
M A N N I N G

Julien Vehent

Secur i ty in the c loud

Sample Chapter

www.itbook.store/books/9781617294136

https://itbook.store/books/9781617294136

Securing DevOps

by Julien Vehent

Chapter 2

 Copyright 2018 Manning Publications

www.itbook.store/books/9781617294136

https://itbook.store/books/9781617294136

v

brief contents
1	 ■	 Securing DevOps  1

Part 1	 �Case study: applying layers of security
to a simple DevOps pipeline....................................19
2	 ■	 Building a barebones DevOps pipeline  21
3	 ■	 Security layer 1: protecting web applications  45
4	 ■	 Security layer 2: protecting cloud infrastructures  78
5	 ■	 Security layer 3: securing communications  119
6	 ■	 Security layer 4: securing the delivery pipeline  148

Part 2	 �Watching for anomalies and protecting
services against attacks.......................................177
7	 ■	 Collecting and storing logs  179
8	 ■	 Analyzing logs for fraud and attacks  208
9	 ■	 Detecting intrusions  240

10	 ■	 The Caribbean breach: a case study in incident response  275

Part 3	 �Maturing DevOps security...................................299
11	 ■	 Assessing risks  301
12	 ■	 Testing security  329
13	 ■	 Continuous security  354

www.itbook.store/books/9781617294136

https://itbook.store/books/9781617294136

21

2Building a barebones
DevOps pipeline

This chapter covers
¡	 Configuring a CI pipeline for an example

invoicer application

¡	 Deploying the invoicer in AWS

¡	 Identifying areas of a DevOps pipeline that
require security attention

In chapter 1, I outlined an ambitious security strategy and described why security
must be an integral component of the product. For security to be a part of DevOps,
we must first understand how applications are built, deployed, and operated in
DevOps. We’ll ignore security in this chapter and focus on building a fully func-
tional DevOps pipeline to understand the techniques of DevOps and set the stage
for security discussions we’ll have in chapters 3, 4, and 5.

DevOps is more about concepts, ideas, and workflows than it is about recom-
mending one specific technology. A DevOps standard may not exist, yet it has con-
sistent patterns across implementations. In this chapter, we take a specific example
to implement those patterns: the invoicer, a small web API that manages invoices
through a handful of HTTP endpoints. It’s written in Go and its source code is avail-
able at https://securing-devops.com/ch02/invoicer.

www.itbook.store/books/9781617294136

https://securing-devops.com/ch02/invoicer
https://itbook.store/books/9781617294136

22 Chapter 2  Building a barebones DevOps pipeline

2.1	 Implementation roadmap
We want to manage and operate the invoicer the DevOps way. To achieve this, we’ll
implement the various steps of CI, CD, and IaaS that will allow us to quickly release and
deploy new versions of the software to our users. Our goal is to go from patch submis-
sion to deploying in production in under 15 minutes with a mostly automated process.
The pipeline you’ll build is described in figure 2.1 and is composed of six steps:

1	 A developer writes a patch and publishes it to a feature branch of the code
repository.

2	 Automated tests are run against the application.

3	 A peer of the developer reviews the patch and merges it into the master branch
of the code repository.

4	 A new version of the application is automatically built and packaged into a
container.

5	 The container is published to a public registry.

6	 The production infrastructure retrieves the container from the registry and
deploys it.

Continuous integration

CI platform

Code repository

(2) (4)

Feature
branch

Master
branch

(1)

Patch

(5)

(6)

IaaS

Continuous delivery

Automated
tests

Container
build Container Container

repository

(3)

Developer
peer review

Figure 2.1   The complete CI/CD/IaaS pipeline to host the invoicer is composed of six steps that take a
patch to a deployed application.

www.itbook.store/books/9781617294136

https://itbook.store/books/9781617294136

	 23Implementation roadmap

Building this pipeline requires integrating several components to work with each
other. Your environment will need the following:

¡	A source code repository —Open source and proprietary solutions exist to manage
source code: Bitbucket, Beanstalk, GitHub, GitLab, SourceForge, and so on.
A popular choice at the time of writing is GitHub, which we’ll use to host the
invoicer’s code.

¡	A CI platform —Again, the options are numerous: Travis CI, CircleCI, Jenkins, Git-
Lab, and so on. Depending on your needs and environment, there’s a CI plat-
form for you. In this example, we’ll use CircleCI because it integrates easily with
GitHub and allows SSH access to build instances, which is handy for debugging
the build steps.

¡	A container repository —The container world is evolving rapidly, but Docker is
the standard choice at the time of writing. We’ll use the repository provided by
Docker Hub at hub.docker.com.

¡	An IaaS provider —Google Cloud Platform and Amazon Web Services (AWS) are
the two most popular IaaS providers at the time of writing. Some organizations
prefer to self-host their IaaS and turn to solutions like Kubernetes or OpenStack
to implement a layer of management on top of their own hardware (note that
Kubernetes can also be used on top of EC2 instances in AWS). In this book, I use
AWS because it’s the most popular and mature IaaS on the market.

Let’s summarize your toolkit: GitHub hosts the code and calls CircleCI when patches
are sent. CircleCI builds the application into a container and pushes it to Docker Hub.
AWS runs the infrastructure and retrieves new containers from Docker Hub to upgrade
the production environment to the latest version. Simple, yet elegant.

Every environment is different
It’s unlikely that the environment your organization uses is an exact match with the one
in this book, and some of the more specific security controls won’t apply directly to the
tools you use. This is expected, and I highlight security concepts before specific imple-
mentations, so you can transport them to your environment without too much trouble.

For example, the use of GitHub, Docker, or AWS may be disconcerting if your organization
uses different tools. I use them as teaching tools, to explain the techniques of DevOps.
Treat this chapter as a laboratory to learn and experiment with concepts, and then imple-
ment these concepts in whichever platform works best for you.

Keep in mind that even traditional infrastructures can benefit from modern DevOps tech-
niques by building the exact same CI/CD/IaaS pipeline third-party tools provide, only
internally. When you change technologies, the tools and terminology change, but the
overall concepts, particularly the security ones, remain the same.

This pipeline uses tools and services that are available for free, at least long enough
for you to follow along. The code and examples that follow are designed to be copied

www.itbook.store/books/9781617294136

hub.docker.com
https://itbook.store/books/9781617294136

24 Chapter 2  Building a barebones DevOps pipeline

and reused in order to build your own pipeline. Setting up your own environment is an
excellent companion to reading this chapter.

