
www.itbook.store/books/9781617294181

https://itbook.store/books/9781617294181

www.itbook.
Exploring Data Science
Selections by John Mount and Nina Zumel

Manning Author Picks

 Copyright 2016 Manning Publications
To pre-order or learn more about these books go to www.manning.com
store/books/9781617294181

http://www.manning.com/
https://itbook.store/books/9781617294181

www.itbo
For online information and ordering of these and other Manning books, please visit
www.manning.com. The publisher offers discounts on these books when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co.
20 Baldwin Road Technical
PO Box 761
Shelter Island, NY 11964

Cover designer: Leslie Haimes

ISBN 9781617294181
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 - EBM - 21 20 19 18 17 16
ok.store/books/9781617294181

http://www.manning.com
https://itbook.store/books/9781617294181

www.itbook.
contents
Introduction iv

EXPLORING DATA 1
Exploring data
Chapter 3 from Practical Data Science with R 2

TIME SERIES 32
Time series
Chapter 15 from R in Action, Second Edition 33

DEEP LEARNING AND NEURAL NETWORKS 63
Deep learning and neural networks
Chapter 6 from Algorithms of the Intelligent Web, Second Edition 64

TEXT MINING AND TEXT ANALYTICS 95
Text mining and text analytics
Chapter 8 from Introducing Data Science 96

MODELING DEPENDENCIES WITH BAYESIAN
AND MARKOV NETWORKS 132
Modeling dependencies with Bayesian and Markov networks
Chapter 5 from Practical Probabilistic Programming 133

index 177
iii

store/books/9781617294181

https://itbook.store/books/9781617294181

www.itboo
Introduction
Data science is a broad field that touches on aspects of statistics, machine learning,
and data engineering. What the tools, methods, and work look like depend a lot on
your problem domain and point of view. Our book, Practical Data Science with R, intro-
duces readers to basic predictive modeling in the R language. But it was never our
intent to imply that data scientists can restrict themselves to one problem domain or
one implementation language.

 This is a great time to get into data science. The number of free tools and materials
has exploded. Storing and managing large data sets is now markedly easier. However,
this diversity can seem overwhelming and divisive. A traditional statistician may not
consider text analytics to be data science, and similarly somebody using neural nets to
analyze images may not appreciate classic statistical inference.

 We believe your problem helps to choose your technique. To illustrate this con-
cept, we have put together this sampler of chapters from our book and other Manning
titles. They cover diverse topics relevant to data science, highlighting a variety of
domains and programming languages. We hope these selections give you a better pic-
ture of the many tools available to solve your specific data science problems. In fact we
hope that after you appreciate these clear demonstrations of different domains and
methodologies, for your own domain you have an "Aha!" moment where you see how
one particular methodology applies to a problem you care about.
iv

k.store/books/9781617294181

https://itbook.store/books/9781617294181

www.itbook.store
 Data exploration and data cleaning are oft-neglected topics, yet they are
also the most crucial—and most time-consuming—parts of the data science pro-
cess. Without good data, you can’t develop effective models or glean important
insights. R’s interactive environment and visualization capabilities make it partic-
ularly well-suited for the task of understanding your data. The following chapter
covers some common data issues and how to detect them via visualization and
other exploration techniques in R. The chapter also provides an introduction to
R’s ggplot2 visualization package, a flexible grammar for creating rich and infor-
mative plots.

Exploring data
/books/9781617294181

https://itbook.store/books/9781617294181

www.itbook.
Chapter 3 from Practical Data Science with R
by Nina Zumel and John Mount

Exploring data
In the last two chapters, you learned how to set the scoe and goal of a data science
project, and how to load your data into R. In this chapter, we’ll start to get our
hands into the data.

 Suppose your goal is to build a model to predict which of your customers don’t
have health insurance; perhaps you want to market inexpensive health insurance
packages to them. You’ve collected a dataset of customers whose health insurance
status you know. You’ve also identified some customer properties that you believe
help predict the probability of insurance coverage: age, employment status,
income, information about residence and vehicles, and so on. You’ve put all your
data into a single data frame called custdata that you’ve input into R.1 Now you’re
ready to start building the model to identify the customers you’re interested in.

This chapter covers
 Using summary statistics to explore data

 Exploring data using visualization

 Finding problems and issues during data
exploration

1 We have a copy of this synthetic dataset available for download from https://github.com/WinVector/
zmPDSwR/tree/master/Custdata, and once saved, you can load it into R with the command custdata
<- read.table('custdata.tsv',header=T,sep='\t').
2

store/books/9781617294181

https://www.manning.com/books/practical-data-science-with-r
https://github.com/WinVector/zmPDSwR/tree/master/Custdata
https://github.com/WinVector/zmPDSwR/tree/master/Custdata
https://itbook.store/books/9781617294181

3Using summary statistics to spot problems

www.itbook.
 It’s tempting to dive right into the modeling step without looking very hard at the
dataset first, especially when you have a lot of data. Resist the temptation. No dataset is
perfect: you’ll be missing information about some of your customers, and you’ll have
incorrect data about others. Some data fields will be dirty and inconsistent. If you
don’t take the time to examine the data before you start to model, you may find your-
self redoing your work repeatedly as you discover bad data fields or variables that need
to be transformed before modeling. In the worst case, you’ll build a model that
returns incorrect predictions—and you won’t be sure why. By addressing data issues
early, you can save yourself some unnecessary work, and a lot of headaches!

 You’d also like to get a sense of who your customers are: Are they young, mid-
dle-aged, or seniors? How affluent are they? Where do they live? Knowing the
answers to these questions can help you build a better model, because you’ll
have a more specific idea of what information predicts the probability of insur-
ance coverage more accurately.

 In this chapter, we’ll demonstrate some ways to get to know your data, and discuss
some of the potential issues that you’re looking for as you explore. Data exploration
uses a combination of summary statistics—means and medians, variances, and counts—
and visualization, or graphs of the data. You can spot some problems just by using sum-
mary statistics; other problems are easier to find visually.

3.1 Using summary statistics to spot problems
In R, you’ll typically use the summary command to take your first look at the data.

> summary(custdata)
custid sex
Min. : 2068 F:440
1st Qu.: 345667 M:560
Median : 693403
Mean : 698500
3rd Qu.:1044606
Max. :1414286

Listing 3.1 The summary() command

Organizing data for analysis
For most of this book, we’ll assume that the data you’re analyzing is in a single data
frame. This is not how that data is usually stored. In a database, for example, data
is usually stored in normalized form to reduce redundancy: information about a single
customer is spread across many small tables. In log data, data about a single cus-
tomer can be spread across many log entries, or sessions. These formats make it
easy to add (or in the case of a database, modify) data, but are not optimal for anal-
ysis. You can often join all the data you need into a single table in the database using
SQL, but in appendix A we’ll discuss commands like join that you can use within R
to further consolidate data.
store/books/9781617294181

https://itbook.store/books/9781617294181

4 CHAPTER 3 Exploring data

www.itboo
is.employed income
Mode :logical Min. : -8700
FALSE:73 1st Qu.: 14600
TRUE :599 Median : 35000
NA's :328 Mean : 53505

3rd Qu.: 67000
Max. :615000

marital.stat
Divorced/Separated:155
Married :516
Never Married :233
Widowed : 96

health.ins
Mode :logical
FALSE:159
TRUE :841
NA's :0

housing.type
Homeowner free and clear :157
Homeowner with mortgage/loan:412
Occupied with no rent : 11
Rented :364
NA's : 56

recent.move num.vehicles
Mode :logical Min. :0.000
FALSE:820 1st Qu.:1.000
TRUE :124 Median :2.000
NA's :56 Mean :1.916

3rd Qu.:2.000
Max. :6.000
NA's :56

age state.of.res
Min. : 0.0 California :100
1st Qu.: 38.0 New York : 71
Median : 50.0 Pennsylvania: 70
Mean : 51.7 Texas : 56
3rd Qu.: 64.0 Michigan : 52
Max. :146.7 Ohio : 51

(Other) :600

The summary command on a data frame reports a variety of summary statistics on the
numerical columns of the data frame, and count statistics on any categorical columns
(if the categorical columns have already been read in as factors2). You can also ask for
summary statistics on specific numerical columns by using the commands mean,
variance, median, min, max, and quantile (which will return the quartiles of the data
by default).

2 Categorical variables are of class factor in R. They can be represented as strings (class character), and
some analytical functions will automatically convert string variables to factor variables. To get a summary of a
variable, it needs to be a factor.

The variable is.employed
is missing for about a
third of the data. The
variable income has
negative values, which
are potentially invalid.

About 84% of the
customers have health
insurance.

The variables housing.type,
recent.move, and num.vehicles
are each missing 56 values.

The average value of the variable
age seems plausible, but the
minimum and maximum values
seem unlikely. The variable
state.of.res is a categorical
variable; summary() reports how
many customers are in each state
(for the first few states).
k.store/books/9781617294181

https://itbook.store/books/9781617294181

5Using summary statistics to spot problems

www.itbook.
 As you see from listing 3.1, the summary of the data helps you quickly spot poten-
tial problems, like missing data or unlikely values. You also get a rough idea of how
categorical data is distributed. Let’s go into more detail about the typical problems
that you can spot using the summary.

3.1.1 Typical problems revealed by data summaries

At this stage, you’re looking for several common issues: missing values, invalid values
and outliers, and data ranges that are too wide or too narrow. Let’s address each of
these issues in detail.

MISSING VALUES

A few missing values may not really be a problem, but if a particular data field is
largely unpopulated, it shouldn’t be used as an input without some repair (as we’ll dis-
cuss in chapter 4, section 4.1.1). In R, for example, many modeling algorithms will, by
default, quietly drop rows with missing values. As you see in listing 3.2, all the missing
values in the is.employed variable could cause R to quietly ignore nearly a third of
the data.

is.employed
Mode :logical

FALSE:73
TRUE :599
NA's :328

housing.type
Homeowner free and clear :157

Homeowner with mortgage/loan:412
Occupied with no rent : 11
Rented :364
NA's : 56

recent.move num.vehicles
Mode :logical Min. :0.000
FALSE:820 1st Qu.:1.000
TRUE :124 Median :2.000
NA's :56 Mean :1.916

3rd Qu.:2.000
Max. :6.000
NA's :56

If a particular data field is largely unpopulated, it’s worth trying to determine why;
sometimes the fact that a value is missing is informative in and of itself. For example,
why is the is.employed variable missing so many values? There are many possible rea-
sons, as we noted in listing 3.2.

 Whatever the reason for missing data, you must decide on the most appropriate
action. Do you include a variable with missing values in your model, or not? If you

Listing 3.2 Will the variable is.employed be useful for modeling?

The variable is.employed is missing for about a third of
the data. Why? Is employment status unknown? Did
the company start collecting employment data only
recently? Does NA mean “not in the active workforce”
(for example, students or stay-at-home parents)?

The variables housing.type,
recent.move, and num.vehicles
are only missing a few values. It’s
probably safe to just drop the
rows that are missing values—
especially if the missing values
are all the same 56 rows.
store/books/9781617294181

https://itbook.store/books/9781617294181

6 CHAPTER 3 Exploring data

www.itboo
decide to include it, do you drop all the rows where this field is missing, or do you con-
vert the missing values to 0 or to an additional category? We’ll discuss ways to treat
missing data in chapter 4. In this example, you might decide to drop the data rows
where you’re missing data about housing or vehicles, since there aren’t many of them.
You probably don’t want to throw out the data where you’re missing employment
information, but instead treat the NAs as a third employment category. You will likely
encounter missing values when model scoring, so you should deal with them during
model training.

INVALID VALUES AND OUTLIERS

Even when a column or variable isn’t missing any values, you still want to check that
the values that you do have make sense. Do you have any invalid values or outliers?
Examples of invalid values include negative values in what should be a non-negative
numeric data field (like age or income), or text where you expect numbers. Outliers
are data points that fall well out of the range of where you expect the data to be. Can
you spot the outliers and invalid values in listing 3.3?

> summary(custdata$income)
Min. 1st Qu. Median Mean 3rd Qu.

-8700 14600 35000 53500 67000
Max.

615000

> summary(custdata$age)
Min. 1st Qu. Median Mean 3rd Qu.
0.0 38.0 50.0 51.7 64.0
Max.

146.7

Often, invalid values are simply bad data input. Negative numbers in a field like age,
however, could be a sentinel value to designate “unknown.” Outliers might also be data
errors or sentinel values. Or they might be valid but unusual data points—people do
occasionally live past 100.

 As with missing values, you must decide the most appropriate action: drop the data
field, drop the data points where this field is bad, or convert the bad data to a useful
value. Even if you feel certain outliers are valid data, you might still want to omit them
from model construction (and also collar allowed prediction range), since the usual
achievable goal of modeling is to predict the typical case correctly.

DATA RANGE

You also want to pay attention to how much the values in the data vary. If you believe
that age or income helps to predict the probability of health insurance coverage, then

Listing 3.3 Examples of invalid values and outliers

Negative values for income could indicate
bad data. They might also have a special
meaning, like “amount of debt.”
Either way, you should check how prevalent
the issue is, and decide what to do: Do you
drop the data with negative income? Do
you convert negative values to zero?

Customers of age zero, or customers of an age
greater than about 110 are outliers. They fall
out of the range of expected customer values.
Outliers could be data input errors. They
could be special sentinel values: zero might
mean “age unknown” or “refuse to state.”
And some of your customers might be
especially long-lived.
k.store/books/9781617294181

https://itbook.store/books/9781617294181

7Using summary statistics to spot problems

www.itbook.
you should make sure there is enough variation in the age and income of your cus-
tomers for you to see the relationships. Let’s look at income again, in listing 3.4. Is the
data range wide? Is it narrow?

> summary(custdata$income)
Min. 1st Qu. Median Mean 3rd Qu.

-8700 14600 35000 53500 67000
Max.

615000

Even ignoring negative income, the income variable in listing 3.4 ranges from zero to
over half a million dollars. That’s pretty wide (though typical for income). Data that
ranges over several orders of magnitude like this can be a problem for some modeling
methods. We’ll talk about mitigating data range issues when we talk about logarithmic
transformations in chapter 4.

 Data can be too narrow, too. Suppose all your customers are between the ages of
50 and 55. It’s a good bet that age range wouldn’t be a very good predictor of the
probability of health insurance coverage for that population, since it doesn’t vary
much at all.

We’ll revisit data range in section 3.2, when we talk about examining data graphically.
 One factor that determines apparent data range is the unit of measurement. To

take a nontechnical example, we measure the ages of babies and toddlers in weeks or
in months, because developmental changes happen at that time scale for very young
children. Suppose we measured babies’ ages in years. It might appear numerically that
there isn’t much difference between a one-year-old and a two-year-old. In reality,
there’s a dramatic difference, as any parent can tell you! Units can present potential
issues in a dataset for another reason, as well.

UNITS

Does the income data in listing 3.5 represent hourly wages, or yearly wages in units of
$1000? As a matter of fact, it’s the latter, but what if you thought it was the former? You
might not notice the error during the modeling stage, but down the line someone will
start inputting hourly wage data into the model and get back bad predictions in return.

Listing 3.4 Looking at the data range of a variable

Income ranges from zero to
over half a million dollars; a
very wide range.

How narrow is “too narrow” a data range?
Of course, the term narrow is relative. If we were predicting the ability to read for chil-
dren between the ages of 5 and 10, then age probably is a useful variable as-is. For
data including adult ages, you may want to transform or bin ages in some way, as you
don’t expect a significant change in reading ability between ages 40 and 50. You
should rely on information about the problem domain to judge if the data range is nar-
row, but a rough rule of thumb is the ratio of the standard deviation to the mean. If
that ratio is very small, then the data isn’t varying much.
store/books/9781617294181

https://itbook.store/books/9781617294181

8 CHAPTER 3 Exploring data

www.itboo

> summary(Income)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-8.7 14.6 35.0 53.5 67.0 615.0

Are time intervals measured in days, hours, minutes, or milliseconds? Are speeds in
kilometers per second, miles per hour, or knots? Are monetary amounts in dollars,
thousands of dollars, or 1/100 of a penny (a customary practice in finance, where cal-
culations are often done in fixed-point arithmetic)? This is actually something that
you’ll catch by checking data definitions in data dictionaries or documentation,
rather than in the summary statistics; the difference between hourly wage data and
annual salary in units of $1000 may not look that obvious at a casual glance. But it’s
still something to keep in mind while looking over the value ranges of your variables,
because often you can spot when measurements are in unexpected units. Automobile
speeds in knots look a lot different than they do in miles per hour.

3.2 Spotting problems using graphics and visualization
As you’ve seen, you can spot plenty of problems just by looking over the data summa-
ries. For other properties of the data, pictures are better than text.

We cannot expect a small number of numerical values [summary statistics] to
consistently convey the wealth of information that exists in data. Numerical reduction
methods do not retain the information in the data.

—William Cleveland
The Elements of Graphing Data

Figure 3.1 shows a plot of how customer ages are distributed. We’ll talk about what the
y-axis of the graph means later; for right now, just know that the height of the graph
corresponds to how many customers in the population are of that age. As you can see,
information like the peak age of the distribution, the existence of subpopulations, and
the presence of outliers is easier to absorb visually than it is to determine textually.

 The use of graphics to examine data is called visualization. We try to follow William
Cleveland’s principles for scientific visualization. Details of specific plots aside, the key
points of Cleveland’s philosophy are these:

 A graphic should display as much information as it can, with the lowest possible
cognitive strain to the viewer.

 Strive for clarity. Make the data stand out. Specific tips for increasing clarity
include
–Avoid too many superimposed elements, such as too many curves in the same

graphing space.

Listing 3.5 Checking units can prevent inaccurate results later

The variable Income is defined
as Income = custdata$income/
1000. But suppose you didn’t
know that. Looking only at the
summary, the values could
plausibly be interpreted to mean
either “hourly wage” or “yearly
income in units of $1000.”
k.store/books/9781617294181

https://itbook.store/books/9781617294181

9Spotting problems using graphics and visualization

www.itbook.
–Find the right aspect ratio and scaling to properly bring out the details of the
data.

–Avoid having the data all skewed to one side or the other of your graph.

 Visualization is an iterative process. Its purpose is to answer questions about the
data.

During the visualization stage, you graph the data, learn what you can, and then
regraph the data to answer the questions that arise from your previous graphic. Differ-
ent graphics are best suited for answering different questions. We’ll look at some of
them in this section.

 In this book, we use ggplot2 to demonstrate the visualizations and graphics; of
course, other R visualization packages can produce similar graphics.

0.000

0.005

0.010

0.015

0.020

0 50 100 150
age

de
ns

ity

Invalid
values?

Min. 1st Qu. Median Mean 3rd Qu. Max.
> summary(custdata$age)

0.0 38.0 50.0 51.7 64.0 146.7

Customer
“subpopulation”: more

customers over 75 than
you would expect.

It’s easier to read the mean, median
and central 50% of the customer

population off the summary.

It’s easier to get a sense of the
customer age range from the graph.

The peak of the customer
population is just under
50. That’s not obvious

from the summary.

Outliers

Figure 3.1 Some information is easier to read from a graph, and some from a summary.

A note on ggplot2
The theme of this section is how to use visualization to explore your data, not how to
use ggplot2. We chose ggplot2 because it excels at combining multiple graphical
elements together, but its syntax can take some getting used to. The key points to
understand when looking at our code snippets are these:

 Graphs in ggplot2 can only be defined on data frames. The variables in a
graph—the x variable, the y variable, the variables that define the color or the
store/books/9781617294181

https://itbook.store/books/9781617294181

10 CHAPTER 3 Exploring data

www.itboo
In the next two sections, we’ll show how to use pictures and graphs to identify data
characteristics and issues. In section 3.2.2, we’ll look at visualizations for two variables.
But let’s start by looking at visualizations for single variables.

3.2.1 Visually checking distributions for a single variable

The visualizations in this section help you answer questions like these:

 What is the peak value of the distribution?
 How many peaks are there in the distribution (unimodality versus bimodality)?
 How normal (or lognormal) is the data? We’ll discuss normal and lognormal

distributions in appendix B.
 How much does the data vary? Is it concentrated in a certain interval or in a cer-

tain category?

One of the things that’s easier to grasp visually is the shape of the data distribution.
Except for the blip to the right, the graph in figure 3.1 (which we’ve reproduced as
the gray curve in figure 3.2) is almost shaped like the normal distribution (see appen-
dix B). As that appendix explains, many summary statistics assume that the data is
approximately normal in distribution (at least for continuous variables), so you want
to verify whether this is the case.

 You can also see that the gray curve in figure 3.2 has only one peak, or that it’s uni-
modal. This is another property that you want to check in your data.

 Why? Because (roughly speaking), a unimodal distribution corresponds to one
population of subjects. For the gray curve in figure 3.2, the mean customer age is
about 52, and 50% of the customers are between 38 and 64 (the first and third
quartiles). So you can say that a “typical” customer is middle-aged and probably pos-
sesses many of the demographic qualities of a middle-aged person—though of course
you have to verify that with your actual customer information.

size of the points—are called aesthetics, and are declared by using the aes
function.

 The ggplot() function declares the graph object. The arguments to ggplot()
can include the data frame of interest and the aesthetics. The ggplot()
function doesn’t of itself produce a visualization; visualizations are produced
by layers.

 Layers produce the plots and plot transformations and are added to a given
graph object using the + operator. Each layer can also take a data frame and
aesthetics as arguments, in addition to plot-specific parameters. Examples of
layers are geom_point (for a scatter plot) or geom_line (for a line plot).

This syntax will become clearer in the examples that follow. For more information, we
recommend Hadley Wickham’s reference site http://ggplot2.org, which has pointers
to online documentation, as well as to Dr. Wickham’s ggplot2: Elegant Graphics for
Data Analysis (Use R!) (Springer, 2009).
k.store/books/9781617294181

http://ggplot2.org
https://itbook.store/books/9781617294181

11Spotting problems using graphics and visualization

www.itbook.
The black curve in figure 3.2 shows what can happen when you have two peaks, or a
bimodal distribution. (A distribution with more than two peaks is multimodal.) This set of
customers has about the same mean age as the customers represented by the gray
curve—but a 50-year-old is hardly a “typical” customer! This (admittedly exaggerated)
example corresponds to two populations of customers: a fairly young population
mostly in their 20s and 30s, and an older population mostly in their 70s. These two
populations probably have very different behavior patterns, and if you want to model
whether a customer probably has health insurance or not, it wouldn’t be a bad idea to
model the two populations separately—especially if you’re using linear or logistic
regression.

 The histogram and the density plot are two visualizations that help you quickly
examine the distribution of a numerical variable. Figures 3.1 and 3.2 are density plots.
Whether you use histograms or density plots is largely a matter of taste. We tend to
prefer density plots, but histograms are easier to explain to less quantitatively-minded
audiences.

HISTOGRAMS

A basic histogram bins a variable into fixed-width buckets and returns the number of
data points that falls into each bucket. For example, you could group your customers
by age range, in intervals of five years: 20–25, 25–30, 30–35, and so on. Customers at a

0.00

0.01

0.02

0.03

0 25 50 75 100
age

de
ns

ity
Min. 1st Qu. Median Mean 3rd Qu. Max.

> summary(custdata$age)

0.0 38.0 50.0 51.7 64.0 146.7

Min. 1st Qu. Median Mean 3rd Qu. Max.
> summary(Age)

–3.983 25.270 61.400 50.690 75.930 82.230

“Average”
customer–but
not “typical”
customer!

Figure 3.2 A unimodal distribution (gray) can usually be modeled as coming from a single
population of users. With a bimodal distribution (black), your data often comes from two populations
of users.
store/books/9781617294181

https://itbook.store/books/9781617294181

12 CHAPTER 3 Exploring data

www.itboo
boundary age would go into the higher bucket: 25-year-olds go into the 25–30 bucket.
For each bucket, you then count how many customers are in that bucket. The result-
ing histogram is shown in figure 3.3.

 You create the histogram in figure 3.3 in ggplot2 with the geom_histogram layer.

library(ggplot2)

ggplot(custdata) +

geom_histogram(aes(x=age),

binwidth=5, fill="gray")

The primary disadvantage of histograms is that you must decide ahead of time how
wide the buckets are. If the buckets are too wide, you can lose information about the
shape of the distribution. If the buckets are too narrow, the histogram can look too
noisy to read easily. An alternative visualization is the density plot.

DENSITY PLOTS

You can think of a density plot as a “continuous histogram” of a variable, except the
area under the density plot is equal to 1. A point on a density plot corresponds to the

Listing 3.6 Plotting a histogram

0

20

40

60

80

100

0 50 100 150
age

co
un

t

Invalid
values Outliers

Figure 3.3 A histogram tells you where your data is concentrated. It also visually highlights
outliers and anomalies.

Load the ggplot2
library, if you haven’t
already done so.

The binwidth parameter tells
the geom_histogram call how to
make bins of five-year intervals
(default is datarange/30). The fill
parameter specifies the color of
the histogram bars (default:
black).
k.store/books/9781617294181

https://itbook.store/books/9781617294181

13Spotting problems using graphics and visualization

www.itbook.
fraction of data (or the percentage of data, divided by 100) that takes on a particular
value. This fraction is usually very small. When you look at a density plot, you’re more
interested in the overall shape of the curve than in the actual values on the y-axis.
You’ve seen the density plot of age; figure 3.4 shows the density plot of income. You
produce figure 3.4 with the geom_density layer, as shown in the following listing.

library(scales)

ggplot(custdata) + geom_density(aes(x=income)) +
scale_x_continuous(labels=dollar)

When the data range is very wide and the mass of the distribution is heavily concen-
trated to one side, like the distribution in figure 3.4, it’s difficult to see the details of its
shape. For instance, it’s hard to tell the exact value where the income distribution has
its peak. If the data is non-negative, then one way to bring out more detail is to plot
the distribution on a logarithmic scale, as shown in figure 3.5. This is equivalent to
plotting the density plot of log10(income).

Listing 3.7 Producing a density plot

0e+00

5e 06

1e 05

$0 $200,000 $400,000 $600,000
income

de
ns

ity

Most of the distribution is concentrated at
the low end: less than $100,000 a year.

It’s hard to get good resolution here.

Wide data range:
several orders of

magnitude.

Subpopulation
of wealthy

customers in
the $400,000

range.

Figure 3.4 Density plots show where data is concentrated. This plot also highlights a population
of higher-income customers.

The scales package brings in
the dollar scale notation.

Set the x-axis labels to dollars.
store/books/9781617294181

https://itbook.store/books/9781617294181

14 CHAPTER 3 Exploring data

www.itboo
In ggplot2, you can plot figure 3.5 with the geom_density and scale_x_log10 layers,
such as in the next listing.

ggplot(custdata) + geom_density(aes(x=income)) +
scale_x_log10(breaks=c(100,1000,10000,100000), labels=dollar) +
annotation_logticks(sides="bt")

When you issued the preceding command, you also got back a warning message:

Warning messages:
1: In scale$trans$trans(x) : NaNs produced
2: Removed 79 rows containing non-finite values (stat_density).

This tells you that ggplot2 ignored the zero- and negative-valued rows (since log(0)
= Infinity), and that there were 79 such rows. Keep that in mind when evaluating
the graph.

 In log space, income is distributed as something that looks like a “normalish” distri-
bution, as will be discussed in appendix B. It’s not exactly a normal distribution (in
fact, it appears to be at least two normal distributions mixed together).

Listing 3.8 Creating a log-scaled density plot

0.00

0.25

0.50

0.75

1.00

$100 $1,000 $10,000 $100,000
income

de
ns

ity

Peak of income
distribution at ~$40,000

Most customers have income in the
$20,000–$100,000 range.

More customers have income in the
$10,000 range than you would expect.

Very-low-income outliers

Customers with income
over $200,000 are rare,
but they no longer look

like “outliers” in log
space.

Figure 3.5 The density plot of income on a log10 scale highlights details of the income distribution
that are harder to see in a regular density plot.

Set the x-axis to be in log10 scale, with manually
set tick points and labels as dollars.

Add log-scaled tick marks to the
top and bottom of the graph.
k.store/books/9781617294181

https://itbook.store/books/9781617294181

15Spotting problems using graphics and visualization

www.itbook.
BAR CHARTS

A bar chart is a histogram for discrete data: it records the frequency of every value of a
categorical variable. Figure 3.6 shows the distribution of marital status in your cus-
tomer dataset. If you believe that marital status helps predict the probability of health
insurance coverage, then you want to check that you have enough customers with dif-
ferent marital statuses to help you discover the relationship between being married
(or not) and having health insurance.

When should you use a logarithmic scale?
You should use a logarithmic scale when percent change, or change in orders of mag-
nitude, is more important than changes in absolute units. You should also use a log
scale to better visualize data that is heavily skewed.

For example, in income data, a difference in income of five thousand dollars means
something very different in a population where the incomes tend to fall in the tens of
thousands of dollars than it does in populations where income falls in the hundreds
of thousands or millions of dollars. In other words, what constitutes a “significant dif-
ference” depends on the order of magnitude of the incomes you’re looking at. Simi-
larly, in a population like that in figure 3.5, a few people with very high income will
cause the majority of the data to be compressed into a relatively small area of the
graph. For both those reasons, plotting the income distribution on a logarithmic scale
is a good idea.

0

100

200

300

400

500

Divorced/Separated Married Never Married Widowed
marital.stat

co
un

t

Figure 3.6 Bar charts show the distribution of categorical variables.
store/books/9781617294181

https://itbook.store/books/9781617294181

16 CHAPTER 3 Exploring data

sta
is
th

www.itboo
The ggplot2 command to produce figure 3.6 uses geom_bar:

ggplot(custdata) + geom_bar(aes(x=marital.stat), fill="gray")

This graph doesn’t really show any more information than summary(custdata$marital
.stat) would show, although some people find the graph easier to absorb than the
text. Bar charts are most useful when the number of possible values is fairly large, like
state of residence. In this situation, we often find that a horizontal graph is more legible
than a vertical graph.

 The ggplot2 command to produce figure 3.7 is shown in the next listing.

ggplot(custdata) +
geom_bar(aes(x=state.of.res), fill="gray") +
coord_flip() +
theme(axis.text.y=element_text(size=rel(0.8)))

Listing 3.9 Producing a horizontal bar chart

Alabama
Alaska

Arizona
Arkansas
California
Colorado

Connecticut
Delaware

Florida
Georgia

Hawaii
Idaho
Illinois

Indiana
Iowa

Kansas
Kentucky
Louisiana

Maine
Maryland

Massachusetts
Michigan

Minnesota
Mississippi

Missouri
Montana

Nebraska
Nevada

New Hampshire
New Jersey
New Mexico

New York
North Carolina

North Dakota
Ohio

Oklahoma
Oregon

Pennsylvania
Rhode Island

South Carolina
South Dakota

Tennessee
Texas
Utah

Vermont
Virginia

Washington
West Virginia

Wisconsin
Wyoming

0 25 50 75 100
count

st
at

e.
of

.r
es

Figure 3.7 A horizontal bar chart can be easier to read when there are several categories with long names.

Plot bar chart as before:
state.of.res is on x axis,
count is on y-axis.

Flip the
x and y

axes:
te.of.res
 now on
e y-axis.

Reduce the size of the y-axis
tick labels to 80% of default
size for legibility.
k.store/books/9781617294181

https://itbook.store/books/9781617294181

17Spotting problems using graphics and visualization

Renam
colum
read

www.itbook.
Cleveland3 recommends that the data in a bar chart (or in a dot plot, Cleveland’s pre-
ferred visualization in this instance) be sorted, to more efficiently extract insight from
the data. This is shown in figure 3.8.

 This visualization requires a bit more manipulation, at least in ggplot2, because by
default, ggplot2 will plot the categories of a factor variable in alphabetical order. To
change this, we have to manually specify the order of the categories—in the factor
variable, not in ggplot2.

> statesums <- table(custdata$state.of.res)

> statef <- as.data.frame(statesums)

> colnames(statef)<-c("state.of.res", "count")

> summary(statef)

3 See William S. Cleveland, The Elements of Graphing Data, Hobart Press, 1994.

Listing 3.10 Producing a bar chart with sorted categories

Delaware
North Dakota

Wyoming
Rhode Island

Alaska
Montana
Vermont

Idaho
Kansas
Nevada
Hawaii

New Hampshire
South Dakota

Utah
Maine

New Mexico
Arkansas

Mississippi
Oregon

Nebraska
Arizona

Iowa
Alabama
Colorado

Oklahoma
West Virginia

Connecticut
Louisiana

South Carolina
Kentucky

North Carolina
Maryland

Washington
Minnesota

Missouri
Tennessee

Massachusetts
Georgia

Wisconsin
Indiana
Virginia

New Jersey
Florida
Illinois

Ohio
Michigan

Texas
Pennsylvania

New York
California

0 25 50 75 100
count

st
at

e.
of

.r
es

Figure 3.8 Sorting the bar chart by count makes it even easier to read.

The table()
command
aggregates the
data by state of
residence—
exactly the
information the
bar chart plots.

Convert the table
object to a data
frame using
as.data.frame().
The default
column names are
Var1 and Freq.

e the
ns for

ability.

Notice that the default ordering for the
state.of.res variable is alphabetical.
store/books/9781617294181

https://itbook.store/books/9781617294181

18 CHAPTER 3 Exploring data

www.itboo
state.of.res count

Alabama : 1 Min. : 1.00

Alaska : 1 1st Qu.: 5.00

Arizona : 1 Median : 12.00

Arkansas : 1 Mean : 20.00

California: 1 3rd Qu.: 26.25

Colorado : 1 Max. :100.00

(Other) :44

> statef <- transform(statef,

state.of.res=reorder(state.of.res, count))

> summary(statef)

state.of.res count

Delaware : 1 Min. : 1.00

North Dakota: 1 1st Qu.: 5.00

Wyoming : 1 Median : 12.00

Rhode Island: 1 Mean : 20.00

Alaska : 1 3rd Qu.: 26.25

Montana : 1 Max. :100.00

(Other) :44

> ggplot(statef)+ geom_bar(aes(x=state.of.res,y=count),

stat="identity",

fill="gray") +

coord_flip() +

theme(axis.text.y=element_text(size=rel(0.8)))

Before we move on to visualizations for two variables, in table 3.1 we’ll summarize the
visualizations that we’ve discussed in this section.

3.2.2 Visually checking relationships between two variables

In addition to examining variables in isolation, you’ll often want to look at the relation-
ship between two variables. For example, you might want to answer questions like these:

Table 3.1 Visualizations for one variable

Graph type Uses

Histogram or
density plot

Examines data range
Checks number of modes
Checks if distribution is normal/lognormal
Checks for anomalies and outliers

Bar chart Compares relative or absolute frequencies of the values of a categorical variable

Use the reorder() function
to set the state.of.res
variable to be count
ordered. Use the
transform() function to
apply the transformation to
the state.of.res data frame.

The state.of.res
variable is now
count ordered.

Since the data is being
passed to geom_bar pre-
aggregated, specify both
the x and y variables,
and use stat="identity"
to plot the data exactly
as given.

Flip the axes and reduce the
size of the label text as before.
k.store/books/9781617294181

https://itbook.store/books/9781617294181

19Spotting problems using graphics and visualization

www.itbook.
 Is there a relationship between the two inputs age and income in my data?
 What kind of relationship, and how strong?
 Is there a relationship between the input marital status and the output health

insurance? How strong?

You’ll precisely quantify these relationships during the modeling phase, but exploring
them now gives you a feel for the data and helps you determine which variables are
the best candidates to include in a model.

 First, let’s consider the relationship between two continuous variables. The most
obvious way (though not always the best) is the line plot.

LINE PLOTS

Line plots work best when the relationship between two variables is relatively clean: each
x value has a unique (or nearly unique) y value, as in figure 3.9. You plot figure 3.9 with
geom_line.

x <- runif(100)

y <- x^2 + 0.2*x

ggplot(data.frame(x=x,y=y), aes(x=x,y=y)) + geom_line()

Listing 3.11 Producing a line plot

First, generate the data for this example. The x variable
is uniformly randomly distributed between 0 and 1.

The y variable is a
quadratic function of x.

0.00

0.25

0.50

0.75

1.00

1.25

0.00 0.25 0.50 0.75 1.00
x

y

Figure 3.9 Example of a line plot

Plot
the
line

plot.
store/books/9781617294181

https://itbook.store/books/9781617294181

20 CHAPTER 3 Exploring data

www.itboo
When the data is not so cleanly related, line plots aren’t as useful; you’ll want to use
the scatter plot instead, as you’ll see in the next section.

SCATTER PLOTS AND SMOOTHING CURVES

You’d expect there to be a relationship between age and health insurance, and also a
relationship between income and health insurance. But what is the relationship
between age and income? If they track each other perfectly, then you might not want
to use both variables in a model for health insurance. The appropriate summary statis-
tic is the correlation, which we compute on a safe subset of our data.

custdata2 <- subset(custdata,
(custdata$age > 0 & custdata$age < 100
& custdata$income > 0))

cor(custdata2$age, custdata2$income)

[1] -0.02240845

The negative correlation is surprising, since you’d expect that income should increase
as people get older. A visualization gives you more insight into what’s going on than a
single number can. Let’s try a scatter plot first; you plot figure 3.10 with geom_point:

ggplot(custdata2, aes(x=age, y=income)) +
geom_point() + ylim(0, 200000)

Listing 3.12 Examining the correlation between age and income

Only consider a subset of
data with reasonable age
and income values.

Get correlation of age and income.

Resulting correlation.

0

50000

100000

150000

200000

20 40 60 80
age

in
co

m
e

And it tends to decrease in this range.

But the relationship is hard to see.

Income tends to increase in this range.

Figure 3.10 A scatter plot of income versus age
k.store/books/9781617294181

https://itbook.store/books/9781617294181

21Spotting problems using graphics and visualization

www.itbook.
The relationship between age and income isn’t easy to see. You can try to make the rela-
tionship clearer by also plotting a linear fit through the data, as shown in figure 3.11.

 You plot figure 3.11 using the stat_smooth layer:4

ggplot(custdata2, aes(x=age, y=income)) + geom_point() +
stat_smooth(method="lm") +
ylim(0, 200000)

In this case, the linear fit doesn’t really capture the shape of the data. You can better
capture the shape by instead plotting a smoothing curve through the data, as shown
in figure 3.12.

 In R, smoothing curves are fit using the loess (or lowess) functions, which calcu-
late smoothed local linear fits of the data. In ggplot2, you can plot a smoothing curve
to the data by using geom_smooth:

ggplot(custdata2, aes(x=age, y=income)) +
geom_point() + geom_smooth() +
ylim(0, 200000)

A scatter plot with a smoothing curve also makes a good visualization of the relationship
between a continuous variable and a Boolean. Suppose you’re considering using age as
an input to your health insurance model. You might want to plot health insurance

4 The stat layers in ggplot2 are the layers that perform transformations on the data. They’re usually called
under the covers by the geom layers. Sometimes you have to call them directly, to access parameters that aren’t
accessible from the geom layers. In this case, the default smoothing curve used geom_smooth, which is a loess
curve, as you’ll see shortly. To plot a linear fit we must call stat_smooth directly.

0

50000

100000

150000

200000

20 40 60 80
age

in
co

m
e

Figure 3.11 A scatter plot of income versus age, with a linear fit
store/books/9781617294181

https://itbook.store/books/9781617294181

22 CHAPTER 3 Exploring data

www.itboo
0

50000

100000

150000

200000

20 40 60 80
age

in
co

m
e

The ribbon shows the standard
error around the smoothed estimate.

It tends to be wider where data is
sparse, narrower where data is dense.

The smoothing curve makes it easier to see that
income increases up to about age 40, then tends to

decrease after about age 55 or 60.

Figure 3.12 A scatter plot of income versus age, with a smoothing curve

0.0

0.3

0.6

0.9

20 40 60 80
age

as
.n

um
er

ic
(h

ea
lth

.in
s)

Here, the y-variable is Boolean (0/1);
we’ve jittered it for legibility.

The smoothing curve shows the fraction
of customers with health insurance, as a

function of age.

Figure 3.13 Distribution of customers with health insurance, as a function of age
k.store/books/9781617294181

https://itbook.store/books/9781617294181

23Spotting problems using graphics and visualization

smoo
c

www.itbook.
coverage as a function of age, as shown in figure 3.13. This will show you that the prob-
ability of having health insurance increases as customer age increases.
You plot figure 3.13 with the command shown in the next listing.

ggplot(custdata2, aes(x=age, y=as.numeric(health.ins))) +
geom_point(position=position_jitter(w=0.05, h=0.05)) +
geom_smooth()

In our health insurance examples, the dataset is small enough that the scatter plots
that you’ve created are still legible. If the dataset were a hundred times bigger, there
would be so many points that they would begin to plot on top of each other; the scat-
ter plot would turn into an illegible smear. In high-volume situations like this, try an
aggregated plot, like a hexbin plot.

HEXBIN PLOTS

A hexbin plot is like a two-dimensional histogram. The data is divided into bins, and the
number of data points in each bin is represented by color or shading. Let’s go back to
the income versus age example. Figure 3.14 shows a hexbin plot of the data. Note how
the smoothing curve traces out the shape formed by the densest region of data.

Listing 3.13 Plotting the distribution of health.ins as a function of age

The Boolean variable health.ins must be
converted to a 0/1 variable using as.numeric.

Since y values can only be 0 or 1, add a small
jitter to get a sense of data density.

Add
thing
urve.

0

50000

100000

150000

200000

25 50 75
age

in
co

m
e

4

8

12

16
count

The hexbin plot gives a
sense of the shape of a

dense data cloud.
The lighter the
bin, the more
 customers in

that bin.

Figure 3.14 Hexbin plot of income versus age, with a smoothing curve superimposed in white
store/books/9781617294181

https://itbook.store/books/9781617294181

24 CHAPTER 3 Exploring data

www.itboo
To make a hexbin plot in R, you must have the hexbin package installed. We’ll discuss
how to install R packages in appendix A. Once hexbin is installed and the library
loaded, you create the plots using the geom_hex layer.

library(hexbin)

ggplot(custdata2, aes(x=age, y=income)) +
geom_hex(binwidth=c(5, 10000)) +
geom_smooth(color="white", se=F) +
ylim(0,200000)

In this section and the previous section, we’ve looked at plots where at least one of the
variables is numerical. But in our health insurance example, the output is categorical,
and so are many of the input variables. Next we’ll look at ways to visualize the relation-
ship between two categorical variables.

BAR CHARTS FOR TWO CATEGORICAL VARIABLES

Let’s examine the relationship between marital status and the probability of health
insurance coverage. The most straightforward way to visualize this is with a stacked bar
chart, as shown in figure 3.15.

Listing 3.14 Producing a hexbin plot

Load hexbin library. Create hexbin with age
binned into 5-year
increments, income in
increments of $10,000.Add smoothing

curve in white;
suppress
standard error
ribbon (se=F).

