
M A N N I N G

Steve Kinney

S A M P L E C H A P T E R

www.itbook.store/books/9781617294143

https://itbook.store/books/9781617294143

Electron in Action

by Steven Kinney

 Chapter 9

 Copyright 2019 Manning Publications

www.itbook.store/books/9781617294143

https://itbook.store/books/9781617294143

vii

brief contents
PART 1 GETTING STARTED WITH ELECTRON1

1 ■ Introducing Electron 3

2 ■ Your first Electron application 17

PART 2 BUILDING CROSS-PLATFORM APPLICATIONS
WITH ELECTRON ...45

3 ■ Building a notes application 47

4 ■ Using native file dialog boxes and facilitating
interprocess communication 65

5 ■ Working with multiple windows 87

6 ■ Working with files 98

7 ■ Building application and context menus 123

8 ■ Further operating system integration and
dynamically enabling menu items 143

9 ■ Introducing the tray module 159

10 ■ Building applications with the menubar library 181

11 ■ Using transpilers and frameworks 199

www.itbook.store/books/9781617294143

https://itbook.store/books/9781617294143

BRIEF CONTENTSviii

12 ■ Persisting use data and using native Node.js modules 222

13 ■ Testing applications with Spectron 243

PART 3 DEPLOYING ELECTRON APPLICATIONS257

14 ■ Building applications for deployment 259

15 ■ Releasing and updating applications 272

16 ■ Distributing your application through
the Mac App Store 293

www.itbook.store/books/9781617294143

https://itbook.store/books/9781617294143

www.itbook.sto
Introducing
the tray module
For most of the first half of the book, we worked on Fire Sale. Although its initial
feature set in chapter 3 could have conceivably been matched by a traditional,
browser-based web application, we spent the subsequent chapters adding function-
ality outside the scope of what most browsers allow. In this chapter, we begin well
outside the realm of where we expect to find web technologies: the macOS menu
bar and Windows system tray. In the beginning, we won’t have a renderer process

This chapter covers
 Building a simple application that lives in the

menu bar on macOS or the system tray in
Windows.

 Using Electron’s tray module to create
applications that live in the operating system’s
menu bar or system tray.

 Reading from and writing to the system clipboard.

 Registering global shortcuts that listen for
specific keystrokes even when the application is
not in use.

 Triggering native notifications in macOS and
Windows 10.
159

re/books/9781617294143

https://itbook.store/books/9781617294143

160 CHAPTER 9 Introducing the tray module

www.itboo
or the DOM. By the end of this chapter, we explore how to create hidden renderer
processes to access features not available to the main process. In the next chapter, we
create a BrowserWindow to serve as the UI for our tray application.

 With Fire Sale behind us, we’ll embark on building a new application: Clipmaster,
shown in figure 9.1. By the end of this chapter, we launch the application. It will have
no dock, taskbar icon, or windows of its own. We activate it by pressing a keyboard
shortcut that is globally available throughout the operating system. When the shortcut
is triggered, Clipmaster reads from and records the contents of the user’s clipboard. If
the user selects a previously saved clipboard item from the menu, the app places it
back onto the system clipboard for pasting in another application.

As shown in the figure, we need to implement the following:

 A menu bar or tray icon that is available from anywhere in the respective oper-
ating system.

 A menu item that reads from the clipboard and places its contents in a menu
item.

 A list of menu items. When the user clicks one of the menu items in this sec-
tion, Clipmaster writes the string of text back to the clipboard.

 A final menu item for quitting Clipmaster.

If you look closely, you’ll notice that each of these items has a keyboard shortcut as
well. In addition to these menu-based accelerators, we register global shortcuts with
the operating system that allow the user to activate this menu or create a new clipping
from anywhere.

 The source code for Clipmaster is available at https://github.com/electron-in-
action/clipmaster. I use the master branch as a boilerplate and starting point for the

Figure 9.1 This is what the application looks like when completed. macOS is on the top, and
Windows is on the bottom.
k.store/books/9781617294143

https://github.com/electron-in-action/clipmaster
https://github.com/electron-in-action/clipmaster
https://itbook.store/books/9781617294143

161Creating an application with the tray module

www.itbook.
code in this chapter. There is also a branch called “completed-example” that contains
the code shown at the end of this chapter. I show the code as we go along, and a com-
pleted version will be available at the end.

9.1 Getting started with Clipmaster
The folder structure for Clipmaster is roughly the same as we saw in Fire Sale with
much of the code in the ./app directory. You might notice that there isn’t a ren-
derer.js or index.html. Those are added by the end of the chapter but aren’t needed
in the beginning. You may also notice a few small image files. Our application needs
an icon if it’s going to live in the tray or menu bar. macOS expects this icon to be a
PNG file, and Electron automatically checks if there is a version of the image with the
suffix “@2px” if it is running on a device with a retina screen. Windows accepts a
PNG but works best with an ICO file. Unlike the built-in switch between high- and
low-resolution versions based on the density of the display, we need to manually check
which operating system the application is running on to select the best image.

