
M A N N I N G

Steve Kinney

S A M P L E C H A P T E R

www.itbook.store/books/9781617294143

https://itbook.store/books/9781617294143

Electron in Action

by Steven Kinney

 Chapter 1

 Copyright 2019 Manning Publications

www.itbook.store/books/9781617294143

https://itbook.store/books/9781617294143

vii

brief contents
PART 1 GETTING STARTED WITH ELECTRON1

1 ■ Introducing Electron 3

2 ■ Your first Electron application 17

PART 2 BUILDING CROSS-PLATFORM APPLICATIONS
WITH ELECTRON ...45

3 ■ Building a notes application 47

4 ■ Using native file dialog boxes and facilitating
interprocess communication 65

5 ■ Working with multiple windows 87

6 ■ Working with files 98

7 ■ Building application and context menus 123

8 ■ Further operating system integration and
dynamically enabling menu items 143

9 ■ Introducing the tray module 159

10 ■ Building applications with the menubar library 181

11 ■ Using transpilers and frameworks 199

www.itbook.store/books/9781617294143

https://itbook.store/books/9781617294143

BRIEF CONTENTSviii

12 ■ Persisting use data and using native Node.js modules 222

13 ■ Testing applications with Spectron 243

PART 3 DEPLOYING ELECTRON APPLICATIONS257

14 ■ Building applications for deployment 259

15 ■ Releasing and updating applications 272

16 ■ Distributing your application through
the Mac App Store 293

www.itbook.store/books/9781617294143

https://itbook.store/books/9781617294143

www.itbook.sto
Introducing Electron
One of the big things that the web has going for it is ubiquity. It’s an amazing plat-
form for creating collaborative applications that can be accessed from a wide range
of devices running different operating systems. That said, entire classes of applica-
tions can’t be built in the browser environment. Web applications can’t access the
filesystem. They can’t execute code that isn’t written in JavaScript. They can’t hook
into many of the operating system APIs that desktop applications can. Most web
applications aren’t available when there isn’t a reliable internet connection.

 For a long time, building for the desktop has involved adopting a completely
different skill set. Many of us don’t have the bandwidth to take on the long learning
curve necessary for learning new languages and frameworks. With Electron, you

This chapter covers
 Understanding what Electron is

 Learning which technologies Electron is built on

 Understanding how using Electron differs from
traditional web applications

 Structuring Electron applications

 Using Electron in production to build real-world
applications
3

re/books/9781617294143

https://itbook.store/books/9781617294143

4 CHAPTER 1 Introducing Electron

www.itboo
can use your existing skills as a web developer to build applications that have many of
the capabilities of a native desktop application.

1.1 What is Electron?
Electron is a runtime that allows you to create desktop applications with HTML5, CSS,
and JavaScript. It’s an open source project started by Cheng Zhao (aka zcbenz), an
engineer at GitHub. Previously called Atom Shell, Electron is the foundation for
Atom, a cross-platform text editor by GitHub built with web technologies.

 You may have heard of—or used—Apache Cordova or Adobe PhoneGap for build-
ing web applications—wrapped in native shells—for mobile operating systems such as
iOS, Android, and Windows Phone. If so, then it might be helpful to think of Electron
as a similar tool for building desktop applications.

 Electron allows you to use the web technologies you already know to build applica-
tions that you wouldn’t otherwise build. In this book, you’ll learn how to build appli-
cations that hook into native operating system APIs on Windows, macOS, and Linux.

 Electron combines the Chromium Content Module and Node.js runtimes. It
allows developers to build GUIs with web pages as well as access native operating sys-
tem capabilities on Windows, macOS, and Linux through an OS-agnostic API.

 Chromium and Node are both wildly popular application platforms in their own
right, and both have been used independently to create ambitious applications. Elec-
tron brings the two platforms together to allow you to use JavaScript to build an
entirely new class of application. Anything you can do in the browser, you can do with
Electron. Anything you can do with Node, you can do with Electron.