0

100

200

300

400

500

Divorced/Separated Married Never Married Widowed
marital.stat

co
un

t

health.ins

FALSE

TRUE

Most customers are married.

Never-married
customers are

most likely to be
uninsured.

Widowed
customers are
rare, but very
unlikely to be
uninsured.

The height of
each bar

represents
total customer

count.

The dark section
represents
uninsured
customers.

Figure 3.15 Health insurance versus marital status: stacked bar chart
k.store/books/9781617294181

https://itbook.store/books/9781617294181

25Spotting problems using graphics and visualization

www.itbook.
Some people prefer the side-by-side bar chart, shown in figure 3.16, which makes it
easier to compare the number of both insured and uninsured across categories.

 The main shortcoming of both the stacked and side-by-side bar charts is that you
can’t easily compare the ratios of insured to uninsured across categories, especially for
rare categories like Widowed. You can use what ggplot2 calls a filled bar chart to plot a
visualization of the ratios directly, as in figure 3.17.

 The filled bar chart makes it obvious that divorced customers are slightly more
likely to be uninsured than married ones. But you’ve lost the information that being
widowed, though highly predictive of insurance coverage, is a rare category.

 Which bar chart you use depends on what information is most important for you to
convey. The ggplot2 commands for each of these plots are given next. Note the use of
the fill aesthetic; this tells ggplot2 to color (fill) the bars according to the value of the
variable health.ins. The position argument to geom_bar specifies the bar chart style.

ggplot(custdata) + geom_bar(aes(x=marital.stat,
fill=health.ins))

ggplot(custdata) + geom_bar(aes(x=marital.stat,
fill=health.ins),
position="dodge")

ggplot(custdata) + geom_bar(aes(x=marital.stat,
fill=health.ins),
position="fill")

Listing 3.15 Specifying different styles of bar chart

0

100

200

300

400

Divorced/Separated Married Never Married Widowed
marital.stat

co
un

t

health.ins

FALSE

TRUE

The dark section
represents
uninsured
customers.

The light bars
represent
insured

customers.

A side-by-side bar chart makes it
harder to compare the absolute
number of customers in each

category, but easier to compare
insured or uninsured across

categories.

Figure 3.16 Health insurance versus marital status: side-by-side bar chart

Stacked bar chart, the default

Side-by-side bar chart

Filled bar chart
store/books/9781617294181

https://itbook.store/books/9781617294181

26 CHAPTER 3 Exploring data

www.itboo
To get a simultaneous sense of both the population in each category and the ratio of
insured to uninsured, you can add what’s called a rug to the filled bar chart. A rug is a
series of ticks or points on the x-axis, one tick per datum. The rug is dense where you
have a lot of data, and sparse where you have little data. This is shown in figure 3.18.
You generate this graph by adding a geom_point layer to the graph.

ggplot(custdata, aes(x=marital.stat)) +

geom_bar(aes(fill=health.ins), position="fill") +

geom_point(aes(y=-0.05), size=0.75, alpha=0.3,

position=position_jitter(h=0.01))

In the preceding examples, one of the variables was binary; the same plots can be
applied to two variables that each have several categories, but the results are harder to
read. Suppose you’re interested in the distribution of marriage status across housing
types. Some find the side-by-side bar chart easiest to read in this situation, but it’s not
perfect, as you see in figure 3.19.

 A graph like figure 3.19 gets cluttered if either of the variables has a large number
of categories. A better alternative is to break the distributions into different graphs,
one for each housing type. In ggplot2 this is called faceting the graph, and you use the
facet_wrap layer. The result is in figure 3.20.

Listing 3.16 Plotting data with a rug

0.00

0.25

0.50

0.75

1.00

Divorced/Separated Married Never Married Widowed

marital.stat

co
un

t

health.ins

FALSE

TRUE

Rather than showing
counts, each bar

represents the population
of the category

normalized to one.

The dark section
represents the

fraction of
customers in
the category

who are
uninsured.

Figure 3.17 Health insurance versus marital status: filled bar chart

Set the points just under
the y-axis, three-quarters of
default size, and make them
slightly transparent with
the alpha parameter.

Jitter the points slightly for legibility.
k.store/books/9781617294181

https://itbook.store/books/9781617294181

27Spotting problems using graphics and visualization

www.itbook.
0.00

0.25

0.50

0.75

1.00

Divorced/Separated Married Never Married Widowed
marital.stat

co
un

t

health.ins

FALSE

TRUEMarried
people are
common. Widowed

ones are
rare.

Figure 3.18 Health insurance versus marital status: filled bar chart with rug

0

100

200

Hom
eo

wne
r f

re
e

an
d

cle
ar

Hom
eo

wne
r w

ith
 m

or
tg

ag
e/

loa
n

Occ
up

ied
 w

ith
 n

o
re

nt

Ren
te

d

housing.type

co
un

t

marital.stat

Divorced/Separated

Married

Never Married

Widowed

“Occupied with no rent”
is a rare category.
It’s hard to read
the distribution.

Figure 3.19 Distribution of marital status by housing type: side-by-side bar chart
store/books/9781617294181

https://itbook.store/books/9781617294181

28 CHAPTER 3 Exploring data

b

fa

www.itboo
The code for figures 3.19 and 3.20 looks like the next listing.

ggplot(custdata2) +

geom_bar(aes(x=housing.type, fill=marital.stat),

position="dodge") +

theme(axis.text.x = element_text(angle = 45, hjust = 1))

ggplot(custdata2) +

geom_bar(aes(x=marital.stat), position="dodge",

fill="darkgray") +

facet_wrap(~housing.type, scales="free_y") +

theme(axis.text.x = element_text(angle = 45, hjust = 1))

Listing 3.17 Plotting a bar chart with and without facets

Homeowner free and clear Homeowner with mortgage/loan

Occupied with no rent Rented

0

25

50

75

0

100

200

0

1

2

3

4

5

0

50

100

Divo
rc

ed
/S

ep
ar

at
ed

M
ar

rie
d

Nev
er

 M
ar

rie
d

W
ido

wed

Divo
rc

ed
/S

ep
ar

at
ed

M
ar

rie
d

Nev
er

 M
ar

rie
d

W
ido

wed

marital.stat

co
un

t

Note that every facet has a
different scale on the y-axis.

Figure 3.20 Distribution of marital status by housing type: faceted side-by-side bar chart

Side-
y-side

bar
chart.

Tilt the x-axis labels so they
don’t overlap. You can also

use coord_flip() to rotate the
graph, as we saw previously.

Some prefer coord_flip()
because the theme() layer is

complicated to use.

The
ceted

bar
chart.

Facet the graph by housing.type. The
scales="free_y" argument specifies
that each facet has an independently
scaled y-axis (the default is that all
facets have the same scales on both
axes). The argument free_x would
free the x-axis scaling, and the
argument free frees both axes.

As of this writing, facet_wrap is incompatible with
coord_flip, so we have to tilt the x-axis labels.
k.store/books/9781617294181

https://itbook.store/books/9781617294181

29Summary

www.itbook.
Table 3.2 summarizes the visualizations for two variables that we’ve covered.

There are many other variations and visualizations you could use to explore the data;
the preceding set covers some of the most useful and basic graphs. You should try dif-
ferent kinds of graphs to get different insights from the data. It’s an interactive pro-
cess. One graph will raise questions that you can try to answer by replotting the data
again, with a different visualization.

 Eventually, you’ll explore your data enough to get a sense of it and to spot most
major problems and issues. In the next chapter, we’ll discuss some ways to address
common problems that you may discover in the data.

3.3 Summary
At this point, you’ve gotten a feel for your data. You’ve explored it through summaries
and visualizations; you now have a sense of the quality of your data, and of the rela-
tionships among your variables. You’ve caught and are ready to correct several kinds
of data issues—although you’ll likely run into more issues as you progress.

 Maybe some of the things you’ve discovered have led you to reevaluate the ques-
tion you’re trying to answer, or to modify your goals. Maybe you’ve decided that you

Table 3.2 Visualizations for two variables

Graph type Uses

Line plot Shows the relationship between two continuous variables. Best when that
relationship is functional, or nearly so.

Scatter plot Shows the relationship between two continuous variables. Best when the
relationship is too loose or cloud-like to be easily seen on a line plot.

Smoothing curve Shows underlying “average” relationship, or trend, between two continuous
variables. Can also be used to show the relationship between a continuous
and a binary or Boolean variable: the fraction of true values of the discrete
variable as a function of the continuous variable.

Hexbin plot Shows the relationship between two continuous variables when the data is
very dense.

Stacked bar chart Shows the relationship between two categorical variables (var1 and
var2). Highlights the frequencies of each value of var1.

Side-by-side bar chart Shows the relationship between two categorical variables (var1 and
var2). Good for comparing the frequencies of each value of var2 across
the values of var1. Works best when var2 is binary.

Filled bar chart Shows the relationship between two categorical variables (var1 and
var2). Good for comparing the relative frequencies of each value of var2
within each value of var1. Works best when var2 is binary.

Bar chart with faceting Shows the relationship between two categorical variables (var1 and
var2). Best for comparing the relative frequencies of each value of var2
within each value of var1 when var2 takes on more than two values.
store/books/9781617294181

https://itbook.store/books/9781617294181

30 CHAPTER 3 Exploring data

www.itboo
need more or different types of data to achieve your goals. This is all good. The data
science process is made of loops within loops. The data exploration and data cleaning
stages are two of the more time-consuming-and also the most important-stages of the
process. Without good data, you can't build good models. Time you spend here is
time you don't waste elsewhere.

Key takeaways
 Take the time to examine your data before diving into the modeling.

 The summary command helps you spot issues with data range, units, data type,
and missing or invalid values.

 Visualization additionally gives you a sense of data distribution and relation-
ships among variables.

 Visualization is an iterative process and helps answer questions about the
data. Time spent here is time not wasted during the modeling process.
k.store/books/9781617294181

https://itbook.store/books/9781617294181

www.itbook.
Business analysts and developers are increasingly col-
lecting, curating, analyzing, and reporting on crucial
business data. The R language and its associated tools
provide a straightforward way to tackle day-to-day data
science tasks without a lot of academic theory or
advanced mathematics.

 Practical Data Science with R shows you how to apply
the R programming language and useful statistical tech-
niques to everyday business situations. Using examples
from marketing, business intelligence, and decision sup-
port, it shows you how to design experiments (such as
A/B tests), build predictive models, and present results
to audiences of all levels.

What’s inside

 Data science for the business professional
 Statistical analysis using the R language
 Project lifecycle, from planning to delivery
 Numerous instantly familiar use cases
 Keys to effective data presentations

This book is accessible to readers without a background in data science. Some famil-
iarity with basic statistics, R, or another scripting language is assumed.
store/books/9781617294181

https://www.manning.com/books/practical-data-science-with-r
https://www.manning.com/books/practical-data-science-with-r
https://itbook.store/books/9781617294181

www.itbook.store
 Time series are how you organize data when time is an important factor.
Examples include forecasting stock prices, modeling the environment, and pre-
dicting future product demand. In classic predictive modeling, learning a strong
relation between presumed inputs and results, both sampled from the same
time, is enough. By contrast, for time series you are asked to forecast one or
more quantities for a series of times in the future, based only on measurements
from the past. Time series models have a high risk of false fit, so using well-char-
acterized techniques is important. The following chapter demonstrates the most
common components of time series prediction using R: smoothing trends, esti-
mating moving averages, identifying seasonal oscillations, and estimating autore-
gressive relations.

Time series
/books/9781617294181

https://itbook.store/books/9781617294181

www.itbook.
Chapter 15 from R in Action, Second Edition
by Robert I. Kabacoff

Time series
How fast is global warming occurring, and what will the impact be in 10 years? With
the exception of repeated measures ANOVA in section 9.6, each of the preceding
chapters has focused on cross-sectional data. In a cross-sectional dataset, variables are
measured at a single point in time. In contrast, longitudinal data involves measuring
variables repeatedly over time. By following a phenomenon over time, it’s possible
to learn a great deal about it.

 In this chapter, we’ll examine observations that have been recorded at regularly
spaced time intervals for a given span of time. We can arrange observations such as
these into a time series of the form Y1, Y2, Y3, … , Yt, …, YT, where Yt represents the
value of Y at time t and T is the total number of observations in the series.

 Consider two very different time series displayed in figure 15.1. The series on
the left contains the quarterly earnings (dollars) per Johnson & Johnson share
between 1960 and 1980. There are 84 observations: one for each quarter over 21

This chapter covers
 Creating a time series

 Decomposing a time series into components

 Developing predictive models

 Forecasting future values
33

store/books/9781617294181

https://www.manning.com/books/r-in-action-second-edition
https://itbook.store/books/9781617294181

34 CHAPTER 15 Time series

www.itbook.
years. The series on the right describes the monthly mean relative sunspot numbers
from 1749 to 1983 recorded by the Swiss Federal Observatory and the Tokyo Astro-
nomical Observatory. The sunspots time series is much longer, with 2,820 observa-
tions—1 per month for 235 years.

 Studies of time-series data involve two fundamental questions: what happened
(description), and what will happen next (forecasting)? For the Johnson & Johnson
data, you might ask

 Is the price of Johnson & Johnson shares changing over time?
 Are there quarterly effects, with share prices rising and falling in a regular fash-

ion throughout the year?
 Can you forecast what future share prices will be and, if so, to what degree of

accuracy?

For the sunspot data, you might ask

 What statistical models best describe sunspot activity?
 Do some models fit the data better than others?
 Are the number of sunspots at a given time predictable and, if so, to what degree?

The ability to accurately predict stock prices has relevance for my (hopefully) early
retirement to a tropical island, whereas the ability to predict sunspot activity has rele-
vance for my cell phone reception on said island.

 Predicting future values of a time series, or forecasting, is a fundamental human
activity, and studies of time series data have important real-world applications. Econo-
mists use time-series data in an attempt to understand and predict what will happen in

Johnson & Johnson

Q
ua

rt
er

ly
 e

ar
ni

ng
s

pe
r

sh
ar

e
(d

ol
la

rs
)

1960 1970 1980

0
5

10
15

Sunspots

TimeTime

M
ea

n
m

on
th

ly
 fr

eq
ue

nc
y

1750 1850 1950

0
50

10
0

15
0

20
0

25
0

Figure 15.1 Time series plots for (a) Johnson & Johnson quarterly earnings per
share (in dollars) from 1960 to 1980, and (b) the monthly mean relative sunspot
numbers recorded from 1749 to 1983
store/books/9781617294181

https://itbook.store/books/9781617294181

35

www.itbook.
financial markets. City planners use time-series data to predict future transportation
demands. Climate scientists use time-series data to study global climate change. Cor-
porations use time series to predict product demand and future sales. Healthcare offi-
cials use time-series data to study the spread of disease and to predict the number of
future cases in a given region. Seismologists study times-series data in order to predict
earthquakes. In each case, the study of historical time series is an indispensable part of
the process. Because different approaches may work best with different types of time
series, we’ll investigate many examples in this chapter.

 There is a wide range of methods for describing time-series data and forecasting
future values. If you work with time-series data, you’ll find that R has some of the most
comprehensive analytic capabilities available anywhere. This chapter explores some of
the most common descriptive and forecasting approaches and the R functions used to
perform them. The functions are listed in table 15.1 in their order of appearance in
the chapter.

Table 15.1 Functions for time-series analysis

Function Package Use

ts() stats Creates a time-series object.

plot() graphics Plots a time series.

start() stats Returns the starting time of a time series.

end() stats Returns the ending time of a time series.

frequency() stats Returns the period of a time series.

window() stats Subsets a time-series object.

ma() forecast Fits a simple moving-average model.

stl() stats Decomposes a time series into seasonal, trend, and irregular
components using loess.

monthplot() stats Plots the seasonal components of a time series.

seasonplot() forecast Generates a season plot.

HoltWinters() stats Fits an exponential smoothing model.

forecast() forecast Forecasts future values of a time series.

accuracy() forecast Reports fit measures for a time-series model.

ets() forecast Fits an exponential smoothing model. Includes the ability to
automate the selection of a model.

lag() stats Returns a lagged version of a time series.

Acf() forecast Estimates the autocorrelation function.

Pacf() forecast Estimates the partial autocorrelation function.

diff() base Returns lagged and iterated differences.
store/books/9781617294181

https://itbook.store/books/9781617294181

36 CHAPTER 15 Time series

www.itboo
Table 15.2 lists the time-series data that you’ll analyze. They’re available with the base
installation of R. The datasets vary greatly in their characteristics and the models that
fit them best.

We’ll start with methods for creating and manipulating time series, describing and
plotting them, and decomposing them into level, trend, seasonal, and irregular
(error) components. Then we’ll turn to forecasting, starting with popular exponential
modeling approaches that use weighted averages of time-series values to predict
future values. Next we’ll consider a set of forecasting techniques called autoregressive
integrated moving averages (ARIMA) models that use correlations among recent data
points and among recent prediction errors to make future forecasts. Throughout,
we’ll consider methods of evaluating the fit of models and the accuracy of their pre-
dictions. The chapter ends with a description of resources available for learning more
about these topics.

15.1 Creating a time-series object in R
In order to work with a time series in R, you have to place it into a time-series object—an
R structure that contains the observations, the starting and ending time of the series,

ndiffs() forecast Determines the level of differencing needed to remove trends in a
time series.

adf.test() tseries Computes an Augmented Dickey–Fuller test that a time series is
stationary.

arima() stats Fits autoregressive integrated moving-average models.

Box.test() stats Computes a Ljung–Box test that the residuals of a time series are
independent.

bds.test() tseries Computes the BDS test that a series consists of independent,
identically distributed random variables.

auto.arima() forecast Automates the selection of an ARIMA model.

Table 15.2 Datasets used in this chapter

Time series Description

AirPassengers Monthly airline passenger numbers from 1949–1960

JohnsonJohnson Quarterly earnings per Johnson & Johnson share

nhtemp Average yearly temperatures in New Haven, Connecticut, from 1912–1971

Nile Flow of the river Nile

sunspots Monthly sunspot numbers from 1749–1983

Table 15.1 Functions for time-series analysis

Function Package Use
k.store/books/9781617294181

https://itbook.store/books/9781617294181

37Creating a time-series object in R

www.itbook.
and information about its periodicity (for example, monthly, quarterly, or annual
data). Once the data are in a time-series object, you can use numerous functions to
manipulate, model, and plot the data.

 A vector of numbers, or a column in a data frame, can be saved as a time-series
object using the ts() function. The format is

myseries <- ts(data, start=, end=, frequency=)

where myseries is the time-series object, data is a numeric vector containing the
observations, start specifies the series start time, end specifies the end time
(optional), and frequency indicates the number of observations per unit time (for
example, frequency=1 for annual data, frequency=12 for monthly data, and
frequency=4 for quarterly data).

 An example is given in the following listing. The data consist of monthly sales fig-
ures for two years, starting in January 2003.

> sales <- c(18, 33, 41, 7, 34, 35, 24, 25, 24, 21, 25, 20,
 22, 31, 40, 29, 25, 21, 22, 54, 31, 25, 26, 35)

> tsales <- ts(sales, start=c(2003, 1), frequency=12)
> tsales

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2003 18 33 41 7 34 35 24 25 24 21 25 20
2004 22 31 40 29 25 21 22 54 31 25 26 35

> plot(tsales)
> start(tsales)

[1] 2003 1

> end(tsales)

[1] 2004 12

> frequency(tsales)

[1] 12

> tsales.subset <- window(tsales, start=c(2003, 5), end=c(2004, 6))
> tsales.subset

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2003 34 35 24 25 24 21 25 20
2004 22 31 40 29 25 21

In this listing, the ts() function is used to create the time-series object b. Once it’s
created, you can print and plot it; the plot is given in figure 15.2. You can modify the
plot using the techniques described in chapter 3. For example, plot(tsales,
type="o", pch=19) would create a time-series plot with connected, solid-filled circles.

Listing 15.1 Creating a time-series object

Creates a
time-series
objectb

Gets information
about the objectc

Subsets the object d
store/books/9781617294181

https://itbook.store/books/9781617294181

38 CHAPTER 15 Time series

www.itboo
Once you’ve created the time-series object, you can use functions like start(), end(),
and frequency() to return its properties c. You can also use the window() function
to create a new time series that’s a subset of the original d.

15.2 Smoothing and seasonal decomposition
Just as analysts explore a dataset with descriptive statistics and graphs before attempt-
ing to model the data, describing a time series numerically and visually should be the
first step before attempting to build complex models. In this section, we’ll look at
smoothing a time series to clarify its general trend, and decomposing a time series in
order to observe any seasonal effects.

15.2.1 Smoothing with simple moving averages

The first step when investigating a time series is to plot it, as in listing 15.1. Consider
the Nile time series. It records the annual flow of the river Nile at Ashwan from 1871–
1970. A plot of the series can be seen in the upper-left panel of figure 15.3. The time
series appears to be decreasing, but there is a great deal of variation from year to year.

 Time series typically have a significant irregular or error component. In order to
discern any patterns in the data, you’ll frequently want to plot a smoothed curve that
damps down these fluctuations. One of the simplest methods of smoothing a time
series is to use simple moving averages. For example, each data point can be replaced
with the mean of that observation and one observation before and after it. This is
called a centered moving average. A centered moving average is defined as

St = (Yt-q + … + Yt + … + Yt+q) / (2q + 1)

where St is the smoothed value at time t and k = 2q + 1 is the number of observations
that are averaged. The k value is usually chosen to be an odd number (3 in this
example). By necessity, when using a centered moving average, you lose the (k – 1) / 2
observations at each end of the series.

Time

ts
al

es

2003.0 2003.5 2004.0 2004.5

10
20

30
40

50

Figure 15.2 Time-series plot for the
sales data in listing 15.1. The
decimal notation on the time
dimension is used to represent the
portion of a year. For example,
2003.5 represents July 1 (halfway
through 2003).
k.store/books/9781617294181

https://itbook.store/books/9781617294181

39Smoothing and seasonal decomposition

www.itbook.
 Several functions in R can provide a simple moving average, including SMA() in
the TTR package, rollmean() in the zoo package, and ma() in the forecast package.
Here, you’ll use the ma() function to smooth the Nile time series that comes with the
base R installation.

 The code in the next listing plots the raw time series and smoothed versions using
k equal to 3, 7, and 15. The plots are given in figure 15.3.

library(forecast)
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2))
ylim <- c(min(Nile), max(Nile))
plot(Nile, main="Raw time series")
plot(ma(Nile, 3), main="Simple Moving Averages (k=3)", ylim=ylim)
plot(ma(Nile, 7), main="Simple Moving Averages (k=7)", ylim=ylim)
plot(ma(Nile, 15), main="Simple Moving Averages (k=15)", ylim=ylim)
par(opar)

As k increases, the plot becomes increasingly smoothed. The challenge is to find the
value of k that highlights the major patterns in the data, without under- or over-
smoothing. This is more art than science, and you’ll probably want to try several val-
ues of k before settling on one. From the plots in figure 15.3, there certainly appears
to have been a drop in river flow between 1892 and 1900. Other changes are open to
interpretation. For example, there may have been a small increasing trend between
1941 and 1961, but this could also have been a random variation.

 For time-series data with a periodicity greater than one (that is, with a seasonal
component), you’ll want to go beyond a description of the overall trend. Seasonal
decomposition can be used to examine both seasonal and general trends.

Listing 15.2 Simple moving averages

Raw time series

Time

N
ile

1880 1920 1960

60
0

10
00

14
00

Simple Moving Averages (k=3)

Time

m
a(

N
ile

, 3
)

1880 1920 1960

60
0

10
00

14
00

Simple Moving Averages (k=7)

Time

m
a(

N
ile

, 7
)

1880 1920 1960

60
0

10
00

14
00

Simple Moving Averages (k=15)

Time

m
a(

N
ile

, 1
5)

1880 1920 1960

60
0

10
00

14
00

Figure 15.3 The Nile time
series measuring annual
river flow at Ashwan from
1871–1970 (upper left).
The other plots are
smoothed versions using
simple moving averages at
three smoothing levels
(k=3, 7, and 15).
store/books/9781617294181

https://itbook.store/books/9781617294181

40 CHAPTER 15 Time series

www.itboo
15.2.2 Seasonal decomposition

Time-series data that have a seasonal aspect (such as monthly or quarterly data) can
be decomposed into a trend component, a seasonal component, and an irregular
component. The trend component captures changes in level over time. The seasonal com-
ponent captures cyclical effects due to the time of year. The irregular (or error) component
captures those influences not described by the trend and seasonal effects.

 The decomposition can be additive or multiplicative. In an additive model, the
components sum to give the values of the time series. Specifically,

Yt = Trendt + Seasonalt + Irregulart

where the observation at time t is the sum of the contributions of the trend at time t,
the seasonal effect at time t, and an irregular effect at time t.

 In a multiplicative model, given by the equation

Yt = Trendt * Seasonalt * Irregulart

the trend, seasonal, and irregular influences are multiplied. Examples are given in fig-
ure 15.4.

(a) Stationary

Time

Y

2000 2002 2004 2006 2008 2010

55
0

60
0

65
0

(b) Additive Trend
and Irregular Components

Time

Y

2000 2002 2004 2006 2008 2010

30
0

50
0

70
0

90
0

(c) Additive Seasonal
and Irregular Components

Time

Y

2000 2002 2004 2006 2008 2010

50
0

60
0

70
0

(d) Additive Trend, Seasonal,
and Irregular Components

Time

Y

2000 2002 2004 2006 2008 2010

20
0

60
0

(e) Multiplicative Trend, Seasonal,
and Irregular Components

Time

Y

2000 2002 2004 2006 2008 2010

20
0

60
0

10
00

Figure 15.4 Time-series examples
consisting of different combinations of
trend, seasonal, and irregular components
k.store/books/9781617294181

https://itbook.store/books/9781617294181

41Smoothing and seasonal decomposition

www.itbook.
In the first plot (a), there is neither a trend nor a seasonal component. The only influ-
ence is a random fluctuation around a given level. In the second plot (b), there is an
upward trend over time, as well as random fluctuations. In the third plot (c), there are
seasonal effects and random fluctuations, but no overall trend away from a horizontal
line. In the fourth plot (d), all three components are present: an upward trend, sea-
sonal effects, and random fluctuations. You also see all three components in the final
plot (e), but here they combine in a multiplicative way. Notice how the variability is
proportional to the level: as the level increases, so does the variability. This amplifica-
tion (or possible damping) based on the current level of the series strongly suggests a
multiplicative model.

 An example may make the difference between additive and multiplicative models
clearer. Consider a time series that records the monthly sales of motorcycles over a 10-
year period. In a model with an additive seasonal effect, the number of motorcycles
sold tends to increase by 500 in November and December (due to the Christmas rush)
and decrease by 200 in January (when sales tend to be down). The seasonal increase
or decrease is independent of the current sales volume.

 In a model with a multiplicative seasonal effect, motorcycle sales in November and
December tend to increase by 20% and decrease in January by 10%. In the multiplica-
tive case, the impact of the seasonal effect is proportional to the current sales volume.
This isn’t the case in an additive model. In many instances, the multiplicative model is
more realistic.

 A popular method for decomposing a time series into trend, seasonal, and irregu-
lar components is seasonal decomposition by loess smoothing. In R, this can be
accomplished with the stl() function. The format is

stl(ts, s.window=, t.window=)

where ts is the time series to be decomposed, s.window controls how fast the seasonal
effects can change over time, and t.window controls how fast the trend can change
over time. Smaller values allow more rapid change. Setting s.window="periodic"
forces seasonal effects to be identical across years. Only the ts and s.window parame-
ters are required. See help(stl) for details.

 The stl() function can only handle additive models, but this isn’t a serious limita-
tion. Multiplicative models can be transformed into additive models using a log trans-
formation:

log(Yt) = log(Trendt * Seasonalt * Irregulart)
 = log(Trendt) + log(Seasonalt) + log(Irregulart)

After fitting the additive model to the log transformed series, the results can be back-
transformed to the original scale. Let’s look at an example.

 The time series AirPassengers comes with a base R installation and describes the
monthly totals (in thousands) of international airline passengers between 1949 and
1960. A plot of the data is given in the top of figure 15.5. From the graph, it appears
that variability of the series increases with the level, suggesting a multiplicative model.
store/books/9781617294181

https://itbook.store/books/9781617294181

42 CHAPTER 15 Time series

www.itboo
The plot in the lower portion of figure 15.5 displays the time series created by taking
the log of each observation. The variance has stabilized, and the logged series looks
like an appropriate candidate for an additive decomposition. This is carried out using
the stl() function in the following listing.

> plot(AirPassengers)
> lAirPassengers <- log(AirPassengers)
> plot(lAirPassengers, ylab="log(AirPassengers)")

> fit <- stl(lAirPassengers, s.window="period")
> plot(fit)

> fit$time.series

 seasonal trend remainder
Jan 1949 -0.09164 4.829 -0.0192494
Feb 1949 -0.11403 4.830 0.0543448
Mar 1949 0.01587 4.831 0.0355884
Apr 1949 -0.01403 4.833 0.0404633
May 1949 -0.01502 4.835 -0.0245905
Jun 1949 0.10979 4.838 -0.0426814
Jul 1949 0.21640 4.841 -0.0601152
Aug 1949 0.20961 4.843 -0.0558625
Sep 1949 0.06747 4.846 -0.0008274
Oct 1949 -0.07025 4.851 -0.0015113
Nov 1949 -0.21353 4.856 0.0021631

Listing 15.3 Seasonal decomposition using stl()

A
irP

as
se

ng
er

s

1950 1952 1954 1956 1958 1960

10
0

20
0

30
0

40
0

50
0

60
0

Time

lo
g(

A
irP

as
se

ng
er

s)

1950 1952 1954 1956 1958 1960

5.
0

5.
5

6.
0

6.
5

Figure 15.5 Plot of the
AirPassengers time series
(top). The time series contains
the monthly totals (in
thousands) of international
airline passengers between
1949 and 1960. The log-
transformed time series
(bottom) stabilizes the
variance and fits an additive
seasonal decomposition
model better.

Plots the time seriesb

Decomposes the time seriesc

Components for
each observationd
k.store/books/9781617294181

https://itbook.store/books/9781617294181

43Smoothing and seasonal decomposition

www.itbook.
Dec 1949 -0.10064 4.865 0.0067347
... output omitted ...

> exp(fit$time.series)

 seasonal trend remainder
Jan 1949 0.9124 125.1 0.9809
Feb 1949 0.8922 125.3 1.0558
Mar 1949 1.0160 125.4 1.0362
Apr 1949 0.9861 125.6 1.0413
May 1949 0.9851 125.9 0.9757
Jun 1949 1.1160 126.2 0.9582
Jul 1949 1.2416 126.6 0.9417
Aug 1949 1.2332 126.9 0.9457
Sep 1949 1.0698 127.2 0.9992
Oct 1949 0.9322 127.9 0.9985
Nov 1949 0.8077 128.5 1.0022
Dec 1949 0.9043 129.6 1.0068
... output omitted ...

First, the time series is plotted and transformed b. A seasonal decomposition is per-
formed and saved in an object called fit c. Plotting the results gives the graph in fig-
ure 15.6. The graph shows the time series, seasonal, trend, and irregular components
from 1949 to 1960. Note that the seasonal components have been constrained to

5.
0

5.
5

6.
0

6.
5

da
ta

−
0.

2
0.

0
0.

1
0.

2

se
as

on
al

4.
8

5.
2

5.
6

6.
0

tr
en

d

−
0.

10
0.

00

1950 1952 1954 1956 1958 1960

irr
eg

ul
ar

time

Figure 15.6 A seasonal decomposition of the logged AirPassengers
time series using the stl() function. The time series (data) is
decomposed into seasonal, trend, and irregular components.
store/books/9781617294181

https://itbook.store/books/9781617294181

44 CHAPTER 15 Time series

www.itboo
remain the same across each year (using the s.window="period" option). The trend
is monotonically increasing, and the seasonal effect suggests more passengers in the
summer (perhaps during vacations). The grey bars on the right are magnitude
guides—each bar represents the same magnitude. This is useful because the y-axes are
different for each graph.

 The object returned by the stl() function contains a component called
time.series that contains the trend, season, and irregular portion of each obser-
vation d. In this case, fit$time.series is based on the logged time series.
exp(fit$time.series) converts the decomposition back to the original metric.
Examining the seasonal effects suggests that the number of passengers increased by
24% in July (a multiplier of 1.24) and decreased by 20% in November (with a multi-
plier of .80).

 Two additional graphs can help to visualize a seasonal decomposition. They’re cre-
ated by the monthplot() function that comes with base R and the seasonplot() func-
tion provided in the forecast package. The code

par(mfrow=c(2,1))
library(forecast)
monthplot(AirPassengers, xlab="", ylab="")
seasonplot(AirPassengers, year.labels="TRUE", main="")

produces the graphs in figure 15.7.

J F M A M J J A S O N D

10
0

20
0

30
0

40
0

50
0

60
0

10
0

20
0

30
0

40
0

50
0

60
0

1949
1950
1951
19521953
1954
1955
1956
19571958

1959
1960

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 15.7 A month
plot (top) and season
plot (bottom) for the
AirPassengers time
series. Each shows an
increasing trend and
similar seasonal pattern
year to year.
k.store/books/9781617294181

https://itbook.store/books/9781617294181

45Exponential forecasting models

www.itbook.
The month plot (top figure) displays the subseries for each month (all January values
connected, all February values connected, and so on), along with the average of each
subseries. From this graph, it appears that the trend is increasing for each month in a
roughly uniform way. Additionally, the greatest number of passengers occurs in July
and August. The season plot (lower figure) displays the subseries by year. Again you see
a similar pattern, with increases in passengers each year, and the same seasonal pattern.

 Note that although you’ve described the time series, you haven’t predicted any
future values. In the next section, we’ll consider the use of exponential models for
forecasting beyond the available data.

15.3 Exponential forecasting models
Exponential models are some of the most popular approaches to forecasting the
future values of a time series. They’re simpler than many other types of models, but
they can yield good short-term predictions in a wide range of applications. They differ
from each other in the components of the time series that are modeled. A simple
exponential model (also called a single exponential model) fits a time series that has a
constant level and an irregular component at time i but has neither a trend nor a sea-
sonal component. A double exponential model (also called a Holt exponential smoothing)
fits a time series with both a level and a trend. Finally, a triple exponential model (also
called a Holt-Winters exponential smoothing) fits a time series with level, trend, and sea-
sonal components.

 Exponential models can be fit with either the HoltWinters() function in the base
installation or the ets() function that comes with the forecast package. The ets()
function has more options and is generally more powerful. We’ll focus on the ets()
function in this section.

 The format of the ets() function is

ets(ts, model="ZZZ")

where ts is a time series and the model is specified by three letters. The first letter
denotes the error type, the second letter denotes the trend type, and the third letter
denotes the seasonal type. Allowable letters are A for additive, M for multiplicative, N
for none, and Z for automatically selected. Examples of common models are given in
table 15.3.

Table 15.3 Functions for fitting simple, double, and triple exponential forecasting models

Type Parameters fit Functions

simple level ets(ts, model="ANN")
ses(ts)

double level, slope ets(ts, model="AAN")
holt(ts)

triple level, slope, seasonal ets(ts, model="AAA")
hw(ts)
store/books/9781617294181

https://itbook.store/books/9781617294181

46 CHAPTER 15 Time series

www.itbook.
The ses(), holt(), and hw() functions are convenience wrappers to the ets() func-
tion with prespecified defaults.

 First we’ll look at the most basic exponential model: simple exponential smooth-
ing. Be sure to install the forecast package (install.packages("forecast"))
before proceeding.

15.3.1 Simple exponential smoothing

Simple exponential smoothing uses a weighted average of existing time-series values to
make a short-term prediction of future values. The weights are chosen so that observa-
tions have an exponentially decreasing impact on the average as you go back in time.

 The simple exponential smoothing model assumes that an observation in the time
series can be described by

Yt = level + irregulart

The prediction at time Yt+1 (called the 1-step ahead forecast) is written as

Yt+1 = c0Yt + c1Yt−1 + c2Yt−2 + c2Yt−2 + ...

where ci = α(1−α)i, i = 0, 1, 2, ... and 0 ≤ α ≤ 1. The ci weights sum to one, and the
1-step ahead forecast can be seen to be a weighted average of the current value and all
past values of the time series. The alpha (α) parameter controls the rate of decay for
the weights. The closer alpha is to 1, the more weight is given to recent observations.
The closer alpha is to 0, the more weight is given to past observations. The actual
value of alpha is usually chosen by computer in order to optimize a fit criterion. A
common fit criterion is the sum of squared errors between the actual and predicted
values. An example will help clarify these ideas.

 The nhtemp time series contains the mean annual temperature in degrees Fahren-
heit in New Haven, Connecticut, from 1912 to 1971. A plot of the time series can be
seen as the line in figure 15.8.

 There is no obvious trend, and the yearly data lack a seasonal component, so the
simple exponential model is a reasonable place to start. The code for making a 1-step
ahead forecast using the ses() function is given next.

> library(forecast)
> fit <- ets(nhtemp, model="ANN")
> fit

ETS(A,N,N)

Call:
 ets(y = nhtemp, model = "ANN")

 Smoothing parameters:
 alpha = 0.182

 Initial states:
 l = 50.2759

Listing 15.4 Simple exponential smoothing

Fits the modelb
store/books/9781617294181

https://itbook.store/books/9781617294181

47Exponential forecasting models

www.itbook.
 sigma: 1.126

 AIC AICc BIC
263.9 264.1 268.1

> forecast(fit, 1)

 Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
1972 51.87 50.43 53.31 49.66 54.08

> plot(forecast(fit, 1), xlab="Year",
 ylab=expression(paste("Temperature (", degree*F,")",)),
 main="New Haven Annual Mean Temperature")

> accuracy(fit)

 ME RMSE MAE MPE MAPE MASE
Training set 0.146 1.126 0.8951 0.2419 1.749 0.9228

The ets(mode="ANN") statement fits the simple exponential model to the nhtemp time
series b. The A indicates that the errors are additive, and the NN indicates that there is
no trend and no seasonal component. The relatively low value of alpha (0.18) indicates
that distant as well as recent observations are being considered in the forecast. This
value is automatically chosen to maximize the fit of the model to the given dataset.

 The forecast() function is used to predict the time series k steps into the future.
The format is forecast(fit, k). The 1-step ahead forecast for this series is 51.9°F
with a 95% confidence interval (49.7°F to 54.1°F) c. The time series, the forecasted
value, and the 80% and 95% confidence intervals are plotted in figure 15.8 d.

1-step ahead forecastc

Prints accuracy measuresd

New Haven Annual Mean Temperature

Year

Te
m

pe
ra

tu
re

 (
°F

)

1910 1920 1930 1940 1950 1960 1970

48
49

50
51

52
53

54

Figure 15.8 Average yearly temperatures in New Haven, Connecticut; and
a 1-step ahead prediction from a simple exponential forecast using the
ets() function
store/books/9781617294181

https://itbook.store/books/9781617294181

48 CHAPTER 15 Time series

www.itboo
The forecast package also provides an accuracy() function that displays the most
popular predictive accuracy measures for time-series forecasts d. A description of
each is given in table 15.4. The et represent the error or irregular component of each
observation (Yt−).

The mean error and mean percentage error may not be that useful, because positive
and negative errors can cancel out. The RMSE gives the square root of the mean
square error, which in this case is 1.13°F. The mean absolute percentage error reports
the error as a percentage of the time-series values. It’s unit-less and can be used to
compare prediction accuracy across time series. But it assumes a measurement scale
with a true zero point (for example, number of passengers per day). Because the Fahr-
enheit scale has no true zero, you can’t use it here. The mean absolute scaled error is
the most recent accuracy measure and is used to compare the forecast accuracy across
time series on different scales. There is no one best measure of predictive accuracy.
The RMSE is certainly the best known and often cited.

 Simple exponential smoothing assumes the absence of trend or seasonal compo-
nents. The next section considers exponential models that can accommodate both.

15.3.2 Holt and Holt-Winters exponential smoothing

The Holt exponential smoothing approach can fit a time series that has an overall
level and a trend (slope). The model for an observation at time t is

Yt = level + slope*t + irregulart

An alpha smoothing parameter controls the exponential decay for the level, and a beta
smoothing parameter controls the exponential decay for the slope. Again, each param-
eter ranges from 0 to 1, with larger values giving more weight to recent observations.

 The Holt-Winters exponential smoothing approach can be used to fit a time series
that has an overall level, a trend, and a seasonal component. Here, the model is

Yt = level + slope*t + st + irregulart

Table 15.4 Predictive accuracy measures

Measure Abbreviation Definition

Mean error ME mean(et)

Root mean squared error RMSE sqrt(mean(et
2))

Mean absolute error MAE mean(| et |)

Mean percentage error MPE mean(100 * et / Yt)

Mean absolute percentage error MAPE mean(| 100 * et / Yt |)

Mean absolute scaled error MASE mean(| qt |) where
qt = et / (1/(T-1) * sum(| yt – yt-1|)), T is the number
of observations, and the sum goes from t=2 to t=T

Yi
k.store/books/9781617294181

https://itbook.store/books/9781617294181

49Exponential forecasting models

www.itbook.
where st represents the seasonal influence at time t. In addition to alpha and beta
parameters, a gamma smoothing parameter controls the exponential decay of the sea-
sonal component. Like the others, it ranges from 0 to 1, and larger values give more
weight to recent observations in calculating the seasonal effect.

 In section 15.2, you decomposed a time series describing the monthly totals (in log
thousands) of international airline passengers into additive trend, seasonal, and irreg-
ular components. Let’s use an exponential model to predict future travel. Again,
you’ll use log values so that an additive model fits the data. The code in the following
listing applies the Holt-Winters exponential smoothing approach to predicting the
next five values of the AirPassengers time series.

