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5Security layer 3: 
securing communications

This chapter covers
¡	Understanding the concepts and vocabulary of 

Transport Layer Security

¡	Establishing a secure connection between a 
web browser and a server

¡	Obtaining certificates from AWS and Let’s 
Encrypt

¡	Configuring HTTPS on the application’s public 
endpoint

¡	Modernizing HTTPS using Mozilla’s guidelines

The application controls added in chapter 3 and infrastructure controls added in 
chapter 4 are all critical to guaranteeing that customer data is stored safely and pro-
tected against theft and integrity loss. We have, so far, focused our efforts on the 
hosting environment and ignored a large security hole: data transiting between the 
user and the service is left unprotected and can be stolen or modified by anyone in 
the pathway. In this chapter, I explain how to bring confidentiality and integrity to 
network communications using HTTPS.
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120 Chapter 5  Security layer 3: securing communications

HTTPS is composed of HTTP, the application protocol of the web, and Transport 
Layer Security, or TLS, the most widely used cryptographic protocol on the internet. Most 
of the security controls provided by HTTPS come from TLS, and we’ll logically spend 
most of this chapter exploring how to use this protocol correctly. What isn’t covered by 
TLS directly requires enabling controls at the HTTP level, so we’ll discuss HTTP Strict 
Transport Security (HSTS) and HTTP Public Key Pinning (HPKP) near the end of the 
chapter.

If you’ve never worked with TLS or cryptographic protocols, you may find a lot of its 
jargon foreign to you. Terms like “certificate authorities,” “public key infrastructure,” 
and “perfect forward secrecy” are part of the vocabulary of security engineers, and 
understanding them is an important goal of the chapter. We’ll start this chapter by dis-
cussing these terms, where they come from, and how they relate to HTTPS.

5.1	 What does it mean to secure communications?
The security of a communication channel depends on three core properties, illus-
trated in figure 5.1:

¡	Confidentiality —Only the legitimate participants of the discussion must be able to 
access the information.

¡	Integrity —Messages exchanged between the participants must not be modified 
in transit.

¡	Authenticity —Participants of the discussion must be able to prove their identity 
to each other.

Authenticity: Alice can guarantee the
message comes from Bob.

Confidentiality: Bob knows only Alice will
be able to read his secret message to her.

Alice Bob

Eve

Integrity: Eve is unable to modify the message in transit.

Secret
message

Figure 5.1    Confidentiality, authenticity, and integrity are the core security properties that allow Alice 
and Bob to communicate safely and prevent Eve from interfering.
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	 121What does it mean to secure communications?

TLS provides all three properties, which is no small feat. To explain how TLS achieves 
this, we need to go back in time and discuss the origins of cryptography. The sophisti-
cation we reached today comes from solving increasingly complex security problems 
over centuries of scientific progress. For those who already have a security background, 
feel free to skip ahead to section 5.2 “Understanding SSL/TLS.”

5.1.1	 Early symmetric cryptography

In the early days, not all three properties were guaranteed, and early security proto-
cols focused primarily on confidentiality. Caesar’s substitution cipher is an example of 
an early cryptographic protocol used by the Roman general in his private correspon-
dence. Caesar’s cipher required participants to share a number to shift their alphabet 
by and encrypt or decrypt messages with it. The following listing shows a simple exam-
ple of substitution cipher that uses an alphabet shifted by seven letters.

Listing 5.1    Encrypting and decrypting using a simple substitution cipher

key: 7
alphabet: abcdefghijklmnopqrstuvwxyz
shifted : hijklmnopqrstuvwxyzabcdefg
cleartext:  attack the southern gate at dawn
ciphertext: haahjr aol zvbaolyu nhal ha khdu

The recipient of the ciphertext must first possess the key to decrypt the message, 
which could be agreed on in person before exchanging messages. Because the same 
key is used to encrypt and decrypt a message, we call it a symmetric encryption protocol. 
Besides having an impractical key-management process, this protocol also lacks integ-
rity and authenticity protection:

¡	The ciphertext can be modified in transit even by an attacker who isn’t able to decrypt it. 
This would likely lead to making the clear text unintelligible, but the recipient 
has no way to differentiate between message tampering and author inebriation.

¡	There’s no proof that the message originates from the expected author. Someone else could 
crack the key and issue fraudulent messages, which would be a great way to mis-
lead an adversary, as shown in figure 5.2.

Both problems led cryptographers to protect messages with seals, initially made of 
beeswax and later colored red. The author of a message would apply their own seal to 
close a letter, and the recipient could verify the seal was intact upon reception. As long 
as an attacker was unable to reproduce a seal, the protocol was safe, and confidential-
ity, integrity, and authenticity were provided. Even today, sealing messages is an import-
ant part of the TLS protocol.
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122 Chapter 5  Security layer 3: securing communications

Alice Bob

Eve

Fraudulent
modification

haahjr aol
zvbaolyu nhal
ha khdu

zbyylukly
av aol lultf

Figure 5.2    The lack of authentication and integrity in Caesar’s cipher allows Eve to replace Bob’s secret 
message with her own. Can you decrypt it?

5.1.2	 Diffie-Hellman and RSA

Centuries of progress and hundreds of cryptosystems have improved on Caesar’s 
cipher and produced algorithms that were harder and harder to crack, but the prob-
lem of securely sharing cryptographic keys between participants remained a weakness 
in any communication system.

Exchanging keys in person has always been the safest way to guarantee a key belongs 
to the right person, and no one modified it in transit (OpenPGP key signing still uses 
this method in its web of trust), but isn’t a protocol that works across continents when 
people can’t meet directly. After World War II, scientists and engineers spent more time 
and effort than ever perfecting cryptographic protocols to protect the fast-growing 
communication networks that would soon become the internet. With more and more 
participants in distant locations, the pressure on the shared-encryption-key problem 
increased rapidly.

A breakthrough happened when Whitfield Diffie and Martin Hellman (with the help 
of Ralph Merkle) published the Diffie-Hellman (DH) key-exchange algorithm in 1976. 
Using Diffie-Hellman  exchange (DHE), two people can start a communication chan-
nel by first performing a key-exchange protocol that produces an encryption key. The 
encryption key itself never transits on the wire, and the only values exchanged publicly 
can’t be used to deduce the encryption key. In effect, DH is a way to securely agree on 
an encryption key over a public network, while preventing eavesdroppers from learn-
ing anything useful about the key. The exchanged key can then be used to encrypt and 
decrypt messages.
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	 123What does it mean to secure communications?

The Diffie-Hellman key exchange
The mathematics behind the Diffie-Hellman algorithm can be understood with only high 
school math. Alice and Bob want to agree on an encryption key to exchange messages 
securely.

1	 Alice picks a prime number, p, a generator, g, and a random secret, a. Alice calcu-
lates the value of A=ga mod p, and sends p, g, and A to Bob.

2	 Upon reception, Bob generates a random secret, b, calculates B=gb mod p, and 
sends B to Alice.

Both Alice and Bob now share enough information to calculate the encryption key. Alice 
calculates key=Ba mod p, and Bob calculates key=Ab mod p. They both end up with the 
same value for the key, without that value ever crossing the wire.

Diffie-Hellman key exchange with small values 

Alice generates prime p=23, generator g=5 and random secret a=6
Alice calculates A = ga mod p = 56 mod 23 = 8
Alice sends p=23, g=5 and A=8 to Bob
           Bob generates secret b=15
           Bob calculates B = gb mod p = 515 mod 23 = 19
           Bob sends B=19 to Alice
Alice calculates the key = Ba mod p = 196 mod 23 = 2
           Bob calculates the key = Ab mod p = 815 mod 23 = 2
Alice and Bob have negotiated key=2

1
Generate p, g, and a
Calculate A = ga mod p

3
Generate b
Calculate B = gb mod p

6
Calculate key = Ab mod p

7
Alice and Bob use the key

to encrypt messages.