 The exciting part is what you can do with the two technologies together. You can
build applications that take advantage of both platforms and build applications that
wouldn’t otherwise be possible on only one. That’s what this book is all about. Elec-
tron is not only a great choice for building web applications that behave like native
desktop applications; it’s also a great choice for building a GUI around Node applica-
tions that would otherwise be limited to a command-line interface. See figure 1.1.

 Let’s say that you want to build an application that allows you to view and edit a folder
of images on your computer. Traditional browser applications can’t access the filesystem.
They couldn’t access the directory of photographs, load any of the photographs in the
directory, or save any of the changes that you made in the application. With Node, you
could implement all those features, but you couldn’t provide a GUI, which would make
your application difficult to use for the average user. By combining the browser environ-
ment with Node, you can use Electron to create an application where you can open and
edit photographs as well as provide a UI for doing so. See figure 1.2.

 Electron isn’t a complicated framework—it’s a simple runtime. Similar to the way
you might use node from the command line, you can run Electron applications using
the electron command-line tool. You don’t have to learn many conventions to get
started, and you’re free to structure your application however you’d like—although
I’ll provide tips and best practices throughout this book.
k.store/books/9781617294143

https://itbook.store/books/9781617294143

5What is Electron?

www.itbook.
1.1.1 What is the Chromium Content Module?

Chromium is the open source version of Google’s Chrome web browser. It shares
much of the same code and features with a few minor differences and different licens-
ing. The Content Module is the core code that allows Chromium to render web pages
in independent processes and use GPU acceleration. It includes the Blink rendering

Figure 1.1 LevelUI is a GUI for Node’s LevelUp database built with Electron. You couldn’t build this application
in a traditional browser because it wouldn’t have the ability to access a local database on the user’s computer. It
also couldn’t use the LevelUI library because it’s a compiled C++ module, which only Node—and not the browser—
can use.

Electron

Filesystem access

Support for compiled

modules

CommonJS Module

System

Rendering HTML

and CSS

Document Object

Model (DOM)

Web APIs

Node.js
Chromium Content

Module

Figure 1.2 Electron combines the core
web browsing component of Chromium with
the low-level system access of Node.
store/books/9781617294143

https://itbook.store/books/9781617294143

6 CHAPTER 1 Introducing Electron

www.itboo
engine and the V8 JavaScript engine. The Content Module is what makes a web
browser a web browser. It handles fetching and rendering HTML from a web server,
loading any referenced CSS and JavaScript, styling the page accordingly, and execut-
ing the JavaScript.

 The easiest way of thinking about the Content Module is to consider what it
doesn’t do. The Content Module doesn’t include support for Chrome extensions. It
doesn’t handle syncing your bookmarks and history with Google’s cloud services.
It doesn’t handle securely storing your saved passwords or automatically filling them
in for you when you visit a page. It doesn’t detect if a page was written in another
language and subsequently call on Google’s translation services for assistance. The
Content Module includes only the core technologies required to render HTML,
CSS, and JavaScript.

1.1.2 What is Node.js?

For the first 15 years of its existence, JavaScript was traditionally isolated within the
web browser. There wasn’t much in the way of support for running JavaScript on
the server. Projects existed, but they never got any traction. The Node.js project was
initially released in 2009 as an open source, cross-platform runtime for developing
server-side applications using JavaScript. It used Google’s open source V8 engine to
interpret JavaScript and added APIs for accessing the filesystem, creating servers, and
loading code from external modules.

 Over the last few years, Node has enjoyed a surge of interest and popularity and is
used for a wide range of purposes, from writing web servers to controlling robots to—
you guessed it—building desktop applications. Node comes bundled with a package
manager called npm, which makes it easy to lean on the more than 250,000 libraries
available in its registry.

1.2 Who’s using Electron?
Electron is used by companies, large and small, to build desktop applications. As dis-
cussed earlier, it was originally developed as the foundation for GitHub’s Atom text
editor. Atom needed access to the filesystem to fulfill its duties as a text editor. Simi-
larly, other companies have turned to Electron as the foundation of their text-editing
applications. Facebook released Nuclide as a package on top of Atom that turns the
text editor into a full-fledged integrated development environment (IDE) with first-
class support for working with React Native, Hack, and Flow projects. Microsoft also
uses Electron for its cross-platform Visual Studio Code editor, which runs on macOS,
Windows, and Linux.