2.2	 The code repository: GitHub
When you head over to https://securing-devops.com/ch02/invoicer, you’ll be redi-
rected to the invoicer’s GitHub repository. This repository hosts the source code of the
invoicer application, as well as scripts that simplify the setup of the infrastructure. If
you want to create your own version of the pipeline, fork the repository into your own
account, which will copy Git files under your personal space, and follow the instruc-
tions in the README file to set up your environment. This chapter details all the steps
to get your environment up and running, some of which are automated in scripts
hosted in the repository.

2.3	 The CI platform: CircleCI
In this section, you’ll configure CircleCI to run tests and build a Docker container
when changes are applied to the invoicer. The example in this section is specific to
CircleCI, but the concept of using a CI platform to test and build an application is gen-
eral and can easily be reproduced in other CI platforms.

Code repositories and CI platforms like GitHub and CircleCI implement a concept
called webhooks to pass notifications around. When a change happens in the code repos-
itory, a webhook pushes a notification to a web address hosted by the CI platform. The
body of the notification contains information about the change the CI platform uses to
perform tasks.

When you sign in to CircleCI using your GitHub account, CircleCI asks you for per-
mission to perform actions on your behalf in your GitHub account. One of these actions
will be to automatically configure a webhook into the invoicer’s GitHub repository to
notify CircleCI of new events. Figure 2.2 shows the result of the automatic webhook
configuration in GitHub.

This webhook is used in steps 2 and 4 of figure 2.1. Every time GitHub needs to
notify CircleCI of a change, GitHub posts a notification to https://circleci.com/hooks/
github. CircleCI receives the notification and triggers a build at the invoicer. The sim-
plicity of the webhook technique makes it popular for interface services operated by
different entities.

Security note
GitHub has a sophisticated permission model allowing users to delegate fine-grained
permissions to third-party applications. Yet, CI platforms want read and write access to
all the repositories of a user. Rather than using your own highly privileged user to inte-
grate with a CI platform, in chapter 6 we’ll discuss how to use a low-privilege account and
keep your accesses under control.

www.itbook.store/books/9781617294136

https://securing-devops.com/ch02/invoicer
https://circleci.com/hooks/github
https://circleci.com/hooks/github
https://itbook.store/books/9781617294136

	 25The CI platform: CircleCI

Figure 2.2   The webhook between GitHub and CircleCI is automatically created in the invoicer’s
repository to trigger a build of the software when changes are applied.

The config.yml file shown in figure 2.3 is placed in the repository of the application.
It is written in YAML format and configures the CI environment to run specific tasks
on every change recorded by GitHub. Specifically, you’ll configure CircleCI to test
and compile the invoicer application, and then build and publish a Docker container,
which you’ll later deploy to the AWS environment.

NOTE   YAML is a data-serialization language commonly used to configure
applications. Compared to formats like JSON or XML, YAML has the benefit of
being much more accessible to humans.

The full CircleCI configuration file is shown next. You may notice some parts of the
file are command-line operations, whereas others are parameters specific to CircleCI.
Most CI platforms allow operators to specify command-line operations, which makes
them well suited to run custom tasks.

Listing 2.1   config.yml configures CircleCI for the application

version: 2
jobs:
 build:
 working_directory:
➥/go/src/github.com/Securing-DevOps/invoicer-chapter2

Figure 2.3   The CircleCI configuration is
stored under the .circleci directory in the
repository of the application.

Configures a working directory to build
the Docker container of the application

www.itbook.store/books/9781617294136

https://itbook.store/books/9781617294136

26 Chapter 2  Building a barebones DevOps pipeline

 docker:
 - image: circleci/golang:1.8
 steps:
 - checkout
 - setup_remote_docker

 - run:
 name: Setup environment
 command: |
 gb="/src/github.com/${CIRCLE_PROJECT_USERNAME}";
 if [${CIRCLE_PROJECT_USERNAME} == 'Securing-DevOps']; then
 dr="securingdevops"
 else
 dr=$DOCKER_USER
 fi
 cat >> $BASH_ENV << EOF
 export GOPATH_HEAD="$(echo ${GOPATH}|cut -d ':' -f 1)"
 export GOPATH_BASE="$(echo ${GOPATH}|cut -d ':' -f 1)${gb}"
 export DOCKER_REPO="$dr"
 EOF

 - run: mkdir -p "${GOPATH_BASE}"
 - run: mkdir -p "${GOPATH_HEAD}/bin"

 - run:
 name: Testing application
 command: |
 go test \
 github.com/${CIRCLE_PROJECT_USERNAME}/${CIRCLE_PROJECT_REPONAME}

 - deploy:
 command: |
 if ["${CIRCLE_BRANCH}" == "master"]; then
 docker login -u ${DOCKER_USER} -p ${DOCKER_PASS};
 go install --ldflags '-extldflags "-static"' \
 github.com/${CIRCLE_PROJECT_USERNAME}/${CIRCLE_PROJECT_REPONAME};
 mkdir bin;
 cp "$GOPATH_HEAD/bin/${CIRCLE_PROJECT_REPONAME}" bin/invoicer;
 docker build -t ${DOCKER_REPO}/${CIRCLE_PROJECT_REPONAME} .;
 docker images --no-trunc | awk '/^app/ {print $3}' | \
 sudo tee $CIRCLE_ARTIFACTS/docker-image-shasum256.txt;
 docker push ${DOCKER_REPO}/${CIRCLE_PROJECT_REPONAME};
 fi

Parts of this file may appear obscure, particularly Docker and Go. Ignore them for
now; we’ll get back to them later, and focus on the idea behind the configuration file.
As you can see in this listing, the syntax is declarative, similar to how we’d write a shell
script that performs these exact operations.

Declares the environment
the job will run on

Environment variables needed
to build the application

Runs the unit tests of the application

If changes are applied to the master branch,
builds the Docker container of the application

Logs into the Docker Hub service

Builds the application binary

Builds a container of the
application using a Dockerfile

Pushes the container to Docker Hub

www.itbook.store/books/9781617294136

https://itbook.store/books/9781617294136

	 27The CI platform: CircleCI

The configuration file must be kept in the code repository. When present, CircleCI
will use its instructions to take actions when a webhook notification is received from
GitHub. To trigger a first run, add the configuration file from listing 2.1 to a feature
branch of the Git repository, and push the branch to GitHub.