> library(forecast)
> fit <- ets(log(AirPassengers), model="AAA")
> fit

ETS(A,A,A)

Call:
 ets(y = log(AirPassengers), model = "AAA")

 Smoothing parameters:
 alpha = 0.8528
 beta = 4e-04
 gamma = 0.0121

 Initial states:
 l = 4.8362
 b = 0.0097
 s=-0.1137 -0.2251 -0.0756 0.0623 0.2079 0.2222
 0.1235 -0.009 0 0.0203 -0.1203 -0.0925

 sigma: 0.0367

 AIC AICc BIC
-204.1 -199.8 -156.5

>accuracy(fit)

 ME RMSE MAE MPE MAPE MASE
Training set -0.0003695 0.03672 0.02835 -0.007882 0.5206 0.07532

> pred <- forecast(fit, 5)
> pred
 Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
Jan 1961 6.101 6.054 6.148 6.029 6.173
Feb 1961 6.084 6.022 6.146 5.989 6.179
Mar 1961 6.233 6.159 6.307 6.120 6.346
Apr 1961 6.222 6.138 6.306 6.093 6.350
May 1961 6.225 6.131 6.318 6.082 6.367

> plot(pred, main="Forecast for Air Travel",
 ylab="Log(AirPassengers)", xlab="Time")

Listing 15.5 Exponential smoothing with level, slope, and seasonal components

Smoothing parametersb

Future forecastsc
store/books/9781617294181

https://itbook.store/books/9781617294181

50 CHAPTER 15 Time series

www.itboo
> pred$mean <- exp(pred$mean)
> pred$lower <- exp(pred$lower)
> pred$upper <- exp(pred$upper)
> p <- cbind(pred$mean, pred$lower, pred$upper)
> dimnames(p)[[2]] <- c("mean", "Lo 80", "Lo 95", "Hi 80", "Hi 95")
> p

 mean Lo 80 Lo 95 Hi 80 Hi 95
Jan 1961 446.3 425.8 415.3 467.8 479.6
Feb 1961 438.8 412.5 399.2 466.8 482.3
Mar 1961 509.2 473.0 454.9 548.2 570.0
Apr 1961 503.6 463.0 442.9 547.7 572.6
May 1961 505.0 460.1 437.9 554.3 582.3

The smoothing parameters for the level (.82), trend (.0004), and seasonal compo-
nents (.012) are given in b. The low value for the trend (.0004) doesn’t mean there is
no slope; it indicates that the slope estimated from early observations didn’t need to
be updated.

 The forecast() function produces forecasts for the next five months c and is
plotted in figure 15.9. Because the predictions are on a log scale, exponentiation is
used to get the predictions in the original metric: numbers (in thousands) of passen-
gers d. The matrix pred$mean contains the point forecasts, and the matrices
pred$lower and pred$upper contain the 80% and 95% lower and upper confidence
limits, respectively. The exp() function is used to return the predictions to the origi-
nal scale, and cbind() creates a single table. Thus the model predicts 509,200 passen-
gers in March, with a 95% confidence band ranging from 454,900 to 570,000.

Makes forecasts in
the original scale

d

Forecast for Air Travel

Time

Lo
g(

A
irP

as
se

ng
er

s)

1950 1952 1954 1956 1958 1960

5.
0

5.
5

6.
0

6.
5

Figure 15.9 Five-year forecast of log(number of international airline
passengers in thousands) based on a Holt-Winters exponential smoothing
model. Data are from the AirPassengers time series.
k.store/books/9781617294181

https://itbook.store/books/9781617294181

51Exponential forecasting models

www.itbook.
15.3.3 The ets() function and automated forecasting

The ets() function has additional capabilities. You can use it to fit exponential mod-
els that have multiplicative components, add a dampening component, and perform
automated forecasts. Let’s consider each in turn.

 In the previous section, you fit an additive exponential model to the log of the
AirPassengers time series. Alternatively, you could fit a multiplicative model to the
original data. The function call would be either ets(AirPassengers, model="MAM")
or the equivalent hw(AirPassengers, seasonal="multiplicative"). The trend
remains additive, but the seasonal and irregular components are assumed to be multi-
plicative. By using a multiplicative model in this case, the accuracy statistics and fore-
casted values are reported in the original metric (thousands of passengers)—a
decided advantage.

 The ets() function can also fit a damping component. Time-series predictions
often assume that a trend will continue up forever (housing market, anyone?). A
damping component forces the trend to a horizontal asymptote over a period of time.
In many cases, a damped model makes more realistic predictions.

 Finally, you can invoke the ets() function to automatically select a best-fitting
model for the data. Let’s fit an automated exponential model to the Johnson & John-
son data described in the introduction to this chapter. The following code allows the
software to select a best-fitting model.

> library(forecast)
> fit <- ets(JohnsonJohnson)
> fit

ETS(M,M,M)

Call:
 ets(y = JohnsonJohnson)

 Smoothing parameters:
 alpha = 0.2328
 beta = 0.0367
 gamma = 0.5261

 Initial states:
 l = 0.625
 b = 1.0286
 s=0.6916 1.2639 0.9724 1.0721

 sigma: 0.0863

 AIC AICc BIC
162.4737 164.3937 181.9203

> plot(forecast(fit), main="Johnson & Johnson Forecasts",
 ylab="Quarterly Earnings (Dollars)", xlab="Time", flty=2)

Listing 15.6 Automatic exponential forecasting with ets()
store/books/9781617294181

https://itbook.store/books/9781617294181

52 CHAPTER 15 Time series

www.itboo
Because no model is specified, the software performs a search over a wide array of
models to find one that minimizes the fit criterion (log-likelihood by default). The
selected model is one that has multiplicative trend, seasonal, and error components.
The plot, along with forecasts for the next eight quarters (the default in this case), is
given in figure 15.10. The flty parameter sets the line type for the forecast line
(dashed in this case).

 As stated earlier, exponential time-series modeling is popular because it can give
good short-term forecasts in many situations. A second approach that is also popular
is the Box-Jenkins methodology, commonly referred to as ARIMA models. These are
described in the next section.

15.4 ARIMA forecasting models
In the autoregressive integrated moving average (ARIMA) approach to forecasting, pre-
dicted values are a linear function of recent actual values and recent errors of predic-
tion (residuals). ARIMA is a complex approach to forecasting. In this section, we’ll
limit discussion to ARIMA models for non-seasonal time series.

 Before describing ARIMA models, a number of terms need to be defined, including
lags, autocorrelation, partial autocorrelation, differencing, and stationarity. Each is
considered in the next section.

15.4.1 Prerequisite concepts

When you lag a time series, you shift it back by a given number of observations. Con-
sider the first few observations from the Nile time series, displayed in table 15.5. Lag 0

Johnson & Johnson Forecasts

Time

Q
ua

rt
er

ly
 E

ar
ni

ng
s

(D
ol

la
rs

)

1960 1965 1970 1975 1980

0
5

10
15

20
25

Figure 15.10 Multiplicative
exponential smoothing forecast
with trend and seasonal
components. The forecasts are
a dashed line, and the 80% and
95% confidence intervals are
provided in light and dark gray,
respectively.
k.store/books/9781617294181

https://itbook.store/books/9781617294181

53ARIMA forecasting models

www.itbook.
is the unshifted time series. Lag 1 is the time series shifted one position to the left. Lag
2 shifts the time series two positions to the left, and so on. Time series can be lagged
using the function lag(ts,k), where ts is the time series and k is the number of lags.

Autocorrelation measures the way observations in a time series relate to each other. ACk

is the correlation between a set of observations (Yt) and observations k periods earlier
(Yt-k). So AC1 is the correlation between the Lag 1 and Lag 0 time series, AC2 is the
correlation between the Lag 2 and Lag 0 time series, and so on. Plotting these correla-
tions (AC1, AC2, …, ACk) produces an autocorrelation function (ACF) plot. The ACF plot is
used to select appropriate parameters for the ARIMA model and to assess the fit of the
final model.

 An ACF plot can be produced with the acf() function in the stats package or the
Acf() function in the forecast package. Here, the Acf() function is used because it
produces a plot that is somewhat easier to read. The format is Acf(ts), where ts is the
original time series. The ACF plot for the Nile time series, with k=1 to 18, is provided a
little later, in the top half of figure 15.12.

 A partial autocorrelation is the correlation between Yt and Yt-k with the effects of all Y
values between the two (Yt-1, Yt-2, …, Yt-k+1) removed. Partial autocorrelations can also
be plotted for multiple values of k. The PACF plot can be generated with either the
pacf() function in the stats package or the Pacf() function in the forecast pack-
age. Again, the Pacf() function is preferred due to its formatting. The function call is
Pacf(ts), where ts is the time series to be assessed. The PACF plot is also used to
determine the most appropriate parameters for the ARIMA model. The results for the
Nile time series are given in the bottom half of figure 15.12.

 ARIMA models are designed to fit stationary time series (or time series that can be
made stationary). In a stationary time series, the statistical properties of the series
don’t change over time. For example, the mean and variance of Yt are constant. Addi-
tionally, the autocorrelations for any lag k don’t change with time.

 It may be necessary to transform the values of a time series in order to achieve con-
stant variance before proceeding to fitting an ARIMA model. The log transformation is
often useful here, as you saw in section 15.1.3. Other transformations, such as the Box-
Cox transformation described in section 8.5.2, may also be helpful.

 Because stationary time series are assumed to have constant means, they can’t have
a trend component. Many non-stationary time series can be made stationary through

Table 15.5 The Nile time series at various lags

Lag 1869 1870 1871 1872 1873 1874 1875 …

0 1120 1160 963 1210 1160 …

1 1120 1160 963 1210 1160 1160 …

2 1120 1160 963 1210 1160 1160 813 …
store/books/9781617294181

https://itbook.store/books/9781617294181

54 CHAPTER 15 Time series

www.itboo
differencing. In differencing, each value of a time series Yt is replaced with Yt-1 – Yt. Dif-
ferencing a time series once removes a linear trend. Differencing it a second time
removes a quadratic trend. A third time removes a cubic trend. It’s rarely necessary to
difference more than twice.

 You can difference a time series with the diff() function. The format is diff(ts,
differences=d), where d indicates the number of times the time series ts is differ-
enced. The default is d=1. The ndiffs() function in the forecast package can be
used to help determine the best value of d. The format is ndiffs(ts).

 Stationarity is often evaluated with a visual inspection of a time-series plot. If the
variance isn’t constant, the data are transformed. If there are trends, the data are dif-
ferenced. You can also use a statistical procedure called the Augmented Dickey-Fuller
(ADF) test to evaluate the assumption of stationarity. In R, the function adf.test() in
the tseries package performs the test. The format is adf.test(ts), where ts is the
time series to be evaluated. A significant result suggests stationarity.

 To summarize, ACF and PCF plots are used to determine the parameters of ARIMA

models. Stationarity is an important assumption, and transformations and differenc-
ing are used to help achieve stationarity. With these concepts in hand, we can now
turn to fitting models with an autoregressive (AR) component, a moving averages
(MA) component, or both components (ARMA). Finally, we’ll examine ARIMA models
that include ARMA components and differencing to achieve stationarity (Integration).

15.4.2 ARMA and ARIMA models

In an autoregressive model of order p, each value in a time series is predicted from a lin-
ear combination of the previous p values

AR(p):Yt = μ + β1Yt−1 + β2Yt−2 + ... + βpYt−p + ε t

where Yt is a given value of the series, µ is the mean of the series, the β s are the
weights, and ε t is the irregular component. In a moving average model of order q, each
value in the time series is predicted from a linear combination of q previous errors. In
this case

MA(q):Yt = μ − θ1ε t−1 − θ2ε t−2 ... − θqε t−q + ε t

where the ε s are the errors of prediction and the θ s are the weights. (It’s important to
note that the moving averages described here aren’t the simple moving averages
described in section 15.1.2.)

 Combining the two approaches yields an ARMA(p, q) model of the form

Yt = μ + β1Yt−1 + β2Yt−2 + ... + βpYt−p − θ1ε t−1 − θ2ε t−2 ... − θqε t−q + ε t

that predicts each value of the time series from the past p values and q residuals.
 An ARIMA(p, d, q) model is a model in which the time series has been differenced

d times, and the resulting values are predicted from the previous p actual values and q
k.store/books/9781617294181

https://itbook.store/books/9781617294181

55ARIMA forecasting models

www.itbook.
previous errors. The predictions are “un-differenced” or integrated to achieve the final
prediction.

 The steps in ARIMA modeling are as follows:

1 Ensure that the time series is stationary.
2 Identify a reasonable model or models (possible values of p and q).
3 Fit the model.
4 Evaluate the model’s fit, including statistical assumptions and predictive accu-

racy.
5 Make forecasts.

 Let’s apply each step in turn to fit an ARIMA model to the Nile time series.

ENSURING THAT THE TIME SERIES IS STATIONARY

First you plot the time series and assess its stationarity (see listing 15.7 and the top half
of figure 15.11). The variance appears to be stable across the years observed, so
there’s no need for a transformation. There may be a trend, which is supported by the
results of the ndiffs() function.

N
ile

1880 1900 1920 1940 1960

60
0

80
0

10
00

14
00

Time

di
ff(

N
ile

)

1880 1900 1920 1940 1960

−
40

0
−

20
0

0
20

0
40

0

Figure 15.11 Time series displaying the annual flow of the river Nile at Ashwan
from 1871 to 1970 (top) along with the times series differenced once (bottom).
The differencing removes the decreasing trend evident in the original plot.
store/books/9781617294181

https://itbook.store/books/9781617294181

56 CHAPTER 15 Time series

www.itbook.

> library(forecast)
> library(tseries)
> plot(Nile)
> ndiffs(Nile)

[1] 1

> dNile <- diff(Nile)
> plot(dNile)
> adf.test(dNile)

 Augmented Dickey-Fuller Test

data: dNile
Dickey-Fuller = -6.5924, Lag order = 4, p-value = 0.01
alternative hypothesis: stationary

The series is differenced once (lag=1 is the default) and saved as dNile. The differ-
enced time series is plotted in the bottom half of figure 15.11 and certainly looks
more stationary. Applying the ADF test to the differenced series suggest that it’s now
stationary, so you can proceed to the next step.

IDENTIFYING ONE OR MORE REASONABLE MODELS

Possible models are selected based on the ACF and PACF plots:

Acf(dNile)
Pacf(dNile)

The resulting plots are
given in figure 15.12.

Figure 15.12 Autocorrelation
and partial autocorrelation

plots for the differenced
Nile time series

Listing 15.7 Transforming the time series and assessing stationarity

−
0.

4
−

0.
2

0.
0

0.
2

A
C

F

1 2 3 4 5 6 7 8 9 10 12 14 16 18

−
0.

4
−

0.
2

0.
0

0.
2

Lag

P
ar

tia
l A

C
F

1 2 3 4 5 6 7 8 9 10 12 14 16 18
store/books/9781617294181

https://itbook.store/books/9781617294181

57ARIMA forecasting models

www.itbook.
The goal is to identify the parameters p, d, and q. You already know that d=1 from the
previous section. You get p and q by comparing the ACF and PACF plots with the
guidelines given in table 15.6.

The results in table 15.6 are theoretical, and the actual ACF and PACF may not match
this exactly. But they can be used to give a rough guide of reasonable models to try.
For the Nile time series in figure 15.12, there appears to be one large autocorrelation
at lag 1, and the partial autocorrelations trail off to zero as the lags get bigger. This
suggests trying an ARIMA(0, 1, 1) model.

FITTING THE MODEL(S)

The ARIMA model is fit with the arima() function. The format is arima(ts,
order=c(q, d, q)). The result of fitting an ARIMA(0, 1, 1) model to the Nile time
series is given in the following listing.

> library(forecast)
> fit <- arima(Nile, order=c(0,1,1))
> fit

Series: Nile
ARIMA(0,1,1)

Coefficients:
 ma1
 -0.7329
s.e. 0.1143

sigma^2 estimated as 20600: log likelihood=-632.55
AIC=1269.09 AICc=1269.22 BIC=1274.28

> accuracy(fit)

 ME RMSE MAE MPE MAPE MASE
Training set -11.94 142.8 112.2 -3.575 12.94 0.8089

Note that you apply the model to the original time series. By specifying d=1, it calcu-
lates first differences for you. The coefficient for the moving averages (-0.73) is pro-
vided along with the AIC. If you fit other models, the AIC can help you choose which
one is most reasonable. Smaller AIC values suggest better models. The accuracy

Table 15.6 Guidelines for selecting an ARIMA model

Model ACF PACF

ARIMA(p, d, 0) Trails off to zero Zero after lag p

ARIMA(0, d, q) Zero after lag q Trails off to zero

ARIMA(p, d, q) Trails off to zero Trails off to zero

Listing 15.8 Fitting an ARIMA model
store/books/9781617294181

https://itbook.store/books/9781617294181

58 CHAPTER 15 Time series

www.itboo
measures can help you determine whether the model fits with sufficient accuracy.
Here the mean absolute percent error is 13% of the river level.

EVALUATING MODEL FIT

If the model is appropriate, the residuals should be normally distributed with mean
zero, and the autocorrelations should be zero for every possible lag. In other words,
the residuals should be normally and independently distributed (no relationship
between them). The assumptions can be evaluated with the following code.

> qqnorm(fit$residuals)
> qqline(fit$residuals)
> Box.test(fit$residuals, type="Ljung-Box")

 Box-Ljung test

data: fit$residuals
X-squared = 1.3711, df = 1, p-value = 0.2416

The qqnorm() and qqline() functions produce the plot in figure 15.13. Normally dis-
tributed data should fall along the line. In this case, the results look good.

 The Box.test() function provides a test that the autocorrelations are all zero. The
results aren’t significant, suggesting that the autocorrelations don’t differ from zero.
This ARIMA model appears to fit the data well.

MAKING FORECASTS

If the model hadn’t met the assumptions of normal residuals and zero autocorrela-
tions, it would have been necessary to alter the model, add parameters, or try a differ-
ent approach. Once a final model has been chosen, it can be used to make
predictions of future values. In the next listing, the forecast() function from the
forecast package is used to predict three years ahead.

Listing 15.9 Evaluating the model fit

−2 −1 0 1 2

−
40

0
−

20
0

0
20

0

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 15.13 Normal Q-Q plot for
determining the normality of the
time-series residuals
k.store/books/9781617294181

https://itbook.store/books/9781617294181

59ARIMA forecasting models

www.itboo

> forecast(fit, 3)

 Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
1971 798.3673 614.4307 982.3040 517.0605 1079.674
1972 798.3673 607.9845 988.7502 507.2019 1089.533
1973 798.3673 601.7495 994.9851 497.6663 1099.068

> plot(forecast(fit, 3), xlab="Year", ylab="Annual Flow")

The plot() function is used to plot the forecast in figure 15.14. Point estimates are
given by the blue dots, and 80% and 95% confidence bands are represented by dark
and light bands, respectively.

15.4.3 Automated ARIMA forecasting

In section 15.2.3, you used the ets() function in the forecast package to automate
the selection of a best exponential model. The package also provides an
auto.arima() function to select a best ARIMA model. The next listing applies this
approach to the sunspots time series described in the chapter introduction.

> library(forecast)
> fit <- auto.arima(sunspots)
> fit
Series: sunspots
ARIMA(2,1,2)

Listing 15.10 Forecasting with an ARIMA model

Listing 15.11 Automated ARIMA forecasting

Forecasts from ARIMA(0,1,1)

Year

A
nn

ua
l F

lo
w

1880 1900 1920 1940 1960

60
0

80
0

10
00

12
00

14
00

Figure 15.14 Three-year
forecast for the Nile time series
from a fitted ARIMA(0,1,1)
model. Blue dots represent point
estimates, and the light and dark
gray bands represent the 80%
and 95% confidence bands limits,
respectively.
k.store/books/9781617294181

https://itbook.store/books/9781617294181

60 CHAPTER 15 Time series

www.itboo
Coefficients:
 ar1 ar2 ma1 ma2
 1.35 -0.396 -1.77 0.810
s.e. 0.03 0.029 0.02 0.019

sigma^2 estimated as 243: log likelihood=-11746
AIC=23501 AICc=23501 BIC=23531

> forecast(fit, 3)

 Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
Jan 1984 40.437722 20.4412613 60.43418 9.855774 71.01967
Feb 1984 41.352897 18.2795867 64.42621 6.065314 76.64048
Mar 1984 39.796425 15.2537785 64.33907 2.261686 77.33116

> accuracy(fit)
 ME RMSE MAE MPE MAPE MASE
Training set -0.02673 15.6 11.03 NaN Inf 0.32

The function selects an ARIMA model with p=2, d=1, and q=2. These are values that
minimize the AIC criterion over a large number of possible models. The MPE and
MAPE accuracy blow up because there are zero values in the series (a drawback of
these two statistics). Plotting the results and evaluating the fit are left for you as an
exercise.

15.5 Going further
There are many good books on time-series analysis and forecasting. If you’re new to
the subject, I suggest starting with the book Time Series (Open University, 2006).
Although it doesn’t include R code, it provides a very understandable and intuitive
introduction. A Little Book of R for Time Series by Avril Coghlan (http://mng.bz/8fz0,
2010) pairs well with the Open University text and includes R code and examples.

 Forecasting: Principles and Practice (http://otexts.com/fpp, 2013) is a clear and con-
cise online textbook written by Rob Hyndman and George Athanasopoulos; it
includes R code throughout. I highly recommend it. Additionally, Cowpertwait & Met-
calfe (2009) have written an excellent text on analyzing time series with R. A more
advanced treatment that also includes R code can be found in Shumway & Stoffer
(2010).

 Finally, you can consult the CRAN Task View on Time Series Analysis (http://
cran.r-project.org/web/views/TimeSeries.html). It contains a comprehensive sum-
mary of all of R’s time-series capabilities.

15.6 Summary
Forecasting has a long and varied history, from early shamans predicting the weather
to modern data scientists predicting the results of recent elections. Prediction is fun-
damental to both science and human nature. In this chapter, we’ve looked at how to
create time series in R, assess trends, and examine seasonal effects. Then we
k.store/books/9781617294181

http://otexts.com/fpp, 2013
http://cran.r-project.org/web/views/TimeSeries.html
http://cran.r-project.org/web/views/TimeSeries.html
http://mng.bz/8fz0
https://itbook.store/books/9781617294181

61Summary

www.itbook.
considered two of the most popular approaches to forecasting: exponential models
and ARIMA models.

 Although these methodologies can be crucial in understanding and predicting a
wide variety of phenomena, it’s important to remember that they each entail extrapo-
lation—going beyond the data. They assume that future conditions mirror current
conditions. Financial predictions made in 2007 assumed continued economic growth
in 2008 and beyond. As we all know now, that isn’t exactly how things turned out. Sig-
nificant events can change the trend and pattern in a time series, and the farther out
you try to predict, the greater the uncertainty.

store/books/9781617294181

https://itbook.store/books/9781617294181

www.itboo
Business pros and researchers thrive on data, and R
speaks the language of data analysis. R is a powerful pro-
gramming language for statistical computing. Unlike
general-purpose tools, R provides thousands of modules
for solving just about any data-crunching or presenta-
tion challenge you’re likely to face. R runs on all impor-
tant platforms and is used by thousands of major
corporations and institutions worldwide.

 R in Action, Second Edition teaches you how to use the
R language by presenting examples relevant to scien-
tific, technical, and business developers. Focusing on
practical solutions, the book offers a crash course in sta-
tistics, including elegant methods for dealing with messy

and incomplete data. You'll also master R’s extensive graphical capabilities for explor-
ing and presenting data visually. And this expanded second edition includes new
chapters on forecasting, data mining, and dynamic report writing.

What’s inside

 Complete R language tutorial
 Using R to manage, analyze, and visualize data
 Techniques for debugging programs and creating packages
 OOP in R
 Over 160 graphs

This book is designed for readers who need to solve practical data analysis problems
using the R language and tools. Some background in mathematics and statistics is
helpful, but no prior experience with R or computer programming is required.
k.store/books/9781617294181

https://www.manning.com/books/r-in-action-second-edition
https://www.manning.com/books/r-in-action-second-edition
https://itbook.store/books/9781617294181

 Neural networks have long been a supervised machine learning tool of
choice when data is numeric and represents a physical situation. This includes
working with images, recorded sound, and scientific measurements. The follow-
ing chapter introduces the basic concepts behind classic neural net applications.
The examples are implemented in Python and scikit-learn, which, together with
the pandas package, offer a powerful programming platform for machine learn-
ing and data science. The chapter ends with a description of so-called restricted
Boltzmann machines and the move to unsupervised training procedures that
anticipate current advanced methods such as deep learning and word2vec.

Deep learning and
neural networks

www.itbook.store/books/9781617294181

https://itbook.store/books/9781617294181

www.itbook.
Chapter 6 from Algorithms of the Intelligent Web, Second Edition
by Douglas G. McIlwraith, Haralambos Marmanis, and
Dmitry Babenko

Deep learning and

neural networks

There is much discussion about deep learning at the moment, and it’s widely seen
to be the next big advance in machine learning and artificial intelligence. In this
chapter we’d like to cut through the rhetoric to provide you with the facts. At the
end of this chapter you should understand the basic building block of any deep
learning network, the perceptron, and understand how these fit together in a deep
network. Neural networks heralded the introduction of the perceptron, so we’ll dis-
cuss these before exploring deeper, more expressive networks. These deeper net-
works come with significant challenges in representation and training, so we need
to ensure a good foundational knowledge before leaping in.

 Before we do all of this, we’ll discuss the nature of deep learning and the kinds
of problems deep learning has been applied to and what makes these successful.
This should give you a foundational motivation for deep learning and a frame on
which to hang some of the more complicated theoretical concepts later in the

This chapter covers
 Neural network basics

 An introduction to deep learning

 Digit recognition using restricted Boltzmann
machines
64

store/books/9781617294181

https://www.manning.com/books/algorithms-of-the-intelligent-web-second-edition
https://itbook.store/books/9781617294181

65An intuitive approach to deep learning

www.itbook.
chapter. Remember that this is a still a vibrant and active area of research in the com-
munity, and so I recommend that you keep abreast of the latest advances by following
the literature. The following resources can provide an up-to-date summary of what’s
happening in the community: Startup1 and KDNuggets.2 But I urge you to do your
own research and come up with your own conclusions!

6.1 An intuitive approach to deep learning
In order to understand deep
learning, let’s choose the
application of image recogni-
tion; namely, given a picture
or a video, how do we build
classifiers that will recognize
objects? Such an application
has potentially wide-reaching
applications. With the advent
of the quantified self3,4 and
Google Glass, we can imagine
applications for this device
that recognize objects and pro-
vide information to the user.

 Let’s take the example of
recognizing a car. Deep learn-
ing builds up layers of under-
standing, with each layer
utilizing the previous one. Fig-
ure 6.1 shows some of the pos-
sible layers of understanding
for a deep network trained to
recognize cars. Both this exam-
ple and some of the images
that follow have been repro-
duced from Andrew Ng’s lec-
ture on the subject.5

 At the bottom of figure 6.1
you can see a number of stock
images of cars. We’ll consider

1 Startup.ML, “Deep Learning News,” June 30, 2015, http://news.startup.ml/ (accessed December 21, 2015).
2 KDNuggets, “Deep Learning,” http://www.kdnuggets.com/tag/deep-learning (accessed December 21, 2015).
3 Gina Neff and Dawn Nafus, The Quantified Self (Boston: MIT Press, 2016).
4 Deborah Lupton, The Quantified Self (Cambridge: Polity Press, 2016).
5 Andrew Ng, “Bay Area Vision Meeting: Unsupervised Feature Learning and Deep Learning,” YouTube,

March 7, 2011, https://www.youtube.com/watch?v=ZmNOAtZIgIk (accessed December 21, 2015).

Object model

Parts of cars

Edges

Pixels

Cars

Figure 6.1 Visualizing a deep network for recognizing cars.
Some graphical content reproduced from Andrew Ng’s talk on
the subject, cited previously. A base training set of pictures is
used to create a basis of edges. These edges can be combined
to detect parts of cars, and these parts of cars can be
combined to detect an object type, which is in this case a car.
store/books/9781617294181

http://news.startup.ml/
http://www.kdnuggets.com/tag/deep-learning
https://www.youtube.com/watch?v=ZmNOAtZIgIk
https://itbook.store/books/9781617294181

66 CHAPTER 6 Deep learning and neural networks

www.itboo
these our training set. The question is now how do we use deep learning to recognize
the similarities between these images, that is, that they all contain a car, possibly without
any hand-labeled ground truth? The algorithm isn’t told that the scene contains a car.

 As you’ll see, deep learning relies on progressively higher-concept abstractions
built directly from lower-level abstractions. In the case of our image-recognition prob-
lem, we start out with the smallest element of information in our pictures, the pixel.
The entire image set is used to construct a basis of features—think back to chapter 3
where we discussed extracting structure from data—that can be used in composite to
detect a slightly higher level of abstraction such as lines and curves. In the next-high-
est level, these lines are curves that are combined to create parts of cars that have
been seen in the training set, and these parts are further combined to create object
detectors for a whole car.

 There are two important concepts to note here. First, no explicit feature engineer-
ing has been performed. If you remember, at the end of the last chapter we talked
about the importance of creating a good representation of your data. We discussed
this in the context of click prediction for advertising and noted that experts in the
space typically perform this manually. But in this example, unsupervised feature learn-
ing has been performed; that is, representations of the data have been learned with-
out any explicit interaction from the user. This may parallel how we as humans may
perform recognition—and we are very good at pattern recognition indeed!

 The second important fact to note is that the concept of a car has not been made
explicit. Provided sufficient variance in the input set of pictures, the highest-level car
detectors should do sufficiently well on any car presented. Before we get ahead of our-
selves, though, let’s clear up some of the basics around neural networks.

6.2 Neural networks
Neural networks aren’t a new technology by any means and have been around since
the 1940s. They are a biologically inspired concept whereby an output neuron is acti-
vated based on the input from several connected input neurons. Neural networks are
sometimes known as artificial neural networks, because they achieve artificially a simi-
lar functionality to a human neuron. Jeubin Huang1 provides an introduction to the
biology of the human brain. Although many aspects about the functionality of the
human brain are still a mystery, we’re able to understand the basic building blocks of
operation—but how this gives rise to consciousness is another matter.

 Neurons in the brain use a number of dendrites to collect both positive (excita-
tive) and negative (inhibitory) output information from other neurons and encode
this electrically, sending this down an axon. This axon splits and reaches hundreds or
thousands of dendrites attached to other neurons. A small gap exists between the
axon and the input dendrites of the next neuron, and this gap is known as a synapse.

1 Jeubin Huang, “Overview of Cerebral Function,” Merck Manual, September 1, 2015, http://www.merckmanuals
.com/professional/neurologic-disorders/function-and-dysfunction-of-the-cerebral-lobes/overview-of-cerebral-
function (accessed December 21, 2015).
k.store/books/9781617294181

http://www.merckmanuals.com/professional/neurologic-disorders/function-and-dysfunction-of-the-cerebral-lobes/overview-of-cerebral-function
http://www.merckmanuals.com/professional/neurologic-disorders/function-and-dysfunction-of-the-cerebral-lobes/overview-of-cerebral-function
http://www.merckmanuals.com/professional/neurologic-disorders/function-and-dysfunction-of-the-cerebral-lobes/overview-of-cerebral-function
https://itbook.store/books/9781617294181

67Neural networks

www.itbook.
Electrical information is converted into chemical output that then excites the den-
drite of the next neuron. In this scenario, learning is encoded by the neuron itself.
Neurons send messages down their axon only if their overall excitation is large
enough.

 Figure 6.2 shows the schematic of a human biological neuron and an artificial neu-
ron developed by McCulloch and Pitts, the so-called MCP model.1 Our artificial neu-
ron is built using a simple summation and threshold value and works as follows. Logic
inputs, both positive and negative, are received from the dendrite equivalents and a
weighted summation is performed. If this output exceeds a certain threshold and no
inhibitory input is observed, a positive value is emitted. This output may then be fed
onward to the input of other such neurons through their dendrites’ equivalent inputs.
A little thought will reveal that this is—ignoring the inhibitory input—a linear model
in n dimensional space, with linked coefficients, where n is the number of inputs to
the neuron. Figure 6.3 illustrates the behavior of this model for n = 1.

 In this illustration we use a simple hand-built neuron with a unit weight (w = 1).
The input to the neuron is allowed to vary from -10 to 10, and the summation of the
weighted input values are provided on the Y-axis. Choosing a threshold of 0, the neu-
ron would fire if the input is greater than 0 but not otherwise.

1 Warren S. McCulloch and Walter H. Pitts, “A Logical Calculus of the Ideas Immanent in Nervous Activity,”
Bulletin of Mathematical Biophysics 5 (1943): 115–33.

w w w

DendritesInhibitory

Summation

Threshold

Axon

x1 x2 xn

Cell body

Dendrites

Axon

Figure 6.2 On the left we provide a schematic of a human biological neuron.
To the right, we show a human-inspired neural network implemented using
weighted summation, an inhibitory input, and a threshold.
store/books/9781617294181

https://itbook.store/books/9781617294181

68 CHAPTER 6 Deep learning and neural networks

www.itboo
6.3 The perceptron
In the previous section we introduced the MCP neuron. With this basic approach, it
turns out that it’s possible to learn and to generalize training data but in a very limited
fashion. But we can do better, and thus the perceptron was born. The perceptron
builds on the MCP model in three important ways:1,2

 A threshold bias was added as an input to the summation. This serves several
equivalent purposes. First, it allows bias to be captured from the input neurons.
Second, it means that output thresholds can be standardized around a single
value, such as zero, without loss of generality.

 The perceptron allows input weights to be independent, so a neuron doesn’t
need to be connected to an input multiple times to have a greater impact.

 The development of the perceptron heralded the development of an algorithm
to learn the best weights given a set of input and output data.

1 Frank Rosenblatt, The Perceptron—a perceiving and recognizing automaton (New York: Cornell Aeronautical Lab-
oratory, 1957).

2 Rosenblatt, “The perceptron: A probabilistic model for information storage and organization in the brain,”
Psychological Review 65, no. 6 (November 1958): 386–408.

S
um

m
at

io
n

ou
tp

ut

Th
re

sh
ol

d
ou

tp
ut

−15

−10

−5

0

5

10

15

0

0.2

0.4

0.6

0.8

1

1.2

−2 −1−10 −9 −8 −7 −6 −5 −4 −3 0 1 2 3 4 5 6 7 8 9 10

Neuron input

Threshold output
Summation output

Figure 6.3 MCP as a 2-D linear model without inhibitory input. The weights of the model correspond
to the coefficients of a linear model. In this case our neuron supports only a single input and the weight
has been set to 1 for illustration. Given a threshold of 0, all inputs with a value less than or equal to 0
would inhibit the neuron from firing, whereas all inputs with a value greater than 0 would cause the
neuron to fire.
k.store/books/9781617294181

https://itbook.store/books/9781617294181

69The perceptron

www.itbook.
Figure 6.4 provides a graphical overview of this new extended model. As before, an
intermediate value is created using the weighted summation of the inputs, but we now
notice the inclusion of a bias value, w0. This is learned along with the input weights
during the training step; more about this in the following sections. The intermediate
value, denoted by a here, is then passed through a threshold function to obtain the
final result, y.

6.3.1 Training

Now that you know that a neural network consists of many more basic elements called
perceptrons, let’s look at how we train a perceptron in isolation. So what does it mean
to train a perceptron? Let’s take a more concrete example using the logical AND func-
tion. We’ll consider a perceptron of two binary inputs with a binary threshold activa-
tion function around 0. How do we learn the weights, such that the output of the
perceptron is 1, if and only if the two inputs are both equal to 1? Put another way, can
we choose continuous valued weights such that the weighted sum of the inputs is
greater than 0 when the two inputs are both 1 with the output being less than 0 other-
wise? Let’s formalize this problem. We give X as our vector of binary input values and
W as our vector of continuous input weights.

Thus, we need to learn weights such that the following restrictions hold true for com-
binations of binary inputs x1, x2:

Unfortunately for us, there are no solutions if we pose the problem like this! There
are two options to make this problem tractable. We either allow the threshold to

w1 w2w0 wnBias

Summation

Threshold

x1 x2

y

xn

a = wixi+w0

i>0

(a)

Figure 6.4 The perceptron. Inputs x1
through xn are received and multiplied
by their associated weight, with
perceptron bias, w0, being added in
afterward. This output, given by a, is
then passed through a threshold
function to obtain the output.

X x1 x2(,) W w1 w2(,)=,=

X W⋅ 0> x1 x2 1= =,

0≤ otherwise
store/books/9781617294181

https://itbook.store/books/9781617294181

70 CHAPTER 6 Deep learning and neural networks

www.itboo
move, defining it as a value not equal to 0, or we introduce an offset; both are equiva-
lent. We’ll opt for the latter in this text, providing us with the new vectors

and our existing equalities remain the same. You can now see that with careful weight
selection we can create the AND function. Consider the case where

Table 6.1 provides the output from our perceptron and the output from the AND
function.

Now that we understand that it’s indeed possible to represent a logical AND using a
perceptron, we must develop a systematic way to learn our weights in a supervised
manner. Put another way, given a data set consisting of inputs and outputs, related lin-
early in this case, how do we learn the weights of our perceptron? We can achieve this
using the perceptron algorithm developed by Rosenblatt.1,2 In the following listing we
present the pseudo code used for learning.

Initialize W to contain random small numbers

For each item in training set:
 Calculate the current output of the perceptron for the item.
 For each weight, update, depending upon output correctness.

So far, so good. Looks easy, right? We start with some small random values for our
weights and then we iterate over our data points and update the weights depending
on the correctness of our perceptron. In actual fact, we update the weights only if we
get the output wrong; otherwise, we leave the weights alone. Furthermore, we update

Table 6.1 Comparing the output of our perceptron with the output of the logical AND
function, which returns 1 if both inputs are equal to 1. Results provided are for the case
where .

x1 x2 theta weighted sum sign of weighted sum x1 AND x2

1 0 -1.5 -0.5 negative 0

0 1 -1.5 -0.5 negative 0

0 0 -1.5 -1.5 negative 0

1 1 -1.5 0.5 positive 1

1 Rosenblatt, “The perceptron: A probabilistic model for information storage and organization in the brain.”
2 Rosenblatt, Principles of neurodynamics; perceptrons and the theory of brain mechanisms (Washington: Spartan

Books, 1962).

Listing 6.1 The perceptron learning algorithm

X x1 x2 1,(,) W w1 w2 θ,(,)=,=

w1 1 w2 1 and θ 1.5–==,=

w1 1– w2 1– and θ 1.5–=,
k.store/books/9781617294181

https://itbook.store/books/9781617294181

71The perceptron

www.itbook.
the weights such that they become more like their input vectors in magnitude but with
the corresponding sign of the output value. Let’s write this down more formally, as
shown in the next listing.

Initialize to contain random small numbers

For each example j:

 For each feature weight k:

Provided the input data is linearly separable, such an algorithm is guaranteed to con-
verge to a solution.1

6.3.2 Training a perceptron in scikit-learn

Previously we presented the simplest form of a neural network, the perceptron; we
also discussed how this algorithm is trained. Let’s now move to scikit-learn and
explore how we can train a perceptron using some data. The next listing provides the
code to perform the necessary imports and create a NumPy array of data points.

import numpy as np
import matplotlib.pyplot as plt
import random
from sklearn.linear_model import perceptron

#Let's set up our data and our target
data = np.array([[0,1],[0,0],[1,0],[1,1]])
target = np.array([0,0,0,1])

In listing 6.3, we perform the necessary imports for our single perceptron example
and create a very small dataset with only four data points. This dataset is contained
within a NumPy array called data. Each data point is assigned to either the class 0 or
the class 1, with these classes being stored within the target array. Figure 6.5 provides
a graphical overview of this data.

 In figure 6.5 the only data point with a positive class (with a label of 1) is found at
coordinate (1,1) and represented in red. All other data points are associated with the

Listing 6.2 The perceptron learning algorithm (2)

1 Brian Ripley, Pattern Recognition and Neural Networks (Cambridge: Cambridge University Press, 1996).

Listing 6.3 Creating data for perceptron learning

W0

yj t() wk
k
 t() xj k,⋅=

Calculate the output of the perceptron
given the current weights (time t).

wk t 1+() wk t() n dj yj t()–() xj k,⋅+= Features are updated only if the expected
output d, and the actual output differ. If
they do, we move the weight in the sign of
the correct answer but a magnitude given
by the corresponding input.

Update the features. Note this is often done as
a vector operation rather than a for loop.

Create four data points
in a NumPy array.

Specify the classes of these data
points. In this example only data
point x=1,y=1 has a target
class of 1; other data points
have been assigned a class of 0.
store/books/9781617294181

https://itbook.store/books/9781617294181

72 CHAPTER 6 Deep learning and neural networks

www.itboo
negative class. The following listing provides the sample code to train our simple per-
ceptron and to return the coefficients (w1,w2 relating to x1 and x2, respectively) along
with the bias w0.

p = perceptron.Perceptron(n_iter=100)
p_out = p.fit(data,target)
print p_out
msg = ("Coefficients: %s, Intercept: %s")
print msg % (str(p.coef_),str(p.intercept_))

Listing 6.4 provides output similar to the following:

Perceptron(alpha=0.0001, class_weight=None, eta0=1.0, fit_intercept=True,
 n_iter=100, n_jobs=1, penalty=None, random_state=0, shuffle=False,
 verbose=0, warm_start=False)
Coefficients: [[3. 2.]] ,Intercept: [-4.]

Listing 6.4 Training a single perceptron

−0.2
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 6.5 Graphical overview of our data for a single perceptron. Data with class
label 1 is represented by a round dot, whereas data with class label 0 is represented
by a star. It is the aim of the perceptron to separate these points.

Create a single perceptron. n_iter specifies
the number of times the training data
should be iterated through when training.

Train the perceptron using the data
and the associated target classes.

Print out the coefficients and
the bias of the perceptron.
k.store/books/9781617294181

https://itbook.store/books/9781617294181

73The perceptron

www.itbook.
The first line provides the parameters under which the perceptron was trained; the
second provides the output weights and bias of the perceptron. Don’t worry if the
coefficients and the intercept are slightly different when you run this. There are many
solutions to this problem and the learning algorithm can return any of them. For a
greater understanding of the parameters, I encourage you to read the associated
scikit-learn documentation.1

6.3.3 A geometric interpretation of the perceptron for two inputs

In this example, we’ve successfully trained a single perceptron and returned the
weights and bias of the final perceptron. Great! But how do we interpret these weights
in an intuitive way? Luckily, this is easily possible in 2-D space, and we can extend this
intuition into higher-dimensional spaces also.

 Let’s consider the perceptron for two input values only. From figure 6.3 we have

This should look familiar to you as the equation of a plane (three dimensions) in x1,
x2, and y. If they’re not equivalent, this plane intersects with the viewing plane of fig-
ure 6.5 and you’re left with a line. When viewed from the point of reference of figure
6.5, points to one side of the line correspond to values of , whereas points on
the other side of the line correspond to values of . Points on the line corre-
spond to . Let’s take the concrete example from earlier and visualize this.
Using the coefficients just provided, we have the equation of a plane given by

The value of y is at 90 degrees to the (x1,x2) plane and thus can be thought of as along
a line following the eyes of the viewer, straight through the viewing plane. The value
of y on the viewing plane is given by 0, and so we can find the line of intersection by
substituting the value of y=0 in the previous equation:

This last line follows the standard form of a straight line; now all we need to do is plot
this to see how the perceptron has separated our training data. The next listing pro-
vides the associated code, and figure 6.6 provides the output.