 You can build more than text editors with Electron. Slack, the popular messaging
application, uses Electron for its Windows and Linux versions. Nylas used Electron for
its N1 email client, which is designed to look beautiful across all the major platforms.
It also supports a JavaScript plugin architecture that allows third-party developers to
add features and extend the UI.
k.store/books/9781617294143

https://itbook.store/books/9781617294143

7Who’s using Electron?

www.itbook.
 Particle, which produces development kits for creating custom hardware, uses
Electron for its IDE, which lets users write code and deploy it to hardware devices
through a cellular or Wi-Fi network. Using Mapbox Studio, users can import data
stored locally and process it on their computers without having to send it over the
internet to Mapbox’s servers. The result is a faster and better experience that allows
designers to create custom maps easily.

 Dat is an open source tool for sharing, syncing, and versioning decentralized data.
The grant-funded project consists of a team of three web developers. Despite being a
relatively small team, Dat released a desktop application for the project using Elec-
tron. In 2015, Wiredcraft—a software consultancy—used Electron to build an offline-
friendly Windows application for collecting and correcting voter registration informa-
tion in Myanmar. The firm needed an application that could store the collected data
offline and then publish it when the device was connected to the network. The com-
pany chose Electron as an alternative to building it using C++ because it allowed
Wiredcraft to take advantage of its existing HTML, CSS, and JavaScript prowess
instead of relearning those skills for a different ecosystem.

 Brave—a new browser focused on speed and security by Brendan Eich, the creator
of JavaScript—is itself built on top of Electron. See figure 1.3. That’s right, you can
even use web technologies to build a web browser.

 New projects built on top of Electron are being released every day as companies
and developers see the value in building products that use the power afforded to desk-
top applications while still maintaining the web’s intrinsic platform agnosticism. By

Figure 1.3 Brave is an entire web browser built on top of Electron.
store/books/9781617294143

https://itbook.store/books/9781617294143

8 CHAPTER 1 Introducing Electron

www.itboo
the end of this book, you’ll take your existing web development skills and apply them
to create new applications that wouldn’t have been possible in the traditional browser
environment.

1.3 What do I need to know?
Let’s start with what you don’t need to know. This book is for web developers who
want to use their existing skill set to create desktop applications that wouldn’t be pos-
sible in the traditional browser environment. You don’t need any experience building
desktop applications to get value out of this book.

 That said, you should be comfortable with writing JavaScript, HTML, and CSS, but
by no means do you need to be an expert. I won’t be covering variables or condition-
als in this book, but if you’re familiar with general language features of JavaScript,
then you probably have the requisite skills to follow along. It’s also helpful if you’re
familiar with some of the conventions and patterns from Node.js, such as how the
module system works. We’ll explore these concepts as we come across them.

1.4 Why should I use Electron?
When you’re writing applications for a web browser, you have to be conservative in
what technologies you choose to use and cautious in how you write your code. This is
because—unlike many server-side situations—you’re writing code that will be exe-
cuted on someone else’s computer.

 Your users could be using the latest version of a modern browser such as Chrome
or Firefox, or they could be using an outdated version of Internet Explorer. You have
little to no say in where your code is being rendered and executed. You have to be
ready for anything.

 You typically must write code for the lowest common denominator of features that
have the widest support across all versions of all browsers in use today. Even if a better,
more efficient, or generally more appealing solution exists to a problem, you might
not be able to use that approach. When you decide to reach for a modern browser fea-
ture, you usually need to implement a contingency plan of graceful fallbacks, feature
detection, and progressive enhancement that adds a nontrivial amount of friction to
your development workflow.

 When you build your applications with Electron, you’re packaging a particular ver-
sion of Chromium and Node.js, so you can rely on whatever features are available in
those versions. You don’t have to concern yourself with what features other browsers
and their versions support. If the build of Chromium included with your application
supports the Service Worker API, for example, then you can confidently rely on that
API in your application. See figure 1.4.