Listing 2.2   Creating a Git feature branch with a patch to add the CircleCI configuration

$ git checkout -b featbr1
$ git add .circleci/config.yml
$ git commit -m “initial circleci conf”
$ git push origin featbr1

For CircleCI to run the tests defined in config.yml, create a pull request to merge the
patch from the feature branch into the master branch.

What is a pull request?
“Pull request” is a term popularized by GitHub that represents a request to pull changes
from a given branch into another branch, typically between a feature and a master
branch. A pull request is opened when a developer submits a patch for review. Web-
hooks triggers on pull requests to run automated tests in CI (see step 2 of figure 2.1),
and peers review the proposed patch before agreeing to merge it (see step 3 of
figure 2.1).

Figure 2.4 shows the user interface of a GitHub pull request waiting for tests in CircleCI
to finish. CircleCI retrieves a copy of the feature branch, reads the configuration in
config.yml and follows all the steps to build and test the application.

Figure 2.4   The web interface of a GitHub pull request displays the status of tests running in CircleCI.
Running tests are yellow; they turn green if CircleCI completed successfully, or red if a failure was
encountered.

Note that, per your configuration, only unit tests that run as part of the go test com-
mand are executed. The deploy section of the configuration will only be executed
after the pull request is accepted and code is merged into the master branch.

Let’s assume that your reviewer is satisfied with the changes and approves the pull
request, completing step 3 of the pipeline. The patch is merged into the master branch
and the pipeline enters steps 4 and 5 of figure 2.1. CircleCI will run again, execute
the deployment section to build a Docker container of the application, and push it to
Docker Hub.

Creates a Git feature branch
Adds config.yml to the branch

Pushes changes to the code repository

www.itbook.store/books/9781617294136

https://itbook.store/books/9781617294136

28 Chapter 2  Building a barebones DevOps pipeline

2.4	 The container repository: Docker Hub
Our CircleCI configuration shows several commands that call Docker to build a con-
tainer for the application, such as docker build and docker push. In this section, I
first explain why Docker is an important component of DevOps, and then we’ll take a
close look at how the container is built.

Containers, and Docker containers in particular, are popular because they help solve
the complex problem of managing code dependencies. Applications usually rely on
external libraries and packages to avoid reimplementing common code. On systems,
operators prefer to share these libraries and packages for ease of maintenance. If an
issue is found in one library used by 10 applications, only that one library is updated,
and all applications automatically benefit from the update.

Issues arise when various applications require different versions of the same library.
For example, a package wanting to use OpenSSL 1.2 on a system that uses OpenSSL 0.9
by default won’t work. Should the base system have all versions of OpenSSL installed?
Are they going to conflict? The answer is rarely simple, and these issues have caused
many headaches for operators and developers. This problem has several solutions, all of
which are based on the idea that applications should manage their dependencies in iso-
lation. Containers provide a packaging mechanism to implement this kind of isolation.

New to Docker?
In this chapter, we focus on a limited usage of Docker containers to package the invoicer
application. For a full introduction to Docker, please refer to Jeff Nickoloff’s Docker in
Action (Manning, 2016).

As shown in the CircleCI configuration file we discussed previously, Docker containers
are built according to a configuration file called a Dockerfile. Docker does a good
job of abstracting the tedious task of building, shipping, and running containers. The
Dockerfile that follows is used to build the container of the invoicer application. It’s
short, yet hides a surprising amount of complexity. Let’s examine what it does.

Listing 2.3   Dockerfile used to build the invoicer’s container

FROM busybox:latest
RUN addgroup -g 10001 app && \
 adduser -G app -u 10001 \
 -D -h /app -s /sbin/nologin app
COPY bin/invoicer /bin/invoicer
USER app
EXPOSE 8080
ENTRYPOINT /bin/invoicer

Let’s examine listing 2.3:

¡	The FROM directive indicates a base container used to build your own container.
Docker containers have layers which allow you to add information on top of
another container. Here, we use a container based on BusyBox, a minimal set of
common Linux tools.

www.itbook.store/books/9781617294136

https://itbook.store/books/9781617294136

	 29The container repository: Docker Hub

¡	The RUN directive creates a user called “app” which is then used by the USER direc-
tive to execute your application.

¡	The COPY command loads the executable of the invoicer on the container. This
command takes the local file from bin/invoicer (a path relative to where the
build operation runs) and puts it into /bin/invoicer in the container.

¡	EXPOSE and ENTRYPOINT run the invoicer application when the container starts
and allow outsiders to talk to its port, 8080.

To build a container with this configuration, first compile the source code of the
invoicer into a static binary, copy it into bin/invoicer, then use docker build to create
the container.

Listing 2.4   Compiling the invoicer into a static binary

go install --ldflags '-extldflags "-static"' \
 github.com/Securing-DevOps/invoicer-chapter2
cp "$GOPATH/bin/invoicer-chapter2" bin/invoicer

Packaging the invoicer binary into a Docker container is then done via the build
command.

Listing 2.5   Creating the invoicer container via the docker build command

docker build -t securingdevops/invoicer-chapter2 -f Dockerfile .

That’s all you need for Docker to build your application container. CircleCI will run
this exact command and follow with a push of the container to Docker Hub.

Pushing to Docker Hub requires an account on https://hub.docker.com/ and a
repository called “securingdevops/invoicer” (or any other name that matches your
GitHub username and repository name). CircleCI needs these account credentials to
log into Docker Hub, so after creating the account, head over to the Settings section of
the repository in CircleCI to set the DOCKER_USER and DOCKER_PASS environment vari-
ables to the username and password of Docker Hub.

Security notes
You should avoid sharing your own Docker Hub credentials with CircleCI. In chapter 6, we’ll
discuss how service-specific accounts with minimal privileges can be used for this purpose.

Most CI platforms support mechanisms to use sensitive information without leaking
secrets. Both CircleCI and Travis CI protect environment variables that contain secrets
by refusing to expose them to pull requests coming from outside the repository (forks
instead of feature branches).

