● Reading and writing Gherkin
● Designing story-based test cases
● Team collaboration
● Managing a suite of Gherkin documents

Primarily written for developers and architects, this book is
accessible to any member of a software design team.

Kamil Nicieja is a seasoned engineer, architect, and project man-
ager with deep expertise in Gherkin and SBE.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/writing-great-specifications

WRITING GREAT SPECIFICATIONS
SOFTWARE ENGINEERING

M A N N I N G

“Does a great job taking
concepts from good architec-
tural practices and applying
them to the world of collab-
orative specifi cations.”

—From the Foreword by
 Gojko Adžic, author of
 Specifi cation by Example

“The missing manual for
writing great specifi cations.
I wish this book had existed
fi ve years ago!”

—Craig Smith, Unbound DNA

“Will jolt you into best
practices, give you fresh
perspectives, and reinvigorate
your commitment to this
business-critical skill.”

—Dane Balia, Hetzner

“The complete book on
how to write great specifi ca-
tions. Most of us know bits
and pieces, but to truly grok
it, you need this excellent
guide.”—Kumar Unnikrishnan

 Thomson Reuters

SEE INSERT

´

www.itbook.store/books/9781617294105

https://itbook.store/books/9781617294105

	cover
	Copyright
	BriefContents
	SampleCh06
	coverB

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