 Electron allows you to use cutting-edge web platform features because it includes
a relatively recent version of Chromium. Generally speaking, the version of Chromium
in Electron is about one to two weeks behind the most recent stable release—and a
k.store/books/9781617294143

https://itbook.store/books/9781617294143

9Why should I use Electron?

www.itbook.
new stable release comes out every six weeks. Electron typically includes new ver-
sions of Node.js about a month after they’re released to ensure it contains the most
recent version of V8. Electron already includes a modern build of V8 from Chro-
mium and can afford to wait for minor bug fixes before upgrading to the latest ver-
sion of Node.

1.4.1 Building on your existing skill set

If you’re like me, you probably have much more experience building web applications
than desktop applications. You’d love to add the ability to create desktop applications
to your set of tools, but you don’t have the bandwidth to learn not only a new pro-
gramming language but likely a new framework as well.

 Learning a new language or framework is an investment that’s not to be taken
lightly. As a web developer, you’re used to writing applications that work equally well
for all your users—even if that means fighting with idiosyncrasies of a particular
browser or screen size. But when you’re contemplating building traditional desktop
applications, you’re talking not only about learning one language and framework.
You’re also looking at learning at least three different languages and frameworks if
you want to target Windows, macOS, and Linux.

Figure 1.4 In a browser-based web application, it might not be practical to rely on the Fetch API, given its
inconsistent support. But in your Electron applications, you’re bundling the current stable build of Chromium with
full support for the Fetch API.
store/books/9781617294143

https://itbook.store/books/9781617294143

10 CHAPTER 1 Introducing Electron

www.itboo
 Individuals and small teams can use Electron to offer desktop applications in situa-
tions where they couldn’t otherwise. For a small team, hiring a developer skilled in
building applications for each of those platforms may not be an option. Electron lets
you use your existing skill set and deploy your application to all the major platforms.
With Electron, you can support multiple operating systems with less effort than you’re
normally used to for supporting multiple browsers.

1.4.2 Access to native operating system APIs

Electron applications are similar to any other desktop application. They live in the
filesystem with the rest of your native applications. They sit in the dock in macOS or
taskbar in Windows and Linux where all the other native applications hang out. Elec-
tron applications can trigger native Open and Save File dialog boxes. These dialog
boxes can be configured to allow the operating system to select only files with a partic-
ular file extension, whole directories, or multiple files at the same time. You can drag
files onto your Electron applications and trigger different actions.

 Additionally, Electron applications can set custom application menus like any
other application. See figure 1.5. They can create custom context menus that spring
into action when the user right-clicks from within the application. You can use Chro-
mium’s notification API to trigger system-level notifications. They can read from the
system clipboard and write text, images, and other media to it as well.

Unlike traditional web applications, Electron applications aren’t limited to the browser.
You can create applications that live in the menu bar or the system tray. See figure 1.6.
You can even register global shortcuts to trigger these applications or any of their abil-
ities with a special keystroke from anywhere in the operating system.

 Electron applications have access to system-level information—such as whether the
computer is on battery power or plugged into the wall. They can also keep the operat-
ing system awake and prevent it from going into power-saving mode, if necessary.

1.4.3 Enhanced privileges and looser restrictions

The web is the largest distributed application platform in history. It’s so ubiquitous that
web developers take many of the associated headaches for granted. Building web appli-
cations involves carefully choreographing the communication between the server-side
application and the potentially thousands of instances of the client-side application.
Your client-side code runs in the user’s web browser—far removed from the server.

Figure 1.5 Electron allows you to create custom application menus.
k.store/books/9781617294143

https://itbook.store/books/9781617294143

11Why should I use Electron?

www.itbook.
Anything that happens in the client is unique to that browser session unless the
changes are sent back to your server. By the same token, if anything changes on your
end, you have to wait until the client sends another HTTP request asking for updates;
or you can potentially send the updates over WebSockets, if you’ve implemented that
capability on both the client and the server.

 Desktop applications enjoy a wider range of abilities and fewer restrictions on what
they’re allowed to do because the user explicitly went out of their way to download,
install, and open the application. When you’re browsing the web, however, you don’t
have the same amount of agency. You’re executing code that you didn’t choose to
install on your computer. As a result, web applications have many limits on what
they’re allowed to do.