1 Scikit-learn, “Perceptron,” January 01, 2014, http://scikit-learn.org/stable/modules/generated/sklearn
.linear_model.Perceptron.html (accessed February 25, 2016).

y w0 w1x1 w2x2+ +=

x W⋅ 0>
x W⋅ 0<

x W⋅ 0=

y 4– 3x1 2x2+ +=

0 4 3x1 2x2+ +=

4 3x1– 2x2=

x2
4
2

3
2
---x1–=
store/books/9781617294181

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html
https://itbook.store/books/9781617294181

74 CHAPTER 6 Deep learning and neural networks

www.itboo

colors = np.array(['k','r'])
markers = np.array(['*','o'])

for data,target in zip(data,target):
plt.scatter(data[0],data[1],s=100,
 c=colors[target],marker=markers[target])

grad = -p.coef_[0][0]/p.coef_[0][1]
intercept = -p.intercept_/p.coef_[0][1]

x_vals = np.linspace(0,1)
y_vals = grad*x_vals + intercept
plt.plot(x_vals,y_vals)
plt.show()

In listing 6.5 we plot our four data points along with the projection of the separating
plane learned by the perceptron onto the viewing plane. This provides us with a sepa-
ration as per figure 6.6. In general, for a larger number of input variables, you can think
of these as existing in n dimensional space, with the perceptron separating these using
a hyperplane in n+1 dimensions. You should now be able to see that the basic linear
form of the perceptron, that is, with a threshold activation, is equivalent to separation
using a hyperplane. Consequently, such models are of use only where data is linearly
separable and will be unable to separate positive and negative classes otherwise.

Listing 6.5 Plotting the output of the perceptron

Set up a color array and plot the data points:
black star for class zero, red dot for class 1.

Calculate the parameters of the straight
line (intersection of two planes).

Create the data points and plot the line
of intersection between the two planes.

−0.2
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.4

1.6

1.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 6.6 The projection of our separating plane onto the viewing plane (y=0). All points to the
top right of the figure satisfy the constraint W ⋅ x > 0, whereas points to the bottom left of the line
satisfy the constraint W ⋅ x < 0.
k.store/books/9781617294181

https://itbook.store/books/9781617294181

75Multilayer perceptrons

www.itbook.
6.4 Multilayer perceptrons
In the previous sections we looked at deep learning from a very high level, and you
started to understand the basics around neural networks, specifically, a single unit of a
neural network known as a perceptron. We also showed that the basic form of the per-
ceptron is equivalent to a linear model.

 In order to perform non-linear separation, we can keep the simple threshold acti-
vation function and increase the complexity of the network architecture to create so-
called multi-layer feed-forward networks. These are networks where perceptrons are
organized in layers, with the input of a layer being provided by a previous layer and
the output of this layer acting as an input to the next. Feed forward comes from the
fact that data flows only from the inputs to the outputs of the network and not in the
opposite direction, that is, no cycles. Figure 6.7 provides a graphical summary of this
concept, extending the notation that we used in figure 6.3.

In the spirit of demonstrating non-linearity, let’s consider a very small example that
would fail if we presented it to a perceptron, namely, the XOR function. This example
is taken from Minsky and Papert’s 1969 book, Perceptrons: An Introduction to Computa-
tional Geometry.1 We’ll then consider how a two-layer perceptron can be used to

1 Marvin Minsky and Seymour Papert, Perceptrons: An Introduction to Computational Geometry (Boston, MA: MIT
Press, 1969).

Input layer

Hidden layer 1

Hidden layer i

Output layer

x1

y1

x2

y2

xn

yn

Figure 6.7 A multilayer perceptron. Read from top to bottom, it consists of an
input layer (vector of values X), a number of hidden layers, and an output layer
that returns the vector Y.
store/books/9781617294181

https://itbook.store/books/9781617294181

76 CHAPTER 6 Deep learning and neural networks

www.itboo
approximate this function and discuss the back propagation algorithm used to train
such a network. Recall that the XOR function functions as provided by table 6.2.

If we consider the XOR function graphically, using the same conventions as in figure
6.5, we obtain figure 6.8.

 As you can see from figure 6.8, the output from the XOR function is not linearly
separable in two-dimensional space; there exists no single hyperplane that can sepa-
rate positive and negative classes perfectly. Try to draw a line anywhere on this graph

Table 6.2 Input and output values for the XOR function. Outputs a 1 if either x1

or x2 is set to 1 but a 0 of they are both set to 1 (or both to set to 0).

x1 x2 Output

0 0 0

0 1 1

1 0 1

1 1 0

x1

x 2

−0.2
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 6.8 Graphical representation of the XOR function. Positive classes are specified
with red circles, whereas negative classes are specified with black stars. No single
hyperplane can separate these data points into two sets, and so we say that the data set
is not linearly separable.
k.store/books/9781617294181

https://itbook.store/books/9781617294181

77Multilayer perceptrons

www.itbook.
with all positive classes on one side of the line and all negative classes on the opposite
side of the line and you will fail! We could, however, separate these data points if we
had more than one hyperplane and a way to combine them. So let’s do that! This is
equivalent to creating a network with a single hidden layer and a final, combined-out-
put layer. Consider figure 6.9, which shows such a network graphically.

What you see here is a two-layer hidden network, with two inputs and a single output.
Connected to each hidden node and the output node is a bias term. Remember from
earlier that the bias itself will always equal 1; only the weights will change. This allows
the both the activation profiles and the offsets of the nodes to be learned during train-
ing. Spend a little time convincing yourself that this does indeed work.

 Each hidden node creates a single hyperplane, as with our single perceptron case
from figure 6.6, and these are brought together with a final perceptron. This final per-
ceptron is simply an AND gate when two conditions are observed. The first is that the
input in x1,x2 space is above the blue line given in figure 6.10. The second is that the
input is below the red line, also given in figure 6.10. As such, this two-layer perceptron
carves out the diagonal across the space that includes both positive examples from the
training data but none of the negative examples. It has successfully separated a non-
linearly separable dataset.

 In this section we investigated the application of neural networks to non-linearly
separable datasets. Using the XOR function as an example, we showed that it’s possible
to create a neural network by hand that separates a non-linearly separable set and pro-
vide intuition as to how this works geometrically. We’re missing an important step,
however! It’s important to be able to automatically learn the weights for a network

1 −1 1

11

−1 −0.5

−1.5

1.5

x1

y1

x2 xb

= 0 = 0

= 0

Figure 6.9 A two-layer perceptron can
separate a non-linearly separable
function (XOR). Values on the
connections demonstrate the weight of
those connections. The introduction of
the bias term implies that the activation
threshold for our neurons is at 0.
Conceptually, the two hidden neurons
correspond to two hyperplanes. The final
combining perceptron is equivalent to a
logical AND on the output of the two
hidden neurons. This can be thought of
as picking out the areas of the (x1,x2)
plane for which the two hidden neurons
activate together.
store/books/9781617294181

https://itbook.store/books/9781617294181

78 CHAPTER 6 Deep learning and neural networks

www.itboo
given a training dataset. These weights can then be used to classify and predict data
beyond the original inputs. This is in the subject of the next section.

6.4.1 Training using backpropagation

In the previous examples we used the step function as our neuron activation function.
Unfortunately, coming up with an automated method to train such a network is diffi-
cult. This is because the step function doesn’t allow us to encode uncertainly in any
form—the thresholds are hard.

 It would be more appropriate if we could use a function that approximates the step
function but is more gradual. In this way, a small change to one of the weights within
the network will make a small change to the operation of the entire network. This is
indeed what we’ll do. Recall the logistic function from chapter 4. Instead of using the
step function, we’ll now replace this with a more general activation function. In the
next section we’ll briefly introduce common activation functions before explaining
how the choice of activation function will help us derive a training algorithm.

−0.2
−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

x2 = −x1 + 1.5 y1 = 0

y1 = 0

y1 = 1

x2 = −x1 + 0.5

x 2

x1

Figure 6.10 Separating a non-linearly separable dataset using the neural network given in figure 6.9.
You should notice that the neuron to the left of figure 6.9 when intersecting with the viewing plane
creates the bottom line, whereas the right-most neuron creates the top line. The left-most neuron fires
an output 1 only when the input is above the bottom line, whereas the right-most neuron fires an output
1 only when the input is below the top line. The final combining neuron fires y1=1 only when both of
these constraints are satisfied. Thus, the network outputs 1 only when the data points are in the
narrow corridor between the bottom and top lines.
k.store/books/9781617294181

https://itbook.store/books/9781617294181

79Multilayer perceptrons

www.itbook.
6.4.2 Activation functions

Let’s take a few moments to look at some possible activation functions for our per-
ceptron. We’ve already seen the simplest case—a hard threshold around 0. With an
offset of zero, this yields the output profile as given by figure 6.3. But what else could
we do? Figure 6.11 provides the activation profiles of several other functions; their
definitions follow.

 Square root—Defined as , domain [0,∞], range [0,∞].
 Logistic—Defined as , domain defined for [–∞ ,∞], range [0,1].
 Negative exponential—Given by , domain [–∞,∞] range [0,∞].
 Hyperbolic (tanh)—Defined as . Note that this is equivalent to

logistic with its output transformed to a different range, domain [–∞,∞] range
[–1,1].

In general, the use of such activation functions enables us to create and train multi-
layer neural networks that approximate a much larger class of functions. The most
important property of the activation function is that it is differentiable. You’ll see why
in the following section.

1

0 1 2 3 4 5

−1

−1−2−3−4−5

−2

−3

2

3

Square root
Logistic
Negative exponential
Hyperbolic

Figure 6.11 Output profiles for several activation functions over the same range as provided in figure
6.3. Activation profiles demonstrated are square root, logistic, negative exponential, and hyperbolic.

y x=

1 1 e x–
+()⁄

e x–

ex e x––() ex e x–+()⁄
store/books/9781617294181

https://itbook.store/books/9781617294181

80 CHAPTER 6 Deep learning and neural networks

www.itboo

6.4.3 Intuition behind backpropagation

To provide the intuition behind backpropagation we’re going to work with the same
example as previously, the XOR function, but we’re now going to try to learn the
weights rather than specify them by hand. Note also that from now on, the activation
function will be assumed to be sigmoid (logistic). Figure 6.12 provides the graphical
overview of our new network.

 Our job is to learn using a specified training dataset. More specifi-
cally, can we come up with an algorithm that minimizes the error (squared difference
between the expected and actual values of) over that dataset, when that dataset’s
inputs are applied to the network?

Logistic regression, the perceptron, and the Generalized Linear Model
Think back to chapter 4 where we introduced the concept of logistic regression. There
we identified that a linear response model would be unsuitable for probability estima-
tion and instead modified the logistic response to curve to create a more appropriate
response. From this starting point we derived that the log-odds are linear in the com-
bination of weights and input variables and applied this to a classification problem.

In this chapter, we started from a basic biological concept and built a computational
formalism that captures this. We’ve not discussed probability at all but started from
a standpoint of activation within a neuron. Intuitively we’ve extended this into a more
general concept and reached the same equation, namely,

In fact, what we’ve encountered here is a more general class of problem known as
generalized linear models (GLM).a In this class of models, a linear model
(w0+w1*x1+…+wn*xn) is related to the output variable, y, by a link function, which in
this case is the logistic function.

This equivalence of algorithms and concepts is common in machine learning, and
you’ve seen it already within the pages of this book. Just think back to section 2.5
where we discussed the equivalence of expectation maximization (EM) over a Gauss-
ian mixture model with tied and coupled covariance, and the vanilla k-means algo-
rithm. The usual reason for this is that multiple researchers have started from
different points within the research and discovered equivalence through the exten-
sion of basic building blocks.

a. Peter McCullagh and John A. Nelder, Generalized Linear Models (London: Chapman and
Hall/CRC) 1989.

y 1

1 e
w0 w1 x1⋅ … wn xn⋅+ + +()–

+
---=

1 1 e x–
+⁄

W a b,() a∀ b, ,

y1
k.store/books/9781617294181

https://itbook.store/books/9781617294181

81Multilayer perceptrons

www.itbook.
One way to do this is through an algorithm known as backpropagation. This algo-
rithm operates broadly as follows. First, we initialize the all weights to random values,
and then we pass a single training data item throughout the network. We calculate the
error at the output and backpropagate this error through the network, hence the name!
Each weight in the network is changed in a direction that corresponds to that which
minimizes the error of network. This continues until a termination condition is met,
for example, a number of iterations are hit or the network has converged.

6.4.4 Backpropagation theory

To ease understanding, the update rule for backpropagation can be considered in
two parts: updating the weights leading to output neurons and updating the weights
leading to hidden neurons. Both are logically identical, but the mathematics for the
latter is a little trickier. Because of this, we’ll discuss only the former here to give you
a taste of backpropagation. See the seminal Nature paper1 if you want to understand
the full form.

1 David E. Rumelhart, Geoffrey E. Hinton, and Ronald J Williams, “Learning representations by back-propagat-
ing errors,” Nature 323 (October 1986): 533–36.

x1

y1

x2 xb

w(xb, j = 3)

w(xb, j = 2)

w(j = 2, j = 3)w(j = 1, j = 3)

w(x1, j = 1)

w(x2, j = 1) w(x2, j = 2)

w(x1, j = 2) w(xb, j = 1)

j = 2

j = 3

j = 1
= 0

= 0

= 0

Figure 6.12 Overview of our backpropagation example. Given a set of inputs (x1,x2) and target
variables (y1) that follow the XOR function over x1 and x2, can we learn the values of W that
minimize the squared difference between the training values and the network output? In this
example we use the logistic activation function, namely, . θ 1 (1 e w– 0 wixi+())+⁄=
store/books/9781617294181

https://itbook.store/books/9781617294181

82 CHAPTER 6 Deep learning and neural networks

www.itboo
The first thing to note about training is that we’re interested in how the error at the
output changes with respect to the change in a single weight value. Only through this
value can we move the weight in a direction that minimizes the output error. Let’s
start by working out the partial derivative of the error with respect to a particular input
weight in the layer below. That is, we assume that all other weights remain constant.
To do this, we’ll use the chain rule:

In plain terms, the rate of change of output error is linked to the weight, through the
rate of change of the following:

 B The error given the output of the activation function
 C The output of the activation function given the weighted sum of its inputs
 D The weighted sum of its inputs and an individual weight

If you remember from earlier, the logistic activation function is used because it makes
training tractable. The main reason for this is that the function is differentiable. You
should now understand why this is a requirement. Term C of the equation is equiva-
lent to the derivative of the activation function. This can be written as

that is, the rate of change of output of our activation function can be written in terms
of the activation function itself! If we can compute B and D, we’ll know the direction
in which to move any particular weight in order to minimize the error in the output. It
turns out that this is indeed possible. Term D can be differentiated directly as

That is, the rate of change of the input to the activation function with respect to a par-
ticular weight linking I and J is given only by the value of xI itself. Because we looked
only at the output layer, determining the differential of the error given the output B
is easy if we can just draw on the concept of error directly:

δE
δw i j,()

δE
δo j()

δo j()
δn j()

δn j()
δw i j,()

×

×

=

 B

 C

 D

δo j()
δn j()

δ
δn j()
---------------θ n j()() θ n j()() 1 θ nj()–()= =

δn j()
δw i j,()
------------------ xi=

δE
δo j()

δ
δo j()
--------------- o ectedexp o j()–()2 2 o j() o ectedexp–()= =
k.store/books/9781617294181

https://itbook.store/books/9781617294181

83Multilayer perceptrons

www.itbook.
We can now express a complete weight update rule for a weight leading to an output
node:

Thus, we update the weight depending on the entering value corresponding to that
weight, the difference in the output and the expected value, and output of the deriva-
tive of the activation function given all input and weights. Note that we add a negative
sign and an alpha term. The former ensures that we move in the direction of negative
error, and the latter specifies how fast we move in that direction.

 This should give you a feeling for how the weights are updated feeding into the
output layer, and the inner layer update functions follow much the same logic. But we
must use the chain rule to find out the contribution of the output value at that inner
node to the overall error of the network, that is, we must know the rate of change of
inputs/outputs on the path leading from the node in question to an output node.
Only then can the rate of change of output error be assessed for a delta change in the
weight of an inner node. This gives rise to the full form of backpropagation.1

6.4.5 MLNN in scikit-learn

Given that you now understand the multilayer perceptron and the theory behind
training using backpropagation, let’s return to Python to code up an example.
Because there’s no implementation of MLPs in scikit-learn, we’re going to use
PyBrain.2 PyBrain focuses specifically on building and training neural networks. The
following listing provides you with the first snippet of code required build a neural
network equivalent to the one presented in figure 6.12. Please refer to the full code
that is distributed with this book for the associated imports required to run this code.

#Create network modules
net = FeedForwardNetwork()
inl = LinearLayer(2)
hidl = SigmoidLayer(2)
outl = LinearLayer(1)
b = BiasUnit()

In listing 6.6 we first create a FeedForwardNetwork object. We also create an input layer
(inl), and output layer (outl), and a hidden layer (hidl) of neurons. Note that our
input and output layers use the vanilla activation function (threshold at 0), whereas
our hidden layer uses the sigmoid activation function for reasons of training, as we dis-
cussed earlier. Finally, we create a bias unit. We don’t quite have a neural network yet,
because we haven’t connected the layers. That’s what we do in the next listing.

1 Rumelhart et al., “Learning representations by back-propagating errors,” 533–36.
2 Tom Schaul, et al., “PyBrain,” Journal of Machine Learning Research 11 (2010): 743–46.

Listing 6.6 Building a multilayer perceptron using PyBrain

α– xi2 o j() o ectedexp–()θ n j()() 1 θ nj()–()
store/books/9781617294181

https://itbook.store/books/9781617294181

84 CHAPTER 6 Deep learning and neural networks

www.itboo

#Create connections
in_to_h = FullConnection(inl, hidl)
h_to_out = FullConnection(hidl, outl)
bias_to_h = FullConnection(b,hidl)
bias_to_out = FullConnection(b,outl)

#Add modules to net
net.addInputModule(inl)
net.addModule(hidl);
net.addModule(b)
net.addOutputModule(outl)

#Add connections to net and sort
net.addConnection(in_to_h)
net.addConnection(h_to_out)
net.addConnection(bias_to_h)
net.addConnection(bias_to_out)
net.sortModules()

In listing 6.7 we now create connection objects and add our previously created neu-
rons (modules) and their connections to the FeedForwardNetwork object. Calling
sortModules() completes the instantiation of the network.

 Before continuing, let’s take a moment to delve into the FullConnection object.
Here we create four instances of the object to pass to the network object. The signa-
ture of these constructors takes two layers, and internally the object creates a connec-
tion between every neuron in the layer of the first parameters and every neuron in the
layer of the second. The final method sorts the modules within the FeedForwardNet-
work object and performs some internal initialization.

 Now that we have a neural network equivalent to figure 6.11, we need to learn its
weights! To do this we need some data. The next listing provides the code to do this,
and much of it is reproduced from the PyBrain documentation.1

d = [(0,0),
 (0,1),
 (1,0),
 (1,1)]

#target class
c = [0,1,1,0]

data_set = SupervisedDataSet(2, 1) # 2 inputs, 1 output

random.seed()
for i in xrange(1000):
 r = random.randint(0,3)
 data_set.addSample(d[r],c[r])

Listing 6.7 Building a multilayer perceptron using PyBrain (2)

Listing 6.8 Training our neural network

1 PyBrain Quickstart, November 12, 2009, http://pybrain.org/docs/index.html#quickstart (accessed Decem-
ber 22, 2015).

Create a data set and associated targets
that reflect the XOR function.

Create empty
PyBrain
SupervisedDataSet
object.

Randomly sample the four
data points 1000 times and
add to the training set.
k.store/books/9781617294181

http://pybrain.org/docs/index.html#quickstart
https://itbook.store/books/9781617294181

85Multilayer perceptrons

www.itbook.
backprop_trainer = \
BackpropTrainer(net, data_set, learningrate=0.1)

for i in xrange(50):
 err = backprop_trainer.train()
 print "Iter. %d, err.: %.5f" % (i, err)

As you now know from section 6.4.4, backpropagation traverses the weight space in
order to reach a minima in the error between the output terms and the expected out-
put. Every call to train() causes the weights to be updated so that the neural network
better represents the function generating the data. This means we’re probably going
to need a reasonable amount of data (for our XOR example, four data points is not
going to cut it!) for each call to train(). To address this problem we’ll generate many
data points drawn from the XOR distribution and use these to train our network using
backpropagation. As you’ll see, subsequent calls to train() successfully decrease the
error between the network output and the specified target. The exact number of iter-
ations required to find the global minima will depend on many factors, one of which
is the learning rate. This controls how fast the weights are updated at each training
interval. Smaller rates will take longer to converge, that is, find the global minima, but
they’re less likely to result in suboptimal models. Let’s take a quick look at the output
generated by listing 6.8 and use this to illustrate this concept:

Iteration 0, error: 0.1824
Iteration 1, error: 0.1399
Iteration 2, error: 0.1384
Iteration 3, error: 0.1406
Iteration 4, error: 0.1264
Iteration 5, error: 0.1333
Iteration 6, error: 0.1398
Iteration 7, error: 0.1374
Iteration 8, error: 0.1317
Iteration 9, error: 0.1332
…

As you’ll see, successive calls reduce the error of the network. We know that at least
one solution does exist, but backpropagation is not guaranteed to find this. Under
certain circumstances, the error will decrease and won’t be able to improve any fur-
ther, or it may bounce between suboptimal (or local) solutions. The algorithm may
get stuck and not be able to find the global minima, that is, the lowest possible error.

 Because this outcome depends on the starting values of the weights, we’re not able
to say if your example will converge quickly, so try running this a few times. Also try
experimenting with the learning rate from listing 6.8. How big can you make the rate
before the algorithm gets caught in local solutions most of the time? In practice, the
choice of training rate is always a trade-off between finding suboptimal solutions and
speed, so you want to choose the largest rate that gives you the correct answer. Experi-
ment with this until you’re left with a network that has converged with an error of zero.

Create a new backpropagation
trainer object with the network,
dataset, and learning rate.

Perform backpropagation 50 times
using the same 1000 data points.
Print the error after every iteration.
store/books/9781617294181

https://itbook.store/books/9781617294181

86 CHAPTER 6 Deep learning and neural networks

www.itboo
6.4.6 A learned MLP

In the previous example we created an MLP using the PyBrain package and trained a
multi-layer perceptron to mimic the XOR function. Provided your error in the previ-
ous output reached zero, you should be able to follow this section with your own
model! First, let’s interrogate our model to obtain the weights of the network, corre-
sponding to figure 6.11. The following code shows you how.

#print net.params
print "[w(x_1,j=1),w(x_2,j=1),w(x_1,j=2),w(x_2,j=2)]: " + str(in_to_h.params)
print "[w(j=1,j=3),w(j=2,j=3)]: "+str(h_to_out.params)
print "[w(x_b,j=1),w(x_b,j=2)]: "+str(bias_to_h.params)
print "[w(x_b,j=3)]:" +str(bias_to_out.params)

> [w(x_1,j=1),w(x_2,j=1),w(x_1,j=2),w(x_2,j=2)]: [-2.32590226 2.25416963 -
2.74926055 2.64570441]

> [w(j=1,j=3),w(j=2,j=3)]: [-2.57370943 2.66864851]
> [w(x_b,j=1),w(x_b,j=2)]: [1.29021983 -1.82249033]
> [w(x_b,j=3)]:[1.6469595]

The output resulting from executing listing 6.9 provides my trained output for a neu-
ron. Your results may vary, however. The important thing is that the behavior of the
network is correct. You can check this by activating the network with input and check-
ing that the output is as expected. Observe the next listing.

print "Activating 0,0. Output: " + str(net.activate([0,0]))
print "Activating 0,1. Output: " + str(net.activate([0,1]))
print "Activating 1,0. Output: " + str(net.activate([1,0]))
print "Activating 1,1. Output: " + str(net.activate([1,1]))

> Activating 0,0. Output: [-1.33226763e-15]
> Activating 0,1. Output: [1.]
> Activating 1,0. Output: [1.]
> Activating 1,1. Output: [1.55431223e-15]

In listing 6.10 you can see that the output of our trained network is very close to 1 for
those patterns that should result in a positive value. Conversely, the output is very
close to 0 for those patterns that should result in a negative output. In general, posi-
tive testing samples should have outputs greater than 0.5, and negative testing samples
should provide outputs less than 0.5. In order to ensure that you fully understand this
network, try modifying the input values and tracing them through the network in the
supporting content spreadsheet distributed with this book.

Listing 6.9 Obtaining the weights of your trained neural network

Listing 6.10 Activating your neural network
k.store/books/9781617294181

https://itbook.store/books/9781617294181

87Going deeper: from multilayer neural networks to deep learning

www.itbook.
6.5 Going deeper: from multilayer neural networks
to deep learning
In many areas of research, progress is made in fits and starts. Areas can go stale for a
period and then experience a rapid rush, usually sparked by a particular advance or
discovery. This pattern is no different in the field of neural networks, and we’re lucky
to be right in middle of some really exciting advances, most of which have been
grouped under the umbrella of deep learning. I’d like to share a few of these with you
now before delving into the simplest example of a deep network that we can. So why
did neural networks become hot again? Well, it is a bit of a perfect storm.

 First, there’s more data available than ever before. The big internet giants have
access to a huge repository of image data that can be leveraged to do interesting things.
One example you may have heard of is Google’s 2012 paper where they trained a nine-
layer network with 10 million images downloaded from the internet1 to recognize
intermediate representations without labeling, the most publicized being a cat face!
This lends some weight to the hypothesis that more data beats a cleverer algorithm.2

Such an achievement would not have been possible only a few years before.
 The second advance is a leap in theoretical knowledge. It wasn’t until recent

advances by Geoffrey Hinton and collaborators that the community understood that
deep networks could be trained effectively by treating each layer as a Restricted Boltz-
mann Machine (RBM).3,4 Indeed, many deep learning networks are now constructed
by stacking RBMs—more on these in a moment. Yann Le Cun, Yoshua Bengio, and
others have made many further theoretical advances in this field, and I refer you to a
review of their work to gain better insight.5

6.5.1 Restricted Boltzmann Machines

In this section we’re going to look at Restricted Boltzmann Machines (RBM). More
specifically, we’ll look at a specific flavor of RBM called Bernoulli RBM (BRBM). We’ll
get to why these are a special case of the RBM in a moment. In general, RBMs are men-
tioned in the context of deep learning, because they’re good feature learners.
Because of this, they can be used in a deeper network to learn feature representations,
with their output used as input to the other RBMs or a multilayer perceptron (MLP).
Think back to section 6.1 and our example of car recommendation. So far, we’ve
spent quite some time covering MLPs in general; we must now uncover the automatic
feature-extraction aspect of deep learning!

1 Quoc V. Le, et al., “Building high-level features using large scale unsupervised learning,” ICML 2012: 29th
International Conference on Machine Learning (Edinburgh: ICML, 2012): 1.

2 Pedro Domingos, “A Few Useful Things to Know about Machine Learning,” Communications of the ACM, Octo-
ber 1, 2012: 78–87.

3 Miguel A. Carreira-Perpiñán and Geoffrey Hinton, “On Contrastive Divergence Learning,” (NJ: Society for
Artificial Intelligence and Statistics, 2005), 33–40.

4 G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality of Data with Neural Networks,” Science,
July 28, 2006: 504–507.

5 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton, “Deep learning,” Nature 521 (May 2015): 436–44.
store/books/9781617294181

https://itbook.store/books/9781617294181

88 CHAPTER 6 Deep learning and neural networks

www.itboo
 To do this, we’re also going to use an example from the scikit-learn documenta-
tion.1 This example uses a BRBM to extract features from the scikit-learn digits dataset
and then uses logistic regression to classify the data items with the learned features.
After working through this example, we’ll touch on how you might go about making
deeper networks and delving further into the burgeoning area of deep learning.
Before we get started on this, let’s make sure that you understand the basics—so what
is a BRBM?

6.5.2 The Bernoulli Restricted Boltzmann Machine

In general, an RBM is a bipartite graph where nodes within each partition are fully
connected to nodes within the other partition. The restricted aspect comes from the
fact that the visible nodes may only be connected to hidden nodes, and vice versa. The
Bernoulli RBM restricts each node further to be binary. Figure 6.13 provides a graphi-
cal overview of an RBM.

In general, the number of visible units is defined by the problem; for a binary classifi-
cation problem you may have two. By increasing the number of hidden values, you
increase the ability of the RBM to model complex functions, but this comes at the
price of overfitting. Hinton2 provides a recipe for choosing the number of hidden
units dependent on the complexity of your data and the number of training samples.

 Similarly to MLPs with a logistic activation function, the probability of a particular
visible unit firing given the value of the hidden variables is

1 scikit-learn, Restricted Boltzmann Machine features for digit classification, January 01, 2014, http://scikit-
learn.org/stable/auto_examples/neural_networks/plot_rbm_logistic_classification.html#example-neural-
networks-plot-rbm-logistic-classification-py (accessed December 22, 2015).

2 Geoffrey Hinton, “A Practical Guide to Training Restricted Boltzmann Machines” in Neural Networks: Tricks of
the Trade, edited by Grégoire Montavon, G. B. Orr, and K. R. Muller (NY: University of Toronto, 2012) 599–
619.

Hidden units

Visible units

h1

w1,1

v1 vn

wn,n

hnh2

Figure 6.13 Graphical overview of a
Restricted Boltzmann Machine. An RBM is a
bipartite graph between hidden and visible
units, with each element of each partition
fully connected to other units in the opposing
partition. We’ll use H to refer to the vector
composed of the hidden units and V to refer
to the vector composed of the visible units.
Note that each node may have an associated
bias weight, which are not represented here
for simplicity.

P vi 1 H=() θ j wij hj bi+()=
k.store/books/9781617294181

http://scikit-learn.org/stable/auto_examples/neural_networks/plot_rbm_logistic_classification.html#example-neural-networks-plot-rbm-logistic-classification-py
http://scikit-learn.org/stable/auto_examples/neural_networks/plot_rbm_logistic_classification.html#example-neural-networks-plot-rbm-logistic-classification-py
http://scikit-learn.org/stable/auto_examples/neural_networks/plot_rbm_logistic_classification.html#example-neural-networks-plot-rbm-logistic-classification-py
https://itbook.store/books/9781617294181

89Going deeper: from multilayer neural networks to deep learning

www.itbook.
where θ is the logistic function. The probabilities of the hidden values are given simi-
larly. RBMs are trained as energy-based models that measure the agreement between
the hidden states and the visible ones.

This value decreases where there is more agreement between the hidden nodes and
the visible ones; thus, decreasing the energy results in more acceptable configurations
given the training data. We can relate this energy function to a probability as follows

where Z is a normalization factor equal to . That is, we evaluate the
current weight selection by normalizing over all permutations of hidden and visible
state possibilities. In order to train the RBM, we need to maximize the likelihood P(V)
or similarly the log likelihood. Taking the log of P(V,H) we can write

Thus, for a given visible datum we can maximize its likelihood by choosing weights
that maximize agreement over possible hidden variables (first term) and minimizing
the normalization factor , which evaluates the weight selection over
all possible visible and hidden values. In a sense you can think of the former as trying
to get the model to fire when it should and the latter providing this optimization with
the context of the training data. Maximizing the first selects weights that over all possi-
ble hidden values should be maximally likely to generate the visible value, whereas
minimizing the second ensures that the model remains representative of the data.

 If you remember from earlier, we need to differentiate the previous function with
respect to the weight in order to find the direction in which we should move the
weight to maximize the likelihood. If you follow the theory,1 you’ll see that it’s possible
to compute the derivative of the first term exactly, but for the second we need to rely
on an iterative algorithm to estimate it. In short, it’s trickier to perform the training,
but in practice it’s possible. You’ll see how in the next section!

6.5.3 RBMS in action

In this section we’ll use a modified version of the logistic classification problem pre-
sented in the scikit-learn documentation.2 Full credit must be given to Dauphin,

1 Kevin Swersky, Bo Chen, Ben Marlin, and N de Freitas, “A Tutorial on Stochastic Approximation Algorithms
for Training Restricted Boltzmann Machines and Deep Belief Nets,” Information Theory and Applications
Workshop (ITA), 2010 (San Diego: ITA, 2010) 1–10.

2 scikit-learn, “Restricted Boltzmann Machine features for digit classification,” http://scikit-learn.org/
stable/auto_examples/neural_networks/plot_rbm_logistic_classification.html#example-neural-networks-plot-
rbm-logistic-classification-py (accessed December 22, 2015).

E V H,() i j wi j vi hj, , ,() i bi vi
j cj hj,+ + 

 –=

P V H,() e E– V H,() Z⁄=

v h,() e E– v h,()

Log P V H,()() Log e V H,()–(LogZ W())–=

Log P V()() H Log e V H,()–(LogZ W())–=

v h, e E– w v h, ,()
store/books/9781617294181

http://scikit-learn.org/stable/auto_examples/neural_networks/plot_rbm_logistic_classification.html#example-neural-networks-plot-rbm-logistic-classification-py
http://scikit-learn.org/stable/auto_examples/neural_networks/plot_rbm_logistic_classification.html#example-neural-networks-plot-rbm-logistic-classification-py
http://scikit-learn.org/stable/auto_examples/neural_networks/plot_rbm_logistic_classification.html#example-neural-networks-plot-rbm-logistic-classification-py
https://itbook.store/books/9781617294181

90 CHAPTER 6 Deep learning and neural networks

www.itboo
Niculae, and Synnaeve for this illustrative example, and we won’t stray far from their
material here. As in previous examples, we’ll omit the import block and concentrate
on the code. The full listing can be found in the supporting content.

digits = datasets.load_digits()
X = np.asarray(digits.data, 'float32')
X, Y = nudge_dataset(X, digits.target)
X = (X - np.min(X, 0)) / (np.max(X, 0) + 0.0001) # 0-1 scaling
X_train, X_test, Y_train, Y_test = train_test_split(X,

Y,test_size=0.2,random_state=0)

The first thing we do is to load in the dataset, but we actually do more than this. From
the original dataset, we generate further artificial samples by nudging the dataset with
linear shifts of one pixel, normalizing each so that each pixel value is between 0 and 1.
So, for every labeled image, a further four images are generated—shifted up, down,
right, and left respectively—each with the same label, that is, which number the image
represents. This allows training to learn better representations of the data using such
a small data set, specifically representations that are less dependent on the script
being centralized within the image. This is achieved using the nudge_dataset func-
tion, defined in the following listing.

def nudge_dataset(X, Y):
 """
 This produces a dataset 5 times bigger than the original one,
 by moving the 8x8 images in X around by 1px to left, right, down, up
 """
 direction_vectors = [[[0, 1, 0],[0, 0, 0],[0, 0, 0]],
 [[0, 0, 0],[1, 0, 0],[0, 0, 0]],
 [[0, 0, 0],[0, 0, 1],[0, 0, 0]],
 [[0, 0, 0],[0, 0, 0],[0, 1, 0]]]
 shift = \
 lambda x, w: convolve(x.reshape((8, 8)), mode='constant',\
 weights=w).ravel()
 X = np.concatenate([X] + \
 [np.apply_along_axis(shift, 1, X, vector) for vector in \
 direction_vectors])
 Y = np.concatenate([Y for _ in range(5)], axis=0)
 return X, Y

Given this data, it’s now simple to create a decision pipeline consisting of an RBM, fol-
lowed by logistic regression. The next listing presents the code to both set up this
pipeline and train the model.

Listing 6.11 Creating your dataset

Listing 6.12 Generating artificial data
k.store/books/9781617294181

https://itbook.store/books/9781617294181

91Going deeper: from multilayer neural networks to deep learning

www.itbook.

Models we will use
logistic = linear_model.LogisticRegression()
rbm = BernoulliRBM(random_state=0, verbose=True)

classifier = Pipeline(steps=[('rbm', rbm), ('logistic', logistic)])

###
Training

Hyper-parameters. These were set by cross-validation,
using a GridSearchCV. Here we are not performing cross-validation to
save time.
rbm.learning_rate = 0.06
rbm.n_iter = 20
More components tend to give better prediction performance, but larger
fitting time
rbm.n_components = 100
logistic.C = 6000.0

Training RBM-Logistic Pipeline
classifier.fit(X_train, Y_train)

Training Logistic regression
logistic_classifier = linear_model.LogisticRegression(C=100.0)
logistic_classifier.fit(X_train, Y_train)

This code is taken directly from Scikit-learn,1 and there are some important things to
note. The hyper-parameters, that is, the parameters of the RBM, have been selected
specially for the dataset in order to provide an illustrative example that we can discuss.
More details can be found in the original documentation.

 You’ll see that beyond this, the code does very little. A classifier pipeline is set up
consisting of RBM followed by a logistic regression classifier, as well as a standalone
logistic regression classifier for comparison. In a minute you’ll see how these two
approaches perform. The following listing provides the code to do this.

print("Logistic regression using RBM features:\n%s\n" % (
 metrics.classification_report(
 Y_test,
 classifier.predict(X_test))))

print("Logistic regression using raw pixel features:\n%s\n" % (
 metrics.classification_report(
 Y_test,
 logistic_classifier.predict(X_test))))

The output of this provides a detailed summary of the two approaches, and you
should see that the RBM/LR pipeline far outstrips the basic LR approach in precision,

Listing 6.13 Setting up and training an RBM/LR pipeline

1 Scikit-learn, “Bernoulli RBM.”

Listing 6.14 Evaluating the RBM/LR pipeline
store/books/9781617294181

https://itbook.store/books/9781617294181

92 CHAPTER 6 Deep learning and neural networks

www.itboo
recall, and f1 score. But why is this? If we plot the hidden components of the RBM, we
should start to understand why. The next listing provides the code to do this, and fig-
ure 6.14 provides a graphical overview of the hidden components of our RBM.

plt.figure(figsize=(4.2, 4))
for i, comp in enumerate(rbm.components_):
 #print(i)
 #print(comp)
 plt.subplot(10, 10, i + 1)
 plt.imshow(comp.reshape((8, 8)),

cmap=plt.cm.gray_r,interpolation='nearest')
 plt.xticks(())
 plt.yticks(())

plt.suptitle('100 components extracted by RBM', fontsize=16)
plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23)
plt.show()

In our RBM, we have 100 hidden nodes and 64 visible units, because this is the size of
the images being used. Each square in figure 6.14 is a grayscale interpretation of the
weights between that hidden component and each visible unit. In a sense, each hid-
den component can be thought of as recognizing the image as given previously. In the
pipeline, the logistic regression model then uses the 100 activation probabilities
(for each i) as its input; thus, instead of doing logistic regres-
sion over 64 raw pixels, it’s performed over 100 inputs, each having a high value when
the input looks close to the ones provided in figure 6.14. Going back to the first sec-
tion in this chapter, you should now be able to see that we’ve created a network that
has automatically learned some intermediate representation of the numbers, using an
RBM. In essence, we’ve created a single layer of a deep network! Imagine now what
could be achieved with deeper networks and multiple layers of RBMs to create more
intermediate representations!

Listing 6.15 Representing the hidden units graphically

100 components extracted by RBM

Figure 6.14 A graphical representation of the weights
between the hidden and visible units in our RBM. Each square
represents a single hidden unit, and the 64 grayscale values
within represent the weights from that hidden value to all the
visible units. In a sense this dictates how well that hidden
variable is able to recognize images like the one presented.

P hi(1 v image)= =
k.store/books/9781617294181

https://itbook.store/books/9781617294181

93Conclusions

www.itbook.
6.6 Conclusions
In this chapter

 We provided you a whistle-stop tour of neural networks and their relationship
to deep learning. Starting with the simplest neural network model, the MCP
model, we moved on to the perceptron and discussed its relationship with logis-
tic regression.

 We found that it’s not possible to represent non-linear functions using a single
perceptron, but that it is possible if we create multilayer perceptrons (MLP).

 We discussed how MLPs are trained through backpropagation—and the adop-
tion of differentiable activation functions—and provided you with an example
whereby a non-linear function is learned using backpropagation in PyBrain.

 We discussed the recent advances in deep learning, specifically, building multi-
ple layers of networks that can learn intermediate representations of the data.

 We concentrated on one such network known as a Restricted Boltzmann
Machine, and we showed how you can construct the simplest deep network over
the digits dataset, using a single RBM and a logistic regression classifier.
store/books/9781617294181

https://itbook.store/books/9781617294181

www.itboo
There’s priceless insight trapped in the flood of data
web users leave behind as they interact with your pages
and applications. You can unlock those insights by using
intelligent algorithms like the ones that have earned
Facebook, Google, Twitter, and Microsoft a place
among the giants of web data pattern extraction.
Improved search, data classification, and other smart
pattern matching techniques can give you an enormous
advantage when you need to understand and interact
with your users.

 Algorithms of the Intelligent Web, Second Edition teaches
the most important approaches to algorithmic web data
analysis, enabling you to create your own machine

learning applications that crunch, munge, and wrangle data collected from users, web
applications, sensors, and website logs. In this totally-revised edition, you’ll look at
intelligent algorithms through the lens of machine learning, with code examples that
show you how to extract value from their data. Key machine learning concepts are
explained and introduced with code examples in Python’s scikit-learn. This book
guides you through the underlying machinery and intelligent algorithms to capture,
store, and structure data streams coming from the web. You’ll explore recommenda-
tion engines from the example of Netflix movie recommendations and dive into classi-
fication via statistical algorithms, neural networks, and deep learning. You’ll also
consider the ins and outs of ranking and how to test applications based on intelligent
algorithms.

What’s inside

 Machine learning for newbies
 Algorithms for IoT, public health, and other areas
 An introduction to deep learning and neural networks
 Clarifies how recommendation engines really work
k.store/books/9781617294181

https://www.manning.com/books/algorithms-of-the-intelligent-web-second-edition
https://www.manning.com/books/algorithms-of-the-intelligent-web-second-edition
https://itbook.store/books/9781617294181

www.itbook.store

 Text mining is the science of extracting machine-usable information from

text. Classic machine learning concentrates on the analysis of orderly or struc-
tured data, but such data represent only a small percentage of the information
around us. The following chapter uses Python and the Natural Language Toolkit
(NLTK) to demonstrate the classic transformations used to convert free text into
structured data. The example project builds a system to classify Reddit posts into
different categories. This categorization can then be used as structured informa-
tion in additional projects.

Text mining and
text analytics
/books/9781617294181

https://itbook.store/books/9781617294181

www.itbook.
Chapter 8 from Introducing Data Science
by Davy Cielen, Arno D. B. Meysman, and
Mohamed Ali

Text mining

and text analytics

Most of the human recorded information in the world is in the form of written text.
We all learn to read and write from infancy so we can express ourselves through
writing and learn what others know, think, and feel. We use this skill all the time
when reading or writing an email, a blog, text messages, or this book, so it’s no
wonder written language comes naturally to most of us. Businesses are convinced
that much value can be found in the texts that people produce, and rightly so
because they contain information on what those people like, dislike, what they
know or would like to know, crave and desire, their current health or mood, and so
much more. Many of these things can be relevant for companies or researchers,
but no single person can read and interpret this tsunami of written material by
themself. Once again, we need to turn to computers to do the job for us.

