
www.itbook.store/books/9781617294198

https://itbook.store/books/9781617294198

www.itbook.
Reactive Data Handling
Selections by Manuel Bernhardt

Manning Author Picks

 Copyright 2016 Manning Publications
To pre-order or learn more about these books go to www.manning.com
store/books/9781617294198

http://www.manning.com/
https://itbook.store/books/9781617294198

www.itbo
For online information and ordering of these and other Manning books, please visit
www.manning.com. The publisher offers discounts on these books when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co.
20 Baldwin Road Technical
PO Box 761
Shelter Island, NY 11964

Cover designer: Leslie Haimes

ISBN 9781617294198
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 - EBM - 21 20 19 18 17 16
ok.store/books/9781617294198

http://www.manning.com
https://itbook.store/books/9781617294198

www.itbook.
contents
Introduction iv

ANALYZING STREAMING DATA 1
Analyzing streaming data
Chapter 4 from Streaming Data 2

FAULT TOLERANCE AND RECOVERY PATTERNS 22
Fault tolerance and recovery patterns
Chapter 12 from Reactive Design Patterns 23

YOUR FIRST REACTIVE WEB APPLICATION 46
Your first reactive web application
Chapter 2 from Reactive Web Applications 47

GETTING SMART WITH MLLIB 72
Getting smart with MLlib
Chapter 7 from Spark in Action 73

MANAGING DATACENTER RESOURCES WITH MESOS 112
Managing datacenter resources with Mesos
Chapter 2 from Mesos in Action 113

Index 127
iii

store/books/9781617294198

https://itbook.store/books/9781617294198

www.itboo
Introduction
Web applications play an increasingly important role in all facets of our lives. We
depend on our applications to be always available and to provide us with up-to-the-
second data. This shift toward real-time data processing is also a key aspect of the
Internet of Things, which the Gartner Group predicts by 2020 will include 26 billion
actively-connected physical devices sending, receiving, and processing streams. That’s
a lot of data.

 The reactive application architecture is an answer to the requirements of high
availability and resource efficiency. To provide these benefits for real-time data pro-
cessing, reactive applications:

 need to handle high and varying loads so they remain responsive to users;
 can scale in and out, depending on demand, to make use of more or less hard-

ware resources;
 are built with supervision and recovery mechanisms in place to manage and

recover from failure;
 rely on asynchronous message-passing as a primary means of communication.

Reactive applications need to ensure that these core principles are applied across the
entire stack, from resource management of servers in datacenters up to communica-
tion with a user’s browser or native application.

 These selected chapters introduce technologies and principles you can apply when
building reactive applications capable of handling real-time processing with large data
loads. This book starts with the high-level architecture of reactive applications and
then looks into low-level practical aspects. After you read these chapters, you’ll under-
stand the benefits of using the reactive application architecture to manage and pro-
cess vast quantities of data at a fast pace.
iv

k.store/books/9781617294198

https://itbook.store/books/9781617294198

www.itbook.store
One core principle of reactive web applications is considering data as a
dynamic stream rather than as a static reservoir. The following chapter intro-
duces how to analyze streaming data. It covers the distributed stream-processing
architecture as well as a few of the common frameworks available. It should give
you an understanding of the high-level architecture and the common concerns
of distributed data-streaming systems.

Analyzing
streaming data
/books/9781617294198

https://itbook.store/books/9781617294198

www.itbook.
Chapter 4 from Streaming Data
by Andrew G. Psaltis

Analyzing
streaming data
In the previous chapter we spent time understanding and thinking through the
importance of the message queueing tier. Remember that tier is designed to
gather data from the collection tier and make it available to be moved through the
rest of the streaming architecture. At this point the data is ready and waiting for us
to consume and do magic with. In this chapter you’re going to learn about the
analysis tier. Our goal is to develop an understanding of the underlying principles
of this tier, and then in the next chapter we’ll dive into the different ways to use
this tier to perform magic on the data. With that frame of reference in mind, con-
sult our navigational aid in figure 4.1 to make sure you’re oriented with respect to
the flow of data.

This chapter covers
 In-flight data analysis

 The common stream-processing architecture

 Key features common to stream-processing
frameworks
2

store/books/9781617294198

https://www.manning.com/books/streaming-data
https://itbook.store/books/9781617294198

3Understanding in-flight data analysis

www.itbook.
One thing that you may notice in figure 4.1 is that unlike in the previous chapter
where we discussed the input and output of the data, in this chapter we’re only going
to concern ourselves with the input. The reason for this is simple: our goal is to under-
stand the core underpinnings of this tier, and in the next chapter we’ll discuss the
ways we can work with the data in this tier. Therefore, we’ll hold off on talking about
where the data goes from this tier until next chapter. After finishing this chapter you’ll
have an understanding of the core concepts found in all the modern tools used for
this tier and be ready to learn how to perform various operations on the data. All
right, grab a quick coffee refill, and let’s get going.