 To get started, clone the master branch, and run either npm install or yarn
install to download the dependencies. After everything is installed, we can get started
on building Clipmaster.

9.2 Creating an application with the tray module
To get the ball rolling, we can add our application to the system tray or menu bar with
just one feature: the ability to click Quit and close the application (see figure 9.2). To
accomplish this heroic task, we need help from Electron’s tray module. You can think
of the tray module as a peer to BrowserWindow. It’s a constructor that—when instanti-
ated—creates a system tray or menu bar item in much the same way that Browser-
Window creates a browser window.

To do this, as you’ll see in listing 9.1, we need to wait until the application is ready, cre-
ate a tray instance, and provide it with an icon and a menu loaded up with the Quit
command. When the application is ready, we create the menu and set it as the context

Figure 9.2 In the first iteration, Clipmaster is nothing more than a small application
that allows the user to immediately quit it. Don’t worry: there is more functionality to
come, and you’ll have a fully functional application by the end of the chapter.
store/books/9781617294143

https://itbook.store/books/9781617294143

162 CHAPTER 9 Introducing the tray module

www.itboo
menu of the tray instance. In a fit of ambition, we also set a tooltip that will be shown
when the user hovers over our proud new tray icon. See figure 9.3.

const path = require('path');
const {
 app,
 Menu,
 Tray,
 } = require('electron');

let tray = null;

app.on('ready', () => {
 tray = new Tray(path.join(__dirname, '/Icon.png'));

 if (process.platform === 'win32') {
 tray.on('click', tray.popUpContextMenu);
 }

 const menu = Menu.buildFromTemplate([
 {
 label: 'Quit',
 click() { app.quit(); }
 }
]);

 tray.setToolTip('Clipmaster');
 tray.setContextMenu(menu);
});

As with the windows in Fire Sale, we declared the tray variable in the global scope to
prevent it from being thrown out sometime after the event listener on the app’s ready
event has run to completion. Inside the event listener, we assign a new tray instance
to the variable with a reference to the image we want to use as an icon.

 If you recall from chapter 7, Menu.buildFromTemplate() is an abstraction that
allows you to create complicated menu structures using objects and arrays. This menu

Listing 9.1 Creating a tray instance: ./app/main.js

Figure 9.3 When the user hovers over the icon, they see the tooltip. This can be customized and
changed based on the state of the application.

Declares a variable in
the global scope that
eventually stores a
reference to the tray
instance Creates a tray

instance by calling
the constructor with
a path to an image

On Windows, we register
a click event listener to
open the menu.

Builds a menu in the same fashion
that we built application and context
menus in earlier chapters

Optionally, defines a tooltip
to be shown when the user
hovers over the tray icon

Takes the menu created and sets it as the menu that
appears when the user clicks the icon in the menu or
system tray in macOS and Windows, respectively.
k.store/books/9781617294143

https://itbook.store/books/9781617294143

163Creating an application with the tray module

www.itbook.
isn’t exactly complicated, but it’s still easier than building a menu by instantiating
MenuItem instances one at a time. At this point, the menu has one item with Quit as
its label. When it’s clicked—or later activated by a keystroke—it will tell Electron to
quit the application. With the menu built, all that is left is to set it as the context
menu for tray.

 Windows treats the tray instances menu as a context menu. This means the menu
shows up only if the icon is right-clicked. In listing 9.1, we also register a click event
that triggers the menu if the application is running on Windows.

 The application works, but if you fire it up on macOS, you can notice that it also
shows up in the dock. Clicking it doesn’t do anything, because the application doesn’t
have any browser windows to show. We could add functionality such as the ability to
trigger the menu from the menu bar when the dock icon is clicked, but I vote that we
hide the dock icon altogether.

app.on('ready', () => {
 if (app.dock) app.dock.hide();

 // …
}

The line of code checks if the app has a dock object, which it does if it’s running on
macOS. If so, then Electron tells the dock icon to hide itself. This approach is interest-
ing because it leaves the developer room to hide or show the dock icon at will,
depending on what mode their application is in or the user’s preference. In our case,
we hide it when the application launches and never show it again.

9.2.1 Using the correct icon for macOS and Windows

macOS and Windows prefer different file types for icons. Their UIs each work better
with a different color. By default, the menu bar on macOS is white and works better
with dark icons whereas Windows 10 has a dark task bar and works better with white
icons. Windows prefers ICO files, and macOS uses PNG files. To solve this issue, Node
checks the platform it’s running on and gets the appropriate icon based on the plat-
form. Electron does such a good job of providing a consistent cross-platform experi-
ence that this is one of the few times in this book that we find ourselves doing
something like this.

const getIcon = () => {
 if (process.platform === 'win32') return 'icon-light@2x.ico';
 return 'icon-dark.png';
};

app.on('ready', () => {
 if (app.dock) app.dock.hide();

Listing 9.2 Hiding the dock icon on macOS: ./app/main.js

Listing 9.3 Conditionally choosing an icon based on the platform: ./app/main.js

Hides the dock icon if
running on macOS.