 Sadly, however, the natural language doesn’t come as “natural” to computers
as it does to humans. Deriving meaning and filtering out the unimportant from

This chapter covers
■ Understanding the importance of text mining
■ Introducing the most important concepts in

text mining
■ Working through a text mining project
96

store/books/9781617294181

https://www.manning.com/books/introducing-data-science
https://itbook.store/books/9781617294181

97

www.itbook.
the important is still something a human is better at than any machine. Luckily, data
scientists can apply specific text mining and text analytics techniques to find the rel-
evant information in heaps of text that would otherwise take them centuries to read
themselves.

 Text mining or text analytics is a discipline that combines language science and com-
puter science with statistical and machine learning techniques. Text mining is used
for analyzing texts and turning them into a more structured form. Then it takes this
structured form and tries to derive insights from it. When analyzing crime from police
reports, for example, text mining helps you recognize persons, places, and types of
crimes from the reports. Then this new structure is used to gain insight into the evolu-
tion of crimes. See figure 8.1.

Danny W stole a watch in

Chelsea Market

A person punched me, Xi

Li, in the face in Orlando

Person

Danny W

Unknown

Place

Chelsea Market, New York

Orlando

Crime

Theft

Violence

Unknown Chelsea, London Theft

Victim

Unknown

Xi Li

Bart Smith

Date

10th June 2015

10th June 2015

10th June 2015

During the Chelsea soccer

game, my car was stolen

Add structure

Police reports of 10 June 2015

Months

Evolution of the theft in Chelsea Market

Theft
index

1 12

2

1

0
2 3 4 5 6 7 8 9 10 11

Analyze and visualize

Figure 8.1 In text analytics, (usually) the first challenge is to structure the input text;
then it can be thoroughly analyzed.
store/books/9781617294181

https://itbook.store/books/9781617294181

98 CHAPTER 8 Text mining and text analytics

www.itboo
While language isn’t limited to the natural language, the focus of this chapter will
be on Natural Language Processing (NLP). Examples of non-natural languages would be
machine logs, mathematics, and Morse code. Technically even Esperanto, Klingon,
and Dragon language aren’t in the field of natural languages because they were
invented deliberately instead of evolving over time; they didn’t come “natural” to us.
These last languages are nevertheless fit for natural communication (speech, writing);
they have a grammar and a vocabulary as all natural languages do, and the same text
mining techniques could apply to them.

8.1 Text mining in the real world
In your day-to-day life you’ve already come across text mining and natural language
applications. Autocomplete and spelling correctors are constantly analyzing the text
you type before sending an email or text message. When Facebook autocompletes
your status with the name of a friend, it does this with the help of a technique called
named entity recognition, although this would be only one component of their reper-
toire. The goal isn’t only to detect that you’re typing a noun, but also to guess you’re
referring to a person and recognize who it might be. Another example of named
entity recognition is shown in figure 8.2. Google knows Chelsea is a football club but
responds differently when asked for a person.

 Google uses many types of text mining when presenting you with the results of a
query. What pops up in your own mind when someone says “Chelsea”? Chelsea
could be many things: a person; a soccer club; a neighborhood in Manhattan, New
York or London; a food market; a flower show; and so on. Google knows this and
returns different answers to the question “Who is Chelsea?” versus “What is Chelsea?”
To provide the most relevant answer, Google must do (among other things) all of
the following:

■ Preprocess all the documents it collects for named entities
■ Perform language identification
■ Detect what type of entity you’re referring to
■ Match a query to a result
■ Detect the type of content to return (PDF, adult-sensitive)

This example shows that text mining isn’t only about the direct meaning of text itself
but also involves meta-attributes such as language and document type.

 Google uses text mining for much more than answering queries. Next to shielding
its Gmail users from spam, it also divides the emails into different categories such as
social, updates, and forums, as shown in figure 8.3.

 It’s possible to go much further than answering simple questions when you com-
bine text with other logic and mathematics.
k.store/books/9781617294181

https://itbook.store/books/9781617294181

99Text mining in the real world

www.itbook.
Figure 8.2 The different answers to the queries “Who is Chelsea?” and “What is Chelsea?” imply that Google
uses text mining techniques to answer these queries.

Figure 8.3 Emails can be automatically divided by category based on content and
origin.
store/books/9781617294181

https://itbook.store/books/9781617294181

100 CHAPTER 8 Text mining and text analytics

www.itboo
This allows for the creation of automatic reasoning engines driven by natural language
queries. Figure 8.4 shows how “Wolfram Alpha,” a computational knowledge engine,
uses text mining and automatic reasoning to answer the question “Is the USA popula-
tion bigger than China?”

If this isn’t impressive enough, the IBM Watson astonished many in 2011 when the
machine was set up against two human players in a game of Jeopardy. Jeopardy is an
American quiz show where people receive the answer to a question and points are
scored for guessing the correct question for that answer. See figure 8.5.

 It’s safe to say this round goes to artificial intelligence. IBM Watson is a cognitive
engine that can interpret natural language and answer questions based on an exten-
sive knowledge base.

Figure 8.4 The Wolfram Alpha engine uses text mining and logical reasoning to answer a question.
k.store/books/9781617294181

https://itbook.store/books/9781617294181

101Text mining in the real world

www.itbook.
Text mining has many applications, including, but not limited to, the following:

■ Entity identification
■ Plagiarism detection
■ Topic identification
■ Text clustering
■ Translation
■ Automatic text summarization
■ Fraud detection
■ Spam filtering
■ Sentiment analysis

Text mining is useful, but is it difficult? Sorry to disappoint: Yes, it is.
 When looking at the examples of Wolfram Alpha and IBM Watson, you might have

gotten the impression that text mining is easy. Sadly, no. In reality text mining is a
complicated task and even many seemingly simple things can’t be done satisfactorily.
For instance, take the task of guessing the correct address. Figure 8.6 shows how diffi-
cult it is to return the exact result with certitude and how Google Maps prompts you
for more information when looking for “Springfield.” In this case a human wouldn’t
have done any better without additional context, but this ambiguity is one of the many
problems you face in a text mining application.

Figure 8.5 IBM Watson wins Jeopardy against human players.
store/books/9781617294181

https://itbook.store/books/9781617294181

102 CHAPTER 8 Text mining and text analytics

www.itboo
Another problem is spelling mistakes and different (correct) spelling forms of a word. Take
the following three references to New York: “NY,” “Neww York,” and “New York.” For a
human, it’s easy to see they all refer to the city of New York. Because of the way our
brain interprets text, understanding text with spelling mistakes comes naturally to us;
people may not even notice them. But for a computer these are unrelated strings
unless we use algorithms to tell it that they’re referring to the same entity. Related
problems are synonyms and the use of pronouns. Try assigning the right person to the
pronoun “she” in the next sentences: “John gave flowers to Marleen’s parents when he
met her parents for the first time. She was so happy with this gesture.” Easy enough,
right? Not for a computer.

 We can solve many similar problems with ease, but they often prove hard for a
machine. We can train algorithms that work well on a specific problem in a well-
defined scope, but more general algorithms that work in all cases are another beast
altogether. For instance, we can teach a computer to recognize and retrieve US
account numbers from text, but this doesn’t generalize well to account numbers from
other countries.

 Language algorithms are also sensitive to the context the language is used in, even
if the language itself remains the same. English models won’t work for Arabic and vice
versa, but even if we keep to English—an algorithm trained for Twitter data isn’t likely
to perform well on legal texts. Let’s keep this in mind when we move on to the chap-
ter case study: there’s no perfect, one-size-fits-all solution in text mining.

Figure 8.6 Google Maps
asks you for more context
due to the ambiguity of the
query “Springfield.”
k.store/books/9781617294181

https://itbook.store/books/9781617294181

103Text mining techniques

www.itbook.
8.2 Text mining techniques
During our upcoming case study we’ll tackle the problem of text classification: automat-
ically classifying uncategorized texts into specific categories. To get from raw textual
data to our final destination we’ll need a few data mining techniques that require
background information for us to use them effectively. The first important concept in
text mining is the “bag of words.”

8.2.1 Bag of words

To build our classification model we’ll go with the bag of words approach. Bag of
words is the simplest way of structuring textual data: every document is turned into a
word vector. If a certain word is present in the vector it’s labeled “True”; the others
are labeled “False”. Figure 8.7 shows a simplified example of this, in case there are
only two documents: one about the television show Game of Thrones and one about
data science. The two word vectors together form the document-term matrix. The
document-term matrix holds a column for every term and a row for every docu-
ment. The values are yours to decide upon. In this chapter we’ll use binary: term is
present? True or False.

The example from figure 8.7 does give you an idea of the structured data we’ll need to
start text analysis, but it’s severely simplified: not a single word was filtered out and no
stemming (we’ll go into this later) was applied. A big corpus can have thousands of
unique words. If all have to be labeled like this without any filtering, it’s easy to see we
might end up with a large volume of data. Binary coded bag of words as shown in figure 8.7
is but one way to structure the data; other techniques exist.

Game of Thrones is a great television

series but the books are better.
[({'game':True,'of':True,'thrones':True,'is':True,'a':True,

'great':True,'television':True,'series':True,'but':True,

'the':True,'books':True,'are':True,'better':True,'doing':

False'data':False,'science':False,'more':False,'fun':False,

'than':False,'watching':False},

'gameofthrones'),

({'doing':True,'data':True,'science':True,'is':True,'more':

True,'fun':True,'than':True,'watching':True,'television':True,

'game':False,'of':False,'thrones':False,'a':False,'great':

False,'series':False,'but':False,'the':False,'books':False,

'are':False,'better':False},

'datascience')]

Doing data science is more fun than

watching television.

Figure 8.7 A text is transformed into a bag of words by labeling each word (term) with “True” if it is present in
the document and “False” if not.
store/books/9781617294181

https://itbook.store/books/9781617294181

104 CHAPTER 8 Text mining and text analytics

www.itboo
Before getting to the actual bag of words, many other data manipulation steps take
place:

■ Tokenization—The text is cut into pieces called “tokens” or “terms.” These
tokens are the most basic unit of information you’ll use for your model. The
terms are often words but this isn’t a necessity. Entire sentences can be used for
analysis. We’ll use unigrams: terms consisting of one word. Often, however, it’s
useful to include bigrams (two words per token) or trigrams (three words per
token) to capture extra meaning and increase the performance of your models.

Term Frequency—Inverse Document Frequency (TF-IDF)
A well-known formula to fill up the document-term matrix is TF-IDF or Term Frequency
multiplied by Inverse Document Frequency. Binary bag of words assigns True or False
(term is there or not), while simple frequencies count the number of times the term
occurred. TF-IDF is a bit more complicated and takes into account how many times a
term occurred in the document (TF). TF can be a simple term count, a binary count
(True or False), or a logarithmically scaled term count. It depends on what works best
for you. In case TF is a term frequency, the formula of TF is the following:

TF = ft,d

TF is the frequency (f) of the term (t) in the document (d).

But TF-IDF also takes into account all the other documents because of the Inverse
Document Frequency. IDF gives an idea of how common the word is in the entire cor-
pus: the higher the document frequency the more common, and more common words
are less informative. For example the words “a” or “the” aren’t likely to provide spe-
cific information on a text. The formula of IDF with logarithmic scaling is the most
commonly used form of IDF:

IDF = log(N/|{d ∈ D:t ∈ d}|)

with N being the total number of documents in the corpus, and the |{d ∈ D:t ∈ d}|
being the number of documents (d) in which the term (t) appears.

The TF-IDF score says this about a term: how important is this word to distinguish this
document from the others in the corpus? The formula of TF-IDF is thus

We won’t use TF-IDF, but when setting your next steps in text mining, this should be
one of the first things you’ll encounter. TF-IDF is also what was used by Elasticsearch
behind the scenes in chapter 6. It’s a good way to go if you want to use TF-IDF for
text analytics; leave the text mining to specialized software such as SOLR or Elastic-
search and take the document/term matrix for text analytics from there.

1F
IDF
--------- ft,d N d D:t d∈∈{ }⁄ ()log⁄=
k.store/books/9781617294181

https://itbook.store/books/9781617294181

105Text mining techniques

www.itbook.
This does come at a cost, though, because you’re building bigger term-vectors
by including bigrams and/or trigrams in the equation.

■ Stop word filtering—Every language comes with words that have little value in text
analytics because they’re used so often. NLTK comes with a short list of English
stop words we can filter. If the text is tokenized into words, it often makes sense
to rid the word vector of these low-information stop words.

■ Lowercasing—Words with capital letters appear at the beginning of a sentence,
others because they’re proper nouns or adjectives. We gain no added value
making that distinction in our term matrix, so all terms will be set to lowercase.

Another data preparation technique is stemming. This one requires more elaboration.

8.2.2 Stemming and lemmatization

Stemming is the process of bringing words back to their root form; this way you end up
with less variance in the data. This makes sense if words have similar meanings but are
written differently because, for example, one is in its plural form. Stemming attempts
to unify by cutting off parts of the word. For example “planes” and “plane” both
become “plane.”

 Another technique, called lemmatization, has this same goal but does so in a more
grammatically sensitive way. For example, while both stemming and lemmatization
would reduce “cars” to “car,” lemmatization can also bring back conjugated verbs to
their unconjugated forms such as “are” to “be.” Which one you use depends on your
case, and lemmatization profits heavily from POS Tagging (Part of Speech Tagging).
POS Tagging is the process of attributing a grammatical label to every part of a sen-
tence. You probably did this manually in school as a language exercise. Take the sen-
tence “Game of Thrones is a television series.” If we apply POS Tagging on it we get

({“game”:”NN”},{“of”:”IN},{“thrones”:”NNS},{“is”:”VBZ},{“a”:”DT},{“television”:”NN},
{“series”:”NN})

NN is a noun, IN is a preposition, NNS is a noun in its plural form, VBZ is a third-person
singular verb, and DT is a determiner. Table 8.1 has the full list.

Table 8.1 A list of all POS tags

Tag Meaning Tag Meaning

CC Coordinating conjunction CD Cardinal number

DT Determiner EX Existential

FW Foreign word IN Preposition or subordinating conjunction

JJ Adjective JJR Adjective, comparative

JJS Adjective, superlative LS List item marker

MD Modal NN Noun, singular or mass
store/books/9781617294181

https://itbook.store/books/9781617294181

106 CHAPTER 8 Text mining and text analytics

www.itboo
POS Tagging is a use case of sentence-tokenization rather than word-tokenization.
After the POS Tagging is complete you can still proceed to word tokenization, but a
POS Tagger requires whole sentences. Combining POS Tagging and lemmatization is
likely to give cleaner data than using only a stemmer. For the sake of simplicity we’ll
stick to stemming in the case study, but consider this an opportunity to elaborate on
the exercise.

 We now know the most important things we’ll use to do the data cleansing and
manipulation (text mining). For our text analytics, let’s add the decision tree classifier
to our repertoire.

8.2.3 Decision tree classifier

The data analysis part of our case study will be kept simple as well. We’ll test a Naïve
Bayes classifier and a decision tree classifier. As seen in chapter 3 the Naïve Bayes
classifier is called that because it considers each input variable to be independent of
all the others, which is naïve, especially in text mining. Take the simple examples of
“data science,” “data analysis,” or “game of thrones.” If we cut our data in unigrams
we get the following separate variables (if we ignore stemming and such): “data,” “sci-
ence,” “analysis,” “game,” “of,” and “thrones.” Obviously links will be lost. This can, in
turn, be overcome by creating bigrams (data science, data analysis) and trigrams
(game of thrones).

 The decision tree classifier, however, doesn’t consider the variables to be indepen-
dent of one another and actively creates interaction variables and buckets. An interaction

NNS Noun, plural NNP Proper noun, singular

NNPS Proper noun, plural PDT Predeterminer

POS Possessive ending PRP Personal pronoun

PRP$ Possessive pronoun RB Adverb

RBR Adverb, comparative RBS Adverb, superlative

RP Particle SYM Symbol

UH Interjection VB Verb, base form

VBD Verb, past tense VBG Verb, gerund or present participle

VBN Verb, past participle VBP Verb, non-3rd person singular present

VBZ Verb, 3rd person singular present WDT Wh-determiner

WP Wh-pronoun WP$ Possessive wh-pronoun

WRB Wh-adverb

Table 8.1 A list of all POS tags (continued)

Tag Meaning Tag Meaning
k.store/books/9781617294181

https://itbook.store/books/9781617294181

107Text mining techniques

www.itbook.
variable is a variable that combines other variables. For instance “data” and “science”
might be good predictors in their own right but probably the two of them co-occurring
in the same text might have its own value. A bucket is somewhat the opposite. Instead
of combining two variables, a variable is split into multiple new ones. This makes sense
for numerical variables. Figure 8.8 shows what a decision tree might look like and
where you can find interaction and bucketing.

Whereas Naïve Bayes supposes independence of all the input variables, a decision
tree is built upon the assumption of interdependence. But how does it build this
structure? A decision tree has a few possible criteria it can use to split into branches
and decide which variables are more important (are closer to the root of the tree)
than others. The one we’ll use in the NLTK decision tree classifier is “information
gain.” To understand information gain, we first need to look at entropy. Entropy is a
measure of unpredictability or chaos. A simple example would be the gender of a
baby. When a woman is pregnant, the gender of the fetus can be male or female, but
we don’t know which one it is. If you were to guess, you have a 50% chance to guess
correctly (give or take, because gender distribution isn’t 100% uniform). However,
during the pregnancy you have the opportunity to do an ultrasound to determine
the gender of the fetus. An ultrasound is never 100% conclusive, but the farther
along in fetal development, the more accurate it becomes. This accuracy gain, or
information gain, is there because uncertainty or entropy drops. Let’s say an ultra-
sound at 12 weeks pregnancy has a 90% accuracy in determining the gender of the
baby. A 10% uncertainty still exists, but the ultrasound did reduce the uncertainty

Car insurance decision tree: Probability of

an insuree crashing the car within a year

Gender

Car color

1%0.5%

Female

Other Red

Male

Age

0.5%1% 1.5%

>65 <25

25–65

Interaction of
Male and “<25”

Age has been split into 3 buckets:
“>65”, “25–65”, and “<25”

Figure 8.8 Fictitious decision tree model. A decision tree
automatically creates buckets and supposes interactions between
input variables.
store/books/9781617294181

https://itbook.store/books/9781617294181

108 CHAPTER 8 Text mining and text analytics

www.itboo
from 50% to 10%. That’s a pretty good discriminator. A decision tree follows this
same principle, as shown in figure 8.9.

 If another gender test has more predictive power, it could become the root of the
tree with the ultrasound test being in the branches, and this can go on until we run
out of variables or observations. We can run out of observations, because at every
branch split we also split the input data. This is a big weakness of the decision tree,
because at the leaf level of the tree robustness breaks down if too few observations are
left; the decision trees starts to overfit the data. Overfitting allows the model to mistake
randomness for real correlations. To counteract this, a decision tree is pruned: its
meaningless branches are left out of the final model.

 Now that we’ve looked at the most important new techniques, let’s dive into the
case study.

8.3 Case study: Classifying Reddit posts
While text mining has many applications, in this chapter’s case study we focus on doc-
ument classification. As pointed out earlier in this chapter, this is exactly what Google
does when it arranges your emails in categories or attempts to distinguish spam from
regular emails. It’s also extensively used by contact centers that process incoming cus-
tomer questions or complaints: written complaints first pass through a topic detec-
tion filter so they can be assigned to the correct people for handling. Document
classification is also one of the mandatory features of social media monitoring sys-
tems. The monitored tweets, forum or Facebook posts, newspaper articles, and many
other internet resources are assigned topic labels. This way they can be reused in
reports. Sentiment analysis is a specific type of text classification: is the author of a post
negative, positive, or neutral on something? That “something” can be recognized
with entity recognition.

 In this case study we’ll draw on posts from Reddit, a website also known as the self-
proclaimed “front page of the internet,” and attempt to train a model capable of dis-
tinguishing whether someone is talking about “data science” or “game of thrones.”

 The end result can be a presentation of our model or a full-blown interactive appli-
cation. In chapter 9 we’ll focus on application building for the end user, so for now
we’ll stick to presenting our classification model.

 To achieve our goal we’ll need all the help and tools we can get, and it happens
Python is once again ready to provide them.

Ultrasound

90%

Female Male

10%

Probability of fetus identified as

female—ultrasound at 12 weeks

Figure 8.9 Decision tree with one variable: the
doctor’s conclusion from watching an ultrasound
during a pregnancy. What is the probability of the
fetus being female?
k.store/books/9781617294181

https://itbook.store/books/9781617294181

109Case study: Classifying Reddit posts

www.itbook.
8.3.1 Meet the Natural Language Toolkit

Python might not be the most execution efficient language on earth, but it has a
mature package for text mining and language processing: the Natural Language Toolkit
(NLTK). NLTK is a collection of algorithms, functions, and annotated works that will
guide you in taking your first steps in text mining and natural language processing.
NLTK is also excellently documented on nltk.org. NLTK is, however, not often used for
production-grade work, like other libraries such as scikit-learn.

Installing NLTK and its corpora
Install NLTK with your favorite package installer. In case you’re using Anaconda, it
comes installed with the default Anaconda setup. Otherwise you can go for “pip” or
“easy_install”. When this is done you still need to install the models and corpora
included to have it be fully functional. For this, run the following Python code:

■ import nltk
■ nltk.download()

Depending on your installation this will give you a pop-up or more command-line options.

Figure 8.10 shows the pop-up box you get when issuing the nltk.download() command.

You can download all the corpora if you like, but for this chapter we’ll only make use
of “punkt” and “stopwords”. This download will be explicitly mentioned in the code
that comes with this book.

Figure 8.10 Choose
All Packages to fully
complete the NLTK
installation.
store/books/9781617294181

https://itbook.store/books/9781617294181

110 CHAPTER 8 Text mining and text analytics

www.itboo
Two IPython notebook files are available for this chapter:

■ Data collection—Will contain the data collection part of this chapter’s case study.
■ Data preparation and analysis—The stored data is put through data preparation

and then subjected to analysis.

All code in the upcoming case study can be found in these two files in the same
sequence and can also be run as such. In addition, two interactive graphs are available
for download:

■ forceGraph.html—Represents the top 20 features of our Naïve Bayes model
■ Sunburst.html—Represents the top four branches of our decision tree model

To open these two HTML pages, an HTTP server is necessary, which you can get using
Python and a command window:

■ Open a command window (Linux, Windows, whatever you fancy).
■ Move to the folder containing the HTML files and their JSON data files: deci-

sionTreeData.json for the sunburst diagram and NaiveBayesData.json for the
force graph. It’s important the HTML files remain in the same location as their
data files or you’ll have to change the JavaScript in the HTML file.

■ Create a Python HTTP server with the following command: python –m Simple-
HTTPServer 8000

■ Open a browser and go to localhost:8000; here you can select the HTML files, as
shown in figure 8.11.

The Python packages we’ll use in this chapter:

■ NLTK—For text mining
■ PRAW—Allows downloading posts from Reddit
■ SQLite3—Enables us to store data in the SQLite format
■ Matplotlib—A plotting library for visualizing data

Make sure to install all the necessary libraries and corpora before moving on. Before
we dive into the action, however, let’s look at the steps we’ll take to get to our goal of
creating a topic classification model.

Figure 8.11 Python HTTP server
serving this chapter’s output
k.store/books/9781617294181

https://itbook.store/books/9781617294181

111Case study: Classifying Reddit posts

www.itbook.
8.3.2 Data science process overview and step 1: The research goal

To solve this text mining exercise, we’ll once again make use of the data science process.
Figure 8.12 shows the data science process applied to our Reddit classification case.

 Not all the elements depicted in figure 8.12 might make sense at this point, and
the rest of the chapter is dedicated to working this out in practice as we work toward
our research goal: creating a classification model capable of distinguishing posts
about “data science” from posts about “Game of Thrones.” Without further ado, let’s
go get our data.

Data science process

1: Setting the research goal

2: Retrieving data

3: Data preparation

4: Data exploration

5: Data modeling

6: Presentation and automation

–

We need to distinguish Reddit posts about data science

from posts about Game of Thrones. Our goal: creating

a model that does this classification reliably.

–

–

–

Internal data

External data

–
We have no internal data on this.

–

–
Stop word filtering.

Hapaxes filtering.

Reddit is the external data source we use.

We are using PRAW to access their data API.

Data is stored in SQLite.

Data cleansing

–Data transformation

Combining data

–

–

We have but a single data set.

–

Not part of this chapter, but the model can be

turned into a batch program to score new posts.

Word tokenization.

Data labeling.

Stemming.

Term lowercasing.

–

–
–

Word frequencies histogram.

Visually inspect least and common terms.

–

Naive Bayes Most information features.

Decision trees Tree visual inspection.

–
Model accuracy.

Confusion matrix.

Model execution Document scoring.

Model and variable selection

Model diagnostic and model comparison

Figure 8.12 Data science process overview applied to Reddit topic classification case study
store/books/9781617294181

https://itbook.store/books/9781617294181

112 CHAPTER 8 Text mining and text analytics

www.itboo
8.3.3 Step 2: Data retrieval

We’ll use Reddit data for this case, and for those unfamiliar with Reddit, take the time
to familiarize yourself with its concepts at www.reddit.com.

 Reddit calls itself “the front page of the internet” because users can post things
they find interesting and/or found somewhere on the internet, and only those things
deemed interesting by many people are featured as “popular” on its homepage. You
could say Reddit gives an overview of the trending things on the internet. Any user
can post within a predefined category called a “subreddit.” When a post is made,
other users get to comment on it and can up-vote it if they like the content or down-
vote it if they dislike it. Because a post is always part of a subreddit, we have this meta-
data at our disposal when we hook up to the Reddit API to get our data. We’re effectively
fetching labeled data because we’ll assume that a post in the subreddit “gameofthrones”
has something to do with “gameofthrones.”

 To get to our data we make use of the official Reddit Python API library called
PRAW. Once we get the data we need, we’ll store it in a lightweight database-like file
called SQLite. SQLite is ideal for storing small amounts of data because it doesn’t
require any setup to use and will respond to SQL queries like any regular relational
database does. Any other data storage medium will do; if you prefer Oracle or Post-
gres databases, Python has an excellent library to interact with these without the need
to write SQL. SQLAlchemy will work for SQLite files as well. Figure 8.13 shows the data
retrieval step within the data science process.

Open your favorite Python interpreter; it’s time for action, as shown in listing 8.1.
First we need to collect our data from the Reddit website. If you haven’t already,
use pip install praw or conda install praw (Anaconda) before running the fol-
lowing script.

NOTE The code for step 2 can also be found in the IPython file “Chapter 8
data collection.” It’s available in this book's download section.

2: Retrieving data –

Internal data

External data

–
We have no internal data on this.

–

Reddit is the external data source we use.

We are using PRAW to access their data API.

Data is stored in SQLite.

Figure 8.13 The data science process data retrieval step for a Reddit topic
classification case
k.store/books/9781617294181

https://itbook.store/books/9781617294181

113Case study: Classifying Reddit posts

www.itbook.
import praw
import sqlite3

conn = sqlite3.connect('reddit.db')
c = conn.cursor()

c.execute('''DROP TABLE IF EXISTS topics''')
c.execute('''DROP TABLE IF EXISTS comments''')
c.execute('''CREATE TABLE topics
 (topicTitle text, topicText text, topicID text,
topicCategory text)''')
c.execute('''CREATE TABLE comments
 (commentText text, commentID text ,
topicTitle text, topicText text, topicID text ,
 topicCategory text)''')

user_agent = "Introducing Data Science Book"
r = praw.Reddit(user_agent=user_agent)

subreddits = ['datascience','gameofthrones']

limit = 1000

Let’s first import the necessary libraries.
 Now that we have access to the SQLite3 and PRAW capabilities, we need to prepare

our little local database for the data it’s about to receive. By defining a connection to a
SQLite file we automatically create it if it doesn’t already exist. We then define a data
cursor that’s capable of executing any SQL statement, so we use it to predefine the
structure of our database. The database will contain two tables: the topics table con-
tains Reddit topics, which is similar to someone starting a new post on a forum, and
the second table contains the comments and is linked to the topic table via the “topicID”
column. The two tables have a one (topic table) to many (comment table) relation-
ship. For the case study, we’ll limit ourselves to using the topics table, but the data col-
lection will incorporate both because this allows you to experiment with this extra
data if you feel like it. To hone your text-mining skills you could perform sentiment
analysis on the topic comments and find out what topics receive negative or positive
comments. You could then correlate this to the model features we’ll produce by the
end of this chapter.

 We need to create a PRAW client to get access to the data. Every subreddit can be
identified by its name, and we’re interested in “datascience” and “gameofthrones.”
The limit represents the maximum number of topics (posts, not comments) we’ll
draw in from Reddit. A thousand is also the maximum number the API allows us to
fetch at any given request, though we could request more later on when people have

Listing 8.1 Setting up SQLLite database and Reddit API client

Import PRAW and
SQLite3 libraries.

Set up connection to
SQLite database.

Execute SQL
statements to
create topics and
comments table.

Create PRAW user agent
so we can use Reddit API.

Our list of subreddits
we’ll draw into our
SQLite database.Maximum number of posts we’ll fetch from

Reddit per category. Maximum Reddit
allows at any single time is also 1,000.
store/books/9781617294181

https://itbook.store/books/9781617294181

114 CHAPTER 8 Text mining and text analytics

et

tive
ry
nly

s
e

r

t

www.itboo
posted new things. In fact we can run the API request periodically and gather data
over time. While at any given time you’re limited to a thousand posts, nothing stops
you from growing your own database over the course of months. It’s worth noting the
following script might take about an hour to complete. If you don’t feel like waiting,
feel free to proceed and use the downloadable SQLite file. Also, if you run it now you
are not likely to get the exact same output as when it was first run to create the output
shown in this chapter.

 Let’s look at our data retrieval function, as shown in the following listing.

def prawGetData(limit,subredditName):
 topics = r.get_subreddit(subredditName).get_hot(limit=limit)
 commentInsert = []
 topicInsert = []
 topicNBR = 1
 for topic in topics:
 if (float(topicNBR)/limit)*100 in xrange(1,100):
 print '*********** TOPIC:' + str(topic.id)
+ ' *********COMPLETE: ' + str((float(topicNBR)/limit)*100)
+ ' % ****'
 topicNBR += 1
 try:
 topicInsert.append((topic.title,topic.selftext,topic.id,

 subredditName))
 except:
 pass
 try:
 for comment in topic.comments:
 commentInsert.append((comment.body,comment.id,
topic.title,topic.selftext,topic.id,subredditName))
 except:
 pass
 print '********************************'
 print 'INSERTING DATA INTO SQLITE'
 c.executemany('INSERT INTO topics VALUES (?,?,?,?)', topicInsert)
 print 'INSERTED TOPICS'
 c.executemany('INSERT INTO comments VALUES (?,?,?,?,?,?)', commentInsert)
 print 'INSERTED COMMENTS'
 conn.commit()

for subject in subreddits:
 prawGetData(limit=limit,subredditName=subject)

Listing 8.2 Reddit data retrieval and storage in SQLite

From
subreddits, g
hottest 1,000
(in our case)
topics.

This part is an informa
print and not necessa
for code to work. It o
informs you about the
download progress.

Specific fields of the topic are appended to the list. We only use the
title and text throughout the exercise but the topic ID would be
useful for building your own (bigger) database of topics.

Append comment
to a list. These ar
not used in the
exercise but now
you have them fo
experimentation.Insert all

opics into
SQLite

database.

Insert all
comments into

SQLite database.

Commit changes (data insertions) to
database. Without the commit, no
data will be inserted.

The function is executed
for all subreddits we
specified earlier.
k.store/books/9781617294181

https://itbook.store/books/9781617294181

115Case study: Classifying Reddit posts

www.itbook.
The prawGetData() function retrieves the “hottest” topics in its subreddit, appends
this to an array, and then gets all its related comments. This goes on until a thou-
sand topics are reached or no more topics exist to fetch and everything is stored in
the SQLite database. The print statements are there to inform you on its progress
toward gathering a thousand topics. All that’s left for us to do is execute the func-
tion for each subreddit.

 If you’d like this analysis to incorporate more than two subreddits, this is a matter
of adding an extra category to the subreddits array.

 With the data collected, we’re ready to move on to data preparation.

8.3.4 Step 3: Data preparation

As always, data preparation is the most crucial step to get correct results. For text min-
ing this is even truer since we don’t even start off with structured data.

 The upcoming code is available online as IPython file “Chapter 8 data preparation
and analysis.” Let’s start by importing the required libraries and preparing the SQLite
database, as shown in the following listing.

import sqlite3
import nltk
import matplotlib.pyplot as plt
from collections import OrderedDict
import random

nltk.download('punkt')
nltk.download('stopwords')

conn = sqlite3.connect('reddit.db')
c = conn.cursor()

In case you haven’t already downloaded the full NLTK corpus, we’ll now download the
part of it we’ll use. Don’t worry if you already downloaded it, the script will detect if
your corpora is up to date.

 Our data is still stored in the Reddit SQLite file so let’s create a connection to it.
 Even before exploring our data we know of at least two things we have to do to

clean the data: stop word filtering and lowercasing.
 A general word filter function will help us filter out the unclean parts. Let’s create

one in the following listing.

Listing 8.3 Text mining, libraries, corpora dependencies, and SQLite database connection

Import all
required
libraries

Download corpora
we make use of

Make a connection to SQLite database
that contains our Reddit data
store/books/9781617294181

https://itbook.store/books/9781617294181

116 CHAPTER 8 Text mining and text analytics

from
s

www.itboo
def wordFilter(excluded,wordrow):
 filtered = [word for word in wordrow if word not in excluded]
 return filtered
stopwords = nltk.corpus.stopwords.words('english')
def lowerCaseArray(wordrow):
 lowercased = [word.lower() for word in wordrow]
 return lowercased

The English stop words will be the first to leave our data. The following code will pro-
vide us these stop words:

stopwords = nltk.corpus.stopwords.words('english')
print stopwords

Figure 8.14 shows the list of English stop words in NLTK.

With all the necessary components in place, let’s have a look at our first data process-
ing function in the following listing.

Listing 8.4 Word filtering and lowercasing functions

wordFilter()
function will
remove a term
an array of term

Stop word variable
contains English stop
words per default
present in NLTK

lowerCaseArray() function
transforms any term to its

lowercased version

Figure 8.14 English stop words list in NLTK
k.store/books/9781617294181

https://itbook.store/books/9781617294181

117Case study: Classifying Reddit posts

www.itbook.
def data_processing(sql):
 c.execute(sql)
 data = {'wordMatrix':[],'all_words':[]}
 row = c.fetchone()
 while row is not None:
 wordrow = nltk.tokenize.word_tokenize(row[0]+" "+row[1])
 wordrow_lowercased = lowerCaseArray(wordrow)
 wordrow_nostopwords = wordFilter(stopwords,wordrow_lowercased)
 data['all_words'].extend(wordrow_nostopwords)
 data['wordMatrix'].append(wordrow_nostopwords)
 row = c.fetchone()
 return data

subreddits = ['datascience','gameofthrones']
data = {}
for subject in subreddits:
 data[subject] = data_processing(sql='''SELECT

topicTitle,topicText,topicCategory FROM topics
WHERE topicCategory = '''+"'"+subject+"'")

Our data_processing() function takes in a SQL statement and returns the document-
term matrix. It does this by looping through the data one entry (Reddit topic) at a
time and combines the topic title and topic body text into a single word vector with
the use of word tokenization. A tokenizer is a text handling script that cuts the text into
pieces. You have many different ways to tokenize a text: you can divide it into sen-
tences or words, you can split by space and punctuations, or you can take other char-
acters into account, and so on. Here we opted for the standard NLTK word tokenizer.
This word tokenizer is simple; all it does is split the text into terms if there’s a space
between the words. We then lowercase the vector and filter out the stop words. Note
how the order is important here; a stop word in the beginning of a sentence wouldn’t
be filtered if we first filter the stop words before lowercasing. For instance in “I like
Game of Thrones,” the “I” would not be lowercased and thus would not be filtered
out. We then create a word matrix (term-document matrix) and a list containing all
the words. Notice how we extend the list without filtering for doubles; this way we can
create a histogram on word occurrences during data exploration. Let’s execute the
function for our two topic categories.

 Figure 8.15 shows the first word vector of the “datascience” category.

print data['datascience']['wordMatrix'][0]

Listing 8.5 First data preparation function and execution

Create pointer
to AWLite data.

Fetch data
row by row.

row[0] is
title, row[1]
is topic text;
we turn them
into a single
text blob.

We’ll use data['all_words']
for data exploration.

data['wordMatrix'] is a matrix
comprised of word vectors;
1 vector per document.

Get new document
from SQLite database.

Our subreddits as
defined earlier.

Call data processing
function for every
subreddit.
store/books/9781617294181

https://itbook.store/books/9781617294181

118 CHAPTER 8 Text mining and text analytics

www.itboo
This sure looks polluted: punctuations are kept as separate terms and several words
haven’t even been split. Further data exploration should clarify a few things for us.

8.3.5 Step 4: Data exploration

We now have all our terms separated, but the sheer size of the data hinders us from
getting a good grip on whether it’s clean enough for actual use. By looking at a single
vector, we already spot a few problems though: several words haven’t been split cor-
rectly and the vector contains many single-character terms. Single character terms
might be good topic differentiators in certain cases. For example, an economic text
will contain more $, £, and ¤ signs than a medical text. But in most cases these one-
character terms are useless. First, let’s have a look at the frequency distribution of
our terms.

wordfreqs_cat1 = nltk.FreqDist(data['datascience']['all_words'])
plt.hist(wordfreqs_cat1.values(), bins = range(10))
plt.show()
wordfreqs_cat2 = nltk.FreqDist(data['gameofthrones']['all_words'])
plt.hist(wordfreqs_cat2.values(), bins = range(20))
plt.show()

By drawing a histogram of the frequency distribution (figure 8.16) we quickly notice
that the bulk of our terms only occur in a single document.

 Single-occurrence terms such as these are called hapaxes, and model-wise they’re
useless because a single occurrence of a feature is never enough to build a reliable
model. This is good news for us; cutting these hapaxes out will significantly shrink
our data without harming our eventual model. Let’s look at a few of these single-
occurrence terms.

print wordfreqs_cat1.hapaxes()
print wordfreqs_cat2.hapaxes()

Terms we see in figure 8.17 make sense, and if we had more data they’d likely occur
more often.

print wordfreqs_cat1.hapaxes()
print wordfreqs_cat2.hapaxes()

Figure 8.15 The first word vector of the “datascience” category after first
data processing attempt
k.store/books/9781617294181

https://itbook.store/books/9781617294181

119Case study: Classifying Reddit posts

www.itbook.
Data science histogram

Occurrence buckets

9

4000

3500

3000

2500

2000

1500

1000

500

0
1 2 3 4 5 6 7 8

Frequency
count

Game of Thrones histogram

Occurrence buckets

9

3500

3000

2500

2000

1500

1000

500

0
1 2 3 4 5 6 7 8

Frequency
count

Figure 8.16 This histogram of
term frequencies shows both the
“data science” and “game of
thrones” term matrices have
more than 3,000 terms that
occur once.

Figure 8.17 “Data
science” and “game
of thrones” single
occurrence terms
(hapaxes)
store/books/9781617294181

https://itbook.store/books/9781617294181

120 CHAPTER 8 Text mining and text analytics

www.itboo
Many of these terms are incorrect spellings of otherwise useful ones, such as: Jaimie is
Jaime (Lannister), Milisandre would be Melisandre, and so on. A decent Game of
Thrones-specific thesaurus could help us find and replace these misspellings with a
fuzzy search algorithm. This proves data cleaning in text mining can go on indefi-
nitely if you so desire; keeping effort and payoff in balance is crucial here.

 Let’s now have a look at the most frequent words.

print wordfreqs_cat1.most_common(20)
print wordfreqs_cat2.most_common(20)

Figure 8.18 shows the output of asking for the top 20 most common words for each
category.

Now this looks encouraging: several common words do seem specific to their topics.
Words such as “data,” “science,” and “season” are likely to become good differentia-
tors. Another important thing to notice is the abundance of the single character terms
such as “.” and “,”; we’ll get rid of these.

 With this extra knowledge, let’s revise our data preparation script.

8.3.6 Step 3 revisited: Data preparation adapted

This short data exploration has already drawn our attention to a few obvious tweaks
we can make to improve our text. Another important one is stemming the terms.

 The following listing shows a simple stemming algorithm called “snowball stem-
ming.” These snowball stemmers can be language-specific, so we’ll use the English
one; however, it does support many languages.

Figure 8.18 Top 20 most frequent words for the “data science” and “game of
thrones” posts
k.store/books/9781617294181

https://itbook.store/books/9781617294181

121Case study: Classifying Reddit posts

e
.

ti

r
W

Tem

word
hapa s.

th
temp

word m

 in
r.

wor
to fin

www.itbook.
stemmer = nltk.SnowballStemmer("english")
def wordStemmer(wordrow):
 stemmed = [stemmer.stem(word) for word in wordrow]
 return stemmed

manual_stopwords = [',','.',')',',','(','m',"'m","n't",'e.g',"'ve",'s','#','/
','``',"'s","''",'!','r',']','=','[','s','&','%','*','...','1','2','3','
4','5','6','7','8','9','10','--',"''",';','-',':']

def data_processing(sql,manual_stopwords):
 #create pointer to the sqlite data
 c.execute(sql)
 data = {'wordMatrix':[],'all_words':[]}
 interWordMatrix = []
 interWordList = []

 row = c.fetchone()
 while row is not None:
 tokenizer = nltk.tokenize.RegexpTokenizer(r'\w+|[^\w\s]+')

 wordrow = tokenizer.tokenize(row[0]+" "+row[1])
 wordrow_lowercased = lowerCaseArray(wordrow)
 wordrow_nostopwords = wordFilter(stopwords,wordrow_lowercased)

 wordrow_nostopwords =
 wordFilter(manual_stopwords,wordrow_nostopwords)
 wordrow_stemmed = wordStemmer(wordrow_nostopwords)

 interWordList.extend(wordrow_stemmed)
 interWordMatrix.append(wordrow_stemmed)

 row = c.fetchone()

 wordfreqs = nltk.FreqDist(interWordList) s
 hapaxes = wordfreqs.hapaxes()
 for wordvector in interWordMatrix:
 wordvector_nohapexes = wordFilter(hapaxes,wordvector)
 data['wordMatrix'].append(wordvector_nohapexes)
 data['all_words'].extend(wordvector_nohapexes)

 return data

for subject in subreddits:
 data[subject] = data_processing(sql='''SELECT

topicTitle,topicText,topicCategory FROM topics
WHERE topicCategory = '''+"'"+subject+"'",
manual_stopwords=manual_stopwords)

Notice the changes since the last data_processing() function. Our tokenizer is now a
regular expression tokenizer. Regular expressions are not part of this book and are

Listing 8.6 The Reddit data processing revised after data exploration

Initializes stemmer
from NLTK library.