4.1 Understanding in-flight data analysis
A key to understanding the features we’ll discuss in this chapter is first coming to grips
with what in-flight data means and the concept of continuous queries. If the term in-
flight makes you think of something that’s in the air moving and not touching the
ground, that’s the right idea. When it comes to data, in-flight refers to all the tuples in

Figure 4.1 The streaming data architecture with the analysis tier in focus
store/books/9781617294198

https://itbook.store/books/9781617294198

4 CHAPTER 4 Analyzing streaming data

www.itboo
the system from the input source (the message queueing tier) to the output to a client
(the next tier), the idea being that the data is always in motion and never at rest,
meaning that it’s never persisted to durable storage. If you haven’t heard of the term
data at rest, don’t worry; it’s just a fancy way of saying that the data is stored on disk or
another storage medium. Take a look at figure 4.2, which shows how this plays out in
our streaming architecture.

 Looking at figure 4.2, it should be clear that our goal in this tier is to pull the data
from the message queueing tier as fast as possible; ideally the analysis tier should be
able to keep up with the rate at which the collection tier is pushing data into the mes-
sage queueing tier. So how is this different from a non-streaming system, say one built
with a traditional DBMS (RDBMS, Hadoop, HBase, Cassandra, and so on)? In those
non-streaming types of systems the data is at rest and we query it for answers. In a
streaming system we turn that on its head and the data is moved through the query.
This model is referred to as the Continuous Query model, meaning that the query is
constantly being evaluated as new data arrives.

 Let’s imagine for a moment that you run a very large news agency and you want to
know if an article is trending or if a link to it is broken so that you can adjust your mar-
keting campaign or fix your site. If you were using traditional DBMS technologies, you
would have to do the following:

1 Gather the data from your site.
2 Load the data into the DBMS.
3 Execute a query to determine if the link is broken or the article is trending.
4 Take action.
5 Rinse and repeat every X minutes or most likely hours.

Figure 4.2 Data being pushed
from the collection tier and
pulled from the analysis tier
k.store/books/9781617294198

https://itbook.store/books/9781617294198

5Understanding in-flight data analysis

www.itbook.
Now, let’s compare that to the steps you might take if you were using a streaming system:

1 Collect the stream of data.
2 Start a query that determines if the link is broken or the article is trending.
3 Take action.

I think you’ll agree that it would be very hard for your business to react to changes
happening now using a traditional system, whereas with the streaming system the
query is always executing against the data and you can react in real time to trends or
problems. In a streaming system a user (or application) registers a query that’s exe-
cuted every time data arrives or at a predetermined time interval. The result of the
query is then pushed to the client. The key differences to remember here are these:

 In the architecture of traditional database management systems when a user (the
active party) wants an answer to a question, she submits a query to the system (the
passive party) and an answer is returned. This is always based on data that has
been loaded into the system before it is queried—in essence, the data set is static.

 In a streaming system a query is started and is continually (this could be triggered
on an interval or another event) executed over the data as it is flowing. The answer
to the query is then pushed to the next tier, which may be a user or application.

This inverts the traditional data management model by assuming users to be passive and
the data management system to be active. Figure 4.3 shows this inversion graphically.

Figure 4.3 Turning things on their head, non-streaming versus streaming
store/books/9781617294198

https://itbook.store/books/9781617294198

6 CHAPTER 4 Analyzing streaming data

www.itboo
Looking at figure 4.3a, you can see that with the traditional DBMS the query is sent to
the data and executed, and the result is returned to the application. In a streaming sys-
tem, as illustrated in figure 4.3b, this is model is completely changed and the data is
sent “through” the query and the result is then sent to an application. In the case of the
streaming system the data is being pulled or pushed through our system in a never-
ending stream; this undoubtedly has implications on both the design and the way we
query these systems. To give you a better feel for these differences, table 4.1 highlights
some of the main differences between a traditional DBMS and streaming system.

If you sit back and think of all the data zipping around you all day long, from the myr-
iad of connected devices and appliances to online activity, the questions you could ask
and problems you could solve if it all passed through a streaming analysis tier are
amazing. Here are some categories and examples to get you going:

 Tracking behavior—Imagine being able to provide personalized advertising
based on a customer’s location, the weather, and their previous buying habits
and preferences. McDonald’s did just this using the VMob platform. According
to this (http://blogs.microsoft.com/iot/2015/01/12/boosting-retail-sales-with-
iot-powered-customer-engagement/) case study, McDonald’s in the Nether-
lands realized a 700% increase in offer redemptions, and customers using the
app returned twice as often and spent on average 47% more.

 Improving traffic safety and efficiency—According to the European Commission
(http://ec.europa.eu/transport/themes/urban/urban_mobility/index_en.htm),
congestion in the European Union (EU) in and around urban areas costs nearly
€100 billion or 1% of EU GDP annually. According to the Federal Highway
Administration (http://ops.fhwa.dot.gov/program_areas/reduce-non-cong.htm),
25% of traffic congestion is nonrecurring; it’s caused by traffic incidents. Now

Table 4.1 Comparison of traditional DBMS to streaming system

DBMS Streaming System

Query model Queries are based on a one-time model
and a consistent state of the data. In a
one-time model, the user executes a
query and gets an answer, and the
query is forgotten. This is a pull model.