The getIcon() function checks
the platform the application is

running on and returns the
appropriate filename.
store/books/9781617294143

https://itbook.store/books/9781617294143

164 CHAPTER 9 Introducing the tray module

www.itboo
 tray = new Tray(path.join(__dirname, getIcon()));
 // … More code below …
});

If we’re on Windows, it gives us the filename of the light ICO icon. Otherwise, it gives
us the filename of the dark PNG icon. When the application is ready, we use the new
getIcon() function instead of the string we had hard-coded originally.

9.2.2 Supporting dark mode in macOS

Earlier, I said that the macOS menu bar is white by default. In macOS El Capitan and
later, users can turn on dark mode, which inverts the color of the menu bar and dock.
In this case, we would want to use a PNG file like we would normally for macOS, but
we also want to use the light versions like we would with the transparent black system
tray in Windows 10, as shown in listing 9.4 and figure 9.4.

const path = require('path');
const {
 app,
 Menu,
 Tray,
 systemPreferences,
} = require('electron');

let tray = null;

const getIcon = () => {
 if (process.platform === 'win32') return 'icon-light.ico';
 if (systemPreferences.isDarkMode()) return 'icon-light.png';
 return 'icon-dark.png';
};

Electron makes this easy using the systemPreferences module, which conveniently
has a method called isDarkMode() that returns a Boolean. I leave it as an exercise to
the reader to determine under which conditions it returns true or false.

9.2.3 Reading from the clipboard and storing clippings

This application is supposed to store clippings, and we have many ways we could go
about doing this. In chapter 11, we look at using an SQLite database to store clippings.

Listing 9.4 Supporting dark mode on macOS: ./app/main.js

When creating a new tray
instance, use getIcon() to
get the correct filename.

Figure 9.4 If the macOS menu bar is in dark mode, we’ll use the inverted icon.

Imports the
systemPreferences
module from Electron

Uses the system-
Preferences.isDarkMode()

to detect if macOS is in
dark mode
k.store/books/9781617294143

https://itbook.store/books/9781617294143

165Creating an application with the tray module

www.itbook.
But for now, let’s start with the easiest possible solution: storing them in memory. This
approach is easy because it allows us to use a built-in JavaScript data structure, but it
has the disadvantage of being cleared away whenever the user quits the application.

 To ship this feature, we need to create an array to hold our clippings. We also need
to create a function that reads from the clipboard and adds the contents to the array,
as well as a way for the user to trigger this function. Finally, we want to update the
menu with the clippings we stored and allow users to select one to be added back to
the clipboard. See figures 9.5 and 9.6.

We update the menu whenever the user saves a new clipping. As we discussed in
chapter 7, it’s possible to traverse and mutate the menu after it is created, but it’s
often easier and more efficient to completely replace it. To facilitate this, we move
the code to create the context menu into its own function that we can call whenever
we need to update the menu.

const path = require('path');
const {
 app,
 Menu,
 Tray,
 systemPreferences,
} = require('electron');

const clippings = [];
let tray = null;

Listing 9.5 Storing clippings in memory using an array: ./app/main.js

Figure 9.5 The application with its two basic commands on macOS

Figure 9.6 In addition to being able to quit the application, users need a way to add a clipping to the
application. Here the application is shown in the Windows tray.

Declares an empty array
to store clippings
store/books/9781617294143

https://itbook.store/books/9781617294143

166 CHAPTER 9 Introducing the tray module

nu
en

t
e

www.itboo
const getIcon = () => {
 if (process.platform === 'win32') return 'icon-light.ico';
 if (systemPreferences.isDarkMode()) return 'icon-light.png';
 return 'icon-dark.png';
};

app.on('ready', () => {
 if (app.dock) app.dock.hide();

 tray = new Tray(path.join(__dirname, getIcon()));

 if (process.platform === 'win32') {
 tray.on('click', tray.popUpContextMenu);
 }

 updateMenu();

 tray.setToolTip('Clipmaster');
});

const updateMenu = () => {
 const menu = Menu.buildFromTemplate([
 {
 label: 'Create New Clipping',
 click() { null; }
 },
 { type: 'separator' },
 ...clippings.map((clipping, index) => ({ label: clipping })),
 { type: 'separator' },
 {
 label: 'Quit',
 click() { app.quit(); },
 }
]);

 tray.setContextMenu(menu);
};

We start by creating a simple array called clippings with a global scope that stores
clippings and is accessed throughout our application. Next, we create a function
called updateMenu() to generate a new menu and set it as the context menu for the
tray instance. updateMenu() takes the contents of the clippings array, maps it into
objects that can be turned into MenuItem instances, and then uses the ECMAScript
2015 spread operator to include them as siblings with Create New Clipping and Quit-
menu items.

 We added a menu item with the label Create New Clipping (see figure 9.7), but
if you look closely, you’ll notice that we haven’t yet added any functionality. To get
it working, we need to figure out a way to access the operating system’s native
clipboard. Once we can do that, we can update this function to read from the clip-
board and push its contents into the array of clippings and then call updateMenu()
to re-render it.

Updates the me
immediately wh
the application
starts to build i
for the first tim

Eventually, we implement
the ability to add clippings
to the array.