Eve is unable to steal the key because
it never transits between Alice and Bob

5
Calculate key = Ba mod p

4
Bob sends B to Alice

2
Alice sends p, g, and A to Bob

Alice Bob

The Diffie-Hellman key exchange allows Alice and Bob to exchange a key without Eve being able to 
steal it.

 

Diffie-Hellman created a tidal wave in the cryptographic world. Because the algorithm 
uses public and private values (a and b are private, A and B are public), it’s said that 
Diffie-Hellman invented asymmetric public-key encryption.
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124 Chapter 5  Security layer 3: securing communications

A year after the publication of DH, Ron Rivest, Adi Shamir, and Leonard Adleman 
published RSA, a public-key cryptosystem that built on top of the DH algorithm and 
introduced the public and private keys we still use today. RSA provides a way for indi-
viduals to create their own pair of keys: one public key to share with the world, and one 
private key to keep private. RSA provides two important security features—encryption 
and signature:

¡	Encryption —Messages encrypted with one key can only be decrypted by the other, 
allowing people to send each other messages using their respective public keys 
for encryption and private keys for decryption.

¡	Signature —Messages encrypted by someone’s private key can only be decrypted 
by the corresponding public key, proving the holder of the private key issued the 
message and effectively providing a digital signature.

Take a moment to understand these concepts. They’re complex but foundational to 
how TLS secures communications today. DH are RSA are the security building blocks 
that allowed the internet to prosper as a marketplace.

The RSA algorithm
The RSA algorithm enables participants of a communication to exchange secret mes-
sages using two keys. When one key encrypts a message, the other key can decrypt it, 
but the key that encrypted can’t decrypt. Imagine two participants, Alice and Bob, who 
want to communicate securely. Alice creates a key-pair and puts her public key on the 
internet. Bob takes Alice’s public key and encrypts a message with it. No one else can 
decrypt that message but Alice, who securely keeps the private key that can decrypt the 
message. The following figure illustrates the RSA workflow.

3
Bob encrypts 
a message using 
Alice’s public key.

Eve can intercept Bob’s message to Alice 
but is unable to read it because she doesn’t
know Alice’s private key.

5
Alice decrypts Bob’s
message using her
private key.

1
Alice publishes her
RSA public key.

2
Bob retrieves
Alice’s public key.

4
Bob sends the encrypted

 message to Alice.

Alice Bob

The RSA cryptosystem allows Bob to send a message to Alice encrypted with her public key. Eve 
can’t decrypt the message because she doesn’t know Alice’s private key.
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This two-key system is revolutionary because one of the keys can be published without 
reducing the security of the protocol. If you’re curious about the mathematics of RSA, a 
simple example is shown here:

1	 Select two random prime numbers, p and q, and calculate n = p*q.

p = 17, q = 13

n = p × q = 221

2	 Calculate φ(n), the great common divisor of (p-1)(q-1).

φ(n) = (p – 1) × (q – 1) = 16 × 12 = 192

3	 Pick any public exponent, e, that’s prime with φ(n). Here, we take e=5, but a com-
mon value is e=65537. The value of e and n together forms the public key.

4	 Using e, select a value for d that satisfies the formula: d*e mod φ(n)=1. For 
example, d=77.

d × 5 mod 192 = 1

77 × 5 mod 192 = 1

5	 The value of d and n together form the private key.

Take a message, m, which is the number 123. To encrypt m with the public key (n, e), we 
use c(m)=me mod n=1235 mod 221=106. The encrypted text c(m) is the value 106.

Now, to decrypt c(m) with the private key (d, n) and get back the original message, we 
calculate cleartext=c(m)d mod n=10677 mod 221=123.

 

5.1.3	 Public-key infrastructures

RSA provides almost all the security necessary to secure a communication, but one 
problem remains. Imagine you’re communicating with Bob for the first time. Bob 
tells you his public key is 29931229. You haven’t established a secure channel yet, so 
how can you be sure that someone isn’t tampering with this information via a man-in-
the-middle (MITM)? You have no proof, unless someone else can confirm that this is 
indeed Bob’s public key.

In the real world, this problem is similar to how we trust passports and driver’s 
licenses: possessing the document itself isn’t enough. It must come from a trusted 
authority, like a local government agency (for a driver’s license) or a foreign govern-
ment (for a passport). In the digital world, we took this exact same notion and created 
public-key infrastructures (PKI) to link keys to identities.

The PKI works by first trusting a set of authorities, or more specifically trusting their 
public keys. In web browsers, you encounter those authorities under the name certificates 

(continued)
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126 Chapter 5  Security layer 3: securing communications

authorities (CA) that are kept in root stores, or trust stores. The concept of the PKI is simple: 
the public key of Bob must be cryptographically signed by the private key of a CA you 
trust to be considered valid. When Bob sends you his public key, he also sends you the 
signature of his public key performed by the CA. By verifying the signature using the 
CA’s public key, which you trust, you obtain the assurance that Bob’s key is trustworthy 
and not replaced by some man in the middle. The CA must make sure to only sign keys 
that belong to the right people, but that’s their job, not yours. In concept, this is identi-
cal to Alice’s passport being signed (or rather, issued) by a trusted government that first 
verified her identity: because we trust the authority keys in the PKI, we carry that trust to 
keys signed by them.

5.1.4	 SSL and TLS

It’s likely that military agencies started using RSA and PKIs in the 1970s and ’80s, but 
it took nearly two decades for the web to be built and start using these techniques. 
In 1995, Netscape released Navigator 1.0, which added support for the Secure Socket 
Layer protocol. SSL, then in version 2 (v1 was never released), uses RSA and PKIs to 
secure communication between a browser and a server.

SSL uses a PKI to decide if a server’s public key is trustworthy by requiring servers 
to use a security certificate signed by a trusted CA. When Navigator 1.0 was released, it 
trusted a single CA operated by the RSA Data Security corporation. The server’s public 
RSA key is stored inside the security certificate, which can then be used by the browser 
to establish a secure communication channel. The security certificates we use today still 
rely on the same standard (named X.509) that Netscape Navigator 1.0 used back then.

Netscape’s intent was to train users to differentiate secure communications from 
insecure ones, so they put a lock icon next to the address bar. When the lock is open, 
the communication is insecure. A closed lock means communication has been secured 
with SSL, which required the server to provide a signed certificate. You’re obviously 
familiar with this icon as it’s been in every browser ever since. The engineers at Net
scape truly created a standard for secure internet communications.

A year after releasing SSL 2.0, Netscape fixed several security issues and released SSL 
3.0, a protocol that, albeit being officially deprecated since June 2015, remains in use 
in certain parts of the world more than 20 years after its introduction. In an effort to 
standardize SSL, the Internet Engineering Task Force (IETF) created a slightly modi-
fied SSL 3.0 and, in 1999, unveiled it as Transport Layer Security (TLS) 1.0. The name 
change between SSL and TLS continues to confuse people today. Officially, TLS is the 
new SSL, but in practice, people use SSL and TLS interchangeably to talk about any 
version of the protocol.