The query is continuously executed
based on the data that is flowing into
the system. A user registers a query
once, and the results are regularly
pushed to the client.

Changing data During down time the data can’t
change.

Many stream applications continue to
generate data while the streaming anal-
ysis tier is down, possibly requiring a
catch up following a crash.

Query state If the system crashes while a query is
being executed, it is forgotten and is
the responsibility of the application (or
user) to re-issue the query when the
system comes back up.

Registered continuous queries may or
may not need to continue where they
left off. Many times it’s as if they never
stopped in the first place.
k.store/books/9781617294198

http://blogs.microsoft.com/iot/2015/01/12/boosting-retail-sales-with-iot-powered-customer-engagement/
http://blogs.microsoft.com/iot/2015/01/12/boosting-retail-sales-with-iot-powered-customer-engagement/
http://ec.europa.eu/transport/themes/urban/urban_mobility/index_en.htm
http://ops.fhwa.dot.gov/program_areas/reduce-non-cong.htm
https://itbook.store/books/9781617294198

7Distributed stream processing architecture

www.itbook.
imagine you were able to employ roadway vehicle sensors (see http://www
.fhwa.dot.gov/policyinformation/pubs/vdstits2007/03.cfm for an introduction);
based on our analysis of the traffic data we can provide drivers with updated traf-
fic conditions and reroute traffic accordingly to maximize driving efficiency. For
real-world examples take a look at Blip Systems (http://www.blipsystems.com/
traffic/); they have examples of how some cities have solved a myriad of traffic
problems.

 Real-time fraud analytics—Every time a credit card is swiped, a complex series of
algorithms must be executed to determine if the attempted transaction is valid
or fraudulent. According to FICO (http://www.fico.com/en/node/
8140?file=5582), there has been a 70% reduction in U.S. fraud losses on credit
cards as a percentage of credit card sales since real-time fraud analytics have
been deployed.

These examples are just the tip of the iceberg and hopefully have whet your appetite
for what’s possible. They also may help you realize that understanding how to build
these systems to harness the myriad of data streams available in the world today is
becoming an essential skill. But let’s not get ahead of ourselves just yet; we have our
work cut out for us learning about the core features of an analysis tier. Let’s begin our
journey by discussing the general architecture of a stream-processing system and then
move onto the key features and see how each of the features plays a role in your deci-
sion to use a particular framework.

4.2 Distributed stream processing architecture
It may be possible to run an analysis tier on a single computer, but the velocity and vol-
ume of the data at some point make this a non-viable option. For example, if instead
of tracking trending or broken links to articles, imagine we were interested in analyz-
ing the performance of a gas turbine in real time to determine if it was functioning
correctly. According to General Electric, a single turbine engine can produce approx-
imately 1 TB of data per hour. Clearly, using a single computer will quickly become a
non-viable option for us. Therefore, we’re going to concentrate on the tools and tech-
nologies involved in building a distributed analysis tier. As you survey the technology
landscape, you’ll find various technologies designed for stream processing. At the
time of this writing the three most popular open source products are Apache Spark
Streaming, Apache Storm, and Apache Samza. We’re not going to go into detail on
each of them, but we’ll discuss each of them briefly after we go over our generalized
streaming architecture so you can see how each fits into it.

A GENERALIZED ARCHITECTURE

If you reflect over the figures for Spark, Storm and Samza, I think you’ll start to see a
pattern. They all have the following three common parts:

 A component that your streaming application is submitted to; this is similar to
how Hadoop Map Reduce works. Your application is sent to a node in the clus-
ter that executes your application.
store/books/9781617294198

http://www.fico.com/en/node/8140?file=5582
http://www.fico.com/en/node/8140?file=5582
http://www.fhwa.dot.gov/policyinformation/pubs/vdstits2007/03.cfm
http://www.fhwa.dot.gov/policyinformation/pubs/vdstits2007/03.cfm
http://www.blipsystems.com/traffic/
http://www.blipsystems.com/traffic/
https://itbook.store/books/9781617294198

8 CHAPTER 4 Analyzing streaming data

www.itboo
 Separate nodes in the cluster that execute your streaming algorithms.
 Data sources that are the input to the streaming algorithms.

Taking these central ideas and their respective architectures into consideration, we
can generalize this into a single common architecture, as shown in figure 4.4.

There are other streaming systems on the market today that have not achieved the
same level of popularity as those we discussed in the previous section, and undoubt-
edly there will be more in the future. In many cases other products will map onto this
common architecture and help in your understanding of how they work. To make
sure we’re on the same page, let’s briefly discuss the common architectural pieces
shown in figure 4.4.

 Application driver—With some streaming systems, this will be the client code that
defines your streaming programming and communicates with the streaming
manager. For example, with Spark Streaming your client code is broken into
two logical pieces: the driver and the streaming algorithm(s) or job. The driver
submits the job to the streaming manager, may collect results at the end, and
controls the lifetime of your job.