Each time updateMenu() is
called, we map through the

array of clippings and render
them as simple menu items.

tray.setContextMenu() has been moved into
updateMenu() to replace the menu whenever
the list of clippings has been modified.
k.store/books/9781617294143

https://itbook.store/books/9781617294143

167Reading from and writing to the clipboard

www.itbook.
9.3 Reading from and writing to the clipboard
At this point, it should come as no surprise that Electron provides a module that
makes it easy to access the operating system’s clipboard on Linux, macOS, and Win-
dows. It should come as even less of a surprise that this module is conveniently called
clipboard.

 The clipboard module is available in the main process as well as in the renderer
process, and it has several useful methods for reading images, rich text, HTML, book-
marks, and other formats. For now, let’s keep it simple and stick to working with
strings of plain text. Figure 9.7 shows our application with a single clipping.

To get the Create New Clipping menu item to work, we want to create a function that
we can call that reads from the clipboard and adds it to the clippings array. In the
spirit of simplicity and clarity, we call this function addClipping().

const path = require('path');
const {
 app,
 clipboard,
 Menu,
 Tray,
 systemPreferences
} = require('electron');

const clippings = [];
let tray = null;

app.on('ready', () => {
 // …
});

const updateMenu = () => {
 const menu = Menu.buildFromTemplate([
 {
 label: 'Create New Clipping',
 click() { addClipping(); },

Listing 9.6 Adding a clipping to the array when the menu item is clicked: ./app/main.js

Figure 9.7 When clippings are added to the array, the menu is updated with a
new menu item with the clipping’s content as the label.

Pulls in the clipboard
module from Electron

When a user clicks the Create
New Clipping menu item, calls
the addClipping() function
store/books/9781617294143

https://itbook.store/books/9781617294143

168 CHAPTER 9 Introducing the tray module

acce
the C
Clip

it
avai

t

www.itboo
 accelerator: 'CommandOrControl+Shift+C'
 },
 { type: 'separator' },
 ...clippings.map((clipping, index) => ({ label: clipping })),
 { type: 'separator' },
 {
 label: 'Quit',
 click() { app.quit(); },
 accelerator: 'CommandOrControl+Q'
 }
]);

 tray.setContextMenu(menu);
};

const addClipping = () => {
 const clipping = clipboard.readText();
 clippings.push(clipping);
 updateMenu();
 return clipping;
};

To do anything with the Electron’s clipboard module, we need to include it like every
other module from Electron. With the module included, addClipping() can read
text from the clipboard and push it onto the array. With a new clipping in the array,
the next logical step is to update the menu and display the new contents to the user as
shown in figure 9.7.

9.3.1 Writing to the clipboard

With this feature in place, we can read from the clipboard and save the text snippets
in our application, but we haven’t yet written the functionality to take one of the saved
clippings and write it back to the clipboard. As it stands, our application is a scrap-
book of the clippings we’ve saved in the past.

 Writing to the clipboard isn’t much different from reading from it. So, let’s up the
ante and assign keyboard shortcuts to the menu items associated with the clippings, as
shown in figure 9.8 and in listing 9.7. When a user presses the keystroke, the respec-
tive clipping is written to the clipboard.

Adds an
lerator for
reate New
ping menu
em. This is
lable when
he menu is

active.
Adds an accelerator for the Quit
menu item. This is available when
the menu is active.

Uses Electron’s clipboard
module to read text from
the system clipboard

Pushes the text read from the
clipboard into the array of clippings

Regenerates the menu to display
the new clipping as a menu item

Figure 9.8 The application now has keyboard shortcuts.
k.store/books/9781617294143

https://itbook.store/books/9781617294143

169Reading from and writing to the clipboard

www.itbook.
const path = require('path');
const {
 app,
 clipboard,
 Menu,
 Tray,
 systemPreferences
} = require('electron');

const clippings = [];
let tray = null;

app.on('ready', () => {
 // …
});

const updateMenu = () => {
 const menu = Menu.buildFromTemplate([
 {
 label: 'Create New Clipping',
 click() { addClipping(); },
 accelerator: 'CommandOrControl+Shift+C'
 },
 { type: 'separator' },
 ...clippings.map(createClippingMenuItem),
 { type: 'separator' },
 {
 label: 'Quit',
 click() { app.quit(); },
 accelerator: 'CommandOrControl+Q'
 }
]);

 tray.setContextMenu(menu);
};

const addClipping = () => {
 // …
};

const createClippingMenuItem = (clipping, index) => {
 return {
 label: clipping,
 click() { clipboard.writeText(clipping); },
 accelerator: `CommandOrControl+${index}`
 };
};

Mapping the strings into menu items inside of the array with an anonymous function
was a short-term solution at best. Now that we’re adding click methods and accelerators

Listing 9.7 Listing out the clippings as menu items: ./app/main.js

Uses the createClippingMenu() in
place of the anonymous function
we were using previously when
mapping over the array of
clippings.

Creates a function called
createClippingMenuItem()

When a user clicks on a
given clipping, writes it to
the clipboard. The correct
clipping is wrapped inside
of a closure.