Stop words array
defines terms to
remove/ignore.

Now we define
our revised data
preparation.

Fetch data (reddit posts) on
by one from SQLite database

row[0] and
row[1]

contain the
tle and text
of the post,
espectively.
e combine

them into a
single text

blob.

Remove
manually

added stop
words from

text blob.

Temporary word
list used to
remove hapaxes
later on.

porary word
matrix; will

become final
 matrix after
xes removal.

Get new
topic.

Make frequency
distribution of
all terms.

Get list of hapaxe

Loop
rough
orary
atrix.

Remove hapaxes
each word vecto

Append
correct

d vector
al word
matrix.

Extend list of all
terms with corrected
word vector.

Run new data
processing function
for both subreddits.
store/books/9781617294181

https://itbook.store/books/9781617294181

122 CHAPTER 8 Text mining and text analytics

www.itboo
often considered challenging to master, but all this simple one does is cut the text into
words. For words, any alphanumeric combination is allowed (\w), so there are no more
special characters or punctuations. We also applied the word stemmer and removed a
list of extra stop words. And, all the hapaxes are removed at the end because every-
thing needs to be stemmed first. Let’s run our data preparation again.

 If we did the same exploratory analysis as before, we’d see it makes more sense,
and we have no more hapaxes.

print wordfreqs_cat1.hapaxes()
print wordfreqs_cat2.hapaxes()

Let’s take the top 20 words of each category again (see figure 8.19).

We can see in figure 8.19 how the data quality has improved remarkably. Also, notice
how certain words are shortened because of the stemming we applied. For instance,
“science” and “sciences” have become “scienc;” “courses” and “course” have become
“cours,” and so on. The resulting terms are not actual words but still interpretable.
If you insist on your terms remaining actual words, lemmatization would be the way
to go.

Figure 8.19 Top 20 most frequent words in “data science” and “game of thrones” Reddit posts
after data preparation
k.store/books/9781617294181

https://itbook.store/books/9781617294181

123Case study: Classifying Reddit posts

Dat
m

tra

test

shu

www.itbook.
 With the data cleaning process “completed” (remark: a text mining cleansing exer-
cise can almost never be fully completed), all that remains is a few data transforma-
tions to get the data in the bag of words format.

 First, let’s label all our data and also create a holdout sample of 100 observations
per category, as shown in the following listing.

holdoutLength = 100

labeled_data1 = [(word,'datascience') for word in
data['datascience']['wordMatrix'][holdoutLength:]]

labeled_data2 = [(word,'gameofthrones') for word in
data['gameofthrones']['wordMatrix'][holdoutLength:]]

labeled_data = []
labeled_data.extend(labeled_data1)
labeled_data.extend(labeled_data2)

holdout_data = data['datascience']['wordMatrix'][:holdoutLength]
holdout_data.extend(data['gameofthrones']['wordMatrix'][:holdoutLength])
holdout_data_labels = ([('datascience')
for _ in xrange(holdoutLength)] + [('gameofthrones') for _ in

xrange(holdoutLength)])

data['datascience']['all_words_dedup'] =
list(OrderedDict.fromkeys(
data['datascience']['all_words']))
data['gameofthrones']['all_words_dedup'] =
list(OrderedDict.fromkeys(
data['gameofthrones']['all_words']))
all_words = []
all_words.extend(data['datascience']['all_words_dedup'])
all_words.extend(data['gameofthrones']['all_words_dedup'])
all_words_dedup = list(OrderedDict.fromkeys(all_words))

prepared_data = [({word: (word in x[0]) for word
in all_words_dedup}, x[1]) for x in labeled_data]
prepared_holdout_data = [({word: (word in x[0])
for word in all_words_dedup})
for x in holdout_data]

random.shuffle(prepared_data)
train_size = int(len(prepared_data) * 0.75)
train = prepared_data[:train_size]
test = prepared_data[train_size:]

Listing 8.7 Final data transformation and data splitting before modeling

Holdout sample will be used
to determine the model’s
flaws by constructing a
confusion matrix.

We create a single data
set with every word
vector tagged as being
either ‘datascience’ or
‘gameofthrones.’ We
keep part of the data
aside for holdout sample.

Holdout sample is comprised of unlabeled data from
the two subreddits: 100 observations from each data
set. The labels are kept in a separate data set.

A list of all unique
terms is created to
build the bag of
words data we
need for training or
scoring a model.

Data is turned
into a binary bag
of words format.

a for
odel

ining
and

ing is
first

ffled.

Size of training data will be
75% of total and remaining
25% will be used for testing
model performance.
store/books/9781617294181

https://itbook.store/books/9781617294181

124 CHAPTER 8 Text mining and text analytics

www.itboo
The holdout sample will be used for our final test of the model and the creation of a
confusion matrix. A confusion matrix is a way of checking how well a model did on pre-
viously unseen data. The matrix shows how many observations were correctly and
incorrectly classified.

 Before creating or training and testing data we need to take one last step: pouring
the data into a bag of words format where every term is given either a “True” or “False”
label depending on its presence in that particular post. We also need to do this for the
unlabeled holdout sample.

 Our prepared data now contains every term for each vector, as shown in figure 8.20.

 print prepared_data[0]

We created a big but sparse matrix, allowing us to apply techniques from chapter 5 if it
was too big to handle on our machine. With such a small table, however, there’s no
need for that now and we can proceed to shuffle and split the data into a training and
test set.

 While the biggest part of your data should always go to the model training, an opti-
mal split ratio exists. Here we opted for a 3-1 split, but feel free to play with this. The
more observations you have, the more freedom you have here. If you have few obser-
vations you’ll need to allocate relatively more to training the model. We’re now ready
to move on to the most rewarding part: data analysis.

8.3.7 Step 5: Data analysis

For our analysis we’ll fit two classification algorithms to our data: Naïve Bayes and decision
trees. Naïve Bayes was explained in chapter 3 and decision tree earlier in this chapter.

 Let’s first test the performance of our Naïve Bayes classifier. NLTK comes with a
classifier, but feel free to use algorithms from other packages such as SciPy.

classifier = nltk.NaiveBayesClassifier.train(train)

With the classifier trained we can use the test data to get a measure on overall accuracy.

nltk.classify.accuracy(classifier, test)

Figure 8.20 A binary bag of words ready for modeling is very sparse data.
k.store/books/9781617294181

https://itbook.store/books/9781617294181

125Case study: Classifying Reddit posts

www.itbook.
The accuracy on the test data is estimated to be greater than 90%, as seen in figure 8.21.
Classification accuracy is the number of correctly classified observations as a percentage
of the total number of observations. Be advised, though, that this can be different in
your case if you used different data.

nltk.classify.accuracy(classifier, test)

That’s a good number. We can now lean back and relax, right? No, not really. Let’s
test it again on the 200 observations holdout sample and this time create a confu-
sion matrix.

classified_data = classifier.classify_many(prepared_holdout_data)
cm = nltk.ConfusionMatrix(holdout_data_labels, classified_data)
print cm

The confusion matrix in figure 8.22 shows us the 97% is probably over the top
because we have 28 (23 + 5) misclassified cases. Again, this can be different with your
data if you filled the SQLite file yourself.

Twenty-eight misclassifications means we have an 86% accuracy on the holdout sample.
This needs to be compared to randomly assigning a new post to either the “datascience”
or “gameofthrones” group. If we’d randomly assigned them, we could expect an

Figure 8.21 Classification accuracy is a
measure representing what percentage of
observations was correctly classified on
the test data.

Figure 8.22 Naïve Bayes
model confusion matrix shows
28 (23 + 5) observations out of
200 were misclassified
store/books/9781617294181

https://itbook.store/books/9781617294181

126 CHAPTER 8 Text mining and text analytics

a

www.itboo
accuracy of 50%, and our model seems to perform better than that. Let’s look at what it
uses to determine the categories by digging into the most informative model features.

print(classifier.show_most_informative_features(20))

Figure 8.23 shows the top 20 terms capable of distinguishing between the two categories.

The term “data” is given heavy weight and seems to be the most important indicator of
whether a topic belongs in the data science category. Terms such as “scene,” “season,”
“king,” “tv,” and “kill” are good indications the topic is Game of Thrones rather than
data science. All these things make perfect sense, so the model passed both the accu-
racy and the sanity check.

 The Naïve Bayes does well, so let’s have a look at the decision tree in the follow-
ing listing.

classifier2 = nltk.DecisionTreeClassifier.train(train)
nltk.classify.accuracy(classifier2, test)
classified_data2 = classifier2.classify_many(prepared_holdout_data)
cm = nltk.ConfusionMatrix(holdout_data_labels, classified_data2)
print cm

Listing 8.8 Decision tree model training and evaluation

Figure 8.23 The most important terms in the Naïve Bayes classification model

Train decision
tree classifier Test

classifier
accuracy

Attempt
to classify
holdout dat
(scoring)

Create confusion matrix based on
classification results and actual labels

Show confusion
matrix
k.store/books/9781617294181

https://itbook.store/books/9781617294181

127Case study: Classifying Reddit posts

www.itbook.
As shown in figure 8.24, the promised accuracy is 93%.
 We now know better than to rely solely on this single

test, so once again we turn to a confusion matrix on a
second set of data, as shown in figure 8.25.

 Figure 8.25 shows a different story. On these 200
observations of the holdout sample the decision tree
model tends to classify well when the post is about Game
of Thrones but fails miserably when confronted with the
data science posts. It seems the model has a preference
for Game of Thrones, and can you blame it? Let’s have a
look at the actual model, even though in this case we’ll
use the Naïve Bayes as our final model.

print(classifier2.pseudocode(depth=4))

The decision tree has, as the name suggests, a tree-like
model, as shown in figure 8.26.

 The Naïve Bayes considers all the terms and has
weights attributed, but the decision tree model goes
through them sequentially, following the path from the root to the outer branches
and leaves. Figure 8.26 only shows the top four layers, starting with the term “data.” If
“data” is present in the post, it’s always data science. If “data” can’t be found, it checks
for the term “learn,” and so it continues. A possible reason why this decision tree isn’t
performing well is the lack of pruning. When a decision tree is built it has many
leaves, often too many. A tree is then pruned to a certain level to minimize overfitting.
A big advantage of decision trees is the implicit interaction effects between words it

Figure 8.24 Decision tree
model accuracy

Figure 8.25 Confusion matrix
on decision tree model

Figure 8.26 Decision tree model
tree structure representation
store/books/9781617294181

https://itbook.store/books/9781617294181

128 CHAPTER 8 Text mining and text analytics

www.itboo
takes into account when constructing the branches. When multiple terms together
create a stronger classification than single terms, the decision tree will actually outper-
form the Naïve Bayes. We won’t go into the details of that here, but consider this one
of the next steps you could take to improve the model.

 We now have two classification models that give us insight into how the two con-
tents of the subreddits differ. The last step would be to share this newfound informa-
tion with other people.

8.3.8 Step 6: Presentation and automation

As a last step we need to use what we learned and either turn it into a useful application
or present our results to others. The last chapter of this book discusses building an inter-
active application, as this is a project in itself. For now we’ll content ourselves with a nice
way to convey our findings. A nice graph or, better yet, an interactive graph, can catch
the eye; it’s the icing on the presentation cake. While it’s easy and tempting to represent
the numbers as such or a bar chart at most, it could be nice to go one step further.

 For instance, to represent the Naïve Bayes model, we could use a force graph (fig-
ure 8.27), where the bubble and link size represent how strongly related a word is to
the “game of thrones” or “data science” subreddits. Notice how the words on the bub-
bles are often cut off; remember this is because of the stemming we applied.

While figure 8.27 in itself is static, you can open the HTML file “forceGraph.html” to
enjoy the d3.js force graph effect as explained earlier in this chapter. d3.js is outside of
this book’s scope but you don’t need an elaborate knowledge of d3.js to use it. An
extensive set of examples can be used with minimal adjustments to the code provided
at https://github.com/mbostock/d3/wiki/Gallery. All you need is common sense and

Figure 8.27 Interactive
force graph with the
top 20 Naïve Bayes
significant terms and
their weights
k.store/books/9781617294181

https://github.com/mbostock/d3/wiki/Gallery
https://itbook.store/books/9781617294181

129Case study: Classifying Reddit posts

www.itbook.
a minor knowledge of JavaScript. The code for the force graph example can found at
http://bl.ocks.org/mbostock/4062045.

 We can also represent our decision tree in a rather original way. We could go for a
fancy version of an actual tree diagram, but the following sunburst diagram is more
original and equally fun to use.

 Figure 8.28 shows the top layer of the sunburst diagram. It’s possible to zoom in by
clicking a circle segment. You can zoom back out by clicking the center circle. The
code for this example can be found at http://bl.ocks.org/metmajer/5480307.

Figure 8.28 Sunburst diagram created from the top four branches of the decision tree model
store/books/9781617294181

http://bl.ocks.org/mbostock/4062045
http://bl.ocks.org/metmajer/5480307
https://itbook.store/books/9781617294181

130 CHAPTER 8 Text mining and text analytics

www.itboo
Showing your results in an original way can be key to a successful project. People
never appreciate the effort you’ve put into achieving your results if you can’t commu-
nicate them and they’re meaningful to them. An original data visualization here and
there certainly helps with this.

8.4 Summary
■ Text mining is widely used for things such as entity identification, plagiarism

detection, topic identification, translation, fraud detection, spam filtering,
and more.

■ Python has a mature toolkit for text mining called NLTK, or the natural language
toolkit. NLTK is good for playing around and learning the ropes; for real-life
applications, however, Scikit-learn is usually considered more “production-ready.”
Scikit-learn is extensively used in previous chapters.

■ The data preparation of textual data is more intensive than numerical data
preparation and involves extra techniques, such as
– Stemming—Cutting the end of a word in a smart way so it can be matched

with some conjugated or plural versions of this word.
– Lemmatization—Like stemming, it’s meant to remove doubles, but unlike

stemming, it looks at the meaning of the word.
– Stop word filtering—Certain words occur too often to be useful and filtering

them out can significantly improve models. Stop words are often corpus-
specific.

– Tokenization—Cutting text into pieces. Tokens can be single words, combina-
tions of words (n-grams), or even whole sentences.

– POS Tagging—Part-of-speech tagging. Sometimes it can be useful to know what
the function of a certain word within a sentence is to understand it better.

■ In our case study we attempted to distinguish Reddit posts on “Game of Thrones”
versus posts on “data science.” In this endeavor we tried both the Naïve Bayes
and decision tree classifiers. Naïve Bayes assumes all features to be independent
of one another; the decision tree classifier assumes dependency, allowing for
different models.

■ In our example, Naïve Bayes yielded the better model, but very often the deci-
sion tree classifier does a better job, usually when more data is available.

■ We determined the performance difference using a confusion matrix we calcu-
lated after applying both models on new (but labeled) data.

■ When presenting findings to other people, it can help to include an interesting
data visualization capable of conveying your results in a memorable way.
k.store/books/9781617294181

https://itbook.store/books/9781617294181

www.itboo
Data science has become one of the hottest fields in
technology. Firms worldwide are scrambling to find
developers with data science skills to work on projects
ranging from social media marketing to machine learn-
ing, but the prerequisite knowledge and experience for
this career can seem bewildering. This book is designed
to help you get started.

 At its core, data science is a set of concepts and tech-
niques for extracting meaning and clarity from enor-
mous stored data sets or fast-moving data streams. Data
scientists write programs to interpret these data. The
Python programming language is a favorite tool of data
scientists because it’s easy to read and write, and it pro-

vides several high-value libraries that simplify core tasks like statistics, machine learn-
ing algorithms, and mathematics.

What’s inside

■ Get familiar with the most important data science concepts
■ Use Python to work with data in common—and not-so-common—storage

formats
■ Write algorithms in Python
■ Use Python tools such as iPython to make sense of big data
■ Get hands on experience with the most common Python data science libraries

such as Scikit-learn and StatsModels
■ Use data science in a big data world

This book assumes you’re comfortable reading code in Python or a similar language,
such as C, Ruby, or JavaScript. No prior experience with data science is required.
k.store/books/9781617294181

https://www.manning.com/books/introducing-data-science
https://itbook.store/books/9781617294181

 Probabilistic network models are good for tasks where you must infer multi-

ple internal (or unobserved) states of the world from external observations, or
when you wish to simulate processes for “what-if” scenarios. The following chap-
ter provides an excellent introduction to network models and to the probabilis-
tic reasoning that underlies them. The implementation details may be difficult
to follow if you’re not familiar with the Figaro probabilistic programming lan-
guage, but the motivating examples clearly explain the underlying concepts.
You’ll also get a good idea of the types of decision processes that Figaro can rep-
resent.

Modeling dependencies
with Bayesian and

Markov networks

www.itbook.store/books/9781617294181

https://itbook.store/books/9781617294181

www.itbook.sto
Chapter 5 from Practical Probabilistic Programming
by Avi Pfeffer

Modeling dependencies
with Bayesian and

Markov networks
In chapter 4, you learned about the relationships between probabilistic models and
probabilistic programs, and you also saw the ingredients of a probabilistic model,
which are variables, dependencies, functional forms, and numerical parameters.
This chapter focuses on two modeling frameworks: Bayesian networks and Markov
networks. Each framework is based on a different way of encoding dependencies.

 Dependencies capture relationships between variables. Understanding the kinds
of relationships and how they translate into dependencies in a probabilistic model

This chapter covers
■ Types of relationships among variables in a

probabilistic model and how these
relationships translate into dependencies

■ How to express these various types of
dependencies in Figaro

■ Bayesian networks: models that encode
directed dependencies among variables

■ Markov networks: models that encode
undirected dependencies among variables

■ Practical examples of Bayesian and Markov
networks
133

re/books/9781617294181

https://www.manning.com/books/practical-probabilistic-programming
https://itbook.store/books/9781617294181

134 CHAPTER 5 Modeling dependencies with Bayesian and Markov networks

www.itboo
is one of the most important skills you can acquire for building models. Accordingly,
you’ll learn all about various kinds of relationships and dependencies. In general,
there are two kinds of dependencies between variables: directed dependencies, which
express asymmetric relationships, and undirected dependencies, which turn into sym-
metric relationships. Bayesian networks encode directed dependencies, whereas Markov
networks encode undirected dependencies. You’ll also learn how to extend tradi-
tional Bayesian networks with programming language capabilities to benefit from the
power of probabilistic programming.

 After you understand the material in this chapter, you’ll have a solid knowledge of
the essentials of probabilistic programming. All probabilistic models boil down to a
collection of directed and undirected dependencies. You’ll know when to introduce
a dependency between variables, whether to make it directed or undirected, and, if
it’s directed, what direction it should take. Chapter 6 builds on this knowledge to cre-
ate more-complex models using data structures, and chapter 7 will further extend
your skills with object-oriented modeling.

 This chapter assumes you have a basic knowledge of Figaro, as appears in chap-
ter 2. In particular, you should have familiarity with Chain, which underlies directed
dependencies, and conditions and constraints, which are the basis for undirected
dependencies. You’ll also use the CPD and RichCPD elements that appear in chapter 4.
Don’t worry if you don’t remember these concepts; I’ll remind you of them here when
you see them.

5.1 Modeling dependencies
Probabilistic reasoning is all about using dependencies between variables. Two vari-
ables are dependent if knowledge of one variable provides information about the other
variable. Conversely, if knowing something about one variable tells you nothing about
the other variable, the variables are independent.

 Consider a computer system diagnosis application in which you’re trying to reason
about faults in a printing process. Suppose you have two variables, Printer Power But-
ton On and Printer State. If you observe that the power button is off, you can infer
that the printer state is down. Conversely, if you observe that the printer state is down,
you can infer that the power button might be off. These two variables are clearly
dependent.

 Dependencies are used to model variables that are related in some way. Many
kinds of relationships between variables exist, but only two kinds of dependencies:

■ Directed dependencies go from one variable to the other. Typically, these model a
cause-effect relationship between the variables.

■ Undirected dependencies model relationships between variables where there’s no
obvious direction of influence between them.

The next two subsections describe both kinds of dependencies in detail and give
plenty of examples.
k.store/books/9781617294181

https://itbook.store/books/9781617294181

135Modeling dependencies

www.itbook.
5.1.1 Directed dependencies

Directed dependencies lead from one variable to another and are typically used to
represent cause-effect relationships. For example, the printer’s power button being
off causes the printer to be down, so a direct dependency exists between Printer
Power Button On and Printer State. Figure 5.1 illustrates this dependency, with a
directed edge between the two variables. (Edge is the usual term for an arrow between
two nodes in a graph.) The first variable (in this case, Printer Power Button On) is
called the parent, and the second variable (Printer State) is called the child.

Why does the arrow go from cause to effect? A simple reason is that causes tend to
happen before effects. More deeply, the answer is closely related to the concept of the
generative model explored in chapter 4. Remember, a generative model describes a
process for generating values of all of the variables in your model. Typically, the gener-
ative process simulates a real-world process. If a cause leads to an effect, you want to
generate the value of the cause first, and use that value when you generate the effect.
In our example, if you create a model of a printer, and imagine generating values for
all of the variables in the model, you’ll first generate a value for Printer Power Button
On and then use this value to generate Printer State.

 Now, it bears repeating that the direction of a dependency isn’t necessarily the direction of
reasoning. You can reason from the printer power button being off to the printer state
being down, but you can also reason in the opposite direction: if the printer state is
up, you know for sure that the power button isn’t off. Many people make the mistake
of constructing their models in the direction they intend to reason. In a diagnosis
application, you might observe that the printer is down and try to determine its
causes, so you’d reason from Printer State to Printer Power Button On. You might be
tempted to make the arrow go from Printer State to Printer Power Button On. This is
incorrect. The arrow should express the generative process, which follows the cause-
effect direction.

 I’ve said that directed dependencies typically model cause-effect relationships. In
fact, cause-effect is just one example of a general class of asymmetric relationships
between variables. Let’s have a closer look at various kinds of asymmetric relation-
ships—first, cause-effect relationships, and then other kinds.

Printer State

Printer Power Button On

Figure 5.1 Directed dependency
expressing cause-effect relationship
store/books/9781617294181

https://itbook.store/books/9781617294181

136 CHAPTER 5 Modeling dependencies with Bayesian and Markov networks

www.itboo
VARIETIES OF CAUSE-EFFECT RELATIONSHIPS

Here are some kinds of cause-effect relationships:

■ What happens first to what happens next—The most obvious kind of cause-effect
relationship is between one thing that leads to another thing at a later time. For
example, if someone turns the printer power off, then after that, the printer
will be down. This temporal relationship is such a common characteristic of
cause-effect relationships that you might think all cause-effect relationships
involve time, but I don’t agree with this.

■ Cause-effect of states—Sometimes you can have two variables that represent differ-
ent aspects of the state of the situation at a given point in time. For example,
you might have one variable representing whether the printer power button is
off and another representing whether the printer is down. Both of these are
states that hold at the same moment in time. In this example, the printer power
button being off causes the printer to be down, because it makes the printer
have no power.

■ True value to measurement—Whenever one variable is a measurement of the value
of another variable, you say that the true value is a cause of the measurement.
For example, suppose you have a Power Indicator Lit variable that represents
whether the printer’s power LED is lit. An asymmetric relationship exists from
Printer Power Button On to Power Indicator Lit. Typically, measurements are
produced by sensors, and there may be more than one measurement of the
same value. Also, measurements are usually observed, and you want to reason
from the measurements to the true values, so this is another example of the
direction of the dependencies being different from the direction of reasoning.

■ Parameter to variable that uses the parameter—For example, consider the bias of a
coin, representing the probability that a toss will come out heads, and a toss of
that coin. The toss uses the bias to determine the outcome. It’s clear that the
bias is generated first, and only then the individual toss. And when there are
many tosses of the same coin, they’re all generated after the bias.

ADDITIONAL ASYMMETRIC RELATIONSHIPS

The preceding cases are by far the most important and least ambiguous. If you under-
stand these cases, you’ll be 95% of the way to determining the correct direction of
dependencies. Now let’s go deeper by considering a variety of other relationships that,
although obviously asymmetric, are ambiguous about the direction of dependency.
I’ll list these relationships and then describe a rule of thumb that can help you resolve
the ambiguity.

■ Part to whole—Often, the properties of part of an object lead to properties of
the object as a whole. For example, consider a printer with toner and a paper
feeder. Faults with either the toner or paper feeder, which are parts of the
printer, can lead to faults with the printer as a whole. Other times, properties
of the whole can determine properties of the part. For example, if the printer
k.store/books/9781617294181

https://itbook.store/books/9781617294181

137Modeling dependencies

www.itbook.
as a whole is badly made, both the paper feeder and the toner will likely be
badly made.

■ Specific to general—This one can also go both ways. A user can experience a
printer problem in lots of ways, such as a paper jam or poor print quality. If the
user experiences any of these specific problems, that user will experience the
more general problem of a poor printing experience. In this case, the specific
causes the general. On the other hand, imagine the process of generating an
object. Typically, you generate the general properties of the object before refin-
ing them with specifics. For example, when generating a printer, you might first
decide whether it’s a laser or inkjet printer before generating its individual
properties. Indeed, it doesn’t make sense to generate the specific properties,
which might be relevant for only a particular kind of printer, before you know
what kind of printer it is.

■ Concrete/detailed to abstract/summary—An example of a concrete-abstract rela-
tionship is between a score on a test and a letter grade. Many scores correspond
to the same letter grade. Clearly, the teacher bases the letter grade on the test
score, not the other way around, so the test score causes the letter grade. On
the other hand, consider the process of generating a student and test results.
You might first generate the abstract kind of student (for example, an A student
or B student), and then generate the concrete test score.

Disambiguating cause-effect relationships
As you can see from the preceding examples, although it’s clear that an asymmetric
dependency exists in these cases, teasing out the direction of the dependency can
be tricky. Here’s an idea that can help. Imagine that someone is speaking a sentence
in English to another person, as shown in the following illustration. The speaker has
a certain meaning in mind for the whole sentence. From this meaning, the speaker
generates words. This is a whole-part relationship, from the sentence to its words.
Then the sentence is heard by somebody else. This person puts together the per-
ceived meaning of the sentence from the words, creating a part-whole relationship.

Intended

meaning

Words

Parts

Perceived

meaning

Whole Whole

Communication of a
sentence: the
speaker’s intended
meaning of the whole
sentence generates
the words (parts),
which in turn generate
the hearer’s perceived
meaning of the whole
sentence.
store/books/9781617294181

https://itbook.store/books/9781617294181

138 CHAPTER 5 Modeling dependencies with Bayesian and Markov networks

www.itboo
As I said earlier, if you understand the main cause-effect relationships, you’ll get the
directions right almost all of the time. In the exceptions to this rule, even experienced
modelers can disagree on the appropriate direction of the dependencies. I hope that
the rule of thumb I gave you will provide some guidance to help you build models.

DIRECTED DEPENDENCIES IN FIGARO

Remember the four ingredients of a probabilistic model? They’re variables, depen-
dencies, functional forms, and numerical parameters. Until now, you’ve assumed that
the variables are given and focused on the dependencies. When you want to express
these dependencies in Figaro, you need to provide a functional form and specify
numerical parameters.

 You can express directed dependencies in Figaro in a variety of ways. The general
principle is to use a Chain of some sort as the functional form. Remember that Chain
has two arguments:

■ The parent element
■ A chain function from a value of the parent element to a result element

Chain(parentElement, chainFunction) defines the following generative process: get
a value for the parent from parentElement, then apply chainFunction to obtain
resultElement, and finally get a value from resultElement.

 When expressing a directed dependency by using Chain, the parentElement is,
naturally, the parent. The chain function specifies a probability distribution over the

(continued)

If you look at this example closely, you can see that in the process of making the
sentence, the meaning of the whole sentence is made before the individual words.
But in the process of perceiving the sentence, the meaning of the sentence is per-
ceived after the individual words. This isn’t an ironclad rule, but often when you
make something, first you make the general/abstract/whole thing and then refine
it to produce the specific/concrete/detailed/many-parted thing. When you gener-
ate a printer, you first generate the general class of the whole printer. Then you
generate the specific type of printer, and also detailed information about the com-
ponents of the printer. Similarly, when generating the student, you first generate the
abstract class of the student and then fill in the concrete test score. On the other
hand, when you perceive and report something, you first perceive specific/con-
crete/detailed information about its parts, and then derive and summarize general/
abstract properties about its whole. For example, the user who experiences a spe-
cific printer problem may summarize it in a general way, or a teacher grading a stu-
dent will first observe the test score before reporting the letter grade. So here’s the
rule of thumb:

If you’re modeling the making or definition of properties, dependencies go from
the general, abstract, or whole concept to the specific, concrete, or parts. If
you’re modeling the perception and reporting of properties, dependencies go
from the specific, concrete, or parts to the general, abstract, or whole.
k.store/books/9781617294181

https://itbook.store/books/9781617294181

139Modeling dependencies

Us

Pare
eleme

O
if

C
spec
out
if p

is

e

www.itbook.
child for each value of the parent. Figaro has a lot of constructs that use Chain, so in
many cases you’re using Chain even if it doesn’t look like it.

 Here are some equivalent examples, all expressing that if the printer power button
is off, the printer will definitely be down, but if the power button is on, the printer
could be up or down:

val printerPowerButtonOn = Flip(0.95)

val printerState =
 Chain(printerPowerButtonOn,
 (on: Boolean) =>
 if (on) Select(0.2 -> 'down, 0.8 -> 'up)
 else Constant('down)

val printerState =
 If(printerPowerButtonOn,
 Select(0.2 -> 'down, 0.8 -> 'up),
 Constant('down))

val printerState =
 CPD(printerPowerButtonOn,
 false -> Constant('down),
 true -> Select(0.2 -> 'down, 0.8 -> 'up))

val printerState =
 RichCPD(printerPowerButtonOn,
 OneOf(false) -> Constant('down),
 * -> Select(0.2 -> 'down, 0.8 -> 'up))

As mentioned earlier, one kind of asymmetric relationship is between a parameter
and a variable that depends on the parameter, such as the bias of a coin and a toss of
that coin. Again, this can be expressed using a Chain or using a compound version of
an atomic element. Here are a couple of equivalent examples:

val toss = Chain(bias, (d: Double) => Flip(d))

val toss = Flip(bias)

5.1.2 Undirected dependencies

You’ve seen that directed dependencies can represent a variety of asymmetric rela-
tionships. Undirected dependencies model relationships between variables where
there’s no obvious direction between them. These kinds of relationships are called
symmetric relationships. If you have variables that are correlated, but there’s no obvious

Using Chain

Parent element

Argument to
chain function

Body of chain
functioning If

nt
nt Using CPD

utcome
 parent
is true

Outcome if
parent is false

Parent element

Clause specifying outcome
if parent is falselause

ifying
come
arent
 true

Using RichCPD

Parent
lement

Clause specifying
outcome if the
parent value is in
the set { false }Clause specifying outcome if

parent has any other value
store/books/9781617294181

https://itbook.store/books/9781617294181

140 CHAPTER 5 Modeling dependencies with Bayesian and Markov networks

www.itboo
generative process whereby one variable is generated before the other, an undirected
dependency might be appropriate. Symmetric relationships can arise in two ways:

■ Two effects of the same cause, where the cause isn’t modeled explicitly—For example,
two measurements of the same value, when you don’t have a variable for the
value, or two consequences of the same event, when you don’t have a variable
for the event. Clearly, if you don’t know the underlying value of an event, the
two measurements or consequences are related. Imagine, in the printer sce-
nario, that you have separate variables for the print quality and speed of print-
ing. If you didn’t have a variable representing the state of the printer, these two
variables would be related, because they’re two aspects of printing that might
have the same underlying cause.

You might ask, why don’t we include a variable for the cause in our model?
One possible answer is that the cause is much more complex than the effects
and would be difficult to model accurately. In this chapter, you’ll see an exam-
ple of image reconstruction. The image is a two-dimensional effect of a complex
three-dimensional scene. It might be harder to create a correct probabilistic
model of three-dimensional scenes than to model the relationships between
pixels in the image.

■ Two causes of the same known effect—This one’s interesting. Usually, there’s no
relationship between two causes of the same effect. For example, the paper
feeder status of a printer and the toner level both influence the status of the
printer as a whole, but the paper feeder status and toner level are independent.
But if you learn that the printer isn’t printing well, suddenly the paper feeder
status and toner level become dependent. If you learn that the toner is low, that
might lead you to believe that the reason the print quality is poor is due to low
toner rather than obstructed paper flow. In this example, the overall printer sta-
tus is the effect, and the toner level and paper feeder status are the possible
causes, and the two causes become dependent when the effect is known. This is
an example of an induced dependency, which you’ll learn about in more detail in
section 5.2.3. If you don’t have a variable for the effect, this becomes a symmet-
ric relationship between the two causes. But it’s less usual to leave the common
effect of the two causes out of the model.

EXPRESSING UNDIRECTED DEPENDENCIES IN FIGARO

You can express asymmetric relationships in Figaro in two ways: using constraints and
using conditions. Each has an advantage and a disadvantage. The advantage of the
constraints method is that it’s conceptually simpler. But the numbers that go in the con-
straints are hardcoded and can’t be learned in Figaro because they aren’t accessible to
a learning algorithm. The advantage of the method that uses conditions is that the
numbers can be learned.

 The basic principle behind the two approaches is similar. Section 5.5 describes
how undirected dependencies are encoded in detail, but here’s the short version.
k.store/books/9781617294181

https://itbook.store/books/9781617294181

141Modeling dependencies

www.itbook.
When an undirected dependency exists between two variables, some joint values of
the two variables are preferred to others. This can be achieved by assigning weights to
the different joint values. A constraint encodes the weights by specifying a function
from a joint value of the two variables to a real number representing the weight of that
value. In the conditions approach, essentially the same information is encoded but in
a more complex way.

 For example, let’s encode a relationship between two adjacent pixels in an image.
These relationships have an “all else being equal” nature. For example, you might
believe that, all else being equal, the two pixels are three times as likely to have the
same color as they are to have different colors. In actuality, many relationships may
affect the colors of the two pixels, so it’s not actually three times as likely that they
have the same color.

 Here’s how to express this relationship in Figaro using the constraints approach.
Let’s call the two pixel colors color1 and color2. To keep the example simple, you’ll
assume that colors are Boolean. Remember that a constraint is a function from the
value of an element to a Double. You need to create an element that represents the
pair of color1 and color2 so you can specify a constraint on the pair. You can do this
as follows:

import com.cra.figaro.library.compound.^^
val pair = ^^(color1, color2)

Now you have to define the function that implements the constraint:

def sameColorConstraint(pair: (Boolean, Boolean)) =
 if (pair._1 == pair._2) 0.3; else 0.1

Finally, you apply the constraint to the pair of colors:

pair.setConstraint(sameColorConstraint _)

Figaro interprets the constraint exactly how you’d expect. All else being equal, a state
in which the two components of the pair are equal (in other words, both colors are
equal) will be three times as likely as one where they’re unequal. These constraints
come together in defining the probability distribution in the correct way, as defined in
section 5.5. Unfortunately, however, the numbers 0.3 and 0.1 are buried inside the
constraint function, so they can’t be learned from data.

 For the conditions approach, I’ll show you how it works in code and then explain
why it’s correct. First, you define an auxiliary Boolean element, which you’ll call same-
ColorConstraintValue. You then define it so that the probability that it comes out

^^ is the Figaro
pair constructor.

The test checks whether
the first component of
the pair equals the
second component.

The underscore indicates that you want
the function itself and not to apply it.
store/books/9781617294181

https://itbook.store/books/9781617294181

142 CHAPTER 5 Modeling dependencies with Bayesian and Markov networks

www.itboo
true is equal to the value of the constraint. Finally, you’ll add a condition that says
that this auxiliary element must be true. This can be achieved using an observation:

val sameColorConstraintValue =
 Chain(color1, color2,
 (b1: Boolean, b2: Boolean) =>
 if (b1 == b2) Flip(0.3); else Flip(0.1))
sameColorConstraintValue.observe(true)

This code is equivalent to the constraints version. To see this, realize that a condition
causes any value that violates the condition to have probability 0; otherwise, it has
probability 1. The overall probability of any state is obtained by combining the proba-
bilities resulting from the definition of elements and from conditions or constraints.
For example, suppose that the two colors are equal. Using the definition of Chain,
sameColorConstraintValue will come out true with probability 0.3 and false with
probability 0.7. If sameColorConstraintValue comes out true, the condition will
have probability 1, whereas if it’s false, the condition will have probability 0. There-
fore, the combined probability of the condition is (0.3 × 1) + (0.7 × 0) = 0.3. Similarly,
if the two colors are unequal, the combined probability is (0.1 × 1) + (0.9 × 0) = 0.1.
So you see that the colors being the same is three times as likely, all else being equal,
as the colors being different. This is exactly the same result as the one you got with
the constraint.

 This construction using conditions is general enough to cover all asymmetric rela-
tionships. The advantage of this approach, as you can see, is that the numbers 0.3 and
0.1 are inside Flip elements, so you could make them depend on other aspects of the
model. For example, suppose you wanted to learn the degree to which two adjacent
pixels are more likely to be the same color than different. You can create an element,
perhaps defined using a beta distribution, to represent the weight. You can then use
this element inside the Flip instead of 0.3. Then, given data, you can learn a distribu-
tion over the value of the weight.

5.1.3 Direct and indirect dependencies

Before you move on to look at Bayesian and Markov networks, I want to make an
important point. A typical probabilistic model has many pairs of variables, and so
knowledge of one variable changes your beliefs about the other. By definition, these
are all cases of a dependency between variables. But most of these dependencies are
indirect: they don’t go directly between two variables but instead go through some
intermediary variables. To be precise, the reason knowledge about the first variable
changes your beliefs about the second is because knowledge about the first variable
changes your beliefs about the intermediary variables, which in turn changes your
beliefs about the second variable.

 For example, look at figure 5.2, which has three variables: Printer Power Button
On, Printer State, and Number of Printed Pages. Clearly, Printer Power Button On
and Number of Printed Pages have a dependency. If you know that the power button
k.store/books/9781617294181

https://itbook.store/books/9781617294181

143Modeling dependencies

www.itbook.
is off, you’ll believe that the number of printed pages is zero. But in the figure, the
dependency from Printer Power Button On to Number of Printed Pages passes
through an intermediary variable, which is Printer State. This means that the reason
knowledge about Printer Power Button On changes your beliefs about Number of
Printed Pages is that it first changes your beliefs about Printer State, and the changed
beliefs about Printer State in turn change your beliefs about Number of Printed
Pages. If you know the power button is off, that tells you that the printer is down,
which leads you to believe that no pages will be printed.

TERMINOLOGY ALERT Earlier I talked about directed and undirected depen-
dencies, and now I’m talking about direct and indirect dependencies.
Although the names are similar, they have different meanings. A direct depen-
dency goes directly between two variables; its antonym is indirect, which goes
through intermediary variables. A directed dependency has a direction from
one variable to another, as opposed to an undirected dependency that has no
direction. You can have a direct undirected dependency and an indirect
directed dependency.

Let’s look at another example, this time involving undirected dependencies. Earlier, I
gave an example of adjacent pixels in an image that have an undirected dependency
between them. What about nonadjacent pixels? Consider the example in figure 5.3. If
you know that pixel 11 is red, that will lead you to believe that pixel 12 is likely to be
red, which will in turn lead you to believe that pixel 13 is likely to be red. This is an
obvious example of an indirect dependency, because knowledge about pixel 11 influ-
ences beliefs about pixel 13 only through the intermediary variable pixel 12.

 It’s important to recognize which dependencies in your domain are direct and
which are indirect. In both Bayesian and Markov networks, you create a graph with

Printer State

Printer Power Button On

Number of Printed Pages

Figure 5.2 Printer Power Button On
has an indirect relationship with
Number of Printed Pages that goes
through the intermediary variable
Printer State.

Pixel 12 Pixel 13Pixel 11

Figure 5.3 Pixel 11 has an indirect relationship with pixel 13
that goes through the intermediary variable pixel 12.
store/books/9781617294181

https://itbook.store/books/9781617294181

144 CHAPTER 5 Modeling dependencies with Bayesian and Markov networks

www.itboo
edges between variables to represent the dependencies. In a Bayesian network, these
are directed edges, whereas in a Markov network, they’re undirected. You draw an
edge only for direct dependencies. If two variables have only an indirect dependency,
you don’t draw an edge between them.

 Next, you’ll look at Bayesian networks, which are models that represent directed
dependencies, and then at Markov networks, which are models that represent undi-
rected dependencies. I do want to point out, however, that just because there are sep-
arate modeling frameworks for directed and undirected dependencies doesn’t mean
you have to choose one or the other for your model. Other frameworks combine both
kinds of dependencies in a single model. It’s easy to do that in a probabilistic pro-
gram: you use the generative definition of elements to encode directed dependencies,
and add any constraints you want to express undirected dependencies.

5.2 Using Bayesian networks
You’ve seen that encoding relationships between variables is essential to probabilistic
modeling. In this section, you’ll learn about Bayesian networks, which are the stan-
dard framework for encoding asymmetric relationships using directed dependencies.
You’ve already seen Bayesian networks in chapter 4, in the context of the Rembrandt
example. This section provides a more thorough treatment, including a full definition
and an explanation of the reasoning patterns you can use.

5.2.1 Bayesian networks defined

A Bayesian network is a representation of a probabilistic model consisting of three
components:

■ A set of variables with their corresponding domains
■ A directed acyclic graph in which each variable is a node
■ For each variable, a conditional probability distribution (CPD) over the vari-

able, given its parents

SET OF VARIABLES WITH CORRESPONDING DOMAINS

The example in figure 5.4 shows three variables: Subject, Size, and Brightness. The
domain of a variable specifies which values are possible for that variable. The domain
of Subject is {People, Landscape}, the domain of Size is {Small, Medium, Large}, and
the domain of Brightness is {Dark, Bright}.

DIRECTED ACYCLIC GRAPH
Directed means that each edge in the graph has a direction; it goes from one variable to
another. The first variable is called the parent, and the second variable is called the
child. In figure 5.4 Subject is a parent of both Size and Brightness. The word acyclic
means that there are no cycles in the graph: there are no directed cycles that follow the
direction of the arrows; you can’t start at a node, follow the arrows, and end up at
the same node. But you can have an undirected cycle that would be a cycle if you ignored
k.store/books/9781617294181

https://itbook.store/books/9781617294181

145Using Bayesian networks

www.itbook.
the directions of the edges. This concept is illustrated in figure 5.5. The graph on the
left has a directed cycle A-B-D-C-A. In the graph on the right, the cycle A-B-D-C-A
sometimes runs counter to the direction of the arrows, so it’s an undirected cycle.
Therefore, the graph on the left isn’t allowed, but the graph on the right is allowed.
This point is important, because later, when you allow undirected edges to express
symmetric dependencies, you’ll be allowed to have undirected cycles.