 Streaming manager—The streaming manager has the general responsibility of
getting your streaming job to the stream processor(s); in some cases it will con-
trol or request the resources required by the stream processors.

 Stream processor—This is really where the rubber meets the road, the place where
your job actually runs. Although this may take many shapes based on the

Figure 4.4 Generic streaming analysis architecture you will find with many products on the market
k.store/books/9781617294198

https://itbook.store/books/9781617294198

9Distributed stream processing architecture

www.itbook.
streaming platform in use, the job remains the same: to execute the job that was
submitted.

 Data source(s)—This represents the input and potentially the output data from
your streaming job. With some platforms your job may be able to ingest data
from multiple sources in a single job, whereas others may only allow ingestion
from a single source. One thing that may not be obvious from the architectures
is where the output of the jobs goes. In some cases you may want to collect the
data in your driver, whereas in other cases you may wish to write it out to a dif-
ferent data source to be used by another system or as input for another job.

Now that you have an understanding of the various architectures and have boiled
them down to our common architecture, let’s go back to our example of monitoring
the performance of gas turbines to determine if they’re functioning correctly and
map that to our common architecture. In figure 4.5 you can see our common archi-
tecture (simplified so it is less busy) with our business problem mapped to it.

I realize that this may have been a lot to digest, so take a moment to see if you can map
your business problem to the common architecture we’ve derived. When you’re ready,
we’ll discuss the architecture of the three major streaming systems and then go a little
deeper and discuss some of the key features you’ll want to think about when choosing
a stream-processing framework.

APACHE SPARK STREAMING

Apache Spark Streaming, often just called Spark Streaming, is built on Apache Spark,
as depicted in figure 4.6.

 As you’ll notice, there are various other features built on top of Apache Spark.
Apache Spark is becoming the de facto platform for general-purpose distributed com-
putation. It provides support for multiple languages (Java, Scala, Python, and R) and

Figure 4.5 Turbine engine monitoring on our common architecture
store/books/9781617294198

https://itbook.store/books/9781617294198

10 CHAPTER 4 Analyzing streaming data

www.itboo
at the time of this writing has the following high-level tools built on top of it: Spark
Streaming, MLlib (Machine Learning), SparkR (integration with R), and GraphX (for
graph processing). Outside the normal project documentation, a great resource to
start learning more about Spark is Marko Bonaći and Petar Zečević’s book Spark in
Action (https://www.manning.com/books/spark-in-action). Keeping our focus on
Spark Streaming, let’s take a look at its overall architecture, shown in figure 4.7.

 Let’s discuss the general flow of how things work so that you have an understand-
ing of its basic architecture. Starting from the left in the figure we have our program,
which contains what is called a Spark StreamingContext; collectively this is commonly
referred to as the driver. Without diving into the details, the Spark StreamingContext
contains all of the logic to be able to keep track of incoming data, set up the stream-
ing jobs, schedule them on the Spark workers, and execute the jobs. You may notice
here that we’re talking about jobs and not a stream. The reason for this is that Spark
and subsequently Spark Streaming operate on batches of work. In the case of Spark
Streaming these batches represent data over a period of time and can be scheduled to

Figure 4.6 Apache Spark Streaming with the
basic Spark stack

Figure 4.7 Spark Streaming high-level architecture
k.store/books/9781617294198

https://www.manning.com/books/spark-in-action
https://itbook.store/books/9781617294198

11Distributed stream processing architecture

www.itbook.
run at frequencies less than half a second. A job in Spark Streaming is just the logic of
your program that’s bundled up and passed to the Spark workers. If you’ve read about
or worked with Hadoop Map Reduce, this is the same concept. Moving to the middle
of figure 4.7 you see the Spark workers; these run on any number of computers (from
one to thousands) and are where your job (your streaming algorithm) is executed. As
you’ll notice, they receive data from an external data source and communicate with
the Spark StreamingContext that’s running as part of the driver.

APACHE STORM

Apache Storm is tuple-at-a-time stream-processing framework designed for real-time
processing of data streams. There are many features to Storm, which we won’t cover in
detail. For great references to learn more about Storm see Sean Allen, Peter Pathi-
rana, and Matthew Jankowski’s Storm Applied (Manning 2013). The overall architec-
ture for Storm is shown in figure 4.8.

 Looking at figure 4.8, you can see that from a high-level it’s very similar to Spark
Streaming or perhaps a Hadoop cluster if you change Nimbus to a job tracker and the
supervisors to data nodes. Unlike Hadoop and Spark that use the term job to describe
the unit of work, with Storm the term topology is used instead. The reasoning behind
this is that a job will eventually finish whereas a topology will run forever. Let’s not get
bogged down by this semantic sugar; at the end of the day they both represent a way to
deploy your program to the worker nodes. With this definition in mind, let’s walk
through figure 4.8 and discuss the different pieces.