 When the browser visits a page on the web, it happily downloads all the assets refer-
enced in the HTML code of the document it’s loading, as well as any additional
dependencies added by those first assets, and then begins executing the code. Over
the years, browser vendors have added restrictions to what the browser can do to pre-
vent malicious code from harming the user or other sites on the internet.

 I’m not a bad person, but let’s say—for the sake of argument—that I am. Let’s also
say that I run a popular site that sells artisanal, hand-crafted widgets. One day, a compet-
itor pops onto my radar selling equally pretentious widgets at a steep discount. My site is
still getting more traffic for now, but this new challenger is affecting my beauty sleep.

 Being a bad person, I decide to add JavaScript to my website that fires off an AJAX
request every few milliseconds to my competitor’s site with the hope that the thousands
of visitors to my site will download this code and effectively flood my sworn enemy’s
server and make it unable to handle any legitimate request. It will also degrade the

Figure 1.6 You can create an application that lives in the operating system’s menu bar or system tray.
store/books/9781617294143

https://itbook.store/books/9781617294143

12 CHAPTER 1 Introducing Electron

www.itboo
experience my visitors have on my site, but that’s a price I’m willing to pay to bring my
competitor’s website to its knees.

 Despite the diabolical nature of my plan, it won’t work. Modern browsers restrict
client-side code from making requests to a third-party server unless that server explic-
itly declares a policy that it allows such requests.

 Generally speaking, most sites don’t do this. If you want to send a request to a third-
party server, then you have to first make a request to your own server, have it contact the
third party, and relay the results back to the client. In the previous example, this adds
my server as a bottleneck for those thousands of requests, which would make it infeasi-
ble for me to launch this kind of attack and trivially easy for my competitor to block my
single IP address as opposed to the IPs of the thousands of visitors to my site.

 The browser also places strict limits on what client-side code has access to and what
it can do. All of this makes for a safer, more secure, and—ultimately—better experi-
ence for the user. It’s all incredibly practical and is part of what makes the web such a
fantastic and approachable platform for users.

 That said, all these useful and important security restrictions severely limit the
kinds of applications you can build using web technologies. The user explicitly down-
loads and installs Electron applications like any other native application. You’re free
to access the filesystem like any native desktop application or server-side Node process
would. You’re also free to make requests to third-party APIs without going through a
Node server because you have access to the same privileges and capabilities as any
other Node process. See figure 1.7.

My erver pplications a

My lient- ide odec s c A APIthird-party

In a traditional web application, client-side code
cannot request data from a third-party API.

Requests must be proxied through a
server-side application.

Traditional eb pplicationw a

My lient- ide odec s c A APIthird-party

In an Electron application, client-side
code has all of the same privileges as

server-side code and can make requests
to a third-party API directly.

Electron pplicationa

Figure 1.7 Electron applications can use their Node.js runtimes to make requests to
third-party APIs.
k.store/books/9781617294143

https://itbook.store/books/9781617294143

13How does Electron work?

www.itbook.
1.4.4 Accessing Node from the browser context

Along with granting access to the filesystem and the ability to fire up a web server,
Node.js uses a module system based on the CommonJS modules specification. From
its earliest incarnations, Node has supported the ability to break out code into mul-
tiple modules and explicitly include ones you require from within a given file.

 Packaging any nontrivial amount of JavaScript code for the browser hasn’t always
been so easy. For a small amount of code, you can include it in your markup
between a matching pair of opening and closing <script> tags. For larger blocks of
code, you can use the src attribute to reference an external JavaScript file. You’re
welcome to do that as many times as you wish, but you’ll have to pay the perfor-
mance penalties as the browser fires off an additional request to fetch each external
asset.

 You’re welcome to use a build tool such as webpack or Browserify if you like, but
it’s often not necessary in Electron applications because all of Node’s global proper-
ties (for example, require, module, and exports) are available in the browser con-
tent. You can use Node’s module system on what you’d traditionally think of as the
client side without needing to add a build process to your application.