Let’s summarize what you’ve implemented so far. You have a source-code repository
that calls a CI platform using webhooks when changes are proposed. Tests run auto-
matically to help reviewers verify that the changes don’t break functionalities. When a
change is approved, it’s merged into a master branch. The CI platform is then invoked

www.itbook.store/books/9781617294136

https://hub.docker.com/
https://itbook.store/books/9781617294136

30 Chapter 2  Building a barebones DevOps pipeline

a second time to build a container of the application. The container is uploaded to a
remote repository where everyone can retrieve it.

In-house CI
You can achieve exactly the same results using a pipeline operated entirely behind
closed doors. Replace GitHub with a private instance of GitLab, replace CircleCI with Jen-
kins, and run your own Docker Registry server to store containers, and the same work-
flow will be implemented on a private infrastructure (but will take much longer to set up).

The core concept of the CI pipeline remains regardless of how you implement it. Auto-
mate the testing and building steps that happen at every change of the application, to
accelerate the integration of changes while guaranteeing stability.

The CI pipeline completely automates testing and packaging the invoicer application.
It can run hundreds of times a day if needed, and will reliably transform code into an
application container you can ship to production. The next phase is to build an infra-
structure to host and run that container.

2.5	 The production infrastructure: Amazon Web Services
Back in college, my law professor used to tell the story of what was probably the first
web-hosting service operated in France. It was run by a friend of his in the early 1990s.
At the time, hosting a web page on the newly born internet required operating every-
thing, from the network to the system layers. My professor’s friend didn’t have the
means to pay for a data center, so he laid out stacks of hard drives, motherboards, and
cables on desks in his basement and maintained connectivity to the internet through a
handful of modems modified for this purpose. The result was a noisy monster of spin-
ning and scratching disks, and probably a huge fire hazard, but it worked and hosted
websites!

The origins of the web are full of similar stories. They now serve to highlight the
progress we made in building and operating online services. Up until the late 2000s,
building an entire infrastructure from the ground up was a complicated and tedious
task that required lots of hardware and wiring. Nowadays, most organization outsource
this complexity to specialized companies, and focus their energy on building their core
products.

IaaS providers have simplified the task of building infrastructure by handling the
complexity in the background and only exposing simple interfaces to operators. Her-
oku, Google Cloud, Microsoft Azure, Cloud Foundry, Amazon Web Services, and IBM
Cloud are examples from the long list of providers that will manage the infrastructure
for you. IaaS users only need to declare the infrastructure at a logical level and let the
provider translate the declaration to the physical layer. Once declared, the operator will
entirely manage the infrastructure. By the time you’re done with the initial setup, the
management of the invoicer will be outsourced to the provider, and you won’t be man-
aging infrastructure components at all.

www.itbook.store/books/9781617294136

https://itbook.store/books/9781617294136

	 31The production infrastructure: Amazon Web Services

In this section, we focus on AWS, and more specifically on its Elastic Beanstalk (EB)
service. EB is specifically designed to host containers and abstract the management of
the infrastructure away from the operator. The choice of using EB for the purpose of
this book is completely arbitrary. It doesn’t have any distinctive features, other than
being simple enough to manage to fit within this chapter and demonstrate how to
implement a cloud service in AWS.

Before we get to the technical bits, we first need to discuss the concept of three-tier
architecture, which you’ll implement to host the invoicer. Next, we’ll go through a step-
by-step deployment of the invoicer in AWS EB.

New to Amazon Web Services?
From here on, I assume the reader has been introduced to AWS and can perform basic
tasks in the platform. For the reader who is new to AWS, an excellent introduction can be
found in Michael Wittig and Andreas Wittig’s Amazon Web Services in Action (Manning,
2015). The infrastructure presented here can be run in the free tier of AWS, so you can
experiment for free with your own account.

2.5.1	 Three-tier architecture

A common pattern in web applications is the three-tier architecture represented in
figure 2.5:

¡	The first tier handles incoming HTTP requests from clients (web browsers or
client applications). Caching and load balancing can be performed at this level.

¡	The second tier processes requests and builds responses. This is typically where
the core of the application lives.

¡	The third tier is the database and other backends that store data for the
application.

Tier 1

Elastic Load Balancing
ELB

Client

Tier 2 Tier 3

Elastic Compute Cloud
EC2

Relational Database Service
RDS

Figure 2.5   A three-tier architecture in AWS shows a load-balancer layer (tier 1), followed by a compute
node (tier 2), and backed by a relational database (tier 3).

Figure 2.5 uses the official AWS terminology and icons. We’ll reuse them throughout
the book, so it’s best to familiarize yourself with their roles right away.

www.itbook.store/books/9781617294136

https://itbook.store/books/9781617294136

32 Chapter 2  Building a barebones DevOps pipeline

¡	ELB —Elastic Load Balancing is an AWS-managed service that receives traffic
from internet clients and distributes it to applications. The main goal of ELB is
to allow applications to augment and reduce the number of servers as needed
without touching the frontend of the service. ELB also provides SSL/TLS termi-
nation to handle HTTPS in applications easily.

¡	EC2 —An Elastic Compute Cloud instance is nothing more than a virtual
machine (VM) that runs an operating system (OS). The base infrastructure of
EC2 is managed by AWS, and only the system on the VM—not the hypervisor or
network underneath it—is accessible to the operator. You’ll run applications on
EC2 instances.

¡	RDS —Most applications need to store data and thus need a database. Relational
Database Service (RDS) provides MySQL, PostgreSQL, and Oracle databases
managed entirely by AWS, allowing the DevOps team to focus on the data and
not management of the database servers. In the example, we use PostgreSQL to
store the invoicer’s data.

Online services are often more complex than the example in figure 2.5, but their
architecture is almost always based on the three-tier approach. The invoicer is a three-
tier application as well. In the next section, I explain how to create this environment in
AWS using the Elastic Beanstalk (EB) service.

2.5.2	 Configuring access to AWS

You’ll use the official AWS command-line tool to create the AWS EB infrastructure,
which needs a little bit of setup. First, retrieve access credentials for your account from
the Identity and Access Management (IAM) section of the web console. On your local
machine, access keys should be stored in $HOME/.aws/credentials. You can organize
multiple access keys per profile, but for now limit yourself to one access key in the
default profile, as shown in the next listing.