Figure 4.8 High-level overview of Storm architecture showing Nimbus, supervisors, and
a data source
store/books/9781617294198

https://itbook.store/books/9781617294198

12 CHAPTER 4 Analyzing streaming data

www.itboo
 Starting on the bottom left you can see the topology; this is submitted to a compo-
nent called Nimbus. Nimbus is in charge of deciding how the topology is deployed
across the supervisors, assigns different tasks to the supervisors, and monitors the
entire system for failures. Moving to the middle of the figure you will see the supervi-
sor nodes; these are where your topology actually runs. On the right is the data source;
this just represents the data that will be ingested by the running topology.

APACHE SAMZA

The streaming model with Apache Samza is slightly different in that it provides a
stage-wise stream processing framework. To do this it leverages two prominent tech-
nologies found in the Big Data space, those being Apache Yarn and Apache Kafka. We
won’t spend much time talking about those technologies, but we will discuss them
briefly as they relate to the high-level Samza architecture shown in figure 4.9.

As we’ve done with the others, let’s take a minute to walk through this architecture. One
of the things that I think will jump right out at you is the new technologies that appear,
in particular Yarn and Kafka. Yarn is a cluster manager designed to handle resource
management and job scheduling/monitoring. I know that’s a mouthful; just think of it
this way: the resource management part is responsible for allocating resources (CPUs,
memory, disk, network, and so on) for the various applications that are running on a
cluster of computers. The job scheduling/monitoring aspect is responsible for actually
running the job on the cluster. When looking at figure 4.9 you can see that the Samza
Yarn client makes a request to the Yarn resource manager asking that the requested

Figure 4.9 High-level Apache Samza architecture
k.store/books/9781617294198

https://itbook.store/books/9781617294198

13Key features of stream-processing frameworks

www.itbook.
resources be allocated for the Samza application to run. Subsequently after some
resource negotiation, the Samza task runners are executed in various nodes in the clus-
ter. This is intentionally simplified, because focusing on the Yarn specifics at this time
doesn’t add value to our discussion and is subject to change as the project matures.
Moving to the center of the figure you can see our Samza tasks running. In this case all
input and output to our Samza tasks will be done using Apache Kafka. Apache Kafka is
a technology that squarely fits into our discussion in chapter 3 on the message queueing
tier and a technology we’ll revisit in future chapters. For now you can think of it as a
high-speed data store that our streaming tasks will read from and write to. Some great
resources to learn more about Yarn are Alex Holme’s Hadoop in Practice, Second Edition
(Manning 2014) and Chuck Lam, Mark Davis, and Ajit Gaddam’s book Hadoop in
Action, Second Edition (Manning 2014). To find the latest information on Apache
Samza, please visit http://samza.apache.org.

4.3 Key features of stream-processing frameworks
Many different stream-processing frameworks can be used in the analysis tier of our
streaming data architecture. When we boil them down there are a handful of key fea-
tures that we want to pay special attention to when comparing them and deciding if
they’re suitable for solving our business problem. In this section we’ll discuss the key
features you need to pay special attention to; make sure you understand each of them
and can apply this knowledge when selecting the stream-processing framework you’ll
use in your streaming data architecture.

4.3.1 Message delivery semantics

In chapter 3 you learned about message delivery semantics in respect to the message
queueing tier and the producers, brokers, and consumers. This time we focus our dis-
cussion of message delivery semantics on the analysis tier. The definitions don’t
change, but you’ll notice that the implications are a little different. First, let’s refresh
your memory on the definitions of the different guarantees:

 At-most-once—A message may get lost, but it will never be processed a second
time.

 At-least-once—A message will never be lost, but it may be processed more than
once.

 Exactly-once—A message is never lost and will be processed only once.

Those definitions are a slightly more generic version of what you saw before with the
message queueing tier. When we discussed these semantics in chapter 3, our focus was
on understanding what each of them meant in respect to producing and consuming
messages. In this chapter with the stream-processing tools, we’re really talking about the
continuation of the consumer side of the message queueing tier. So how do these mani-
fest themselves in the stream-processing tools you may use in this tier? Let’s overlay them
on a data flow diagram and then walk through them to understand what they mean.
store/books/9781617294198

http://samza.apache.org
https://itbook.store/books/9781617294198

14 CHAPTER 4 Analyzing streaming data

www.itboo
Figure 4.10 shows at-most-once semantics with the two failure scenarios: a message
dropping and a streaming task processor failing. The second scenario, a streaming
task processor failing, will also result in message loss until a replacement processor
comes online.

 At-most-once is the simplest delivery guarantee a system can offer; no special logic
is required anywhere. In essence, if a message gets dropped, a stream processor
crashes, or the machine that a stream processor is running on fails, the message is lost.

 At-least-once increases the complexity because the streaming system must keep
track of every message that was sent to the stream processor and an acknowledgement
that it was received. If the streaming manager determines that the message was not
processed (perhaps it was lost or the stream processor didn’t respond within a given
time boundary), then it will be resent. It’s important to keep in mind that at this level
of messaging guarantee your streaming job may be sent the same message multiple
times. Therefore, your streaming job must be idempotent, meaning that every time
your streaming job receives the same message, it produces the same result. If you keep
this in mind when designing your streaming jobs, then you will be able to handle the
duplicate-messages situation.