 You can access all of Node’s APIs from the browser context of your Electron appli-
cation. On top of taking advantage of Node’s module system, you can also use com-
piled modules with native extensions, access the filesystem, as well as do a bevy of
other things that aren’t typically supported in the browser environment.

1.4.5 Offline first

As anyone who has ever taken a computer on a transcontinental flight can attest, most
browser-based web applications aren’t much good without a connection to the inter-
net. Even advanced web applications using any of the popular client-side frameworks
like Ember, React, or Angular typically need to connect to a remote server to down-
load their assets.

 Electron applications have already been downloaded to the user’s computer. Typi-
cally, they load a locally stored HTML file. From there, they can request remote data
and assets if a connection is available. Electron even provides APIs that allow you to
detect if a connection is available. No special manifests or bleeding-edge technologies
are necessary to build an offline application using Electron—it’s the default state
unless the application explicitly requests something from the internet. Barring a spe-
cial circumstance—you’re building a chat client, for example—Electron applications
work as well offline as any other application.

1.5 How does Electron work?
Electron applications consist of two types of processes: the main process and zero or
more renderer processes. Each process plays a different role in the application. The
Electron runtime includes different modules to assist you in building your application.
Certain modules, such as the ability to read and write from the system’s clipboard, are
store/books/9781617294143

https://itbook.store/books/9781617294143

14 CHAPTER 1 Introducing Electron

www.itboo
available in both types of processes. Others, such as the ability to access an operating
system’s APIs, are limited to the main process. See figure 1.8.

When Electron starts up, it turns to the start entry in your package.json manifest
included in your project to determine the entry point of your application. This file
can be named anything you’d like, as long as it’s included properly in package.json.
Electron runs this file as your main process.

1.5.1 The main process

The main process has a few important responsibilities. It can respond to application
lifecycle events such as starting up, quitting, preparing to quit, going to the back-
ground, coming to the foreground, and more. The main process is also responsible
for communicating to native operating system APIs. If you want to display a dialog box
to open or save a file, you do it from the main process.

1.5.2 Renderer processes

The main process can create and destroy renderer processes using Electron’s Browser-
Window module. Renderer processes can load web pages to display a GUI. Each process
takes advantage of Chromium’s multiprocess architecture and runs on its own thread.
These pages can then load in additional JavaScript files and execute code in this pro-
cess. Unlike normal web pages, you have access to all the Node APIs in your renderer
processes, allowing you to use native modules and lower-level system interactions.

Main process

Renderer process

Renderer process

Renderer process

The main process can create
multiple renderer processes.

Renderer processes can communicate
with the main process if they need to

access an OS-level API.

Electron reads the “main”
entry in our package.json to
determine which file to run

as the main process.

Figure 1.8 Electron’s multiprocess architecture
k.store/books/9781617294143

https://itbook.store/books/9781617294143

15Electron vs. NW.js

www.itbook.
 Renderer processes are isolated from each other and unable to access operating
system integration APIs. Electron includes the ability to facilitate communication
between processes to allow renderer processes to communicate with the main process
in the event that they need to trigger an Open or Save File dialog box or access any
other OS-level integration.

1.6 Electron vs. NW.js
Electron is similar to another project called NW.js (previously known as node-webkit).
The two have much in common. In fact, zcbenz was a heavy contributor to NW.js
before starting work on Electron. That said, they’re different in several important
ways, as shown in table 1.1.

NW.js uses a forked version of Chromium. Electron uses Chromium and Node.js but
doesn’t modify them. This makes it easier for Electron to keep pace with the most
recent versions of Chromium and Node. Electron also includes modules for automati-
cally downloading updates and reporting crashes. NW.js doesn’t.

 NW.js applications start from an HTML page. Each browser window shares a com-
mon Node process. If more than one window is opened, they all share the same Node
process. Electron keeps the Node and browser processes separate. In Electron, you
start a main process from Node. This main process can open browser windows, each
of which is its own process. Electron provides APIs for facilitating communication
between the main process and the browser windows, which we call renderer processes
throughout this book.