TLS continues to evolve under the supervision of the IETF: version 1.1 was released 
in 2006 and 1.2 in 2008. The next version of TLS, logically numbered 1.3, was released 
in 2018. Each new version fixes security issues and brings cryptographic innovations 
that we won’t cover here.
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TLS has become the standard for securing any kind of network communication, 
from serving web pages to protecting video-conference systems to establishing VPN 
tunnels. The amount of work devoted to securing (and breaking) its cryptographic 
primitives makes TLS the most reliable security protocol ever built. It also makes TLS a 
complex protocol that few people can grasp in its entirety.

Thankfully, you don’t need a complete understanding of the inner workings of TLS 
to properly secure a web service. In the rest of this chapter, I give an overview of the way 
TLS works, and quickly move on to securing the HTTP endpoint of the invoicer.

5.2	 Understanding SSL/TLS
Establishing a TLS connection is easy to do using a web browser and an HTTPS address, 
but to get more information about the connection establishment, you need to use the 
command line of OpenSSL. The following listing shows some of the TLS parameters of 
a connection to google.com, truncated for readability. It’s a mouthful, so we’ll discuss 
it section by section.

Listing 5.2    TLS connection to google.com obtained via the openssl tool

$ openssl s_client -connect google.com:443
---
Certificate chain                                                        
 0 s:/C=US/ST=California/L=Mountain View/O=Google Inc/CN=*.google.com    
   i:/C=US/O=Google Inc/CN=Google Internet Authority G2                  
 1 s:/C=US/O=Google Inc/CN=Google Internet Authority G2                  
   i:/C=US/O=GeoTrust Inc./CN=GeoTrust Global CA                         
 2 s:/C=US/O=GeoTrust Inc./CN=GeoTrust Global CA                         
   i:/C=US/O=Equifax/OU=Equifax Secure Certificate Authority             
---

SSL-Session:
    Protocol  : TLSv1.2                                                  
    Cipher    : ECDHE-RSA-AES128-GCM-SHA256                              
    Session-ID: 0871E6F1A35AE705A…                                       
    Session-ID-ctx:
    Master-Key: 01F2462FD1D61...                                         
    Key-Arg   : None
    PSK identity: None
    PSK identity hint: None
    SRP username: None
    TLS session ticket lifetime hint: 100800 (seconds)                   
    TLS session ticket:                                                  
    0000 - d7 2a 55 df .. .. .. ..                                       

The chain of trust of Google’s certificate 
points to the Equifax Certificate Authority.

TLS1.2 is the latest 
version of the protocol.

Cipher suite negotiated

Unique ID of the session

Cryptographic master key

Encrypted master key in session tickets
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128 Chapter 5  Security layer 3: securing communications

5.2.1	 The certificate chain

The first part of the output of the OpenSSL command shows three certificates num-
bered 0, 1, and 2. Each certificate has a subject, s, and an issuer, i. The first certificate, 
number 0, is called the end-entity certificate. The subject line tells us it’s valid for any sub-
domain of google.com because its subject is set to *.google.com. The issuer line indi-
cates it’s issued by Google Internet Authority G2, which also happens to be the subject 
of the second certificate, number 1. Number 1 is itself signed by GeoTrust Global CA, 
which we find in number 2. You can see where this is going: each certificate is issued by 
the certificate that follows it—except for number 2, whose issuer, Equifax Secure Cer-
tificate Authority, is nowhere to be found.

What the OpenSSL command line doesn’t show here is the trust store that contains 
the list of CA certificates trusted by the system OpenSSL runs on. The public certificate 
of Equifax Secure Certificate Authority must be present in the system’s trust store to 
close the verification chain. This is called a chain of trust, and figure 5.3 summarizes its 
behavior at a high level.

Send EE + I1 + I2

HTTPS server of end entity

Trust store

Root CA

End entity

Issue Intermediate 1

Issue

Issue

Intermediate 2

Figure 5.3    High-level view of the concept of chain of trust applied to verifying the authenticity of a 
website. The Root CA in the Firefox trust store provides the initial trust to verify the entire chain and 
trust the end-entity certificate.

In practice, verifying the chain of trust is vastly more complex than just verifying the 
issuers, but I’ll leave finding out these details as an exercise for the reader. What matters 
here is the fact that OpenSSL verified the identity of the Google server and is thus cer-
tain it’s communicating with the proper entity. Authenticity being established, the hand-
shake moves on to negotiating the cryptographic details of the communication channel.
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5.2.2	 The TLS handshake

TLS is designed to allow a client and a server to agree on a suite of cryptographic 
algorithms to use for a connection, called a cipher suite. Each version of TLS, from the 
original SSLv2 to the current TLSv1.3, comes with its own set of cipher suites, and 
more-modern versions of the protocol use higher security ciphers.

In the output of the OpenSSL command line from listing 5.2, the client and server 
agreed to use TLSv1.2 with the ECDHE-RSA-AES128-GCM-SHA256 cipher suite. This 
cryptic string has a specific meaning:

¡	ECDHE is an algorithm known as the Elliptic Curve Diffie-Hellman Exchange. 
It’s a mathematical construct that allows the client and server to negotiate a mas-
ter key securely. We’ll discuss what “ephemeral” means in a little bit; for now, 
know that ECDHE is used to perform the key exchange.

¡	RSA is the public-key algorithm of the certificate provided by the server. The 
public key in the server certificate isn’t directly used for encryption (because RSA 
requires multiplication of large numbers, which is too slow for fast encryption), 
but instead is used to sign messages during the handshake and thus provides 
authentication.

¡	AES128-GCM is a symmetric encryption algorithm, like Caesar’s cipher, but vastly 
superior. It’s a fast cipher designed to quickly encrypt and decrypt large amounts 
of data transiting through the communication. As such, AES128-GCM is used for 
confidentiality.

¡	SHA256 is a hashing algorithm used to calculate fixed-length checksums of the 
data that transits through the connection. SHA256 is used to guarantee integrity.

The full TLS handshake would take pages to describe (the RFC of TLS1.2 is 100 pages 
long; see http://mng.bz/jGFT). Figure  5.4 shows a simplified version of the hand-
shake, as described here:

1	 The client sends a HELLO message to the server with a list of protocols and algo-
rithms it supports.

2	 The server says HELLO back and sends its chain of certificates. Based on the 
capabilities of the client, the server picks a cipher suite.

3	 If the cipher suite supports ephemeral key exchange, like ECDHE does, the 
server and the client negotiate a premaster key with the Diffie-Hellman algo-
rithm. The premaster key is never sent over the wire.

4	 The client and server create a session key that will be used to encrypt the data 
transiting through the connection.

At the end of the handshake, both parties possess a secret session key used to encrypt 
data for the rest of the connection. This is what OpenSSL refers to as Master-Key in 
the output from listing 5.2.
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130 Chapter 5  Security layer 3: securing communications

CLIENT HELLO

ServerClient

ServerClient

SERVER KEY EXCHANGE {DH parameters}

CLIENT KEY EXCHANGE {DH parameters}

The client sends a HELLO
message to the server with
a list of protocols and
algorithms it supports.

Step 1

Both parties negotiate a
pre-master key using the
Diffie-Hellman algorithm.

The server says HELLO back and
sends its chain of certificates. Based
on the capabilities of the client, the
server picks a ciphersuite.

The pre-master
key is never sent
over the wire.

SERVER HELLO {certificates chain, chosen ciphersuite, session id for resumption, ...}

Generate server secret and DH parameters

Calculate pre-master key

Generate client secret and DH parameters

Send/receive encrypted data

The session key encrypts
the data transiting through
the connection.