 Exactly-once semantics ratchets up the complexity a little more for the stream-pro-
cessing framework. Besides the bookkeeping that it must keep for all messages that
have been sent, it now must also detect and ignore duplicates. With this level of guar-
antee your streaming job no longer has to worry about dealing with duplicate messages;

Figure 4.10 At-least-once message delivery shown with the streaming data flow
k.store/books/9781617294198

https://itbook.store/books/9781617294198

15Key features of stream-processing frameworks

www.itbook.
it only has to make sure it responds with a success or failure after a message is processed.
Even though it’s not required of your streaming job to be idempotent with this level of
messaging guarantee, I highly recommend that you approach all of your streaming jobs
with the expectation that they should be idempotent. It will make troubleshooting and
reasoning about them much easier.

 You may be wondering which of these guarantees you need; in reality it will
depend on the business problem you’re trying to solve. Let’s take our example from
earlier: the turbine engine monitoring system. Remember that for this system we want
to constantly analyze how our turbine engine is performing so we can predict when a
failure may occur and pre-emptively perform maintenance. Earlier we said our tur-
bines produce approximately 1 TB of data every hour, which may not seem like a lot
of data, but keep in mind that is one turbine and we’re monitoring thousands to be
able to predict when a failure may occur. What do you think; do we need to ensure we
don’t lose a single message? We may, but it would be worth investigating if our predic-
tion algorithm needs all of the data or not. If it can perform adequately if data is miss-
ing, then I’d choose the least complex guarantee first and work from there.

 What if instead your business problem involved making a financial transaction
based on a streaming query? Perhaps you operate an ad network and you provide real-
time billing to your clients. In this case you’d want to ensure that the streaming system
you choose provides exactly-once semantics.

 I think you get the hang of it and can apply this to your business problem. Now
let’s move on to talk about state management.

STATE MANAGEMENT

Once your streaming analysis algorithm becomes more complicated than just using
the current message without dependencies on any previous messages and/or external
data, you’ll need to maintain state and will likely need the state management services
provided by your framework of choice. Let’s take a simple example that we can work
with to help you understand where and perhaps how state needs to be managed.

 Pretend you’re the marketing manager for a large e-commerce site and you want
to know the number of page views per hour for each visitor.

 I know you’re thinking “an hour” that can be done in a batch process. We’re not
going to worry about that right now; instead, let’s focus on the implied state you must
keep to satisfy this business question. Figure 4.11 shows how your streaming task pro-
cessors would be organized to answer this question.

 It becomes obvious when looking at figure 4.11 where you need to keep state—
right there in the stream processor where your job performs the counting by user ID.
If your streaming analysis tool of choice doesn’t provide state management capabili-
ties, then one viable option is for you is to keep the data in memory and flush it every
hour. This would work as long as you’re okay with the potential of losing all the data if
the streaming processor or job fails at any time. Of course, as luck would have it, your
job would be running smoothly and then one day start to fail at 59 minutes into the
hour. Depending on your business case, the risk and possible loss of data by keeping all
store/books/9781617294198

https://itbook.store/books/9781617294198

16 CHAPTER 4 Analyzing streaming data

www.itboo
state in memory may be acceptable. But in many business cases life is not so simple and
you do need to worry about managing state. To help in these scenarios, many stream-
processing frameworks provide state management features that you can leverage.

 The state management facilities provided by various systems naturally fall along a
complexity continuum, as shown in figure 4.12.

 The continuum starts on the left with a naïve in-memory-only choice similar to
what we used earlier and progresses to the other end of the spectrum with systems that
provide a queryable persistent state that’s replicated. If you find yourself saying “these
seem like two totally different slants on state management,” you’re not alone. The
solutions on the low-complexity side only solve the problem of maintaining the state
of a computation in the face of failures. For the simple operations of keeping a run-
ning count current and not losing track of the current value in the face of failure,
these systems are a great fit. On the other end of the spectrum, the frameworks that
offer state management by way of a replicated queryable persistent store help you
answer much different and more complicated questions. With these frameworks you

Figure 4.11 Simple example of counting page views per user over an hour

Figure 4.12 State management complexity continuum for stream processing tools
k.store/books/9781617294198

https://itbook.store/books/9781617294198

17Key features of stream-processing frameworks

www.itbook.
can join different streams of data together. For example, imagine you were running
an ad-serving business and you wanted to track two things: the ad impression and the
ad click. It’s reasonable that the collection of this data would result in two streams of
data, one for ad impressions and one for ad clicks. Figure 4.13 shows how these
streams and your streaming job would be set up for handling this.