Listing 2.6   AWS credentials in $HOME/.aws/credentials

[default]
aws_access_key_id = AKIAILJA79QHF28ANU3
aws_secret_access_key = iqdoh181HoqOQ08165451dNui18Oah8913Ao8HTn

You also need to tell AWS which region you prefer to use by declaring it in $HOME/.
aws/config. We’ll work in the US East 1 region, but you could also pick a region closer
to where the target users are to reduce network latency.

Listing 2.7   AWS default region configuration in $HOME/.aws/config

[default]
region = us-east-1

The standard tools AWS provides know to look for configuration in these locations auto-
matically. Install one of the most popular tools, awscli, that provides the “aws” command
line. It’s a Python package installable via pip (or Homebrew on macOS only).

www.itbook.store/books/9781617294136

https://itbook.store/books/9781617294136

	 33The production infrastructure: Amazon Web Services

Listing 2.8   Installing awscli tools via pip

$ sudo pip install -U awscli

Successfully installed awscli-1.10.32

Package managers
Pip and Homebrew are package managers. Pip is the standard Python package manager
that works on all operating systems. Homebrew is a package manager specific to macOS,
managed by a community of contributors.

Although the installation package is called awscli, the command it provides is called
aws. The aws command line is a powerful tool that can control an entire infrastructure.
You’ll spend a lot of time with it and gradually familiarize yourself with the various
commands.

Creation EB script
The aws commands used in the rest of this chapter to create the Elastic Beanstalk envi-
ronment have been bundled into a shell script available at https://securing-devops.com/
eb_creation_script. Feel free to use it if entering commands manually isn’t your thing.

2.5.3	 Virtual Private Cloud

All AWS accounts come with a Virtual Private Cloud (VPC) assigned by default to the
account in each region. As shown in figure 2.6, a VPC is a segment of the AWS network
dedicated to a customer within the infrastructure of a given region. VPCs are isolated
from each other and have networking capabilities we’ll use later. At a physical level, all
customers share the same networking equipment, but that view is entirely abstracted
away by the IaaS.

You can retrieve the ID of the VPC created with your account in the us-east-1 region
using the AWS command line in the next listing.

Listing 2.9   Retrieving the unique ID of the VPC using the AWS command line

$ aws ec2 describe-vpcs

{
 "Vpcs": [
 {
 "VpcId": "vpc-2817dc4f",
 "InstanceTenancy": "default",
 "State": "available",

Calls the API to retrieve VPC details

VPC unique ID

www.itbook.store/books/9781617294136

https://securing-devops.com/eb_creation_script
https://securing-devops.com/eb_creation_script
https://itbook.store/books/9781617294136

34 Chapter 2  Building a barebones DevOps pipeline

 "DhcpOptionsId": "dopt-03e20a67",
 "CidrBlock": "172.31.0.0/16",
 "IsDefault": true
 }
]
}

Virtual Private Cloud

AWS region

Elastic
Load Balancing

ELB

Client
Elastic

Compute Cloud
EC2

Relational
Database Service

RDS

Figure 2.6   Each internal cloud represents a VPC and is private to a specific customer of AWS. By
default, VPCs can’t talk to each other and provide a virtual isolation layer between customers.

The command returns the vpc-2817dc4f ID for the default VPC. This ID is unique and
will be different when you set up your own account. Each AWS account can have sev-
eral VPCs to host components, but for our purposes, using the default VPC will be fine.

2.5.4	 Creating the database tier

The next step of the setup is to create the third tier of your infrastructure: the data-
base, as shown in figure 2.7. This tier is composed of an RDS instance running Postgre
SQL placed into a security group. You need to define the security group first, and then
place the instance into it.

What are security groups?
Security groups are virtual domains that control interactions between AWS components.
We’ll discuss security groups further in chapter 4 when covering infrastructure security.

Default network range

www.itbook.store/books/9781617294136

https://itbook.store/books/9781617294136

	 35The production infrastructure: Amazon Web Services

Elastic Load Balancing
ELB

Client

Security group

Elastic Compute Cloud
EC2

Relational Database Service
RDS

Figure 2.7   The third tier of the invoicer infrastructure is made of an RDS inside its security group.

Creating a security group with the AWS command line is done using the following
parameters. For now, the security group doesn’t allow or deny anything; it’s only
declared for future use.

Listing 2.10   Creating the security group of the RDS instance

$ aws ec2 create-security-group \
 --group-name invoicer_db \
 --description "Invoicer database security group" \
 --vpc-id vpc-2817dc4f

{
 "GroupId": "sg-3edf7345"
}

Next, create the database and place it inside the sg-3edf7345 security group.

Listing 2.11   Creating the RDS instance

$ aws rds create-db-instance \
 --db-name invoicer \
 --db-instance-identifier invoicer-db \
 --vpc-security-group-ids sg-3edf7345 \
 --allocated-storage “5” \
 --db-instance-class "db.t2.micro" \
 --engine postgres \
 --engine-version 9.6.2 \
 --auto-minor-version-upgrade \
 --publicly-accessible \
 --master-username invoicer \
 --master-user-password ‘S0m3th1ngr4nd0m’ \
 --no-multi-az

Listing 2.11 has a lot packed into it. AWS creates a VM designed to run PostgreSQL
9.5.2. The VM has minimal resources (low CPU, memory, network throughput, and
disk space), as determined by the allocated storage of 5 GB and the db.t2.micro
instance class. Finally, AWS creates a database inside PostgreSQL called “invoicer” and

Unique name of the security group

ID of the default VPC Response from the API with
the unique security group ID

Name of the RDS instance ID

ID of the security group

Configuration of the
PostgreSQL instance

Admin credentials
of the database

www.itbook.store/books/9781617294136

https://itbook.store/books/9781617294136

36 Chapter 2  Building a barebones DevOps pipeline

grants administrator permissions to a user also called “invoicer” with the password
“$0m3th1ngr4nd0m.”

The creation of an RDS instance can take some time, as AWS needs to find an
appropriate location for it across its physical infrastructure and run through all the
configuration steps. You can monitor the creation of the instance with the describe-
db-instances flag of the AWS command line, as shown in the following listing. The
script monitors the AWS API every 10 seconds and exits the loop when a host name for
the database is returned in the JSON response.