Derive session key from pre-master key

Derive session key from pre-master key

Calculate pre-master key

Step 2

Step 3

Step 4

Figure 5.4    A simplified view of the 
TLS handshake shows the four main 
steps taken by a client and a server 
to negotiate the necessary security 
parameters.
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5.2.3	 Perfect forward secrecy

The term “ephemeral” in the key exchange provides an important security feature 
called perfect forward secrecy (PFS).

In a non-ephemeral key exchange, the client sends the pre-master key to the server 
by encrypting it with the server’s public key. The server then decrypts the pre-master 
key with its private key. If, at a later point in time, the private key of the server is compro-
mised, an attacker can go back to this handshake, decrypt the pre-master key, obtain the 
session key, and decrypt the entire traffic. Non-ephemeral key exchanges are vulnera-
ble to attacks that may happen in the future on recorded traffic. And because people 
seldom change their password, decrypting data from the past may still be valuable for 
an attacker.

An ephemeral key exchange like DHE, or its variant on elliptic curve, ECDHE, solves 
this problem by not transmitting the pre-master key over the wire. Instead, the pre-master 
key is computed by both the client and the server in isolation, using nonsensitive infor-
mation exchanged publicly. Because the pre-master key can’t be decrypted later by an 
attacker, the session key is safe from future attacks: hence, the term perfect forward secrecy.

The downside to PFS is that all those extra computational steps induce latency on 
the handshake and slow the user down. To avoid repeating this expensive work at every 
connection, both sides cache the session key for future use via a technique called session 
resumption. This is what the session-ID and TLS ticket are for: they allow a client and 
server that share a session ID to skip over the negotiation of a session key, because they 
already agreed on one previously, and go directly to exchanging data securely.

This is the end of the overview of TLS. I introduced a lot of new concepts and covered 
a huge amount of information, which can be overwhelming if this is your first dive into 
the fascinating world of cryptography. You should expect that mastering TLS takes time 
and patience, but the core concepts introduced in the last few pages are sufficient to 
secure an online service, which you’ll do right away by enabling HTTPS on the invoicer.

More information about TLS
I could spend an entire book talking only about TLS. And as it happens, someone did: 
Ivan Ristic, the creator of SSL Labs, wrote a comprehensive study of TLS, PKI, and server 
configurations in his book Bulletproof SSL and TLS (Feisty Duck, 2017). A must-read if 
this short chapter doesn’t satisfy your curiosity on this fantastic protocol.

 

5.3	 Getting applications to use HTTPS
Enabling HTTPS on the application is processed in three phases: 

1	 Obtain a domain name you control that points to the invoicer’s public endpoint. 

2	 Get an X.509 certificate for that domain issued by a trusted CA. 

3	 Update your configuration to enable HTTPS with that certificate.
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Until now, you’ve used the AWS-generated address of the ELB of the invoicer, but for a 
real application, you obviously want a real domain name, like invoicer.securing-devops 
.com. I’ll skip over the details of purchasing a domain and creating the necessary 
CNAME record to point to the invoicer’s ELB. Once created, the record should be 
similar to the following listing.

Listing 5.3    CNAME record points invoicer.securing-devops.com to the invoicer’s ELB

$ dig invoicer.securing-devops.com
;; ANSWER SECTION:
invoicer.securing-devops.com. 10788 IN CNAME
                 invoicer-api.3pjw7ca4hi.us-east-1.elasticbeanstalk.com.
invoicer-api.3pjw7ca4hi.us-east-1.elasticbeanstalk.com. 48 IN A	    
                 52.70.99.109
invoicer-api.3pjw7ca4hi.us-east-1.elasticbeanstalk.com. 48 IN A
                 52.87.136.111

Requesting a certificate used to be a complex process that required hours of online 
reading to learn obscure options from tools like OpenSSL, to generate a certificate 
signing request for a CA, and to install a signed certificate on a web server. You may be 
familiar with this procedure if you manage traditional infrastructure, but recent initia-
tives from certificate authorities have made this process a lot less painful:

¡	Let’s Encrypt provides a fully automated—and free—process to obtain certifi-
cates via the ACME verification protocol.

¡	AWS issues certificates for free, but which can only be used inside AWS (private 
keys can’t be exported).

¡	Traditional CAs, including free ones, are progressively adopting the ACME 
protocol.

Let’s first look at the CA from AWS, and then we’ll discuss using Let’s Encrypt.

5.3.1	 Obtaining certificates from AWS

If you only care about running your application in AWS, obtaining a certificate via the 
Certificate Manager service is as simple as running the command from the following 
listing.

Listing 5.4    Requesting a certificate for the invoicer from AWS Certificate Manager

$ aws acm request-certificate --domain-name invoicer.securing-devops.com

{
    "CertificateArn": "arn:aws:acm:us-east-1:93:certificate/6d-7c-4a-bd-09"
}

The preceding command tells Amazon to generate a private key and certificate in the 
AWS account (the operator can’t extract the private key from the account). Before 
signing the certificate with its own PKI, Amazon must verify the operator controls the 
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domain they’re requesting a certificate for, which is done by emailing the operator 
at predefined addresses, such as postmaster@securing-devops.com, with a verification 
code. The operator must click the link with the verification code to confirm the issu-
ance of the certificate, making it immediately available to use within the AWS account. 
The AWS Certificate Manager service provides the easiest way to obtain a certificate for 
a service hosted on Amazon’s infrastructure, but if you want control over the private 
key, Let’s Encrypt provides an excellent alternative.

5.3.2	 Obtaining certificates from Let’s Encrypt

From the point of view of a CA, one of the most complex tasks when issuing certificates 
is verifying that the user making the request is the legitimate owner of the domain. 
As discussed, AWS does so by emailing the domain owner at a predefined address. 
Let’s Encrypt uses a more sophisticated approach that goes through a set of challenges 
defined in the ACME specification.1

The most common challenge involves HTTP, where the operator requesting 
the certificate is provided a random string by the CA, which must be placed at a pre-
defined location of the target website for the CA to verify ownership. For example, 
when requesting a certificate for invoicer.securing-devops.com, the CA will look for 
a challenge at http://invoicer.securing-devops.com/.well-known/acme-challenge/
evaGxfADs6pSRb2LAv9IZf17Dt3juxGJ-PCt92wr-oA.

The HTTP challenge method works well for traditional web servers, but your invoicer 
infrastructure doesn’t have a web server you could easily configure to serve this chal-
lenge. Instead, you’ll use the DNS challenge, which requests an ACME challenge under 
the _acme-challenge.invoicer.securing-devops.com TXT record. For this challenge to 
work, you need two components:

¡	An ACME client that can perform the handshake with Let’s Encrypt, configure 
the DNS, and request the certificate

¡	A registrar that can be configured to serve the TXT ACME challenge

For the client, use lego,2 a Go client for Let’s Encrypt that supports DNS (and more) 
challenges. My registrar of choice is Gandi.net, but lego supports several DNS provid-
ers that would work just as well. Requesting a certificate for your domain can be done 
with a single command.

Listing 5.5    Requesting a certificate from Let’s Encrypt using a DNS challenge

$ GANDI_API_KEY=8aewloliqa80AOD10alsd lego
--email="julien@securing-devops.com"
--domains="invoicer.securing-devops.com"
--dns="gandi"
--key-type ec256
run

1	 ACME is currently an IETF draft, accessible at https://tools.ietf.org/wg/acme/.
2	 lego can be installed with the $ go get -u github.com/xenolf/lego command.
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Generate key-pair and CSR

Send CSR

Send signed challenge

Let’s encryptlego Gandi

Let’s encryptlego Gandi

Insert signed challenge into zone

Request verification

Retrieve signed certificate

Retrieve signed challenge

Verify challenge signature

Sign certificate

Step 1

Step 2

Step 3

Figure 5.5    The ACME protocol between the client (lego), the CA (Let’s Encrypt), and the registrar 
(Gandi) automates the issuance of a signed certificate for the invoicer.