CONDITIONAL PROBABILITY DISTRIBUTION OVER THE VARIABLE
A CPD specifies a probability distribution over the child variable, given the values of its
parents. This CPD considers every possible assignment of values to the parents, when
the value of a parent can be any value in its domain. For each assignment, it defines a

BrightnessSize

Subject

Probability values for Subject

Probability values for Size,
given Subject

Probability values for Brightness,
given Subject

0.25 0.5 0.25

People Landscape

Subject

0.8 0.2

People

Small

Subject Size

Landscape

0.25

Medium

0.25

Large

0.5

0.3 0.7

People

Dark

Subject Brightness

Landscape

0.8

Bright

0.2

Figure 5.4 A three-node Bayesian network

A

C

D

B

Directed cycle

A

C

D

B

No directed cycle

Figure 5.5 A directed cycle is a cycle that follows the arrows and
ends up where it started.
store/books/9781617294181

https://itbook.store/books/9781617294181

146 CHAPTER 5 Modeling dependencies with Bayesian and Markov networks

www.itboo
probability distribution over the child. In figure 5.6, each variable has a CPD. Subject
is a root of the network, so it has no parents. When a variable has no parents, the CPD
specifies a single probability distribution over the variable. In this example, Subject
takes the value People with probability 0.8 and Landscape with probability 0.2. Size has a
parent, which is Subject, so its CPD has a row for each value of Subject. The CPD says that
when Subject has value People, the distribution over Size makes Size have value Small
with probability 0.25, Medium with probability 0.25, and Large with probability 0.5.
When Subject has value Landscape, Size has a different distribution. Finally, Brightness
also has parent Subject, and its CPD also has a row for each value of Subject.

5.2.2 How a Bayesian network defines a probability distribution

That’s all there is to the definition of Bayesian networks. Now, let’s see how a Bayesian
network defines a probability distribution. The first thing you need to do is define the
possible worlds. For a Bayesian network, a possible world consists of an assignment of
values to each of the variables, making sure the value of each variable is in its domain.
For example, <Subject = People, Size = Small, Brightness = Bright> is a possible world.

 Next, you define the probability of a possible world. This is simple. All you have to
do is identify the entry in the CPD of each variable that matches the values of the
parents and child in the possible world. The process is illustrated in figure 5.6. For

BrightnessSize

Subject

People

P(Subject = People, Size = Small, Brightness = Bright) = 0.8 x 0.25 x 0.2 = 0.04

P(Size = Small /
Subject = People)

Small Bright

P(Brightness = Bright /
Subject = People)

0.25 0.5 0.25

People Landscape

Subject

0.8 0.2

People

Small

Subject Size

Landscape

0.25

Medium

0.25

Large

0.5

0.3 0.7

People

Dark

Subject Brightness

Landscape

0.8

Bright

0.2

P(Subject + People)

Figure 5.6 Computing the probability of a possible world by multiplying the appropriate
entries in each CPD
k.store/books/9781617294181

https://itbook.store/books/9781617294181

147Using Bayesian networks

www.itbook.
example, for the possible world <Subject = People, Size = Small, Brightness = Bright>,
the entry for Subject is 0.8, which is from the column labeled Subject. For Size, you
look at the row corresponding to Subject = People and the column corresponding to
Size = Small and get the entry 0.25. Finally, for Brightness, you again look at the row
corresponding to Subject = People and this time take the column labeled Bright to get
the entry 0.2. Finally, you multiply all these entries together to get the probability
of the possible world, which is 0.8 × 0.25 × 0.2 = 0.04.

 If you go through this process for every possible world, the probabilities will add
up to 1, just as they’re supposed to. This is always the case for a Bayesian network. So
you’ve seen how a Bayesian network defines a valid probability distribution. Now
that you understand exactly what a Bayesian network consists of and what it means,
let’s see how to use one to derive beliefs about some variables, given knowledge of
other variables.

5.2.3 Reasoning with Bayesian networks

A Bayesian network encodes a lot of independencies that hold between variables.
Recall that independence between two variables means that learning something about
one variable doesn’t tell you anything new about the other variable. From the preced-
ing example, you can see that Number of Printed Pages and Printer Power Button On
aren’t independent. When you learn that no pages were printed, that reduces the
probability that the power button is on.

 Conditional independence is similar. Two variables are conditionally indepen-
dent given a third variable if, after the third variable is known, learning something
about the first variable doesn’t tell you anything new about the second. A criterion
called d-separation determines when two variables in a Bayesian network are condi-
tionally independent of a third set of variables. The criterion is a little involved, so I
won’t provide a formal definition. Instead, I’ll describe the basic principles and
show you a few examples.

 The basic idea is that reasoning flows along a path from one variable to another. In
the example of figure 5.4, reasoning can flow from Size to Brightness along the path
Size-Subject-Brightness. You saw a glimpse of this idea in section 5.1.3 on direct and
indirect dependencies. In an indirect dependency, reasoning flows from one variable
to another variable via other intermediary variables. In this example, Subject is the
intermediary variable between Size and Brightness. In a Bayesian network, reasoning
can flow along a path as long as the path isn’t blocked at some variable.

 In most cases, a path is blocked at a variable if the variable is observed. So if Sub-
ject is observed, the path Size-Subject-Brightness is blocked. This means that if you
observe Size, it won’t change your beliefs about Brightness if Subject is also observed.
Another way of saying this is that Size is conditionally independent of Brightness,
given Subject. In our model, the painter’s choice of subject determines the size and
the brightness, but after choosing the subject, the size and brightness are generated
independently.
store/books/9781617294181

https://itbook.store/books/9781617294181

148 CHAPTER 5 Modeling dependencies with Bayesian and Markov networks

www.itboo
CONVERGING ARROWS AND INDUCED DEPENDENCIES

One other case may seem counterintuitive at first. In this case, a path is blocked at a
variable if the variable is unobserved, and becomes unblocked if the variable is
observed. I’ll illustrate this situation by extending our example, as shown in figure 5.7.
You have a new variable called Material, which could be oil or watercolor or some-
thing else. Naturally, Material is a cause of Brightness (perhaps oil paintings are brighter
than watercolors), so the network has a directed edge from Material to Brightness.
Here, you have two parents of the same child. This is called a converging arrows pattern,
because edges from Subject and Material converge at Brightness.

Now, let’s think about reasoning between Subject and Material. According to the
model, Subject and Material are generated independently. So this is true:

(1) Subject and Material are independent when nothing is observed.

But what happens when you observe that the painting is bright? According to our
model, landscapes tend to be brighter than people paintings. After observing that the
painting is bright, you’ll infer that the painting is more likely to be a landscape. Let’s
say you then observe that the painting is an oil painting, which paintings also tend to
be bright. This observation provides an alternative explanation of the brightness of
our painting. Therefore, the probability that the painting is a landscape is discounted
somewhat compared to what it was after you observed that the painting is bright but
before you observed that it’s an oil painting. You can see that reasoning is flowing
from Material to Subject along the path Material-Brightness-Subject. So you get the
following statement:

(2) Subject and Material aren’t conditionally independent, given Brightness.

What you have here is the opposite pattern from the usual. You have a path that’s
blocked when the intermediary variable is unobserved, and becomes unblocked when
the variable is observed. This kind of situation is called an induced dependency—a
dependency between two variables that’s induced by observing a third variable. Any
converging arrows pattern in a Bayesian network can lead to an induced dependency.

 A path between two variables can include both ordinary patterns and converging
arrows. Reasoning flows along the path only if it’s not blocked at any node on the

Brightness

Converging

arrows

Size

Subject Material

Figure 5.7 Extended painting example, including converging arrows between two parents of
the same child
k.store/books/9781617294181

https://itbook.store/books/9781617294181

149Exploring a Bayesian network example

www.itbook.
path. Figure 5.8 shows four examples for the path Size-Subject-Brightness-Material. In
the top-left example, neither Subject nor Brightness is observed, and the path is
blocked at Brightness because it has converging arrows. In the next example, on the
right, Subject is now observed, so the path is blocked at both Subject and Brightness.
In the next example, on the left, Subject is unobserved and Brightness is observed,
which is precisely the condition required for the path not to be blocked at either Sub-
ject or Brightness. Finally, in the bottom right, Subject is observed in addition to
Brightness, so the path is blocked there.

5.3 Exploring a Bayesian network example
Now that you’ve learned the basic concepts of Bayesian networks, let’s look at an
example of troubleshooting a printer problem. I’ll first show you how to design the
network and then show you all of the ways of reasoning with the network. I’ll save a
discussion of learning the parameters of the network for chapter 12, where you’ll
explore a useful design pattern for parameter learning.

Brightness

Blocked at

Brightness

Size

Subject Material

Brightness

Blocked at

Subject and

Brightness

Size

Subject Material

Brightness

Not blocked

Blocked at

Subject

Size

Subject Material

BrightnessSize

Subject Material

Figure 5.8 Examples of blocked and unblocked paths that combine an ordinary pattern with a converging arrows
pattern. Each figure shows the path from Size to Material, with Subject and Brightness either unobserved or
observed.
store/books/9781617294181

https://itbook.store/books/9781617294181

150 CHAPTER 5 Modeling dependencies with Bayesian and Markov networks

www.itboo
5.3.1 Designing a computer system diagnosis model

Imagine that you’re designing a help desk application for technical support. You want
to help the tech support person identify the causes of faults as quickly as possible. You
can use a probabilistic reasoning system for this application—given evidence, consist-
ing of reports from the user and diagnostic tests, you want to determine the internal
state of the system. For this application, it’s natural to use a Bayesian network to repre-
sent the probabilistic model.

 When you design a Bayesian network, you typically go through three steps: choos-
ing the variables and their corresponding domains, specifying the network structure,
and encoding the CPDs. You’ll see how to do this in Figaro.

 In practice, you don’t usually go through all steps in a linear fashion, choosing all
of the variables, building the entire network structure, and then writing down the
CPDs. Usually, you’ll build up the network a bit at a time, refining it as you go. You’ll
take that approach here. First, you’ll build a network for a general print fault model
and then drill down into a more detailed model of the printer.

GENERAL PRINT FAULT MODEL: VARIABLES

You want to model possible reports from the user, the faults that might be involved,
and system factors that might lead to those faults. You’ll introduce variables for all
these things.

 You start with a Print Result Summary. This represents the user’s overall experi-
ence of the print result at a high level of abstraction. When the user first calls the help
desk, that user may provide only a high-level summary like this. Three results are pos-
sible: (1) printing happens perfectly (you’ll label this excellent); (2) printing hap-
pens, but isn’t quite right (poor); (3) no printing happens at all (none).

 Next, you consider various concrete aspects of the print result. These are Number
of Printed Pages, which could be zero, some of the pages, or all of the pages; Prints
Quickly, a Boolean variable indicating whether printing happens in a reasonable time;
and Good Print Quality, another Boolean variable. One reason for modeling each of
these aspects individually is that they differentiate between different faults. For exam-
ple, if no pages print, it might be because the network is down. But if some but not all
of the pages print, the problem is less likely to be the network and more likely to be
user error.

 So you consider all elements of the system that might influence the printing result.
These include the Printer State, which could be good, poor, or out; the Software State,
which could be correct, glitchy, or crashed; the Network State, which could be up,
intermittent, or down; and User Command Correct, which is a Boolean variable.

GENERAL PRINT FAULT MODEL: NETWORK STRUCTURE

Considering the variables you’ve defined, there are three groups: the abstract Print
Result Summary, the various concrete aspects of the print result, and the system states
k.store/books/9781617294181

https://itbook.store/books/9781617294181

151Exploring a Bayesian network example

www.itbook.
that influence the print result. Accordingly, it makes sense to design the network in
three layers. What should be the order of the layers?

 Cause-effect relationships exist between the system state variables and concrete
print result variables. For example, the Network State being down is a cause of a fail-
ure to Print Quickly. In addition, concrete-abstract relationships exist between the
individual print result variables and the overall Print Result Summary. In section 5.1.1,
I said that these relationships could go in either direction. In our application,
you’re modeling the user’s experience and reporting of the print result, so accord-
ing to the rule of thumb I introduced there, the right direction is to go from the
concrete print result variables to the abstract summary. So the order of layers in our
network is (1) system state variables, (2) concrete print result variables, (3) Print
Result Summary.

 The network structure is shown in figure 5.9. You can see the three layers, but
there’s not always an edge from every variable in one layer to variables in the next
layer. This is because some of the print result variables depend on the state of only
some of the system components. For example, whether the print quality is good
depends on the state of the printer but not on the network. Likewise, the speed of
printing according to our model depends only on the network and the software.
Whether these statements are correct is up for debate; the main point is that in any
application, arguments can be made to remove some of the edges. The benefit of
removing edges is smaller CPDs.

GENERAL PRINT FAULT MODEL: CPDS

I’ll show you the CPD design through Figaro code, making sure to explain the most
interesting items. Section 5.1.1 showed you various ways CPDs can be defined in
Figaro. You’ll use a variety of them here.

User command correct

Number of printed pages Prints quickly Good print quality

Print Result Summary

Network state Software state Printer state

Figure 5.9 Network structure for the general print fault part of our computer system diagnosis model
store/books/9781617294181

https://itbook.store/books/9781617294181

152 CHAPTER 5 Modeling dependencies with Bayesian and Markov networks

co
from
det
pr
m

co

es
o

ickly
in to
t the
ncy
ork
ware

y

www.itboo
val printerState = …

val softwareState =
 Select(0.8 -> 'correct, 0.15 -> 'glitchy, 0.05 -> 'crashed)
val networkState =
 Select(0.7 -> 'up, 0.2 -> 'intermittent, 0.1 -> 'down)
val userCommandCorrect =
 Flip(0.65)

val numPrintedPages =
 RichCPD(userCommandCorrect, networkState,
 softwareState, printerState,
 (*, *, *, OneOf('out)) -> Constant('zero),
 (*, *, OneOf('crashed), *) -> Constant('zero),
 (*, OneOf('down), *, *) -> Constant('zero),
 (OneOf(false), *, *, *) ->
 Select(0.3 -> 'zero, 0.6 -> 'some, 0.1 -> 'all),
 (OneOf(true), *, *, *) ->
 Select(0.01 -> 'zero, 0.01 -> 'some, 0.98 -> 'all))

val printsQuickly =
 Chain(networkState, softwareState,
 (network: Symbol, software: Symbol) =>
 if (network == 'down || software == 'crashed)
 Constant(false)
 else if (network == 'intermittent || software == 'glitchy)
 Flip(0.5)
 else Flip(0.9))

val goodPrintQuality =
 CPD(printerState,
 'good -> Flip(0.95),
 'poor -> Flip(0.3),
 'out -> Constant(false))

val printResultSummary =
 Apply(numPrintedPages, printsQuickly, goodPrintQuality,
 (pages: Symbol, quickly: Boolean, quality: Boolean) =>
 if (pages == 'zero) 'none
 else if (pages == 'some || !quickly || !quality) 'poor
 else 'excellent)

This code uses several techniques to represent the probabilistic dependence of a child
on its parents:

■ numPrintedPages uses RichCPD, which implements the following logic: If the
printer state is out, or the network state is down, or the software is crashed,
zero pages will be printed, regardless of the state of other parents. Otherwise,
if the user issues the wrong command, it’s unlikely all of the pages will be

Listing 5.1 Implementing the general print fault model in Figaro

This
mes
 the

ailed
inter
odel

ming
next.

For root
variables, we
have atomic CPDs
like Select or Flip.

numPrintedPag
uses RichCPD t
represent the
dependency on
the user
command and
the network,
software, and
printer states.

printsQu
uses Cha
represen
depende
on netw
and soft
states.

goodPrintQuality uses a
simpleCPD to represent
the dependency on the
printer state.

Because it’s full
determined by
its parents,
printResult-
Summary uses
Apply.
k.store/books/9781617294181

https://itbook.store/books/9781617294181

153Exploring a Bayesian network example

www.itbook.
printed, but if the user issues the right command, it’s highly likely that all
pages will be printed.

■ printsQuickly uses Chain to implement the following logic: If the network is
down or software is crashed, it definitely won’t print quickly. Otherwise, if either
the network is intermittent or the software is glitchy, printing quickly is a toss-
up. If both the network and software are in good states, it will usually print
quickly (but not guaranteed).

■ goodPrintQuality uses a simple CPD. If the printer is out, there definitely won’t
be good-quality printing. If the printer is in a poor state, there probably won’t
be good-quality printing. Even if the printer is in a good state, good-quality
printing isn’t guaranteed (because that’s the way printers are).

■ printSummary is a deterministic variable: It’s fully determined by its parents
without any uncertainty. You can use Apply instead of Chain for a determinis-
tic variable.

DETAILED PRINTER MODEL

This section goes through the detailed printer model more quickly, because many of
the principles are the same. The network structure is shown in figure 5.10. Three fac-
tors influence the printer state: Paper Flow, Toner Level, and Printer Power Button
On. The model adds a new kind of variable, which you haven’t seen, an indicator or
measurement. Paper Jam Indicator On is a measurement of the Paper Flow, and Toner
Low Indicator On is a measurement of the Toner Level. As discussed in section 5.1.1,
the relationship between a true value and its measurement is a kind of cause-effect
relationship, so you have an edge from Paper Flow to Paper Jam Indicator On and
from Toner Level to Toner Low Indicator On.

 Here’s the code defining the CPDs, which is mostly straightforward.

Paper Jam Indicator On Toner Low Indicator On

Printer Power Button OnPaper Flow

Printer State

Toner Level

Figure 5.10 Network structure for detailed printer model
store/books/9781617294181

https://itbook.store/books/9781617294181

154 CHAPTER 5 Modeling dependencies with Bayesian and Markov networks

www.itboo
 val printerPowerButtonOn = Flip(0.95)
 val tonerLevel = Select(0.7 -> 'high, 0.2 -> 'low, 0.1 -> 'out)
 val tonerLowIndicatorOn =
 If(printerPowerButtonOn,
 CPD(paperFlow,
 'high -> Flip(0.2),
 'low -> Flip(0.6),
 'out -> Flip(0.99)),
 Constant(false))
 val paperFlow = Select(0.6 -> 'smooth, 0.2 -> 'uneven, 0.2 -> 'jammed)

 val paperJamIndicatorOn =
 If(printerPowerButtonOn,
 CPD(tonerLevel,
 'high -> Flip(0.1),
 'low -> Flip(0.3),
 'out -> Flip(0.99)),
 Constant(false))

 val printerState =
 Apply(printerPowerButtonOn, tonerLevel, paperFlow,
 (power: Boolean, toner: Symbol, paper: Symbol) => {
 if (power) {
 if (toner == 'high && paper == 'smooth) 'good
 else if (toner == 'out || paper == 'out) 'out
 else 'poor
 } else 'out
 })

To summarize the example, the full Bayesian network structure is shown in figure 5.11.
You can also see the entire program in the book’s code under chap05/PrinterProb-
lem.scala.

5.3.2 Reasoning with the computer system diagnosis model

This section shows how to reason with the computer system diagnosis model you just
built. The Figaro mechanics of reasoning are simple, but the reasoning patterns you
get out of it are interesting and illustrate the concepts introduced in section 5.2.3. All
of the reasoning patterns in this section are divided into separate steps in the code for
the chapter. Comment out the steps you don’t want to execute, to highlight each step
as it’s presented.

QUERYING A PRIOR PROBABILITY

First, let’s query the probability that the printer power button is on, without any evi-
dence. This is the prior probability. You can use the following code:

val answerWithNoEvidence =
 VariableElimination.probability(printerPowerButtonOn, true)
println("Prior probability the printer power button is on = " +
 answerWithNoEvidence)

Listing 5.2 Detailed printer model in Figaro

Recall that a single-quote
character ' indicates the

Scala Symbol type.

A CPD nested inside an If. If printer
power button is on, toner low
indicator depends on toner level. If
power button is off, toner indicator
will be off because there’s no power,
regardless of the toner level.

Printer state is
a deterministic
summary of
the factors that
make it up.

Compute
P(Printer
Power Button
On = true)
k.store/books/9781617294181

https://itbook.store/books/9781617294181

155Exploring a Bayesian network example

inter
 On
t
r)

www.itbook.
This prints the following result:

Prior probability the printer power button is on = 0.95

If you look back at the model, you’ll see that printerPowerButtonOn is defined using
the following line:

val printerPowerButtonOn = Flip(0.95)

You can see that the answer to the query is exactly what you’d get if you ignored the
entire model except for this definition. This is an example of a general rule: the net-
work downstream from a variable is relevant to the variable only if it has evidence. In
particular, for prior probabilities, there’s no evidence, so you don’t care about the
downstream network.

QUERYING WITH EVIDENCE

What happens if you introduce evidence? Let’s query the model for the probability
that the printer power button is on, given that the print result is poor, implying there
was some result, but it wasn’t what the user wanted. You can use the following code:

printResultSummary.observe('poor)
val answerIfPrintResultPoor =
 VariableElimination.probability(printerPowerButtonOn, true)
println("Probability the printer power button is on given a poor "
 + "result = " + answerIfPrintResultPoor)

Paper Jam Indicator On Toner Low Indicator On

Printer Power Button OnPaper Flow Toner Level

User Command Correct

Number of Printed Pages Prints Quality Good Print Quality

Print Result Summary

Network State Software State Printer State

Figure 5.11 The full network for the computer system diagnosis example

Compute P(Pr
Power Button
= true | Prin
Result = poo
store/books/9781617294181

https://itbook.store/books/9781617294181

156 CHAPTER 5 Modeling dependencies with Bayesian and Markov networks

nter
On
er
)

www.itboo
This prints the following result:

Probability the printer power button is on given a poor result = 1.0

This might be surprising! The probability is higher than if you didn’t have any evi-
dence about printing. If you think about the model, you can understand why. A poor
printing result can happen only if at least some of the pages are printed, which won’t
be the case if the power is off. Therefore, the probability the power is on is 1.

 Now let’s query with the evidence that nothing is printed:

printResultSummary.observe('none)
val answerIfPrintResultNone =
 VariableElimination.probability(printerPowerButtonOn, true)
println("Probability the printer power button is on given empty "
 + "result = " + answerIfPrintResultNone)

Now the result is as follows:

Probability the printer power button is on given empty result =
0.8573402523786461

This is as you expect. The power button being off is a good explanation for an empty
print result, so its probability increases based on the evidence.

INDEPENDENCE AND BLOCKING

Section 5.2.3 introduced the concept of a blocked path and the relationship of this
concept to conditional independence. This concept can be illustrated with three vari-
ables: Print Result Summary, Printer Power Button On, and Printer State. In figure 5.11,
you see that the path from Printer Power Button On to Print Result Summary goes
through Printer State. Because this isn’t a converging arrows pattern, the path is
blocked if Printer State is observed. Indeed, this is the case, as you’ll see now:

printResultSummary.unobserve()
printerState.observe('out)
val answerIfPrinterStateOut =
 VariableElimination.probability(printerPowerButtonOn, true)
println("Probability the printer power button is on given " +
 "out printer state = " + answerIfPrinterStateOut)

printResultSummary.observe('none)
val answerIfPrinterStateOutAndResultNone =
 VariableElimination.probability(printerPowerButtonOn, true)
println("Probability the printer power button is on given " +
 "out printer state and empty result = " +
 answerIfPrinterStateOutAndResultNone)

This prints the following:

Probability the printer power button is on given out printer state =
0.6551724137931032
Probability the printer power button is on given out printer state and empty
result = 0.6551724137931033

Compute P(Pri
Power Button
= true | Print
Result = none

Compute P(Printer
Power Button On =
true | Printer
State = out)

Compute P(Printer
Power Button On =
true | Printer State
= out, Print Result
Summary = none)
k.store/books/9781617294181

https://itbook.store/books/9781617294181

157Exploring a Bayesian network example

 State
 Toner
ator
e)

www.itbook.
You can see that learning that the print result is empty doesn’t change the probability
that the printer power button is on, after you already know that the printer state is
out. This is because Print Result Summary is conditionally independent from Printer
Power Button On, given Printer State.

REASONING BETWEEN DIFFERENT EFFECTS OF THE SAME CAUSE

All of the reasoning paths you’ve seen so far have gone straight up the network. You
can also combine both directions when reasoning. It’s easy to see this when you con-
sider what a measurement tells you about the value it’s measuring, and what that can
inform in turn. In our example, Toner Low Indicator On is a child of Toner Level,
and Toner Level is a parent of Printer State. If the toner level is low, it’s less likely that
the printer state is good. Meanwhile, the toner low indicator being on is a sign that
the toner level is low. It stands to reason that if you observe that the toner low indica-
tor is on, it should reduce the probability that the printer state is good. You can see
that this is the case with the following code:

printResultSummary.unobserve()
printerState.unobserve()
val printerStateGoodPrior =
 VariableElimination.probability(printerState, 'good)
println("Prior probability the printer state is good = "
 + printerStateGoodPrior)

tonerLowIndicatorOn.observe(true)
val printerStateGoodGivenTonerLowIndicatorOn =
 VariableElimination.probability(printerState, 'good)
println("Probability printer state is good given low toner "
 + "indicator = " + printerStateGoodGivenTonerLowIndicatorOn)

This prints the following:

Prior probability the printer state is good = 0.39899999999999997
Probability the printer state is good given low toner indicator =
0.23398328690807796

You can see that the probability that the printer state is good decreases when you
observe the low toner indicator, as expected.

REASONING BETWEEN DIFFERENT CAUSES OF THE SAME EFFECT: INDUCED DEPENDENCIES

As discussed in section 5.2.3, reasoning between different causes of the same effect is
different from other kinds of reasoning, because it involves converging arrows, which
lead to an induced dependency. For an example, let’s use Software State and Network
State, which are both parents of Prints Quickly. First, you’ll get the prior probability
that the software state is correct:

tonerLowIndicatorOn.unobserve()
val softwareStateCorrectPrior =
 VariableElimination.probability(softwareState, 'correct)
println("Prior probability the software state is correct = " +
 softwareStateCorrectPrior)

Compute
P(Printer
State = good)

Compute
P(Printer
= good |
Low Indic
On = tru

Compute
P(Software
State =
correct)
store/books/9781617294181

https://itbook.store/books/9781617294181

158 CHAPTER 5 Modeling dependencies with Bayesian and Markov networks

re

up)

P

P

www.itboo
This prints the following:

Prior probability the software state is correct = 0.8

Next, you’ll observe that the network is up and query the software state again:

networkState.observe('up)
val softwareStateCorrectGivenNetworkUp =
 VariableElimination.probability(softwareState, 'correct)
println("Probability software state is correct given network up = " +
 softwareStateCorrectGivenNetworkUp)

This prints the following:

Probability software state is correct given network up = 0.8

The probability hasn’t changed, even though there’s a clear path from Network State
to Software State via Prints Quickly! This shows that in general, two causes of the same
effect are independent. This is intuitively correct: the network being up has no bear-
ing on whether the software state is correct.

 Now, if you know that the printer isn’t printing quickly, that’s different. If you see
the printer printing slowly, our model provides two possible explanations: a network
problem or a software problem. If you observe that the network is up, it must be a soft-
ware problem. You can see this with the following code:

 networkState.unobserve()
 printsQuickly.observe(false)
 val softwareStateCorrectGivenPrintsSlowly =
 VariableElimination.probability(softwareState, 'correct)
 println("Probability software state is correct given prints "
 + "slowly = " + softwareStateCorrectGivenPrintsSlowly)

 networkState.observe('up)
 val softwareStateCorrectGivenPrintsSlowlyAndNetworkUp =
 VariableElimination.probability(softwareState, 'correct)
 println("Probability software state is correct given prints "
 + "slowly and network up = "
 + softwareStateCorrectGivenPrintsSlowlyAndNetworkUp)

Running this code prints the following:

Probability software state is correct given prints slowly =
0.6197991391678623
Probability software state is correct given prints slowly and network up =
 0.39024390243902435

Learning that the network is up significantly reduces the probability that the software is
correct. So Software State and Network State are independent, but they aren’t condition-
ally independent given Prints Quickly. This is an example of an induced dependency.

Compute
P(Softwa
State =
correct |
Network
State =

Compute
(Software State

= correct |
Prints Quickly

= false)

Compute
P(Software State

= correct |
rints Quickly =
false, Network

State = up)
k.store/books/9781617294181

https://itbook.store/books/9781617294181

159Using probabilistic programming to extend Bayesian networks: predicting product suc-

www.itbook.
 To summarize:

■ When reasoning from an effect X to its indirect cause Y, X isn’t independent of
Y, but becomes conditionally independent, given Z, if Z blocks the path from X
to Y.

■ The same holds when reasoning from a cause to an indirect effect or between
two effects of the same cause.

■ For two causes X and Y of the same effect Z, the opposite is true. X and Y are
independent, but not conditionally independent, given Z, as a result of the
induced dependency.

That wraps up the computer system diagnosis example. You’ve seen a fairly substantial
network with some interesting reasoning patterns. In the next section, you’ll move
beyond traditional Bayesian networks.

5.4 Using probabilistic programming to extend Bayesian
networks: predicting product success
This section shows how to extend the basic Bayesian network model to predict the suc-
cess of a marketing campaign and product placement. The purpose of this example is
twofold: first, to show the power of using programming languages to extend Bayesian
networks, and second, to illustrate how Bayesian networks can be used not only to
infer causes of observed events but also to predict future events. As with the computer
system diagnosis example, I’ll first show how to design the model and express it in
Figaro and then how to reason with the model.

5.4.1 Designing a product success prediction model

Imagine that you have a new product, and you want to make the product as successful
as possible. You could achieve this in various ways. You could invest in the product’s
packaging and other things that might make it appealing to customers. You could try
to price it in such a way that people would be more likely to buy it. Or you could pro-
mote the product by giving away free versions in the hope that people will share them
with their friends. Before you choose a strategy, you want to know the relative impor-
tance of each factor.

 This section describes the framework of a model you could use for this application.
I say framework, because this is just a skeleton of the model you would build if you were
doing this for real, but it’s enough to make the point. The model presented here is a
simple Bayesian network with just four nodes, but the types of the nodes and the CPDs
are rich and interesting.

 The model has four variables, as shown in figure 5.12:

■ Target Social Network is a variable whose type is a social network. This is one
way a programming language lets you go beyond ordinary Bayesian networks,
where variables are just Booleans, enumerations, integers, or real numbers.
store/books/9781617294181

https://itbook.store/books/9781617294181

160 CHAPTER 5 Modeling dependencies with Bayesian and Markov networks

www.itboo
The CPD of this variable randomly generates the network based on the popu-
larity of the target. As for the popularity itself, because it’s a control variable,
you model it as a known constant rather than a variable. But if you wanted to,
you could introduce uncertainty about the popularity and make it a variable
itself.

■ Target Likes is a Boolean variable indicating whether the target likes the
product, which is a function of the product quality. Again, the product qual-
ity is a known constant, but you could have made it a variable that depends
on investment.

■ Number Friends Like is an integer variable, but its CPD traverses the Target
Social Network to determine the number of friends who are shown the product
and who like it. This is a much richer CPD than has traditionally been available
in Bayesian networks.

■ Number Buy is an integer variable. Its model is simply defined by considering
that each person who likes the product will buy it with a probability that
depends on its affordability, a control variable whose value is a known constant.
Therefore, the number of people who buy the product is a binomial.

Here’s the Figaro code for this model. I’ll describe how the code works on a high level
and then present details of the model.

Target LikesTarget Social Network

Number Friends Like

Number Buy

Type: Network
The social network of
a targeted customer

Type: Integer
How many of the
target customer’s friends
like the product after it’s
introduced to the target?

Type: Integer
How many of the
target customer’s
friends buy the product
after it’s introduced
to the target?

Type: Boolean
Does the target customer
like the product?

Figure 5.12 Product success prediction network
k.store/books/9781617294181

https://itbook.store/books/9781617294181

161Using probabilistic programming to extend Bayesian networks: predicting product suc-

M
t
t

pa
as a

T
social

is d
be a

the
p

Wh
ta
the
is a

the

s

s

www.itbook.
 class Network(popularity: Double) {
 val numNodes = Poisson(popularity)
 }

 class Model(targetPopularity: Double, productQuality: Double,
 affordability: Double) {

 def generateLikes(numFriends: Int,
 productQuality: Double): Element[Int] = {

 def helper(friendsVisited: Int, totalLikes: Int,
 unprocessedLikes: Int): Element[Int] = {
 if (unprocessedLikes == 0) Constant(totalLikes)
 else {
 val unvisitedFraction =
 1.0 – (friendsVisited.toDouble – 1) / (numFriends – 1)
 val newlyVisited = Binomial(2, unvisitedFraction)
 val newlyLikes =
 Binomial(newlyVisited, Constant(productQuality))
 Chain(newlyVisited, newlyLikes,
 (visited: Int, likes: Int) =>
 helper(friendsVisited + unvisited,
 totalLikes + likes,
 unprocessedLikes + likes - 1))
 }
 }

 helper(1, 1, 1)
 }

 val targetSocialNetwork = new Network(targetPopularity)

 val targetLikes = Flip(productQuality)

 val numberFriendsLike =
 Chain(targetLikes, targetSocialNetwork.numNodes,
 (l: Boolean, n: Int) =>
 if (l) generateLikes(n, productQuality)
 else Constant(0))

 val numberBuy =
 Binomial(numberFriendsLike, Constant(affordability))
 }

Three details of the code need additional explanation: the Poisson element used in
the Network class, the generateLikes process, and the definition of numberBuy. Let’s
first talk about the Poisson element and the numberBuy logic and then get to the
generateLikes process, which is the most interesting part of the model.

■ A Poisson element is an integer element that uses what is known as the Poisson dis-
tribution. The Poisson distribution is typically used to model the number of
occurrences of an event in a period of time, such as the number of network

Listing 5.3 Product success prediction model in Figaro

Define a Network class with a
single attribute defined by a
Poisson element (see text)Create a

odel class
hat takes
he known

control
rameters
rguments

Define a
recursive
process for
generating
the number
of people
who like the
product
(see text)

he target
 network
efined to
 random
network,
based on
 target’s

opularity.

ether the
rget likes
 product
 Boolean
element

based on
 product

quality.

If the target likes the product,
calculate the number of friend
using generateLikes. If she
doesn’t, she doesn’t tell friend
about it, so the number is 0.

The number of
friends who buy
the product is a
binomial (see text).
store/books/9781617294181

https://itbook.store/books/9781617294181

162 CHAPTER 5 Modeling dependencies with Bayesian and Markov networks

www.itboo
failures in a month or the number of corner kicks in a game of soccer. With a
little creativity, the Poisson distribution can be used to model any situation
where you want to know the number of things in a region. Here, you use it to
model the number of people in someone’s social network, which is different
from the usual usage but still a reasonable choice.

The Poisson element takes as an argument the average number of occur-
rences you’d expect in that period of time, but allows for the number to be
more or less than the average. In this model, the argument is the popularity of
the target; the popularity should be an estimate of the average number of peo-
ple you expect to be in the target’s social network.

■ Here’s the logic for the number of people who buy the product. Each person
who likes the product will buy it with a probability equal to the value of the
affordability parameter. So the total number of people who buy is given by a
binomial, in which the number of trials is the number of friends who like the
product, and the probability of buying depends on the affordability of the prod-
uct. Because the number of people who like the product is itself an element,
you need to use the compound binomial that takes elements as its arguments.
The compound binomial element requires that the probability of success of a
trial also be an element, which is why the affordability is wrapped in a Constant.
A Constant element takes an ordinary Scala value and produces the Figaro ele-
ment that always has that value.

■ The purpose of the generateLikes function is to determine the number of
people who like the product after giving it to a target whose social network con-
tains the given number of people. This function assumes that the target herself
likes the product; otherwise, the function wouldn’t be called at all. The func-
tion simulates a random process of people promoting the product to their
friends if they like the product. The generateLikes function takes two argu-
ments: (1) the number of people in the target’s social network, which is an
Integer, and (2) the quality of the product, which is a Double between 0 and 1.

The precise logic of the generateLikes function isn’t critical, because the
main point is that you can use an interesting recursive function like this as a
CPD. But I’ll explain the logic, so you can see an example. Most of the work of
generateLikes is done by a helper function. This function keeps track of three
values:

– friendsVisited holds the number of people in the target’s social network
who have already been informed about the product. This starts at 1, because
initially the target has been informed about the product.

– totalLikes represents the number of people, out of those who have been
visited so far, who like the product. This also starts at 1, because you assume
that the target likes the product for generateLikes to be called.

– unprocessedLikes represents the number of people who like the product
for whom you’ve not yet simulated promoting the product to their friends.
k.store/books/9781617294181

https://itbook.store/books/9781617294181

163Using probabilistic programming to extend Bayesian networks: predicting product suc-

Term
crit

ther
peop
proc

nu
peo

pr
equ

foun

Th
proce

the p

probab
fr

been
by unv

www.itbook.
I’ll explain the logic of the helper function through the following code.

def helper(friendsVisited: Int, totalLikes: Int,
 unprocessedLikes: Int): Element[Int] = {

 if (unprocessedLikes == 0) Constant(totalLikes)

 else {
 val unvisitedFraction =
 1.0 – (friendsVisited.toDouble – 1) / (numFriends – 1)

 val newlyVisited = Binomial(2, unvisitedFraction)

 val newlyLikes =
 Binomial(newlyVisited, Constant(productQuality))

 Chain(newlyVisited, newlyLikes,
 (visited: Int, likes: Int) =>

 helper(friendsVisited + visited,

 totalLikes + likes,

 unprocessedLikes + likes - 1))
 }
 }

This example uses more programming and Scala skills, but the essential modeling
techniques are similar to Bayesian networks. The main point is to imagine a process by
which a possible world is generated. In this example, you saw one relatively simple
process of propagating a product through a social network; a richer process could eas-
ily be encoded.

Listing 5.4 Helper function for traversing the social network

The helper function takes ordinary Scala
values as arguments but returns an

element. It can be used inside a chain.

ination
erion: if
e are no
le left to
ess, the
mber of
ple who
like the
oduct is
al to the
number
d so far.

Computes the
probability that

a random
person in the

social network
(excluding the
person being

processed)
won’t yet have

been visited

e person being
ssed promotes
roduct to two

friends. The
ility that each

iend hasn’t yet
visited is given
isitedFraction.

The probability that
a given person likes
the product is given
by productQuality,
which is wrapped
in a Constant to
conform to the
interface of the
compound binomial.

It’s typical to write
a recursive process

using Chain.
The new number
of visited people
is equal to the old
number plus
those who are
newly visited.

The new number of
people who like the

product is equal to the
old number plus those

who newly like it.

Everyone who newly likes the products is
an unprocessed person, but you subtract
one for the person you just processed.
store/books/9781617294181

https://itbook.store/books/9781617294181

164 CHAPTER 5 Modeling dependencies with Bayesian and Markov networks

www.itboo
5.4.2 Reasoning with the product success prediction model

Because you’ve designed the model for predicting success, the typical usage would be
to set values for the control constants and predict the number of people who buy the
product. Because the number of people is an Integer variable that could have a wide
range, you’re not really interested in predicting the probability of a particular value.
Rather, you want to know the average value you can expect. This is known as the expec-
tation of the value.

 In probability theory, expectation is a general concept. The expectation takes a
function defined on a variable and returns the average value of that function. An
example is shown in figure 5.13. You start with a probability distribution over values of
any type; in this example, the values are Integers. You then apply a function to each
value to produce a Double value. In this example, the function converts each Integer
to a Double representation of the Integer. Next, you take the weighted average of
these Double values, where each Double value is weighted by its probability. This
means that you multiply each Double value by its probability and add the results.

In our example of predicting product success, you want to compute the expectation
of the number of people who buy the product, which is an Integer variable. You can
use the following line in Figaro to do this:

algorithm.expectation(model.numberBuy, (i: Int) => i.toDouble)

0.1 0 0.2

(i: Int) => i.toDouble

1 0.4 2 0.3 3

Transform each value to a Double
according to some function.

0.1 0.0 0.2

Expectation

0.0 + 0.2 + 0.8 + 1.0 = 1.9

1.0 0.4 2.0 0.3 3.0

Take the product of each
Double with its probability.

0.1 x 0.0 = 0.0 0.2 x 1.0 = 0.2 0.4 x 2.0 = 0.8 0.3 x 3.0 = 0.9

Add the results together.

Start with a distribution over
values of any type.

Figure 5.13 Computing the expectation of a distribution over an Integer-valued element. The values of the
element are first converted to Doubles. Then you take the average of these Doubles, where each Double is
weighted by its probability.
k.store/books/9781617294181

https://itbook.store/books/9781617294181

165Using probabilistic programming to extend Bayesian networks: predicting product suc-

Cr

o

m

e
e

y
e

www.itbook.
Here, algorithm is a handle on the inference algorithm you’re using. This applica-
tion uses an importance sampling algorithm, which is a particularly good algorithm
for predicting the outcome of a complex generative process. Because you need a han-
dle on the algorithm, you need to use slightly more-complex code than before to run
inference, as is explained in the following code snippet. The entire process of taking
in the control constants and computing the expected number of people who buy the
product is accomplished by a function called predict:

 def predict(targetPopularity: Double, productQuality: Double,
 affordability: Double): Double = {

 val model =
 new Model(targetPopularity, productQuality, affordability)

 val algorithm = Importance(1000, model.numberBuy)

 algorithm.start()

 val result =
 algorithm.expectation(model.numberBuy, (i: Int) => i.toDouble)

 algorithm.kill()

 result
 }

If you’re trying to understand the effect of various controls on the number of people
who buy the product, you’ll want to run this predict function many times with differ-
ent inputs. You might produce a result like this:

Popularity Product quality Affordability Predicted number of buyers
100 0.5 0.5 2.0169999999999986
100 0.5 0.9 3.7759999999999962
100 0.9 0.5 29.21499999999997
100 0.9 0.9 53.13799999999996
10 0.5 0.5 0.7869999999999979
10 0.5 0.9 1.4769999999999976
10 0.9 0.5 3.3419999999999885
10 0.9 0.9 6.066999999999985

You can conclude a couple of things from this table. The number of buyers appears to
be roughly proportional to the affordability of the product. But there’s a dispropor-
tionate dependence on the product quality: for every case of popularity and afford-
ability, the number of buyers when the product quality is 0.9 is at least several times as
high as when the quality is 0.5. When the popularity is 100, it’s about 15 times as high.
There appears to be an interaction between the popularity and product quality, where

eate a new
instance of
ur product
prediction
odel, using

the given
control

constants

Create an instanc
of the importanc
sampling
algorithm. 1000
is the number
of samples to
use, while
model.numberBu
indicates what w
want to predict.