Assigns the menu item an
accelerator based on its index

inside of the clippings array
store/books/9781617294143

https://itbook.store/books/9781617294143

170 CHAPTER 9 Introducing the tray module

www.itboo
to each menu item, it makes sense to break out this process into its own function.
createClippingMenuItem() takes the first two arguments passed by Array.prototype
.map() to its callback function: the item currently being iterated over and its index.
We use this index to determine which accelerator to assign to it.

9.3.2 Handling edge cases

With this in place, the user can now write a clipping back to the clipboard with a key-
stroke. That’s great, but what happens if the user copies a big string of text? Eventually
the operating system will trim stuff down, as shown in figure 9.9, but we need to step
in and do better.

When we iterate over the clippings to create menu items, we check if it is over 20 char-
acters long. If it is, slice off the first 20 characters, add an ellipsis, and use that as the
label. Figure 9.10 shows an example of a shortened menu item name and listing 9.8
gives the code for truncating the labels. This truncation has no effect on the clipping
itself. If the user selects the clipping, its full text is written back to the clipboard. If the
clipping is less than than 20 characters, use it as the label without modification.

const createClippingMenuItem = (clipping, index) => {
 return {
 label: clipping.length > 20
 ? clipping.slice(0, 20) + '…'

Listing 9.8 Truncating menu item labels: ./main/app.js

Figure 9.9 The operating system will eventually truncate long menu item labels, but even this is a bit unwieldy.

Figure 9.10 Clipping menu item labels are now capped at 20 characters. You can
adjust this to your liking, or create a setting to allow users to control the length.
k.store/books/9781617294143

https://itbook.store/books/9781617294143

171Reading from and writing to the clipboard

www.itbook.
 : clipping,
 click() { clipboard.writeText(clipping); },
 accelerator: `CommandOrControl+${index}`
 };
};

I chose 20 as an arbitrary number. You can choose another number if you prefer. In a
larger application, it might make sense to allow the user to express their preference
and use that number instead.

 What if a user accidentally added a clipping that is already stored in our array? To
get around this, we check if the array includes the current clipping. If it does, then
return early to short-circuit the function. Another option would be to use a set instead
of an array, which is the approach we took with managing unique windows in Fire
Sale. This method works for preventing duplicates, but sets do not have a map()
method, so we would need to come up with another method for turning the clippings
into menu items.

const addClipping = () => {
 const clipping = clipboard.readText();
 if (clippings.includes(clipping)) return;
 clippings.push(clipping);
 updateMenu();
 return clipping;
};

Array.prototype.push() adds items to the end of the array, so the first clipping
added always is assigned Command-0 or Control-0 as an accelerator. Array.prototype
.unshift() adds the new item to the beginning of the array. This means that the most
recently saved clipping is accessible with Command-0 or Control-0, the second most
recently saved clipping is accessible with Command-1 or Control-1, and so on.

const addClipping = () => {
 const clipping = clipboard.readText();
 if (clippings.includes(clipping)) return;
 clippings.unshift(clipping);
 updateMenu();
 return clipping;
};

If the user falls in love with our application, it could get fairly long. Therefore, it
makes sense to limit the number of clippings in the menu. I chose to limit it to 10
items because we’re assigning keyboard shortcuts based on the array indices, and
there is no “11” key on most keyboards.

Listing 9.9 Preventing duplicate clippings: ./app/main.js

Listing 9.10 Adding clippings to the beginning of the array: ./main.js

If the length of the
clipping is longer than
20 characters, slices off
the first 20 characters
and adds an ellipsis.

Checks if the clippings
array already contains
the current clippings. If
so, returns early from
the function.

Unshift adds an element
to the beginning of an
array.
store/books/9781617294143

https://itbook.store/books/9781617294143

172 CHAPTER 9 Introducing the tray module

www.itboo
const menu = Menu.buildFromTemplate([
 {
 label: 'Create New Clipping',
 click() { addClipping(); },
 accelerator: 'CommandOrControl+Shift+C'
 },
 { type: 'separator' },
 ...clippings.slice(0, 10).map(createClippingMenuItem),
 { type: 'separator' },
 {
 label: 'Quit',
 click() { app.quit(); },
 accelerator: 'CommandOrControl+Q'
 }
]);

These shortcuts have a limitation—they work only when we are actively working with the
menu. This means the user would have to mouse over to the menu bar or system tray
icon and click it. After that action they can use one of the keyboard shortcuts provided.
This is slightly useful, but not as useful as if the shortcuts were globally available.