The Gandi API key is obtained from the account preferences. Figure 5.5 details the 
conversation between lego, Let’s Encrypt, and Gandi. lego first generates a private key 
and a CSR. The CSR is sent to Let’s Encrypt, which replies with a signed challenge. 
lego inserts the challenge into the DNS of securing-devops.com and asks Let’s Encrypt 
to perform the verification.

Let’s Encrypt verifies the challenge and signs the CSR with its intermediate key. lego 
can then retrieve the signed certificate.
Note that the private key type is set to ec256, indicating you want an ECDSA P-256 key, 
not an RSA one.

ECDSA keys
ECDSA is an alternative algorithm to RSA, which provides a digital signature using ellip-
tic curves. The benefit of ECDSA keys is their reduced size compared to RSA: a 256-bit 
ECDSA key provides security equivalent to a 3072-bit RSA key. Smaller keys mean faster 
computation, and the performance gain of ECDSA is increasingly pushing site operators 
to use this algorithm instead of RSA.
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The command can take several minutes to complete because DNS records can take 
some time to propagate. Once finished, a certificate chain and a private key are written 
to ~/.lego/certificates.

Listing 5.6    The private key and certificate chain issued by Let’s Encrypt

$ tree ~/.lego/certificates/
├── invoicer.securing-devops.com.crt
└── invoicer.securing-devops.com.key

Following Let’s Encrypt’s issuance policy, the certificate is valid for 90 days. Automat-
ing the renewal of this certificate at regular intervals is left as an exercise for the reader 
(and could easily be done via a script executed by the deployer). For now, you need to 
upload this information to AWS for the invoicer’s ELB to use.

5.3.3	 Enabling HTTPS on AWS ELB

Considering the invoicer.securing-devops.com.crt file, you’ll notice two CERTIFICATE 
blocks that follow each other. The first block contains the server certificate (also called 
end entity, or EE) for invoicer.securing-devops.com, and the second block contains the 
intermediate certificate that signed the EE. AWS requires you to upload the EE and 
intermediate certificates separately, not as a single file, so you split them into two files 
using a text editor and upload them as follows.

Listing 5.7    Uploading the private key as well as EE and intermediate certificates to AWS

$ aws iam upload-server-certificate
--server-certificate-name "invoicer.securing-devops.com-20160813"
--private-key
     file://$HOME/.lego/certificates/invoicer.securing-devops.com.key
--certificate-body
     file://$HOME/.lego/certificates/invoicer.securing-devops.com.EE.crt
--certificate-chain
     file://$HOME/.lego/certificates/letsencrypt-intermediate.crt

{
    "ServerCertificateMetadata": {
        "Path": "/",
        "Expiration": "2016-11-11T13:31:00Z",
        "Arn": "arn:aws:iam::973:server-certificate/invoicer.securing-     

devops.com-20160813",
        "ServerCertificateName": "invoicer.securing-devops.com-20160813",
        "UploadDate": "2016-08-13T15:37:30.334Z",
        "ServerCertificateId": "ASCAJJ5ZF2467KDBETALA"
    }
}

The command returns the metadata of the uploaded certificate. Next, you attach the 
certificate to the ELB of the invoicer. This is a two-step process, as you need to retrieve 
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the internal name of the ELB, and then enable an HTTPS listener using the certificate 
you obtained.

Retrieving the name of the ELB is done by extracting the details of the Elastic Bean-
stalk environment. You know the environment ID from your work in chapter 2, so 
retrieving the ELB name is just one command away.

Listing 5.8    Retrieving the ELB name by extracting resources from Elastic Beanstalk 

$ aws elasticbeanstalk describe-environment-resources
--environment-id e-curu6awket |
jq -r '.EnvironmentResources.LoadBalancers[0].Name'

awseb-e-c-AWSEBLoa-1VXVTQLSGGMG5

You can now create a new listener on the ELB. Note that the argument to the listener 
syntax that can seem a little obscure at first:

¡	Protocol and LoadBalancerPort indicate the public-facing configuration; here, 
HTTPS on port 443.

¡	InstanceProtocol and InstancePort indicate where the traffic should be sent 
to; here, to the invoicer’s application.

¡	SSLCertificateId is the ARN (Amazon Resource Name) of the certificate as 
returned by the certificate upload command run previously.

Listing 5.9    Creating the HTTPS listener on the invoicer’s ELB

$ aws elb create-load-balancer-listeners
--load-balancer-name awseb-e-c-AWSEBLoa-1VXVTQLSGGMG5
--listeners "Protocol=HTTPS,LoadBalancerPort=443,
InstanceProtocol=HTTP,InstancePort=80,
SSLCertificateId=arn:aws:iam::973:server-certificate/invoicer.securing-

devops.com-20160813"

You can verify the configuration using the aws elb describe-load-balancers com-
mand. The output, shown in the following listing, indicates that both the HTTP and 
HTTPS listeners are configured. It also indicates the HTTPS load balancer uses a pol-
icy named ELBSecurityPolicy-2015-05, which we’ll discuss and tweak later.

Listing 5.10    Describing the active listeners on the invoicer’s ELB

$ aws elb describe-load-balancers
--load-balancer-names awseb-e-c-AWSEBLoa-1VXVTQLSGGMG5 |
jq -r '.LoadBalancerDescriptions[0].ListenerDescriptions'
[
  {
    "Listener": {
      "InstancePort": 80,
      "InstanceProtocol": "HTTP",
      "Protocol": "HTTP",
      "LoadBalancerPort": 80
    },
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    "PolicyNames": []
  },
  {
    "Listener": {
      "InstancePort": 80,
      "InstanceProtocol": "HTTP",
      "Protocol": "HTTPS",
      "LoadBalancerPort": 443,
      "SSLCertificateId": "arn:aws:acm:us-east-1:93:certificate/6d-7c-4a-

bd-09"
    },
    "PolicyNames": [
      "ELBSecurityPolicy-2015-05"
    ]
  }
]

Although the ELB is now configured, it’s not yet functional. The security group that 
fronts it doesn’t allow connections to port 443. You fix this by allowing the entire inter-
net, 0.0.0.0/0, to connect to port 443.

Listing 5.11    Retrieving the ELB’s security group and opening port 443

$ aws elb describe-load-balancers
--load-balancer-names awseb-e-c-AWSEBLoa-1VXVTQLSGGMG5 |
jq -r '.LoadBalancerDescriptions[0].SecurityGroups[0]'
sg-9ec96ee5

$ aws ec2 authorize-security-group-ingress
--group-id sg-9ec96ee5
--cidr 0.0.0.0/0
--protocol tcp
--port 443

The HTTPS endpoint of the invoicer is now fully functional and accessible at https://
invoicer.securing-devops.com. As you can see in figure 5.6, Firefox shows a green lock 
indicating the connection was secured using a certificate issued by Let’s Encrypt.

Following the concept first introduced by Netscape, the closed green lock tells you the 
connection is secure, but it doesn’t tell you anything about how secure it is. Over half 
of the web relies on the TLS protocol to protect the integrity, authenticity, and confi-
dentiality of HTTP traffic (see http://mng.bz/e9w9), but a significant portion does so 
using bad and sometimes dangerously insecure configurations, leaving data transiting 
through insecure channels at risk of tampering or leaking. Although web browsers try 

Figure 5.6    Firefox indicates the connection to the invoicer’s 
web UI is secure by displaying a green lock in the address bar.
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to identify these bad configurations and alert users, you still need to audit this configu-
ration yourself, and take steps to modernize it.