Run the
algorithm

Compute the expectation
of the number of people

who buy the product

Clean up and free
resources taken
by the algorithm
store/books/9781617294181

https://itbook.store/books/9781617294181

166 CHAPTER 5 Modeling dependencies with Bayesian and Markov networks

www.itboo
the popularity places a limit on the number of people who will be reached when the
quality is high. When the quality is low, the popularity doesn’t matter as much.

 In this example, you’ve seen Figaro used as a simulation language. Predicting what
will happen in the future is typically what simulations do, and this is the use case
described here. You could just as easily use the model for reasoning backward. For
example, after you hand out the product to some people and observe how many other
people they influenced to buy the product, you could estimate the quality of the prod-
uct. This could be a valuable alternative use of the model.

5.5 Using Markov networks
The preceding sections have been concerned with Bayesian networks, which encode
directed dependencies. It’s time to turn your attention to undirected dependencies.
The counterpart to Bayesian networks for undirected dependencies is Markov net-
works. I’ll explain the principles behind Markov networks using a typical image-recov-
ery application. I’ll then show you how to represent and reason with the image-
recovery model in Figaro.

5.5.1 Markov networks defined

A Markov network is a representation of a probabilistic model consisting of three things:

■ A set of variables—Each variable has a domain, which is the set of possible values
of the variable.

■ An undirected graph in which the nodes are variables—The edges between nodes are
undirected, meaning they have no arrow from one variable to the other. This
graph is allowed to have cycles.

■ A set of potentials—These potentials provide the numerical parameters of the
model. I’ll explain what potentials are in detail in a moment.

Figure 5.14 shows a Markov network for an image-recovery application. There’s a vari-
able for every pixel in the image. This figure shows a 4×4 array of pixels, but it’s easy

Pixel 12 Pixel 13Pixel 11 Pixel 14

Pixel 22 Pixel 23Pixel 21 Pixel 24

Pixel 32 Pixel 33Pixel 31 Pixel 34

Pixel 42 Pixel 43Pixel 41 Pixel 44

Figure 5.14 A Markov network for a pixel image
k.store/books/9781617294181

https://itbook.store/books/9781617294181

167Using Markov networks

www.itbook.
to see how it can be generalized to any size image. In principle, the value of a pixel
could be any color, but for the sake of example, let’s say it’s a Boolean representing
whether the pixel is bright or dark. There’s an edge between any pair of pixels that
are adjacent either horizontally or vertically. Intuitively, these edges encode the fact
that, all else being equal, two adjacent pixels are more likely to have the same value
than different values.

 This “all else being equal” qualifier is important to understand the meaning of
this model. If you ignore the edge between two pixels for a moment and consider
the individual probability distribution over each of the pixels, it might be likely that
they are, in fact, different. For example, based on everything else you know, you
might believe that pixel 11 is bright with probability 90% and that pixel 12 is bright
with probability 10%. In this case, it’s highly likely that pixel 11 and pixel 12 are dif-
ferent. But the edge between pixel 11 and pixel 12 makes them more likely to be the
same than they would otherwise have been. It adds a piece of knowledge that they’re
likely to be the same. This knowledge counterweighs the other knowledge that
they’re likely to be different, but it might not completely change the overall conclu-
sion. The specific knowledge expressed by the edge between pixel 11 and pixel 12 is
represented by the potential on that edge. Now let’s see exactly how potentials
are defined.

POTENTIALS

How are the numerical parameters of a Markov network defined? In a Bayesian net-
work, each variable has a CPD. In a Markov network, it’s not as simple. Variables don’t
own their numerical parameters. Instead, functions called potentials are defined on
sets of variables. When there’s a symmetric dependency, some joint states of the vari-
ables that are dependent on each other are more likely than others, all else being
equal. The potential specifies a weight for each such joint state. Joint states with high
weights are more likely than joint states with low weights, all else being equal. The rel-
ative probability of the two joint states is equal to the ratio between their weights,
again, all else being equal.

 Mathematically, a potential is simply a function from the values of variables to real
numbers. Only positive real numbers or zero are allowed as the values of a potential.
Table 5.1 shows an example of a unary potential over a single pixel for the image-
recovery application, and table 5.2 shows a binary potential over two pixels.

Table 5.1 A unary potential over a single pixel. This potential
encodes the fact that, all else being equal, a pixel is lit with
probability 0.4.

Pixel 31 Potential value

F 0.6

T 0.4
store/books/9781617294181

https://itbook.store/books/9781617294181

168 CHAPTER 5 Modeling dependencies with Bayesian and Markov networks

www.itboo
How do potential functions interact with the graph structure? There are two rules:

■ A potential function can mention only variables that are connected in the graph.
■ If two variables are connected in the graph, they must be mentioned together

by some potential function.

In our image-recovery example, every variable will have a copy of the unary potential
in table 5.2, and every pair of adjacent pixels, either horizontally or vertically, will have
a copy of the binary potential in table 5.2. You can see that the two rules are respected
by this assignment of potentials.

HOW A MARKOV NETWORK DEFINES A PROBABILITY DISTRIBUTION

You’ve seen how a Markov network is defined. How does it define a probability distri-
bution? How does it assign a probability to every possible world so that the probabili-
ties of all possible worlds add up to 1? The answer isn’t quite as simple as for Bayesian
networks but also isn’t too complicated.

 Just as in a Bayesian network, a possible world in a Markov network consists of an
assignment of values to all of the variables, making sure that the value of each variable
is in its domain. What’s the probability of such a possible world? Let’s build it up piece
by piece by using an example.

 To keep things simple, let’s consider a 2 × 2 array of pixels with the following
assignment of values: pixel 11 = true, pixel 12 = true, pixel 21 = true, pixel 22 = false.
You’ll look at all potentials in the model and their potential values for this possible
world. For the unary potentials, you have the values in table 5.3. Pixels that are true

Table 5.2 A binary potential over two adjacent pixels. This potential encodes the fact
that, all else being equal, the two pixels are nine times as likely to have the same
value as different values.

Pixel 31 Pixel 32 Potential value

F F 0.9

F T 0.1

T F 0.1

T T 0.9

Table 5.3 Potential values for unary potentials for example
possible world

Variable Potential value

Pixel 11 0.4

Pixel 12 0.4

Pixel 21 0.4

Pixel 22 0.6
k.store/books/9781617294181

https://itbook.store/books/9781617294181

169Using Markov networks

www.itbook.
have potential value 0.4, while the one pixel that’s false has potential value 0.6.
Table 5.4 shows the potential values from the four binary pixels. The cases where the
two pixels have the same value have potential value 0.9, whereas the other two cases
have potential value 0.1. This covers all potentials in the model.

Next, you multiply the potential values from all of the potentials. In our example, you
get 0.4 × 0.4 × 0.4 × 0.6 × 0.9 × 0.1 × 0.9 × 0.1 = 0.00031104. Why do you multiply?
Think about the “all else being equal” principle. If two worlds have the same probabil-
ity except for one potential, then the probabilities of the worlds are proportional to
their potential value according to that potential. This is exactly the effect you get
when you multiply the probabilities by the value of this potential. Continuing this rea-
soning, you multiply the potential values of all of the potentials to get the “probabil-
ity” of a possible world.

 I put “probability” in quotes because it’s not actually a probability. When you multi-
ply the potential values in this way, you’ll find that the “probabilities” don’t sum to 1.
This is easily fixed. To get the probability of any possible world, you normalize the
“probabilities” computed by multiplying the potential values. You call these the unnor-
malized probabilities. The sum of these unnormalized probabilities is called the normaliz-
ing factor and is usually denoted by the letter Z. So you take the unnormalized
probabilities and divide them by Z to get the probabilities. Don’t worry if this process
sounds cumbersome to you; Figaro takes care of all of it.

 A surprising point comes out of this discussion. In a Bayesian network, you could
compute the probability of a possible world by multiplying the relevant CPD entries. In
a Markov network, you can’t determine the probability of any possible world without
considering all possible worlds. You need to compute the unnormalized probability of
every possible world to calculate the normalizing factor. For this reason, some people
find that representing Markov networks is harder than Bayesian networks, because it’s
harder to interpret the numbers as defining a probability. I say that if you keep in
mind the “all else being equal” principle, you’ll be able to define the parameters of a
Markov network with confidence. You can leave computing the normalizing factor to
Figaro. Of course, the parameters of both Bayesian networks and Markov networks
can be learned from data. Use whichever structure seems more appropriate to you,
based on the kinds of relationships in your application.

Table 5.4 Potential values for binary potentials for example possible world

Variable 1 Variable 2 Potential value

Pixel 11 Pixel 12 0.9

Pixel 21 Pixel 22 0.1

Pixel 11 Pixel 21 0.9

Pixel 12 Pixel 22 0.1
store/books/9781617294181

https://itbook.store/books/9781617294181

170 CHAPTER 5 Modeling dependencies with Bayesian and Markov networks

www.itboo
5.5.2 Representing and reasoning with Markov networks

There’s one way Markov networks are definitely simpler than Bayesian networks: in
the reasoning patterns. A Markov network has no notion of induced dependencies.
You can reason from one variable to another variable along any path, as long as that
path isn’t blocked by a variable that has been observed. Two variables are dependent if
there’s a path between them, and they become conditionally independent given a set
of variables if those variables block all paths between the two variables. That’s all there
is to it.

 Also, because all edges in a Markov network are undirected, there’s no notion of
cause and effect or past and future. You don’t usually think of tasks such as predicting
future outcomes or inferring past causes of current observations. Instead, you simply
infer the values of some variables, given other variables.

REPRESENTING THE IMAGE-RECOVERY MODEL IN FIGARO

In the image-recovery application, you’ll assume that some of the pixels are observed
and the rest are unobserved. You want to recover the unobserved pixels. You’ll use the
model described in the previous section, which specifies both the potential value for
each pixel being on and the potential value for adjacent pixels having the same value.
Here’s the Figaro code for representing the model. Remember that in section 5.1.2, I
said there are two methods for specifying symmetric relationships, a constraints
method and a conditions method. This code uses the constraints method:

 val pixels = Array.fill(10, 10)(Flip(0.4))

 def setConstraint(i1: Int, j1: Int, i2: Int, j2: Int) {
 val pixel1 = pixels(i1)(j1)
 val pixel2 = pixels(i2)(j2)
 val pair = ^^(pixel1, pixel2)
 pair.addConstraint(bb => if (bb._1 == bb._2) 0.9; else 0.1)
 }

 for {
 i <- 0 until 10
 j <- 0 until 10
 } {
 if (i <= 8) setConstraint(i, j, i+1, j)
 if (j <= 8) setConstraint(i, j, i, j+1)
 }

A few notes on this code are in order:

■ In the definition of pixels, Array.fill(10, 10)(Flip(0.4)) creates a 10 × 10
array and fills every element of the array with a different instance of Flip(0.4).
All of the different pixels are defined by different Flip elements, which is
important because they can all have different values.

■ You might be wondering why a Flip element is used at all for the unary poten-
tials rather than a constraint. For a unary potential, defining it in the usual

Set the unary constraint
on each variable

Set the binary
constraint on a
pair of variables
given their
coordinates

Apply the binary
constraint to all pairs
of adjacent variables
k.store/books/9781617294181

https://itbook.store/books/9781617294181

171Using Markov networks

www.itbook.
Figaro way or using a constraint has the same effect. In this case, the Flip will
come out true with probability 0.4 and false with probability 0.6. These proba-
bilities will be multiplied into the unnormalized probability of a possible world,
just as if they had been specified through a constraint.

In fact, every Figaro element has to be defined in the usual way, using some
type of element constructor, even if you’re using Figaro to encode a Markov
network. If your element doesn’t have a unary constraint, this ordinary Figaro
constructor should be neutral and not favor any possible world over another.
You could use Flip(0.5) or a Uniform element to achieve this.

■ In the definition of setConstraint, ^^ is the Figaro pair constructor. So
^^(pixel1, pixel2) creates an element whose value is the pair of values of the
elements pixel1 and pixel2.

■ In the for comprehension, 0 until 10 is Scala for the integers 0 to 10, exclu-
sive; in other words, the integers 0, 1, …, 9. If you wanted to say 0 to 10 inclu-
sive, you would use 0 to 10.

■ This for comprehension also shows an example of a nested loop. In other lan-
guages, this would have been written using one for loop inside another. In
Scala, you can put both loops in the same for header.

REASONING WITH THE IMAGE-RECOVERY MODEL

You want to use the image-recovery model to infer the values of unobserved pixels,
given the observed pixels. You need three things: a way to ingest and process the evi-
dence, a way to compute the most likely states of pixels, and a way to view the results.
Let’s look at these one at a time.

 Process evidence: If you have a 10 × 10 array of pixels, you might have data that’s a 10
× 10 array of characters, where each character is 0 for off, 1 for on, or ? for unknown.
You can process this data by using the following simple setEvidence function:

 def setEvidence(data: String) = {
 for { n <- 0 until data.length } {
 val i = n / 10
 val j = n % 10
 data(n) match {
 case '0' => pixels(i)(j).observe(false)
 case '1' => pixels(i)(j).observe(true)
 case _ => ()
 }
 }
 }

Compute the most likely state of pixels: This example introduces a new kind of query you
haven’t considered before. In the past, you’ve wanted to estimate the posterior proba-
bilities of elements. This time, you’re interested in the most likely values of elements
(the values with highest probability). But you’re not interested in the most likely val-
ues of elements individually, without regard to the other elements; rather, you want

Uses Scala pattern matching, which
in this case is a lot like a switch
statement in other languages. The
_ indicates a default case. So no
observation will be made on a ‘?’.
store/books/9781617294181

https://itbook.store/books/9781617294181

172 CHAPTER 5 Modeling dependencies with Bayesian and Markov networks

www.itboo
the most likely joint assignment of values to all of the variables. You want to know what
the most likely possible world is.

 This query is known in Figaro as a most probable explanation (MPE) query, because
you want to know the world that’s the most probable explanation of the data. The
algorithms for MPE queries are different from the probability computation algorithms
you’ve seen so far, although they’re related. In this example, you’ll use a version of the
belief propagation designed for computing the MPE. This algorithm is known as MPE-
BeliefPropagation. Belief propagation is an iterative algorithm, and you can control
the number of iterations with a parameter. In this case, you’ll use 10 iterations. You
can create an instance of the MPEBeliefPropagation algorithm and tell it to run in
this way:

 val algorithm = MPEBeliefPropagation(10)
 algorithm.start()

Viewing the results: This is simply a matter of going through all of the pixels, getting
their most likely values, and printing them accordingly. You can obtain the most likely
value of an element by using the mostLikelyValue method of MPEBeliefPropagation.
Here’s the code:

 for {
 i <- 0 until 10
 } {
 for { j <- 0 until 10 } {
 val mlv = algorithm.mostLikelyValue(pixels(i)(j))
 if (mlv) print('1') else print('0')
 }
 println()
 }

To run the model, you need to provide it with some input. Ordinarily, this would be
read from a file or provided programmatically by another module. To keep this exam-
ple simple, you can define the input directly in the program, as follows:

 val data =
 """00?000?000
 0?010?0010
 110?010011
 11??000111
 11011000?1
 1?0?100?10
 00001?0?00
 0010??0100
 01?01001?0
 0??000110?""".filterNot(_.isWhitespace)

 setEvidence(data)

Scala’s """ constructor
allows you to create
long strings that span
multiple lines. You filter
out all whitespace
characters to produce
a string of 100
characters.
k.store/books/9781617294181

https://itbook.store/books/9781617294181

173Exercises

www.itbook.
When run on this data, the program outputs the following:

0000000000
0001000010
1100010011
1100000111
1101100011
1000100010
0000100000
0010000100
0100100100
0000001100

That’s all there is to Markov networks. This has been a long chapter, but you’ve
learned a lot. Now you know all of the main principles of probabilistic models and can
write probabilistic programs for a variety of applications.

5.6 Summary
■ Probabilistic modeling is all about encoding relationships between variables.

Symmetric relationships produce directed dependencies, whereas asymmetric
relationships produce undirected dependencies.

■ Directed dependencies lead from a cause to an effect. There are a variety of
cause-and-effect relationships.

■ Bayesian networks encode directed dependencies by using a directed acyclic
graph.

■ The direction of the arrows in a Bayesian network isn’t necessarily the direction
of reasoning. Bayesian networks can be used to reason in all directions in the
network.

■ Markov networks encode undirected dependencies by using an undirected
graph.

■ If you can identify the types of relationships between variables in your model
and use them to write your programs, you won’t go far wrong.

5.7 Exercises
Solutions to selected exercises are available online at www.manning.com/books/
practical-probabilistic-programming.

1 For each of the following pairs of variables, decide whether the dependency
between them should be directed or undirected, and if directed, which way the
arrow should go.

a A player’s poker cards and the player’s bet
b Player 1’s poker cards and player 2’s poker cards
c My mood and today’s weather
d My mood and whether I’ve had breakfast
e The temperature in my living room and the house thermostat setting
store/books/9781617294181

http://www.manning.com/books/practical-probabilistic-programming
http://www.manning.com/books/practical-probabilistic-programming
https://itbook.store/books/9781617294181

174 CHAPTER 5 Modeling dependencies with Bayesian and Markov networks

www.itboo
f The temperature in my living room and the thermometer reading in the liv-
ing room

g The temperature in my living room and the temperature in the kitchen
h The topic of a news article and the contents of the article
i The summary of a news article and the contents of the article

2 For each of the following sets of variables, draw a Bayesian network over the
variables.

a Player 1’s poker cards, player 2’s poker cards, player 1’s bet, and player 2’s
subsequent bet

b My mood on waking up, my mood at 10 a.m., today’s weather, and whether
I’ve had breakfast

c The temperature in my living room, the temperature in the kitchen, the
house thermostat setting, the thermometer reading in the living room, and
the thermometer reading in the kitchen

d The topic of a news article, the summary of the article, the contents of the
article, and the comments on the article

3 Your task is to design a Bayesian network to model the process of cooking soup.
The goal of this network is to help you decide what ingredients to use and how
much of each ingredient, as well as cooking variables such as the amount of
heat and time, in order to optimize various food qualities such as spiciness and
creaminess.

a What are the variables in your model?
b Draw a Bayesian network structure over these variables.
c Choose Figaro functional forms for each of your variables.
d Populate your functional forms in Figaro with numerical parameters.
e Use your Figaro model to answer queries such as how long you should cook

the soup with a given set of ingredients to ensure optimal creaminess.

4 A match of tennis consists of a number of sets, each of which consists of a
number of games. The first player to win two sets wins the match. The first
player to win six games wins a set. (Let’s ignore tie breakers, but after doing
exercise 5, you’ll be able to model them.) Players alternate serving for a game
at a time. Write a Figaro program that takes two arguments—the probability
that each player wins a game in which he’s the server—and predicts the win-
ner of the match.

5 Now elaborate your tennis model to model individual points. Within a game,
the players try to get points. The first player to get four points wins the game,
unless both players get to three points. In that case, the first player to move two
points ahead of his opponent wins the game. Write a Figaro program that takes
two arguments as before, except that now they’re the probability that each
k.store/books/9781617294181

https://itbook.store/books/9781617294181

175Exercises

www.itbook.
player wins a point in which he’s the server. Again, your program should predict
the winner of the match.

6 Now you can further elaborate the tennis model to model individual points as
rallies. Players could have variables such as serving ability, speed, and error
proneness. Your model can be as detailed as you like, including the positions of
the players and the ball at each shot in the rally.

7 My house has central air conditioning controlled by a thermostat downstairs.
The top floor is usually hotter than the ground floor. Create a Markov network
representing the temperature throughout the house (ignoring the thermostat
for now). Write a Figaro model to represent the network. Use the model to
compute the probability that the top floor is at least 80 degrees Fahrenheit,
given that the ground floor is 72 degrees Fahrenheit.

8 Now add the thermostat to the model as well as the outside temperature and
whether any windows are open. This model will combine directed and undi-
rected dependencies, so it won’t be a pure Markov network, but it’s easy
enough to make this combination in Figaro. Write the Figaro program and use
it to help decide whether I should open the window on the top floor.

9 Consider the spam filter application from chapter 3. In that application, every
email was treated as independent. Now suppose you have multiple emails from
the same sender. Their spam status will be highly correlated.

a Create a Markov network to capture these correlations.
b The Bayesian network for each spam email is shown in figure 3.8. Replicate

this network in the Markov network from exercise 9a. Again, this is a com-
bined directed and undirected network.

Note: Although I’ve said that the class of an object determines its properties caus-
ally, which is the approach used in the spam filter, in some cases it makes sense to
go in the opposite direction. This is the case when all of the features are always
observed, as is the case with the spam filter. In this case, it can be wasteful to
model the probability distribution over the observed features explicitly. Instead, a
model can be created where the features of each email determine the class of an
email. The classes of the email are then related by the Markov network from exer-
cise 9a. This kind of model, known as a conditional random field, is widely used in
natural language understanding and computer vision applications.

I’m not going to go into details of conditional random fields here, but I’ll
note, for those who are familiar with them, that they can easily be represented in
Figaro. The trick is to make sure that the observed email features aren’t Figaro
elements but rather Scala variables that help determine the distribution over the
element representing whether the email is spam. Any learnable parameters of the
model will, of course, be Figaro elements, and they can interact with the Scala
variables representing the features to determine the spam probability.
store/books/9781617294181

https://itbook.store/books/9781617294181

www.itbook.
The data you accumulate about your customers, prod-
ucts, and website users can help you not only to inter-
pret your past, but also to predict your future!
Probabilistic programming uses code to draw probabilis-
tic inferences from data. By applying specialized algo-
rithms, your programs assign degrees of probability to
conclusions. This means you can forecast future events
like sales trends, computer system failures, experimental
outcomes, and many other critical concerns.

 Practical Probabilistic Programming introduces the
working programmer to probabilistic programming. In
this book, you’ll immediately work on practical exam-
ples like building a spam filter, diagnosing computer sys-

tem data problems, and recovering digital images. You’ll discover probabilistic
inference, where algorithms help make extended predictions about issues like social
media usage. Along the way, you’ll learn to use functional-style programming for text
analysis, object-oriented models to predict social phenomena like the spread of
tweets, and open universe models to gauge real-life social media usage. The book also
has chapters on how probabilistic models can help in decision-making and modeling
of dynamic systems.

What’s inside

■ Introduction to probabilistic modeling
■ Writing probabilistic programs in Figaro
■ Building Bayesian networks
■ Predicting product lifecycles
■ Decision-making algorithms

This book assumes no prior exposure to probabilistic programming. Knowledge of
Scala is helpful.
store/books/9781617294181

https://www.manning.com/books/practical-probabilistic-programming
https://www.manning.com/books/practical-probabilistic-programming
https://itbook.store/books/9781617294181

index

www.itbook.sto
Symbols

+ operator 10

Numerics

2-D linear model 68
2-D space 73

accuracy gain 107
accuracy() function, forecast package 35, 48
ACF (autocorrelation function) plot 53
acf() function 35, 53
activating neural networks 86
activation function 69, 75, 78–83, 88
activation profiles 79
ADF (Augmented Dickey–Fuller) test 54
adf.test() function, tseries package 36, 54
aesthetics 9–10
algorithms 102, 172
alpha term 83
analyzing data, in Reddit posts classification case

study 124–128
AND function 69–70
ARIMA (autoregressive integrated moving aver-

age) forecasting models 52, 54–60
arima() function, stats package 36, 57
ARMA models 54–59
asymmetric relationship 136, 139

advantage of conditions approach 142
concrete/detailed to abstract/summary 137
constraints and conditions 140
part to whole 136
specific to general 137
various kinds of 135

Augmented Dickey–Fuller test. See ADF
auto.arima() function, forecast package 36, 59
autocorrelation 53
autocorrelation function plot. See ACF
automated forecasting 51–52
automated method 78
automatic reasoning engines 100
automation, in Reddit posts classification case

study 128–130
autoregressive integrated moving average.

See ARIMA
average, weighted 164

B

backpropagation 78–83
bag of words approach 103–105
bar charts

checking distributions for single variable
15–18

checking relationships between two
variables 24–29

Bayesian network 133
and defining a probability distribution

146–147
and directed dependencies encoding 134
basic steps in designing 150
defined 144–146
designing 150–155
directed edges 144
direction of the arrows in 173
network structure 150–151
reasoning 147–149

and flowing along a path 147
between different causes of the same

effect 157–159
177

re/books/9781617294181

https://itbook.store/books/9781617294181

178 INDEX

www.itboo
Bayesian network, reasoning (continued)
between different effects of the same

cause 157
blocked path and 147, 149
unblocked path and 149

variables 150
bds.test() function, tseries package 36
Bengio, Yoshua 87
Bernoulli Restricted Boltzmann Machine.

See BRBM
bias term 77
bigrams 104
bimodal distribution 11
binary coded bag of words 103
binary count 104
binary potential 168
Binomial, compound element 162
binwidth parameter 12
bipartite graph 88
Box.test() function, stats package 36, 58
BRBM (Bernoulli Restricted Boltzmann

Machine) 87–89
buckets 106–107

C

cause-effect relationship 136, 151
and directed dependencies 135
disambiguating 137–138

cbind() function 50
CC tag 105
CD tag 105
Chain, Figaro element

and network structure design 153
directed dependencies and 138

child variable 135
classification accuracy 125
conda install praw 112
conditional probability distribution. See CPD
conditional random field 175
conditionally independent 159
conditions approach, undirected dependencies

and 141
confusion matrix 123–127, 130
Constant element 162
constraints approach, undirected dependencies

and 140
converging arrows, Bayesian network 148–149
coord_flip command 28
CPD (conditional probability distribution)

and using recursive function 162
example of Bayesian network design 151–153
over the variable, Bayesian network 145

cross-sectional data 33
Cun, Yann Le 87

D

damping component 51
data array 71
data collection 110
data preparation and analysis, IPython notebook

files 110
data_processing() function 117
datascience category 118
decision tree classifier 106–108
decisionTreeData.json 110
deep learning 65–66
density plots 12–15
dependencies

appropriate direction, disagreements on 138
difference between direct and directed 143
indirect 142
induced 159
relationships between variables translated

into 133
diff() function 35, 54
different (correct) spelling 102
dimensional spaces 73
directed acyclic graph, Bayesian network 144–145
directed cycle 144
directed dependencies 134–139
distribution shape 10
document classification 108
document-term matrix 103–104, 117
dot plot 17
double exponential model 45
downstream network 155
d-separation, criterion in a Bayesian network 147
DT tag 105

E

easy_install 109
edge 135
EM (expectation maximization) 80
end() function, stats package 35, 38
energy-based models 89
entropy 107
error-checking data

checking distributions for single variable
bar charts 15
density plots 12
histograms 11

checking relationships between two variables
bar charts 24
hexbin plots 23
line plots 19
scatter plots 20

summary command
data ranges 6
k.store/books/9781617294181

https://itbook.store/books/9781617294181

179INDEX

www.itbook.
error-checking data, summary command
(continued)

invalid values 6
missing values 5
outliers 6
overview 3
units 7

using visualizations 8
ets() function 35, 45, 51–52
evidence

process of 171
querying with 155–156

EX tag 105
exp() function 50
expectation

and probability theory 164
of distribution, computing 164

expectation maximization. See EM
exploring data

checking distributions for single variable
bar charts 15–18
density plots 12–15
histograms 11–12

checking relationships between two variables
bar charts 24–29
hexbin plots 23–24
line plots 19–20
scatter plots 20–23

in Reddit posts classification case study
118–120

summary command
data ranges 6–7
invalid values 6
missing values 5–6
outliers 6
overview 3–5
units 7–8

using visualizations 8–10
exponential forecasting models 45–52

Holt and Holt-Winters exponential
smoothing 48–50

simple exponential smoothing 46–48

F

f1 score 92
faceting graph 26
factor, summary command 4
FeedForwardNetwork object 83–84
Figaro

and mechanics of reasoning 154
as a simulation language 166
directed dependencies 138
undirected dependencies 139–142
various ways to define CPDs in 151

filled bar chart 25
Flip element 170
forceGraph.html file 110, 128
forecast package 46
forecast() function, forecast package 35, 47, 50,

58
forecasting 34, 51–52
framework, separate for directed and undirected

dependencies 144
frequency() function, stats package 35, 38
FullConnection object 84
FW tag 105

G

Gaussian mixture model 80
general word filter function 115
generative model 135
generative process 135
geom layers 21
ggplot2 9–10
GLM (generalized linear models) 80
Google

2012 paper by 87
and text mining 98

Google Glass 65
Google Maps 101
grayscale values 92

H

hand-built neuron 67
hapaxes 118
helper function 162–163
hexbin plots 23–24
hidden layer 77, 83
hidden nodes 77, 88–89, 92
hidden units 88, 92
hidden variables 88–89
higher-dimensional spaces 73
Hinton, Geoffrey 87–88
histograms 118–119

checking distributions for single variable 11–12
defined 12

Holt exponential smoothing 45, 48–50
holt() function, forecast package 46
Holt-Winters exponential smoothing 45, 48–50
HoltWinters() function 35, 45
Huang, Jeubin 66
hw() function, forecast package 46
hyperbolic profile 79
hyperplane 74
store/books/9781617294181

https://itbook.store/books/9781617294181

180 INDEX

www.itboo
I

IBM Watson 100
import nltk code 109
IN tag 105
independence, blocking 156
indicator (measurement), variable 153
individual probability distribution 167
induced dependency 140, 148, 157
information gain 107
inhibitory input 67–68
input layer 75, 83
input variables 74
interaction variables 106–107
intermediary variable 142–143
invalid values 6
IPython notebook files 110, 115
iterations 81, 85

J

JJ tag 105
JJR tag 105
JJS tag 105

K

k-means algorithm 80

L

lag() function, stats package 35
lagging a time series 52
language algorithms 102
left-most neuron 78
lemmatization 105–106
likelihood 89
line plots 19–20
linear models 68, 75
link function 80
loess function 21
log likelihood 89
logarithmic scale

density plot 14
when to use 15

logic inputs 67
logistic function 89
logistic profile 79
logistic regression 90
longitudinal data 33
lowercasing words 105
lowess function 21
LS tag 105

M

ma() function, forecast package 35, 39
Markov network 133, 166

and undirected dependencies encoding 134
defined 166–169
probability distribution defined by 168–169
reasoning with 171–173
representing with 170–171
undirected edges in 144, 170
vs. Bayesian network 170

max command 4
McCulloch, Warren 67
MCP model 67
MCP neuron 68
MD tag 105
mean absolute error 48
mean absolute percentage error 48
mean absolute scaled error 48
mean command 4
mean error 48
mean percentage error 48
median command 4
min command 4
Minsky, Marvin 75
missing values, checking data using summary

command 5–6
MLP (multilayer perceptron) 75–86

activation functions 79
backpropagation and 78–83
in scikit-learn 83–85
learned 86

model designing, example of Bayesian network
and 159, 162–163

modeling frameworks 133
monitoring systems, for social media 108
monthplot() function 35, 44
mostLikelyValue method 172
MPE (most probable explanation) query 172
MPEBeliefPropagation algorithm 172
multimodal distribution 11

N

n dimensional space 74
Naïve Bayes classifier 106, 124
Naïve Bayes model 110, 125–126
NaiveBayesData.json 110
named entity recognition technique 98
narrow data ranges 7
Natural Language Processing. See NLP
Natural Language Toolkit. See NLTK
ndiffs() function, forecast package 36, 54
negative classes 76
k.store/books/9781617294181

https://itbook.store/books/9781617294181

181INDEX

www.itbook.
negative exponential profile 79
negative sign 83
network structure, example of Bayesian 154
neural networks

multilayered 75–86
activation functions 79
backpropagation and 78–83
in scikit-learn 83–85
learned multilayered perceptron 86

overview 66–67
perceptrons 68–74

geometric interpretation of for two
inputs 73–74

training 69–73
RBMs (Restricted Boltzmann Machines)

BRBM (Bernoulli Restricted Boltzmann
Machine) 88–89

illustrative example 89
overview 87–88

neurons 78
Ng, Andrew 65
NLP (Natural Language Processing) 98
NLTK (Natural Language Toolkit) 109–110
NLTK corpus 115
NLTK decision tree classifier 107
NLTK package 110
NLTK word tokenizer 117
nltk.download() command 109
nltk.org 109
NN tag 105
NNP tag 106
NNPS tag 106
NNS tag 106
normalization

organizing data for analysis 3
unnormalized probabilities and 169

nudge_dataset function 90
NumPy array 71

O

organizing data for analysis 3
outliers 6
output error 82–83
output layer 75, 77, 82–83
output node 77
output profiles 79
overfitting 88, 108

P

pacf() function 35, 53
Papert, Seymour 75
parameter 167

parent variable 135
Part of Speech Tagging. See POS Tagging
partial autocorrelation 53
partial derivative 82
PDT tag 106
perceptron learning algorithm 70–71
perceptrons 68–74

geometric interpretation of for two inputs
73–74

multilayer 75–86
activation functions 79
backpropagation and 78–83
in scikit-learn 83–85
learned 86

training 69–73
pip command 109
pip install praw 112
Pitts, Walter 67
plot() function 35, 59
plotting output 74
Poisson distribution 161
POS Tagging (Part of Speech Tagging) 105–106
positive classes 76
positive real number, value of a potential 167
positive values 86
possible world(s), Bayesian network and 146
potential function, interaction with graph

structure 168
PRAW package 110, 112–113
prawGetData() function 115
predict function 165
preparing data, in Reddit posts classification case

study 115–118, 120–124
prior probability querying 154
probabilistic model

ingredients of 138
typical, and variables 142

probabilistic programming, used to extend
Bayesian network 159

probabilistic reasoning, direction of reasoning vs.
direction of dependencies 135

probability distribution
constraints and 141
obtaining overall 142
unnormalized 169

PRP tag 106
pruning decision trees 108, 127
punkt 109
PyBrain 83–84, 86, 93
python –m SimpleHTTPServer 8000

command 110
Python packages 110
store/books/9781617294181

https://itbook.store/books/9781617294181

182 INDEX

www.itboo
Q

qqline() function 58
qqnorm() function 58
quantified self 65
quantile() function 4

R

RB tag 106
RBM (Restricted Boltzmann Machine) 87

BRBM (Bernoulli Restricted Boltzmann
Machine) 88–89

illustrative example 89
overview 87–88

RBM/LR pipeline 91
RBR tag 106
RBS tag 106
reasoning pattern 144, 170
Reddit posts classification case study 108–130

data analysis 124–128
data exploration 118–120
data preparation 115–118, 120–124
data retrieval 112–115
data science process overview 111
Natural Language Toolkit 109–110
overview 108
presentation and automation 128–130
researching goal 111

Reddit Python API library 112
Reddit SQLite file 115
regular expression tokenizer 121
relationships

between two causes of the same effect 140
part-whole 137
visually checking

bar charts 24–29
hexbin plots 23–24
line plots 19–20
scatter plots 20–23

whole-part 137
Restricted Boltzmann Machine. See RBM
results, viewing 172
retrieving data, in Reddit posts classification case

study 112–115
RichCPD constructor 152
right-most neuron 78
rollmean() function, zoo package 39
root mean squared error 48
Rosenblatt, Frank 70
RP tag 106
rug, defined 26

S

scatter plot 20–23
scikit-learn documentation 73, 88–89
seasonplot() function, forecast package 35, 44
sentence-tokenization 106
sentiment analysis 108
ses() function, forecast package 46
set of potentials, Markov network and 166
setEvidence function 171
shape of distribution 10
simple exponential smoothing 46–48
simple term count 104
single exponential model 45
single hidden units 92
single hyperplane 76–77
single perceptron 72
single weight value 82
single-occurrence terms 118
SMA() function, TTR package 39
smoothing curves 21
snowball stemming 120
social media monitoring systems 108
sortModules() method 84
spelling mistakes 102
SQLAlchemy 112
SQLite file 112
SQLite3 package 110
square root profile 79
stacked bar chart 24
start() function 35, 38
stat layers 21
stemming 105–106
stl() function, stats package 35, 41–42
stop word filtering 105
stop words 109, 116
subreddits array 115
summary() function, checking data for errors

data ranges 6–7
invalid values 6
missing values 5–6
outliers 6
overview 3–5
units 7–8

Sunburst.html 110
SYM tag 106
symmetric dependency, potentials and 167
symmetric relationship 139

T

target array 71
terms, single-occurrence 118
text classification 103
k.store/books/9781617294181

https://itbook.store/books/9781617294181

183INDEX

www.itbook.
text mining and analytics 96–130
overview 96–97
real world applications of 98–102
Reddit posts classification case study 108–130

data analysis 124–128
data exploration 118–120
data preparation 115–118, 120–124
data retrieval 112–115
data science process overview 111
Natural Language Toolkit 109–110
presentation and automation 128–130
researching goal 111

techniques 103–108
bag of words approach 103–105
decision tree classifier 106–108
stemming and lemmatization 105–106

TF (Term Frequency) 104
TF-IDF (Term Frequency Inverse Document

Frequency) 104
threshold bias 68
time series 33–60

ARIMA forecasting models 52–60
ARMA models 54–60
autocorrelation 53
automated ARIMA forecasting 59–60
automated forecasting 51–52
creating time-series objects 36–38
damping component 51
differencing 53
ensuring stationarity 55–56
evaluating model fit 58
exponential forecasting models 45–52
fitting models 57–58
functions for analysis of 35
Holt and Holt-Winters exponential

smoothing 48–50
identifying reasonable models 56–57
irregular component 40
lagging 52
making forecasts 58
predictive accuracy measures 48
seasonal component 40
seasonal decomposition 40–45
simple exponential smoothing 46–48
smoothing with simple moving averages 38–39
stationary and non-stationary 53
trend component 40

time-series objects 36–38
tokenization 104
tokenizer 117
topicID column 113
train() method 85
trained neural networks 84, 86
trigrams 104
triple exponential model 45

ts() function, stats package 35, 37
two causes of the same known effect, symmetric

relationship 140
two-layer hidden network 77
two-layer perceptron 77

U

UH tag 106
unary constraint 171
unary potential 167
undirected cycle 144
undirected dependencies 134, 139–144
undirected graph, Markov network and 166
unigrams 104
unimodal distribution 10
units, checking data using summary command

7–8

V

value
average and expectation 164
Double 164
expectation of 164

variables
Boolean 160
checking distributions for visually

bar charts 15–18
density plots 12–15
histograms 11–12
overview 10–11

conditional independence and 147
control 160
dependent 134
deterministic 153
factor class and summary command 4
independent 134
integer 160
joint states of variables 167
joint value 141
ordinary and converging arrows patterns 148
visualizations for one 18–19
visualizations for two 29

variance command 4
VB tag 106
VBD tag 106
VBG tag 106
VBN tag 106
VBP tag 106
VBZ tag 106
visible datum 89
visible nodes 89
visible units 88, 92
store/books/9781617294181

https://itbook.store/books/9781617294181

184 INDEX

www.itboo
visualizations
checking distributions for single variable

bar charts 15–18
density plots 12–15
histograms 11–12
overview 10–11

checking relationships between two variables
bar charts 24–29
hexbin plots 23–24
line plots 19–20
scatter plots 20–23

overview 8–10

W

w_0 value 69
WDT tag 106
weight, assigning to different joint values 141
weighted sum 69, 82
weighted summation 67

window() function, stats package 35, 38
Wolfram Alpha engine 100
word filtering

overview 115
stopping 105

words, lowercasing 105
word-tokenization 106, 117
WP tag 106
WP$ tag 106
WRB tag 106

X

XOR function 76–77, 80–81, 84, 86

Z

zero, value of a potential 167
k.store/books/9781617294181

https://itbook.store/books/9781617294181

	contents
	Introduction
	Exploring data
	3.1 Using summary statistics to spot problems
	3.1.1 Typical problems revealed by data summaries

	3.2 Spotting problems using graphics and visualization
	3.2.1 Visually checking distributions for a single variable
	3.2.2 Visually checking relationships between two variables

	3.3 Summary
	What’s inside

	Time series
	15.1 Creating a time-series object in R
	15.2 Smoothing and seasonal decomposition
	15.2.1 Smoothing with simple moving averages
	15.2.2 Seasonal decomposition

	15.3 Exponential forecasting models
	15.3.1 Simple exponential smoothing
	15.3.2 Holt and Holt-Winters exponential smoothing
	15.3.3 The ets() function and automated forecasting

	15.4 ARIMA forecasting models
	15.4.1 Prerequisite concepts
	15.4.2 ARMA and ARIMA models
	15.4.3 Automated ARIMA forecasting

	15.5 Going further
	15.6 Summary
	What’s inside

	Deep learning and neural networks
	6.1 An intuitive approach to deep learning
	6.2 Neural networks
	6.3 The perceptron
	6.3.1 Training
	6.3.2 Training a perceptron in scikit-learn
	6.3.3 A geometric interpretation of the perceptron for two inputs

	6.4 Multilayer perceptrons
	6.4.1 Training using backpropagation
	6.4.2 Activation functions
	6.4.3 Intuition behind backpropagation
	6.4.4 Backpropagation theory
	6.4.5 MLNN in scikit-learn
	6.4.6 A learned MLP

	6.5 Going deeper: from multilayer neural networks to deep learning
	6.5.1 Restricted Boltzmann Machines
	6.5.2 The Bernoulli Restricted Boltzmann Machine
	6.5.3 RBMS in action

	6.6 Conclusions
	What’s inside

	Text mining and text analytics
	8.1 Text mining in the real world
	8.2 Text mining techniques
	8.2.1 Bag of words
	8.2.2 Stemming and lemmatization
	8.2.3 Decision tree classifier

	8.3 Case study: Classifying Reddit posts
	8.3.1 Meet the Natural Language Toolkit
	8.3.2 Data science process overview and step 1: The research goal
	8.3.3 Step 2: Data retrieval
	8.3.4 Step 3: Data preparation
	8.3.5 Step 4: Data exploration
	8.3.6 Step 3 revisited: Data preparation adapted
	8.3.7 Step 5: Data analysis
	8.3.8 Step 6: Presentation and automation

	8.4 Summary
	What’s inside

	Modeling dependencies with Bayesian and Markov networks
	5.1 Modeling dependencies
	5.1.1 Directed dependencies
	5.1.2 Undirected dependencies
	5.1.3 Direct and indirect dependencies

	5.2 Using Bayesian networks
	5.2.1 Bayesian networks defined
	5.2.2 How a Bayesian network defines a probability distribution
	5.2.3 Reasoning with Bayesian networks

	5.3 Exploring a Bayesian network example
	5.3.1 Designing a computer system diagnosis model
	5.3.2 Reasoning with the computer system diagnosis model

	5.4 Using probabilistic programming to extend Bayesian networks: predicting product success
	5.4.1 Designing a product success prediction model
	5.4.2 Reasoning with the product success prediction model

	5.5 Using Markov networks
	5.5.1 Markov networks defined
	5.5.2 Representing and reasoning with Markov networks

	5.6 Summary
	5.7 Exercises
	What’s inside

	index
	Symbols
	Numerics
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