Listing 2.12   Monitoring loops that wait for the RDS instance to be created

while true; do
 aws rds describe-db-instances \
 --db-instance-identifier invoicer-db > /tmp/invoicer-db.json
 dbhost=$(jq -r '.DBInstances[0].Endpoint.Address' /tmp/invoicer-db.json)
 if ["$dbhost" != "null"]; then break; fi
 echo -n '.'
 sleep 10
done
echo "dbhost=$dbhost"

....dbhost=invoicer-db.cxuqrkdqhklf.us-east-1.rds.amazonaws.com

Querying JSON with jq
Note the use of the jq utility to parse the JSON response from the AWS API. Jq is a popular
command-line tool to extract information from JSON-formatted data without involving a
programming language. You can learn more about it at https://stedolan.github.io/jq/. On
Ubuntu, install it with apt-get install jq. On macOS, brew install jq will work.

Once created, your database instance will have a hostname internal to the VPC and
gated by a security group. You’re ready to create the first and second tiers of the
infrastructure.

2.5.5	 Creating the first two tiers with Elastic Beanstalk

AWS provides many different techniques to deploy applications and manage servers.
In this example, we use what’s probably the most automated of them: Elastic Beanstalk
(EB). EB is a management layer on top of other AWS resources. It can be used to cre-
ate ELBs and EC2 instances and their security groups, and to deploy applications to
them. For this example, deploy the Docker container you built in the CI pipeline to
EC2 instances fronted by an ELB and managed by EB. The architecture is shown in
figure 2.8.

www.itbook.store/books/9781617294136

https://stedolan.github.io/jq/
https://itbook.store/books/9781617294136

	 37The production infrastructure: Amazon Web Services

Elastic Beanstalk

Security group

Elastic Load Balancing
ELB

Client

Security group

Elastic Compute Cloud
EC2

Relational Database Service
RDS

Figure 2.8:The first and second tiers of the infrastructure are managed by AWS EB.

EB first needs an “application,” which is an empty structure to organize your compo-
nents. Create one for the invoicer with the following command.

Listing 2.13   Creating an EB application

aws elasticbeanstalk create-application \
 --application-name invoicer \
 --description "Securing DevOps Invoicer application"

Inside the invoicer EB application, create an environment that will run the invoicer’s
Docker container. This part of the configuration requires more parameters, because
you need to indicate which solution stack you want to use. Solution stacks are pre-
configured EC2 instances for a particular use case. We want to use the latest version
preconfigured to run the Docker instance. You can obtain its name using the list-
available-solution-stacks command, and filter its output using jq and grep.

Listing 2.14   Retrieving the name of the latest Docker EB stack available

aws elasticbeanstalk list-available-solution-stacks | \
 jq -r '.SolutionStacks[]' | \
 grep -P '.+Amazon Linux.+Docker.+' \
 | head -1

64bit Amazon Linux 2017.03 v2.7.3 running Docker 17.03.1-ce

What about performances?
You may notice we run a Docker container inside a VM that runs on top of a hypervisor.
This may seem rather inefficient. It’s true that the raw performance of this approach is
lower than running applications on bare-metal servers, but the ease of deployment and
maintenance—which lets us easily increase the number of servers with the load—mostly
offsets the performance hit. It all comes down to what matters the most to you: raw per-
formance or deployment flexibility.

Extracts fields from
the JSON response

www.itbook.store/books/9781617294136

https://itbook.store/books/9781617294136

38 Chapter 2  Building a barebones DevOps pipeline

The version of this Docker solution stack will likely have changed by the time you read
these pages, but you can always use the AWS API to obtain the name of the latest version.

Before you create the environment, you need to prepare the configuration of the
invoicer application. Every application needs configuration parameters typically provided
in configuration files on the filesystem of the application servers. Creating and updating
those files, however, requires direct access to servers, which you want to avoid here.

If you have a look at the source code of the invoicer, you’ll notice that the only con-
figuration it needs is the parameters to connect to its PostgreSQL database. Rather than
managing a configuration file, those parameters can be taken from the environment
variables. The following listing shows how the invoicer reads its database configuration
from four environment variables.

Listing 2.15   Go code to get PostgreSQL parameters from environment variables

db, err = gorm.Open("postgres",
 fmt.Sprintf("postgres://%s:%s@%s/%s?sslmode=%s",
 os.Getenv("INVOICER_POSTGRES_USER"),
 os.Getenv("INVOICER_POSTGRES_PASSWORD"),
 os.Getenv("INVOICER_POSTGRES_HOST"),
 os.Getenv("INVOICER_POSTGRES_DB"),
 "disable",
))
if err != nil {
 panic("failed to connect database")
}

Upon startup, the invoicer will read the four environment variables defined in listing 2.15
and use them to connect to the database. You need to configure those variables in EB so
they can be passed to the application, through Docker, at startup. This is done in a JSON
file, shown next, loaded in the environment creation command. The content of the fol-
lowing listing is saved in a text file named ebs-options.json.

Listing 2.16   ebs-options.json references variables used to connect to the database

[
 {
 "Namespace": "aws:elasticbeanstalk:application:environment",
 "OptionName": "INVOICER_POSTGRES_USER",
 "Value": "invoicer"
 },
 {
 "Namespace": "aws:elasticbeanstalk:application:environment",
 "OptionName": "INVOICER_POSTGRES_PASSWORD",
 "Value": "S0m3th1ngr4nd0m"
 },
 {
 "Namespace": "aws:elasticbeanstalk:application:environment",
 "OptionName": "INVOICER_POSTGRES_DB",
 "Value": "invoicer"
 },

Retrieves configuration from
environment variables

www.itbook.store/books/9781617294136

https://itbook.store/books/9781617294136

	 39The production infrastructure: Amazon Web Services

 {
 "Namespace": "aws:elasticbeanstalk:application:environment",
 "OptionName": "INVOICER_POSTGRES_HOST",
 "Value": "invoicer-db.cxuqrkdqhklf.us-east-1.rds.amazonaws.com"
 }
]

Security note
Instead of using the database administrator account in your application, you should cre-
ate a separate user that has limited database permissions. We’ll discuss how database
permissions can be used to protect against application compromises in chapter 4.

Save the file under the name ebs-options.json, and proceed with the creation of the
environment.