5.4	 Modernizing HTTPS
Several guides exist to provide operators with modern TLS configurations. In this sec-
tion, we’ll discuss the guide maintained by Mozilla, which provides three levels of con-
figuration (see http://mng.bz/6K5k).

¡	The Modern level is designed to support only the latest, most secure, cryp-
tographic algorithms at the cost of supporting only modern web browsers. Fig-
ure 5.7 shows a screenshot of the modern configuration guidelines.

¡	The Intermediate level strikes a balance between security and backward compat-
ibility to support most clients at a reasonable security level. When the population 
of clients that needs to access a site is large, the Intermediate level is recom-
mended, as it provides reasonable security without removing algorithms needed 
by older clients.

¡	The Old level is designed to continue supporting ancient clients, like Windows 
XP pre-service pack 3. This level should only be used when support of very old 
clients is an absolute necessity, because it enables algorithms that are known to 
be insecure.

Figure 5.7    Recommendations for the Modern TLS configuration level on the wiki of Mozilla

www.itbook.store/books/9781617294136

http://mng.bz/6K5k
https://itbook.store/books/9781617294136


	 139Modernizing HTTPS

Figure 5.7 shows all the parameters that an operator can tweak when configuring TLS 
on a web server (depending on the web server or service operating TLS, some param-
eters may not be tweakable). You should recognize most of them by now: cipher suites, 
versions, certificate signature, and so on. Some may still be obscure, but it’s safe to 
ignore them for now.

Had you read this recommendation without having an explanation of the protocol, 
you probably would have been overwhelmed by its complexity. TLS is a complex proto-
col, and unless you’re ready to invest the time and energy to understand its details and 
build your own configuration, I strongly recommend you follow the guidelines pro-
posed by Mozilla and other trustworthy resources almost blindly. The guidelines are 
updated when the state of the art of cryptography changes, and when algorithms once 
considered safe become massive security holes overnight.

I also recommend that you don’t trust the default settings that come with web serv-
ers and libraries, as those are generally too permissive, to accommodate older clients. 
You should regularly test your TLS configuration, and particularly the enabled cipher 
suites. Cipher suites are the core of the TLS protocol. A cipher suite is a set of cryp-
tographic algorithms designed to provide a given level of security. Four versions of SSL/
TLS have brought us over three hundred cipher suites, most of which shouldn’t be used 
when targeting high security.

Before explaining how you can tweak your HTTPS configuration, let’s first discuss 
ways to test it and evaluate its current state.

5.4.1	 Testing TLS

The flexibility of the TLS protocol allows a client and a server to negotiate connection 
parameters based on what they both support. In an ideal situation, both parties would 
agree to use the most secure set of parameters common to them. As a site operator, it’s 
your responsibility to ensure your services are configured to prefer strong ciphers and 
discard unsafe ones.

Many tools can help you test your TLS configuration. Most of them probe a server 
to test every possible configuration supported. Tools like Cipherscan (https://github 
.com/jvehent/cipherscan), written by the author of this book, and testssl.sh (https://
testssl.sh/) will give you such reports. A few advanced tools will also make recommenda-
tions and highlight major issues. The most popular and comprehensive of them is cer-
tainly SSLLabs.com, an online TLS scanner that outputs a letter grade from A through 
F to represent the security of a configuration. An open source alternative is Mozilla’s 
TLS Observatory (https://observatory.mozilla.org), available as a command-line tool 
and a web interface. The following listing shows the output of the tlsobs command 
line against the invoicer. 

Listing 5.12    Installing and using the TLS Observatory client on the ELB invoicer

$ go get -u github.com/mozilla/tls-observatory/tlsobs

$ $GOPATH/bin/tlsobs -r invoicer.securing-devops.com
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Scanning invoicer.securing-devops.com (id 12323098)

--- Certificate ---                    
Subject  CN=invoicer.securing-devops.com
SubjectAlternativeName
- invoicer.securing-devops.com
Validity 2016-08-13T13:31:00Z to 2016-11-11T13:31:00Z
CA       false
SHA1     5648102550BDC4EFC65529ACD21CCF79658B79E1
SigAlg   SHA256WithRSA
Key      ECDSA 256bits P-256

--- Trust ---                           
Mozilla Microsoft Apple
   ✓        ✓       ✓

--- Ciphers Evaluation ---              
pri cipher                        protocols             pfs        curves
1   ECDHE-ECDSA-AES128-GCM-SHA256 TLSv1.2               ECDH,P-256 prime256
2   ECDHE-ECDSA-AES128-SHA256     TLSv1.2               ECDH,P-256 prime256
3   ECDHE-ECDSA-AES128-SHA        TLSv1,TLSv1.1,TLSv1.2 ECDH,P-256 prime256
4   ECDHE-ECDSA-AES256-GCM-SHA384 TLSv1.2               ECDH,P-256 prime256
5   ECDHE-ECDSA-AES256-SHA384     TLSv1.2               ECDH,P-256 prime256
6   ECDHE-ECDSA-AES256-SHA        TLSv1,TLSv1.1,TLSv1.2 ECDH,P-256 prime256             
OCSP Stapling        false
Server Side Ordering true
Curves Fallback      false

--- Analyzers ---                
Measured level "non compliant" does not match target level "modern"
* Mozilla evaluation: non compliant
  - for modern level: remove ciphersuites ECDHE-ECDSA-AES128-SHA, ECDHE-

ECDSA-AES256-SHA
  - for modern level: consider adding ciphers ECDHE-ECDSA-CHACHA20-POLY1305
  - for modern level: remove protocols TLSv1, TLSv1.1
  - for modern level: consider enabling OCSP stapling

Each of the four sections carries important information to your configuration:

¡	The Certificate section displays details about the end entity. You see that it’s valid 
for your domain and only for a period of three months.

¡	The Trust section tells you the EE certificate chains to a CA trusted by Mozilla, 
Microsoft and Apple. Most certificates obtained through common CAs are 
trusted everywhere, but it’s possible to find certificates issued by obscure CAs that 
are trusted by one browser and not another.

¡	The Ciphers Evaluation section lists the cipher suites accepted by the server by 
order of preference. This list is small and, had you used an RSA certificate, it 
would be significantly larger, but ECDSA certificates are more recent, and fewer 
cipher suites support them. Notice the Server Side Ordering flag set to true 
at the end of the output, which indicates the server will force its own preferred 
ordering over the client’s. The evaluation also tells you which ciphers support 
perfect forward secrecy in the pfs column.

The Certificate section displays details 
about the site’s certificate.

The Trust section tells you 
the EE certificate chains to 
a CA trusted by Mozilla, 
Microsoft and Apple.

The Ciphers Evaluation section lists 
the cipher suites accepted by the 
server by order of preference.

In the Analyzers section, the tool provides 
recommendations on what should be changed to 
match Mozilla’s Modern configuration level.
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¡	In the Analyzers section, the tool provides recommendations on what should 
be changed to match Mozilla’s Modern configuration level. You see that a few 
cipher suites should be removed, and missing ones should be added. TLSv1 and 
TLSv1.1 aren’t recommended, and only TLSv1.2 should be kept. Overall, the 
evaluation tool considers your current setup to be noncompliant with Mozilla’s 
guidelines.