9.4 Registering global shortcuts
All the accelerators we’ve used so far have worked only when the application is actively
being used. By using the globalShortcut module, Electron also allows us to register
global shortcuts with the operating system that can be activated even when the appli-
cation is in the background. We’ll register two global shortcuts for Clipmaster: one to
trigger the menu to appear, and another to save the contents of the clipboard to Clip-
master without needing to trigger the menu at all.

const path = require('path');
const {
 app,
 clipboard,
 globalShortcut,
 Menu,
 Tray,
 systemPreferences
} = require('electron');

const clippings = [];
let tray = null;

app.on('ready', () => {
 if (app.dock) app.dock.hide();

 tray = new Tray(path.join(__dirname, '/Icon.png'));

Listing 9.11 Displaying only the first 10 clippings: ./app/main.js

Listing 9.12 Registering a global shortcut: ./app/main.js

Displays only the first
10 items of an array by
using Array.prototype
.slice()

Requires the global-
Shortcut module
from Electron
k.store/books/9781617294143

https://itbook.store/books/9781617294143

173Registering global shortcuts

W

c

www.itbook.
 if (process.platform === 'win32') {
 tray.on('click', tray.popUpContextMenu);
 }

 const activationShortcut = globalShortcut.register(
 'CommandOrControl+Option+C',
 () => { tray.popUpContextMenu(); }
);

 if (!activationShortcut) {
 console.error('Global activation shortcut failed to register');
 }

 const newClippingShortcut = globalShortcut.register(
 'CommandOrControl+Shift+Option+C',
 () => { addClipping(); }
);

 if (!newClippingShortcut) {
 console.error('Global new clipping shortcut failed to register');
 }

 updateMenu();

 tray.setToolTip('Clipmaster');
});

const updateMenu = () => {
 // …
};

const addClipping = () => {
 // …
};

const createClippingMenuItem = (clipping, index) => {
 // …
};

The first thing we need to do is require the globalShortcut module from Electron.
After we have the module, we can use its register() method, which takes two argu-
ments: an accelerator, and a function to call when it has been activated. If the global
shortcut is already taken, Electron returns null instead of throwing an error,
which—if uncaught—could take down the entire application. In this case, we log a
message to the console informing us that the registration has failed. In a more
robust application, you could prompt the user to select a new shortcut or fallback to
a second choice.

 This functionality behaves slightly differently on macOS and Windows. On macOS
the menu appears in the same manner as it would if the user clicked it. On Windows,
however, the menu appears beneath the cursor, as shown in figure 9.11, instead of
above the system tray icon as you might expect.

Passes a string defining
the accelerator and an
anonymous function that
should be invoked whenever
the accelerator is pressed

If registration fails, Electron
does not throw an error.

Instead, it returns undefined.
In this line, we check if the

activationShortcut is defined.e register
a second
shortcut
to add a

lipping to
the array.

If either shortcut fails, we log the
issue with console.error. In a more
robust application, you might show
the user that there was an issue or

implement a fallback.
store/books/9781617294143

https://itbook.store/books/9781617294143

174 CHAPTER 9 Introducing the tray module

www.itboo
9.4.1 Checking registrations and unregistering global shortcuts

Electron’s globalShortcut module also provides other useful methods for working
with shortcuts. globalShortcut.isRegistered() returns a Boolean that is true if the
application has already registered the shortcut; otherwise, it returns false. However,
it also returns false if another application has registered that shortcut.

 In Clipmaster, you’ve chosen to hard-code our global shortcuts, but you may
choose to create a UI that allows users to set their own keyboard shortcuts. If a user
decides to switch shortcuts for a given command, we want to unregister the old short-
cut with globalShortcut.unregister() after we’ve successfully registered the new
one. We can also unregister all global shortcuts using the conveniently named global-
Shortcut.unregisterAll() method.

9.5 Displaying notifications
With our global shortcuts in place, users can save new clippings from anywhere with a
touch of a few buttons. But how does the user know when they’ve successfully saved a
clipping? Not only does our application not have much of a UI to begin with, it isn’t
being shown when they activate it using a global shortcut. One solution would be to
show a native system notification, such as that shown in figures 9.12 and 9.13.

Support for notifications
Notifications work out of the box on macOS and Windows 10. They also work with the
most common Linux desktop environment. Things get a bit tricky when working with
older versions of Windows. This is beyond the scope of this book, but it is covered in
the official documentation: http://mng.bz/nJR0.

Figure 9.11 On Windows, the menu appears beneath the cursor when triggered with the
global shortcut.
k.store/books/9781617294143

http://mng.bz/nJR0
https://itbook.store/books/9781617294143

175Displaying notifications

www.itbook.
This is the solution that we’re going with, but it’s not without its complications. Electron
applications can create notifications using Chromium’s Notification API. As a web API,
Notifications are available only in the renderer process and not in the main process.

 To deliver this feature, we need to create a hidden BrowserWindow instance. When
the user saves a new clipping using the global shortcut, we send a message via IPC to
the renderer process. When the renderer process receives this message, it triggers the
notification.

 Let’s start by making an invisible process and then send messages to it and let it
trigger the notifications. If you recall from Fire Sale, BrowserWindow instances can
load HTML, which in turn can load JavaScript like a traditional web page would. The
first thing we need is a bare minimum HTML page.