 If backward compatibility is a concern, then NW.js might be a better choice
because it supports Windows XP and Vista. Electron supports only Windows 7 and
later. For multimedia-focused applications, Electron is typically a better choice because
Chromium’s FFmpeg library is a statically linked dependency, so Electron supports
more codecs out of the box. With NW.js, you need to manually link the FFmpeg
library.

Table 1.1 A comparison of some of the main differences between Electron and NW.js

Electron NW.js

Platform Officially supported Chromium Content Module
from recent build

Forked version of Chromium

Process model Separate processes Shared Node process

Crash reporting Built in Not included

Auto-updater Built in Not included

Windows support Windows 7 and later Windows XP and later
store/books/9781617294143

https://itbook.store/books/9781617294143

16 CHAPTER 1 Introducing Electron

www.itboo
Summary
 Electron is a runtime for building desktop applications using web technologies.
 The project began at GitHub as the foundation for the Atom text editor.
 Electron combines the Chromium Content Module, which is a stripped-down

version of the Chrome web browser with Node.
 This combination allows you to build applications that can access the filesystem

and compiled modules, as well as render a UI and use web APIs.
 Electron is used by applications large and small such as Atom, Microsoft’s Visual

Studio Code, and Slack.
 Electron is great for individuals or small teams who may want to target more

than one platform without having to learn three or more languages, as well as
each platform’s frameworks.

 Electron allows web developers to use their existing skill set to build applica-
tions that wouldn’t otherwise be possible within the browser environment.

 Electron ships with a modern version of Chromium and Node, which means
you can use the latest and greatest features of the web platform.

 Electron applications can access operating system APIs such as application and
context menus, File Open and Save dialog boxes, battery status and power set-
tings, and more.

 Electron applications are permitted enhanced privileges and have fewer restric-
tions imposed on their capability as compared to browser-based web applications.

 Electron applications consist of one main process and one or more renderer
processes.

 The main process handles OS integration, manages the lifecycle of the applica-
tion, and creates renderer processes.

 Renderer processes display the UI and respond to user events.
 Electron differs from NW.js in that it uses the officially supported content module

from Chromium as opposed to NW.js, which uses a custom fork of Chromium.
k.store/books/9781617294143

https://itbook.store/books/9781617294143

Steve Kinney

W
ouldn’t it be great to build desktop applications us-
ing just your web dev skills? Electron is a framework
designed for exactly that! Fully cross-platform, Elec-

tron lets you use JavaScript and Node to create simple, snappy
desktop apps. Spinning up tools, games, and utilities with
Electron is fast, practical, and fun!

Electron in Action teaches you to build cross-platform applica-
tions using JavaScript, Node, and the Electron framework.
You’ll learn how to think like a desktop developer as you build
a text tool that reads and renders Markdown. You’ll add OS-
specifi c features like the fi le system, menus, and clipboards,
and use Chromium’s tools to distribute the fi nished product.
You’ll even round off your learning with data storage, perfor-
mance optimization, and testing.

What’s Inside
● Building for macOS, Windows, and Linux
● Native operating system APIs
● Using third-party frameworks like React
● Deploying to the Mac App Store

Requires intermediate JavaScript and Node skills. No experi-
ence building desktop apps required.

Steve Kinney is a principal engineer at SendGrid, an instructor
with Frontend Masters, and the organizer of the DinosaurJS
conference in Denver, Colorado.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/electron-in-action

$44.99 / Can $59.99 [INCLUDING eBOOK]

Electron IN ACTION

PROGRAMMING/WEB DEVELOPMENT

M A N N I N G

“The defi nitive source on
cross-platform desktop
app development with a
code-driven narrative.”
—Ashwin K. Raj, Innocepts

“Takes you from simply
knowing what Electron is
about, to actually writing

complex Electron
applications.”

—Alexey Galiullin, Voiceworks

“Allowed me to quickly build
my own day-to-day tools.”—Philippe Charrière, GitLab

“Fast to read and easy
 to understand.”

—Jay Kelkar, Kelkar Systems

“Finally, JavaScript
 is everywhere!”

—William E. Wheeler, consultant

See first page

www.itbook.store/books/9781617294143

https://itbook.store/books/9781617294143