It’s possible, and preferable, to perform the evaluation of the invoicer’s endpoint 
against Mozilla’s guidelines automatically by calling the tlsobs client as a deployment 
test. To do so, you wrap it into a bash script placed under the deploymentTests direc-
tory of the deployer you configured in chapter 4. The tlsobs client supports an option 
called -targetLevel that evaluates a target against one of Mozilla’s configuration lev-
els. By setting this option to Modern, you instruct tlsobs to verify the target is config-
ured per the Modern configuration level.

Listing 5.13    Test executed by the deployer to evaluate HTTPS quality

#!/usr/bin/env bash
go get -u github.com/mozilla/tls-observatory/tlsobs
$GOPATH/bin/tlsobs -r -targetLevel modern invoicer.securing-devops.com

As expected, this test will fail until you modernize the configuration of your endpoint, 
and the logs of the deployer contain the full output from tlsobs in listing 5.12. You 
can verify this by triggering a build of the invoicer in CircleCI and looking at the logs 
of the deployer.

Listing 5.14    Test exits with an error because HTTPS isn’t supported

2016/08/14 15:35:17 Received webhook notification
2016/08/14 15:35:17 Verified notification authenticity
2016/08/14 15:35:17 Executing test /app/deploymentTests/2-ModernTLS.sh
2016/08/14 15:35:32 Test /app/deploymentTests/ModernTLS.sh failed:
exit status 1
[...]
--- Analyzers ---
Measured level "non compliant" does not match target level "modern"
* Mozilla evaluation: non compliant

With your testing infrastructure now ready, let’s move on to modernizing your 
endpoint.

5.4.2	 Implementing Mozilla’s Modern guidelines

Enabling HTTPS on the invoicer took you 90% of the way to having a secure endpoint. 
Tweaking it to match Mozilla’s Modern level requires creating a new configuration that 
only enables selected parameters, instead of using the defaults automatically provided 
by AWS: only TLS version 1.2 must be activated, and the list of activated cipher suites 
must be reduced to a minimum. AWS ELB only supports a limited set of parameters, 
which you need to choose from (see http://mng.bz/V96x).
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NOTE    The configuration presented here is current at the time of writing, but 
will likely change over time as Mozilla evolves its guidelines and AWS supports 
more ciphers. Make sure to refer to the links provided and always use the latest 
version of the recommendations when configuring your endpoints.

Call this new configuration MozillaModernV4. The following listing shows how to cre-
ate it using the AWS command line.

Listing 5.15    Creating a custom load-balancer policy mapping Mozilla’s Modern level

$ aws elb create-load-balancer-policy
--load-balancer-name awseb-e-c-AWSEBLoa-1VXVTQLSGGMG5
--policy-name MozillaModernV4
--policy-type-name SSLNegotiationPolicyType
--policy-attributes AttributeName=Protocol-TLSv1.2,AttributeValue=true
AttributeName=ECDHE-ECDSA-AES256-GCM-SHA384,AttributeValue=true
AttributeName=ECDHE-ECDSA-AES128-GCM-SHA256,AttributeValue=true
AttributeName=ECDHE-ECDSA-AES256-SHA384,AttributeValue=true
AttributeName=ECDHE-ECDSA-AES128-SHA256,AttributeValue=true
AttributeName=Server-Defined-Cipher-Order,AttributeValue=true

The next step is to assign the newly created policy to your ELB, by switching 
the ELB from using the ELBSecurityPolicy-2015-05 AWS default policy over to 
MozillaModernV4.

Listing 5.16    Assigning the MozillaModernV4 policy to the invoicer’s ELB

$ aws elb set-load-balancer-policies-of-listener
--load-balancer-name awseb-e-c-AWSEBLoa-1VXVTQLSGGMG5
--load-balancer-port 443
--policy-names MozillaModernV4

With this change in place, you’ll kick off a rebuild of the invoicer to verify the ELB 
passes the compliance test in the deployer logs. The configuration level is now being 
measured as Modern, so the deployer continues its work by triggering an update of the 
invoicer’s infrastructure.

Listing 5.17    Logs showing the invoicer’s ELB passes the Modern TLS configuration test

2016/08/14 16:42:46 Received webhook notification
2016/08/14 16:42:46 Verified notification authenticity
2016/08/14 16:42:46 Executing test /app/deploymentTests/2-ModernTLS.sh
2016/08/14 16:42:49 Test /app/deploymentTests/ModernTLS.sh succeeded: 

Scanning invoicer.securing-devops.com (id 12123107)
[…]
--- Analyzers ---
* Mozilla evaluation: modern

2016/08/14 16:42:51 Deploying EBS application: {
  ApplicationName: "invoicer201605211320",
  EnvironmentId: "e-curu6awket",
  VersionLabel: "invoicer-api"
}
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Figure 5.8    The scan summary from https://observatory.mozilla.org shows the invoicer’s TLS endpoint 
being measured as compliant with Mozilla’s Modern guidelines.

You can also use the web interface of the Observatory to check the quality of your con-
figuration. Figure 5.8 shows https://invoicer.securing-devops.com being measured as 
Modern by the scanner.
Configuring the protocol layer of TLS is the biggest part of enabling HTTPS on a 
service, but I mentioned at the beginning of this chapter that some controls must be 
placed at the HTTP layer to increase the security of HTTPS. These controls are Strict 
Transport Security (HSTS) and Public Key Pinning (HPKP). In the following sections, 
I’ll introduce both and discuss how to implement them on the invoicer.

5.4.3	 HSTS: Strict Transport Security

Once a service is fully configured to use HTTPS, there shouldn’t be any reason to fall 
back to the insecure HTTP. Knowing that a site should always be accessed through 
HTTPS is useful information for web browsers to prevent downgrade attacks (forc-
ing a user through an insecure version of the site to steal cookies or inject fraudulent 
traffic). HTTP Strict Transport Security (HSTS) is an HTTP header that a service can 
send to the browser to enforce the use of HTTPS at all times. Browsers cache the HSTS 
information locally for a period of time during which all connections to the site will use 
HTTPS.

HSTS also has the interesting property of forcing browsers to use HTTPS even if 
not explicitly asked to, like when the user doesn’t specify the https:// handler when 
entering the site’s address. This little benefit replaces the need for an HTTP listener 
that would redirect users to HTTPS, but only for users who have already visited the site.

The HSTS header consists of three parameters, shown in listing 5.18.

¡	max-age—Indicates the lifetime in seconds of the information in the browser 
cache.
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¡	includeSubDomains—Tells the browser to force HTTPS for the current domain 
and all its subdomains.

¡	preload—Indicates the operator’s intention to add their sites to the HSTS pre-
load list. When set, an operator can request the addition of a domain to the list 
of sites Firefox, Chrome, Internet Explorer, Opera, and Safari will connect to via 
HTTPS only. The Google Chrome team operates the form to make this request 
(https://hstspreload.appspot.com/). A site must meet several requirements 
prior to joining the preload list, such as serving HSTS for the entire domain (not 
just subdomains), or having a max-age value of at least 18 weeks.

Listing 5.18    An example HSTS header with max-age set to one year

Strict-Transport-Security: max-age=31536000; includeSubDomains; preload

The simple syntax of the HSTS header makes it easy to add to new applications. For 
legacy sites with dozens of resources and subdomains, operators should use this header 
carefully, and start implementing it without includeSubDomains and with max-age set 
to a few seconds. Only after evaluating the impact of HSTS on a site should an operator 
use the preceding header. Once the header is out, and users cache it in their browsers, 
there’s no going back. You’re committed to HTTPS!