Listing 2.17   Creating the EB environment to run the application container

aws elasticbeanstalk create-environment \
 --application-name invoicer \
 --environment-name invoicer-api \
 --description "Invoicer APP" \
 --solution-stack-name \
 "64bit Amazon Linux 2017.03 v2.7.3 running Docker 17.03.1-ce" \
 --option-settings file://$(pwd)/ebs-options.json \
 --tier "Name=WebServer,Type=Standard,Version=''"

EB takes care of the creation of the EC2 instances and ELB of the environment, cre-
ating the first two tiers of the infrastructure in a single step. This step will take several
minutes to complete, because various components need to be instantiated for the first
time. Once finished, the public endpoint to access the application can be retrieved
using the describe-environments command.

Listing 2.18   Retrieving the public hostname of the EB load balancer

aws elasticbeanstalk describe-environments \
--environment-names invoicer-api \
| jq -r '.Environments[0].CNAME'

invoicer-api.3pjw7ca4hi.us-east-1.elasticbeanstalk.com

Security note
EB creates an ELB that only supports HTTP, not HTTPS. Configuring an ELB to support
HTTPS, including which SSL/TLS configuration to use, is explained in chapter 5.

Your environment is set up, but the EC2 instance isn’t yet permitted to connect to the
database. Security groups block all inbound connectivity by default, so you need to
open the security group of the RDS instance to allow the EC2 instance to connect, as
shown in figure 2.9.

Application name created previously

Public endpoint

www.itbook.store/books/9781617294136

https://itbook.store/books/9781617294136

40 Chapter 2  Building a barebones DevOps pipeline

tcp/5432

Elastic Load Balancing
ELB

Client

sg-6ec86f15 sg-3edf7345

Elastic Compute Cloud
EC2

Relational Database Service
RDS

Figure 2.9   The security group of the RDS instance must permit inbound connections to allow the EC2
instance to reach the database.

You already know the ID of the RDS security group is sg-3edf7345. You need to insert a
rule into it that permits everyone, aka 0.0.0.0/0, to connect to it.

Listing 2.19   Opening the RDS security group to all origins

aws ec2 authorize-security-group-ingress \
--group-id sg-3edf7345 \
--cidr 0.0.0.0/0 \
--protocol tcp --port 5432

Security note
You can certainly do better than opening up your database to the whole internet. In chap-
ter 4, we’ll discuss how to use security groups to manage dynamic and fine-grained fire-
wall rules.

At this point of the setup, you have a fully operational infrastructure, but nothing run-
ning on it yet. The next phase is to deploy the Docker container of the invoicer, which
you built and published previously, to your EB infrastructure.

2.5.6	 Deploying the container onto your systems

The Docker container of the invoicer is hosted on hub.docker.com (step 5 of fig-
ure 2.1). You need to tell EB the location of the container so it can pull it down from
Docker Hub and deploy it to the EC2 instance. The following JSON file will handle
that declaration.

Listing 2.20   EB configuration indicates the location of the container

{
 "AWSEBDockerrunVersion": "1",
 "Image": {
 "Name": "docker.io/securingdevops/invoicer",
 "Update": "true"
 },

Application name created previously

Opens up to the whole internet

Permits PostgreSQL port

Location of the invoicer
container on Docker Hub

www.itbook.store/books/9781617294136

hub.docker.com
https://itbook.store/books/9781617294136

	 41The production infrastructure: Amazon Web Services

 "Ports": [
 {
 "ContainerPort": "8080"
 }
],
 "Logging": "/var/log/nginx"
}

The JSON configuration will be read by each new instance that joins your EB infra-
structure, so you need to make sure instances can retrieve the configuration by upload-
ing it to AWS S3. Save the definition to a local file, and upload it using the command
line. Make sure to change the bucket name from “invoicer-eb” to something personal,
as S3 bucket names must be unique across all AWS accounts.

Listing 2.21   Uploading the application configuration to S3

aws s3 mb s3://invoicer-eb
aws s3 cp app-version.json s3://invoicer-eb/

In EB, you reference the location of the application definition to create an application
version named invoicer-api.

Listing 2.22   Assigning the application configuration to the EB environment

aws elasticbeanstalk create-application-version \
 --application-name "invoicer" \
 --version-label invoicer-api \
 --source-bundle "S3Bucket=invoicer-eb,S3Key=app-version.json"

And finally, instruct EB to update the environment using the invoicer-api application
version you just created. With one command, tell AWS EB to pull the Docker image,
place it on the EC2 instances, and run it with the environment previously configured,
all in one automated step. Moving forward, the command in the following listing is the
only one you’ll need to run to deploy new versions of the application.

Listing 2.23   Deploying the application configuration to the EB environment

aws elasticbeanstalk update-environment \
 --application-name invoicer \
 --environment-id e-curu6awket \
 --version-label invoicer-api

The environment update takes several minutes, and you can monitor completion in
the web console. When the environment turns green, it’s been updated successfully.
The invoicer has a special endpoint on /__version__ that returns the version of the
application currently running. You can test the deployment by querying the version
endpoint from the command line and verifying the version returned is the one you
expect.

Listening port of the application

Creates a bucket

Uploads the JSON definition

www.itbook.store/books/9781617294136

https://itbook.store/books/9781617294136

42 Chapter 2  Building a barebones DevOps pipeline

Listing 2.24   Retrieving the application version through its public endpoint

curl \
http://invoicer-api.3pjw7ca4hi.us-east-1.elasticbeanstalk.com/__version__
{
 "source": "https://github.com/Securing-DevOps/invoicer",
 "version": "20160522.0-660c2c1",
 "commit": "660c2c1bcece48115b3070ca881b1a7f1c432ba7",
 "build": "https://circleci.com/gh/Securing-DevOps/invoicer/"
}

Make sure the database connection works as expected by creating and retrieving an
invoice.

Listing 2.25   Creating an invoice via the public API

curl -X POST \
--data '{"is_paid": false, "amount": 1664, "due_date":

"2016-05-07T23:00:00Z", "charges": [{ "type":"blood work", "amount":
1664, "description": "blood work" }] }' \

http://invoicer-api.3pjw7ca4hi.us-east-1.elasticbeanstalk.com/invoice

created invoice 1

Your first invoice was successfully created. That’s encouraging. Now let’s try to retrieve it.