<!DOCTYPE html>
<html lang="en">

<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width,initial-scale=1">
 <title>Clipmaster</title>
</head>

<body></body>

<script>
 require('./renderer');
</script>

</html>

Listing 9.13 Setting up a simple HTML document: ./app/index.html

Figure 9.12 A notification in Windows 10

Figure 9.13 A notification in macOS

The purpose of this HTML file
is to load the JavaScript for
the renderer process.
store/books/9781617294143

https://itbook.store/books/9781617294143

176 CHAPTER 9 Introducing the tray module

www.itboo
This page has some basic markup to make it a valid HTML page. The important part
is that it contains a script tag that loads renderer.js, which contains the code that lis-
tens for messages from the main process and triggers the notification. Next, let’s set
up that listener and write the code to display the notification.

const { ipcRenderer } = require('electron');

ipcRenderer.on('show-notification', (event, title, body) => {
 const myNotification = new Notification(title, { body });
});

We pull in the ipcRenderer module and begin listening for notifications on the
appropriately named show-notification channel. This listener expects three argu-
ments in addition to the event object that is included by default: a title and body for
the notification, as well as a function detailing what to do if the user clicks the notifica-
tion. If no function is provided, onClick is an empty function by default.

 With the code for our renderer process in place, we need to run it when the appli-
cation starts. In Fire Sale, we created BrowserWindow instances that started out hidden
and then were displayed when the content has been loaded. In Clipmaster, there isn’t
any content to display, so we never show the window itself. Include this code snippet
inside the app.on ready block.

const {
 // . . .
 BrowserWindow,
 // . . .
} = requre('electron');

browserWindow = new BrowserWindow({
 show: false
 });

browserWindow.load.URL(`file://{$_dirname}/index.html`);

Even though the window is not shown, we can load the HTML page we created earlier
to execute the code and set up our listener. Now when we add a clipping, we send a
message to the renderer process to have it show a notification.

constnewClippingShortcut=globalShortcut.register(
 'CommandOrControl+Shift+Option+C',

Listing 9.14 Listening for messages and displaying notifications: ./app/renderer.js

Listing 9.15 Launching the hidden browser window: ./app/main.js

Listing 9.16 Sending a message to the renderer process: ./app/main.js

Notifications are part of Chromium’s built-in APIs and are not specific to Electron. It
takes two arguments: a string for the title, and an object of additional parameters.

In this example, we’re providing a body using ES2015’s enhanced object literal
syntax. This is equivalent to { body: body }.
k.store/books/9781617294143

https://itbook.store/books/9781617294143

177Switching menu bar icons when pressed in macOS

www.itbook.
 () => {
 constclipping=addClipping();
 if (clipping) {
 browserWindow.webContents.send(
 'show-notification',
 'Clipping Added',
 clipping,
);
 }
 },
);

When a clipping has been added, a message is sent to the renderer process. Before
sending the message, we check if addClipping() returned a value. If you recall, if the
list of clippings already contains the new clipping, then the function returns early with
a value of undefined. This conditional prevents the message from being sent if no
new clipping was saved. I leave it as an exercise to the reader to display a useful notifi-
cation informing the user that the clipping already exists.

9.6 Switching menu bar icons when pressed in macOS
On macOS, our menu bar icon doesn’t behave the same way as its peers. The
expected behavior is that the icon’s colors are inverted when the menu is activated.
Luckily, Electron makes it easy to implement this feature. See figure 9.14.

The tray module has a method called setPressedImage(). On Windows, this method
is ignored. On macOS it allows us to provide the path to a second image file. When the
menu bar icon is clicked, Electron swaps out the primary image for this second image.
The code in this listing belongs immediately after the statement that sets tray, which
also invokes getIcon().

tray.setPressedImage(path.join(__dirname, 'icon-light.png'));

You may be asking, “What about dark mode?” It turns out that the default behavior in
macOS is not to invert the icons when they’re pressed in dark mode. As a result, you
do not need to implement any additional logic to handle that situation.

Listing 9.17 Setting an alternate icon for when icon is pressed: ./app/main.js

addClipping() returns the
string of the clipping that
was added to the array.

If there was a clipping saved, we send
a notification to the renderer process,
which triggers the notification.

Figure 9.14 macOS can use an alternate icon when the menu bar
application is clicked. In this example, we used an inverted version of
the icon to match the rest of the menu bar icons.
store/books/9781617294143

https://itbook.store/books/9781617294143

178 CHAPTER 9 Introducing the tray module

www.itboo
9.7 Completed code
The code for Clipmaster, in line with the features in this chapter, has been implemented
as follows: Listing 9.18 shows the code for the main process and listing 9.19 shows the
code for the renderer process. You can also find this code on the completed-example
branch of the repository you cloned at the beginning of this chapter (http://
mng.bz/xJ98).

const path = require('path');
const {
 app,
 BrowserWindow,
 clipboard,
 globalShortcut,
 Menu,
 Tray,
 systemPreferences,
} = require('electron');

const clippings = [];
let tray = null;
let browserWindow = null;

const getIcon = () => {
 if (process.platform === 'win32') return 'icon-light@2x.ico';
 if (systemPreferences.isDarkMode()) return 'icon-light.png';
 return 'icon-dark.png';
};

app.on('ready', () => {
 if (app.dock) app.dock.hide();

 tray = new Tray(path.join(__dirname, getIcon()));
 tray.setPressedImage(path.join(__dirname, 'icon-light.png'));

 if (process.platform === 'win32') {
 tray.on('click', tray.popUpContextMenu);
 }

 browserWindow = new BrowserWindow({
 show: false,
 });

 browserWindow.loadURL(`file://${__dirname}/index.html`);

 const activationShortcut = globalShortcut.register(
 'CommandOrControl+Option+C',
 () => {
 tray.popUpContextMenu();
 },
);