Testing for HSTS is simple: because the header is a static value, you can compare 
it during deployment. The script in the following listing does this comparison in the 
deployer.

Listing 5.19 Test script to verify the value of the HSTS header on the invoicer

#!/bin/bash
EXPECTEDHSTS="Strict-Transport-Security: max-age=31536000; includeSubDomains; 

preload"
SITEHSTS="$(curl -si https://invoicer.securing-devops.com/ | grep Strict-

Transport-Security | tr -d '\r\n' )"

if [ "${SITEHSTS}" == "${EXPECTEDHSTS}" ]; then
    echo "HSTS header matches expectation"
    exit 0
else
    echo "Expected HSTS header not found"
    echo "Found:    '${SITEHSTS}'"
    echo "Expected: '${EXPECTEDHSTS}'"
    exit 100
fi

5.4.4	 HPKP: Public Key Pinning

One of the weaknesses of the PKI ecosystem is the vast number of certificate authorities 
that can issue trusted certificates for any site on the planet. Imagine living in a coun-
try with a repressive regime and trying to use Google or Twitter to communicate with 
your peers, only to discover your connection is being hijacked by a rogue certificate 
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authority that issued fraudulent, yet trusted, certificates for Google and Twitter. This 
situation unfortunately happens and puts real people at risk.

Mozilla, Microsoft, and Apple operate their own root CA programs where they main-
tain lists of certificate authorities trusted to issue intermediate and end-entity certifi-
cates. They all try their best to blacklist misbehaving CAs,3 or CA victims of breaches, 
as quickly as possible. But with over 150 CAs in the Firefox trust store, keeping track of 
everyone’s behavior is hard.

Web browsers don’t have a way of knowing which CA an operator trusts, and there-
fore must accept any certificate issued by any CA in their trust stores. The HTTP Pub-
lic Key Pinning (HPKP) mechanism provides a solution to this problem by allowing 
operators to indicate which CAs, intermediate or end-entity, they intend to use with a 
given site.

Like HSTS, HPKP is an HTTP header sent to browsers and cached for a given dura-
tion of time. The header contains hashes of certificates permitted to secure the site. 
Should the user of a site with HPKP enabled be the victim of a fraudulent CA trying to 
hijack their connection, the browser will use the cached HPKP information to detect 
that the fraudulent CA isn’t authorized to issue certificates for the site and present the 
user with an error.

The HPKP header takes four parameters, and can be a little tricky to construct:

¡	max-age is the time, in seconds, web browsers should remember a site can only be 
accessed using one of the defined keys.

¡	pin-sha256 is the Base64 hash of the public key of a certificate trusted for 
the current site. There must be a minimum of two pin-sha256s defined in the 
header: one primary and one backup.

¡	includeSubDomains indicates that all children of the current domain should 
apply the HPKP policy.

¡	report-uri is an optional endpoint where violations of the policy should be sent 
by web browsers. Not all browsers support this feature.

The core of HPKP is the pin-sha256 values that indicate which certificates are trusted 
for a site. For certificates that change relatively often, like the Let’s Encrypt one you 
generated for the invoicer, it’s recommended to pin the intermediate CA, not the end 
entity. You also need to provide a backup pin in case you decide to stop using Let’s 
Encrypt. In this case, you’ll set the backup to the AWS CA.

Obtaining the pin-sha256 value of a certificate is done by extracting the public key 
from the certificate, hashing it with the SHA256 algorithm, and then encoding it in 
Base64. The following listing shows how to perform this in one command on the Let’s 
Encrypt intermediate certificate.

3	 In September 2016, Mozilla and Apple both decided to distrust CAs operated by WoSign following 
evidence of fraudulent behavior in their issuance of certificates.
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Listing 5.20    Generating the pin-sha256 value of the Let’s Encrypt intermediates

$ curl -s https://letsencrypt.org/certs/lets-encrypt-x3-cross-signed.pem 
| openssl x509 -pubkey -noout                                            
| openssl rsa -pubin -outform der                                        
| openssl dgst -sha256 -binary                                           
| openssl enc -base64                                                    

YLh1dUR9y6Kja30RrAn7JKnbQG/uEtLMkBgFF2Fuihg=                             

You can perform the same calculation with the intermediate certificate from AWS 
(https://amazontrust.com/repository/) and add these two values to an HPKP header 
in the invoicer application (in middleware.go, see setResponseHeaders), the value of 
which follows.

Listing 5.21    HPKP header that permits certificates from Let’s Encrypt and AWS CA

Public-Key-Pins: max-age=1296000; includeSubDomains; pin-sha256="YLh1dUR9y6Kj
a30RrAn7JKnbQG/uEtLMkBgFF2Fuihg="; pin-sha256="++MBgDH5WGvL9Bcn5Be30cRcL
0f5O+NyoXuWtQdX1aI="

Like testing for HSTS, you can use a script that compares the value of the HPKP header 
in the deployer with a reference you set statically. The script in the following listing 
performs a simple string comparison to verify the presence of the HPKP value.

Listing 5.22    Test script to verify the value of the HPKP header on the invoicer

#!/bin/bash
EXPECTEDHPKP='Public-Key-Pins: max-age=1296000; includeSubDomains; pin-sha256

="YLh1dUR9y6Kja30RrAn7JKnbQG/uEtLMkBgFF2Fuihg="; pin-sha256="++MBgDH5WGv
L9Bcn5Be30cRcL0f5O+NyoXuWtQdX1aI="'

SITEHPKP="$(curl -si https://invoicer.securing-devops.com/ |grep Public-Key-
Pins | tr -d '\r\n' )"

if [ "${SITEHPKP}" == "${EXPECTEDHPKP}" ]; then
    echo "HSTS header matches expectation"
    exit 0
else
    echo "Expected HSTS header not found"
    echo "Found:    '${SITEHPKP}'"
    echo "Expected: '${EXPECTEDHPKP}'"
    exit 100
fi

You can also verify that HSTS and HPKP are active in the developer tools of Firefox, 
under the security tab of the network section. Figure 5.9 shows HSTS and HPKP both 
enabled on the invoicer’s public site.

Retrieves the PEM encoded certificate Extracts the public RSA key

Converts the RSA to DER format

Calculates the SHA256 
hash of the RSA key

Encodes the hash in Base64Shows the pin-sha256 value
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Figure 5.9    HSTS and HPKP show as enabled in Firefox’s developer tools, confirming the headers are 
active on the invoicer’s public page.

This concludes our tour of HTTPS. A lot more could be said about the protocol that 
made the internet a safe place for commerce and communication, and I strongly 
encourage the reader to stay up to date with improvements to TLS. Whether you’re an 
operator, a developer, or a security expert, you’ll have to work with TLS and HTTPS at 
one point or another. Maintaining an up-to-date understanding of strong communica-
tion security will help you run better services for your users.

Summary

¡	TLS guarantees the confidentiality, integrity, and authenticity of a connection 
between a client and a server.

¡	Servers use the X.509 security certificate signed by a certificate authority to prove 
their identity to clients.

¡	The TLS communication uses cipher suites negotiated during a handshake to 
protect the data in transit.

¡	Obtaining a trusted certificate for a site requires proving the operator owns the 
domain the site is hosted on.

¡	Security parameters enabled by default on HTTPS servers may not provide suffi-
cient security, and testing tools must be used to improve a configuration.

¡	HSTS is an HTTP header that indicates to web browsers that a site must always be 
reached via HTTPS.

¡	HPKP is an HTTP header that indicates to web browsers that only white-listed 
certificates are trusted to issue security certificates for a given site.
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