Listing 2.26   Retrieving an invoice via the public API

curl \
http://invoicer-api.3pjw7ca4hi.us-east-1.elasticbeanstalk.com/invoice/1

{
 "ID": 1,
 "CreatedAt": "2016-05-25T18:49:04.978995Z",
 "UpdatedAt": "2016-05-25T18:49:04.978995Z",
 "amount": 1664,
 "charges": [
 {
 "ID": 1,
 "CreatedAt": "2016-05-25T18:49:05.136358Z",
 "UpdatedAt": "2016-05-25T18:49:05.136358Z",
 "amount": 1664,
 "description": "blood work",
 "invoice_id": 1,
 "type": "blood work"
 }
],
 "due_date": "2016-05-07T23:00:00Z",
 "is_paid": false,
 "payment_date": "0001-01-01T00:00:00Z"
}

www.itbook.store/books/9781617294136

https://itbook.store/books/9781617294136

	 43A rapid security audit

Security note
An invoice-management API left wide open to the internet is obviously a bad idea. In
chapter 3, we’ll discuss how to protect web applications, using authentication.

This is it: the invoicer is up and running in AWS Elastic Beanstalk. Getting to this point
took a significant amount of work, but look at what you achieved: with one command,
you can now deploy new versions of the invoicer. No server management, no manual
configuration, everything from testing the code, to deploying the container, to pro-
duction is automated. You can go from the patch sent to the source code repository
to deployment in the infrastructure well within the 15 minutes we decided on at the
beginning of the chapter.

Our infrastructure is still naive and doesn’t have all the security controls required
to operate a production service. But that’s configuration. The logic behind the CI/CD
pipeline will remain unchanged as we bring more security to the infrastructure. We’ll
maintain the capability to deploy new versions of applications without involving manual
steps, all within the 15-minute window.

That’s the promise of DevOps: fully automated environments that allow the organi-
zation to go from idea to product in short cycles. With less pressure on the operational
side, the organization is free to focus on its product more, including its security.

2.6	 A rapid security audit
As we focused on getting the invoicer deployed, we ignored several security issues on
the application, infrastructure, and CI/CD pipeline:

¡	GitHub, CircleCI, and Docker Hub need access to each other. By default, we
granted all three access to highly privileged accounts which, if leaked, could
damage other services hosted on these accounts. Making use of accounts with
fewer privileges will increase security.

¡	Similarly, the credentials we used to access AWS could easily be leaked, granting
a bad actor full access to the environment. Multifactor authentication and fine-
grained permissions should be used to reduce the impact of a credential leak.

¡	Our database security practices are subpar. Not only does the invoicer use an
admin account to access PostgreSQL, but the database itself is also public. A
good way to reduce the risk of a breach is to harden the security of the database.

¡	The public interface to the invoicer uses clear-text HTTP, meaning that anyone
on the connection path can copy and modify the data in transit. HTTPS is an easy
security win and we should make use of it right away.

¡	And finally, the invoicer itself is wide open to the internet. We need authentica-
tion and strong security practices to keep the application secure.

www.itbook.store/books/9781617294136

https://itbook.store/books/9781617294136

44 Chapter 2  Building a barebones DevOps pipeline

Throughout the rest of part 1, we’ll work through these issues and discuss how to add
security. We’ve got some work to do, and four chapters to secure your DevOps pipeline:

¡	We’ll start with application security in chapter 3 and discuss vulnerabilities and
controls the invoicer is exposed to.

¡	Infrastructure security will be discussed in chapter 4 where we harden the AWS
environment that hosts the production service.

¡	Guaranteeing communications security with the invoicer will be done in chapter 5
when we implement HTTPS.

¡	Pipeline security is the topic of chapter 6 and will cover the security principles of
building and deploying code in CI/CD.

Summary
¡	Continuous integration interfaces components via webhooks to test code and

build containers.
¡	Continuous delivery uses IaaS, like AWS Elastic Beanstalk, to deploy containers

to production.
¡	Except for manual reviews, all steps of the CI/CD pipeline are fully automated.
¡	A barebones DevOps pipeline is riddled with security problems.

www.itbook.store/books/9781617294136

https://itbook.store/books/9781617294136

Julien Vehent

A
n application running in the cloud can benefi t from
incredible effi ciencies, but they come with unique security
threats too. A DevOps team’s highest priority is under-

standing those risks and hardening the system against them.

Securing DevOps teaches you the essential techniques to secure
your cloud services. Using compelling case studies, it shows
you how to build security into automated testing, continuous
delivery, and other core DevOps processes. This experience-
rich book is fi lled with mission-critical strategies to protect
web applications against attacks, deter fraud attempts, and
make your services safer when operating at scale. You’ll also
learn to identify, assess, and secure the unique vulnerabilities
posed by cloud deployments and automation tools commonly
used in modern infrastructures.

What’s Inside
● An approach to continuous security
● Implementing test-driven security in DevOps
● Security techniques for cloud services
● Watching for fraud and responding to incidents
● Security testing and risk assessment

Readers should be comfortable with Linux and standard
DevOps practices like CI, CD, and unit testing.

Julien Vehent is a security architect and DevOps advocate.
He leads the Firefox Operations Security team at Mozilla, and
is responsible for the security of Firefox’s high-traffi c cloud
services and public websites.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit www.manning.com/books/securing-devops

$49.99 / Can $65.99 [INCLUDING eBOOK]

Securing DevOps

SECURITY/OPERATIONS

M A N N I N G

“Provides both sound ideas
and real-world examples.

 A must-read.”
—Adrien Saladin, PeopleDoc

“Makes a complex topic
completely approachable.

Recommended for DevOps
personnel and technology

managers alike.”
—Adam Montville

Center for Internet Security

“Practical and ready for
 immediate application.”—Yan Guo, Eventbrite

“An amazing resource
for secure software

development—a must in
this day and age—whether
 or not you’re in DevOps.”
—Andrew Bovill, Next Century

See first page

www.itbook.store/books/9781617294136

https://itbook.store/books/9781617294136

	Securing DevOps: Security in the cloud
	brief contents
	2 Building a barebones DevOps pipeline
	2.1	Implementation roadmap
	2.2	The code repository: GitHub
	2.3	The CI platform: CircleCI
	2.4	The container repository: Docker Hub
	2.5	The production infrastructure: Amazon Web Services
	2.5.1	Three-tier architecture
	2.5.2	Configuring access to AWS
	2.5.3	Virtual Private Cloud
	2.5.4	Creating the database tier
	2.5.5	Creating the first two tiers with Elastic Beanstalk
	2.5.6	Deploying the container onto your systems

	2.6	A rapid security audit