Listing 9.18 Clipmaster’s completed main process: ./app/main.js
k.store/books/9781617294143

http://mng.bz/xJ98
http://mng.bz/xJ98
http://mng.bz/xJ98
https://itbook.store/books/9781617294143

179Completed code

www.itbook.
 if (!activationShortcut)
 console.error('Global activation shortcut failed to regiester');

 const newClippingShortcut = globalShortcut.register(
 'CommandOrControl+Shift+Option+C',
 () => {
 const clipping = addClipping();
 if (clipping) {
 browserWindow.webContents.send(
 'show-notification',
 'Clipping Added',
 clipping,
);
 }
 },
);

 if (!newClippingShortcut)
 console.error('Global new clipping shortcut failed to regiester');

 updateMenu();

 tray.setToolTip('Clipmaster');
});

const updateMenu = () => {
 const menu = Menu.buildFromTemplate([
 {
 label: 'Create New Clipping',
 click() {
 addClipping();
 },
 accelerator: 'CommandOrControl+Shift+C',
 },
 { type: 'separator' },
 ...clippings.slice(0, 10).map(createClippingMenuItem),
 { type: 'separator' },
 {
 label: 'Quit',
 click() {
 app.quit();
 },
 accelerator: 'CommandOrControl+Q',
 },
]);

 tray.setContextMenu(menu);
};

const addClipping = () => {
 const clipping = clipboard.readText();
 if (clippings.includes(clipping)) return;
 clippings.unshift(clipping);
 updateMenu();
store/books/9781617294143

https://itbook.store/books/9781617294143

180 CHAPTER 9 Introducing the tray module

www.itboo
 return clipping;
};

const createClippingMenuItem = (clipping, index) => {
 return {
 label: clipping.length > 20 ? clipping.slice(0, 20) + '…' : clipping,
 click() {
 clipboard.writeText(clipping);
 },
 accelerator: `CommandOrControl+${index}`,
 };
};

const { ipcRenderer } = require('electron');

ipcRenderer.on('show-notification', (event, title, body, onClick = () => { })
=> {

 const myNotification = new Notification(title, { body });

 myNotification.onclick = onClick;
});

Summary
 The clipboard module provides several ways to read and write content to and

from the clipboard.
 The globalShortcut module allows Electron applications to register listeners

for keyboard shortcuts.
 Renderer processes can be used as background threads and don’t always need

to be shown.
 Chromium’s Notification API allows us to trigger native notifications on macOS

and Windows 10.

Listing 9.19 Clipmaster’s completed renderer process: ./app/renderer.js
k.store/books/9781617294143

https://itbook.store/books/9781617294143

Steve Kinney

W
ouldn’t it be great to build desktop applications us-
ing just your web dev skills? Electron is a framework
designed for exactly that! Fully cross-platform, Elec-

tron lets you use JavaScript and Node to create simple, snappy
desktop apps. Spinning up tools, games, and utilities with
Electron is fast, practical, and fun!

Electron in Action teaches you to build cross-platform applica-
tions using JavaScript, Node, and the Electron framework.
You’ll learn how to think like a desktop developer as you build
a text tool that reads and renders Markdown. You’ll add OS-
specifi c features like the fi le system, menus, and clipboards,
and use Chromium’s tools to distribute the fi nished product.
You’ll even round off your learning with data storage, perfor-
mance optimization, and testing.

What’s Inside
● Building for macOS, Windows, and Linux
● Native operating system APIs
● Using third-party frameworks like React
● Deploying to the Mac App Store

Requires intermediate JavaScript and Node skills. No experi-
ence building desktop apps required.

Steve Kinney is a principal engineer at SendGrid, an instructor
with Frontend Masters, and the organizer of the DinosaurJS
conference in Denver, Colorado.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/electron-in-action

$44.99 / Can $59.99 [INCLUDING eBOOK]

Electron IN ACTION

PROGRAMMING/WEB DEVELOPMENT

M A N N I N G

“The defi nitive source on
cross-platform desktop
app development with a
code-driven narrative.”
—Ashwin K. Raj, Innocepts

“Takes you from simply
knowing what Electron is
about, to actually writing

complex Electron
applications.”

—Alexey Galiullin, Voiceworks

“Allowed me to quickly build
my own day-to-day tools.”—Philippe Charrière, GitLab

“Fast to read and easy
 to understand.”

—Jay Kelkar, Kelkar Systems

“Finally, JavaScript
 is everywhere!”

—William E. Wheeler, consultant

See first page

www.itbook.store/books/9781617294143

https://itbook.store/books/9781617294143