In this example the ad impressions and ad clicks arrive in two separate streams;
because the ad clicks will lag the ad impressions, we’ll join the two streams and then
count by the user ID. Because of the lag in the ad click stream, using a stream-process-
ing framework that persists the state in a replicated queryable data store enables us to
join the two streams and produce a single result. I think you’ll agree that being able to
join streams by leveraging the state management facilities of a stream-processing
framework is quite a bit different than just making sure the current value of an aggre-
gation is persisted. If you give some more thought to this example, I’m sure you’ll
come up with other ideas of how you can join more than one stream of data. It’s a fas-
cinating topic and something we’ll look at in more depth in our next chapter. For
now, let’s continue on to the next feature you need to understand when choosing a
stream-processing framework.

FAULT TOLERANCE

It’s nice to think of a world where things don’t fail, but in reality it’s not a matter of if
things will fail but only a matter of when. A stream-processing framework’s ability to
keep going in the face of failures is a direct result of its fault tolerance capabilities.
When we consider all of the pieces involved in stream-processing, there are quite a few
places where it can fail. Let’s take another look at the pieces involved and use figure
4.14 to identify all of the failure points.

Figure 4.13 Handling ad impression and ad click streams that use stream state
store/books/9781617294198

https://itbook.store/books/9781617294198

18 CHAPTER 4 Analyzing streaming data

www.itboo
In figure 4.14 we’ve identified seven points of failure in a very simple stream-process-
ing data flow. Go through them and make sure you understand what you’ll need from
a stream-processing framework in respect to fault tolerance:

1 Incoming stream of data—In all fairness the message queueing tier won’t be
under the control of the stream-processing framework, but there is the poten-
tial for the message queueing system to fail, in which case the stream-processing
framework must respond gracefully and not fail if data is not available or the
resource is not available.

2 Network carrying input stream—This is something that the stream-processing
framework can’t control, but it needs to handle the disruption gracefully.

3 Stream processor—This is where your code is running and it should be under
supervision of the stream-processing framework. If something goes wrong here,
perhaps your software fails or the machine it’s running on fails, then the
streaming manager should take steps to restart the processor or move the pro-
cessing to a different machine.

4 Connection to output destination—The stream task manager may not be able to
control the network path to the output, but it should be able to control the flow
of data from the last stream processor so that it doesn’t become overwhelmed
by network back pressure or fail if the network or destination is unavailable.

5 Output destination—This would not be under the direct supervision of the
stream task manager, but its failing could impact the processing of the stream
and therefore it needs to be considered.

6 Streaming manager—If this fails, then you end up with a situation that’s often
referred to as “running headless.” This refers to the situation where the stream
processors would continue to run without being supervised by the streaming

Figure 4.14 The points of failure with stream processing in the context of the streaming
architecture
k.store/books/9781617294198

https://itbook.store/books/9781617294198

19Key features of stream-processing frameworks

www.itbook.
manager. Thus if this is component fails, there’s no supervisor for the data flow
and the stream processors—no new ones can be started or failed ones recovered.

7 Application driver—This comes in two flavors. With the first, the application
driver does nothing more than submit the streaming job to the streaming man-
ager—we’re not worried about this type. The second flavor is where the applica-
tion driver logically contains the streaming manager and in turn is subject to
the same risk as the streaming manager.

Now that you understand what you need from a stream-processing framework, let’s go
through how these problems are solved or could be solved. First, let’s boil our prob-
lem down a bit. If we look the previous list, we can eliminate the incoming stream and
output destination availability from the concerns of the streaming framework. It
should go without saying that the streaming framework must not fail if there are fail-
ures with the input or output destinations. But for this discussion we won’t consider
those aspects to be fault tolerance related. Now if we take the list and consolidate it
down to the common elements, we end up with the following:

 Data loss—This covers data lost on the network and also the stream processor or
your job crashing and losing data that was in memory during the crash.

 Loss of resource management—This covers the streaming manager and your appli-
cation driver in the event you have one.

If you recall our discussion of fault tolerance in chapter 3, you may remember that we
discussed ways to prevent data loss. When it comes to stream-processing frameworks,
all of the common techniques for dealing with failures involve some variant of replica-
tion and coordination. A common approach would be for the stream manager to rep-
licate the state of a computation (the state of your streaming job) onto different
stream processors. If there’s a failure, then the streaming manager must coordinate
the replicas in order to recover properly from failures. It’s common for fault-tolerance
techniques to be designed with a tolerance up to a predefined number of simultane-
ous failures, in which case you’ll hear of a system being called k-fault tolerant, where k
represents the number of simultaneous failures.

 In general there are two common approaches a streaming system may take toward
replication and coordination. Both cases assume that we have designed and thought
about our streaming algorithm in an idempotent way. If you recall from before, for our
streaming job to be idempotent it means that two non-faulty stream processors that
receive the same input in the same order will produce the same output in the same
order. If we can ensure that, then we can refer to those two stream processors and
hence our streaming job as idempotent and consistent if they generate the same out-
put in the same order. The first approach that’s sometimes used by stream processing
systems is known as the state-machine approach. With this approach the stream man-
ager replicates the streaming job on independent nodes and coordinates the replicas
by sending the same input in the same order to all. This approach will require k + 1
times the resources of a single replica, where k is the number of stream processors our
store/books/9781617294198

https://itbook.store/books/9781617294198

20 CHAPTER 4 Analyzing streaming data

www.itboo
streaming job is running on. But this allows for quick failover, resulting in very little dis-
ruption. For some applications, such as an intrusion-detection system that has low-
latency requirements at all times, the extra resource cost may be justifiable.

 The second approach is known as rollback recovery. In this approach, the stream
processor periodically packages the state of our computation into what is called a
checkpoint, and it copies the checkpoint to a different stream processor node or a
nonvolatile location such as a disk. Between checkpoints, the stream processor has to
keep track of the computation. Given the relative high latency of disks, once they’re
introduced the latency of our streaming computation will go up. It therefore may not
be unreasonable for a stream-processing framework to instead decide to take the
approach of copying the checkpointed state to other stream processor nodes and also
maintain logs in memory. In this case if a stream processor fails, the stream manager
would need to reconstruct the state from the most recent checkpoint and replay the
log to recover the exact pre-failure state of the streaming job. Compared to the first
approach, this approach has a lower overhead but it’s more expensive in terms of time
to recover when a failure does happen. This approach is useful in situations where
fault tolerance is important and rare moderate latencies are acceptable.

 As you investigate which stream-processing framework to use to solve your business
problem, you’ll find that if they offer fault-tolerance they’ll all be some variant on
these two common approaches. If you’re interested in taking a deeper dive into either
of these approaches, you may find the following articles of interest: Elnozahy, Alvisi,
Wang, and Johnson’s “A Survey of Rollback-Recovery Protocols in Message-Passing
Systems”1 and Schneider’s “Implementing Fault-Tolerant Services Using the State
Machine Approach: A Tutorial.”2

4.4 Summary
In this chapter we took a dive into the common architecture of stream-processing
frameworks you’ll find when surveying the landscape, and we went over the core fea-
tures that you need to consider.

 You learned

 About the common architecture of stream-processing frameworks
 What message delivery semantics mean for this tier
 What state is and how it can be managed
 What fault tolerance is and why you need it

1 ACM Computing Surveys, 34(3):375–408 (2002).
2 ACM Computing Surveys, 22(4):299–319 (1990).
k.store/books/9781617294198

https://itbook.store/books/9781617294198

www.itbook.
Streaming Data introduces the concepts and require-
ments of streaming and real-time data systems.
Through this book you’ll develop a foundation to
understand the challenges and solutions of building
in-the-moment data systems before committing to spe-
cific technologies. Using copious diagrams, this book
systematically builds up the blueprint for an in-the-
moment system concept by concept. Although code
may occasionally appear in examples, this book focuses
on the big ideas of streaming and real-time data sys-
tems rather than the implementation details.

Many of the technologies discussed in the book—
Spark, Storm, Kafka, Impala, RabbitMQ, etc.—are covered individually in other
books. As you read, you’ll get a clear picture of how these technologies work individu-
ally and together, gain insight on how to choose the correct technologies, and dis-
cover how to fuse them together to architect a robust system.

What’s inside

 Understand and architect a complete system for collecting and analyzing data
in real time

 Harness the “Internet of Things” by handling live data from billions of devices
 Use the specific functions of each tier of an in-the-moment system to solve real

business problems
 Combine emerging technologies like Spark, Storm, Kafka, RabbitMQ, and Web-

Sockets
 Integrating and extending the Lambda architecture into a complete system

No experience with streaming or real-time data systems required. Perfect for develop-
ers or architects, this book is also written to be accessible to technical managers and
business decision makers.
store/books/9781617294198

https://www.manning.com/books/streaming-data
https://www.manning.com/books/streaming-data
https://itbook.store/books/9781617294198

www.itbook.store
A s applications grow in size and complexity, the impact of unanticipated
error or application failure looms large. Reactive design introduces new ways of
thinking about managing failure. The following chapter provides an overview of
fault tolerance and recovery patterns, which, arguably, are neglected during the
development of many applications. In the worst cases, this can lead to cascading
failures that render an entire system unusable.

Fault tolerance and
recovery patterns
/books/9781617294198

https://itbook.store/books/9781617294198

www.itbook.sto
Chapter 12 from Reactive Design Patterns
by Roland Kuhn
with Brian Hanafee and Jamie Allen

Fault tolerance
and recovery patterns
In this chapter you will learn how to incorporate the possibility of failure into the
design of your application. We will demonstrate the patterns in the concrete use-
case of building a resilient computation engine that allows batch job submissions
and their execution on elastically provisioned hardware resources. We build upon
what we learned in chapters 6 and 7, so you might want to refresh your understand-
ing of those.

 We start out with considering a single component and its failure and recovery
strategies, then we build up more complex systems by hierarchical composition as
well as client–server relationships. In particular we discuss the following patterns:

 The Simple Component Pattern (a.k.a. the Single Responsibility Principle)
 The Error Kernel Pattern
 The Let-It-Crash Pattern
 The Circuit Breaker Pattern

12.1 The Simple Component Pattern
“A component shall do only one thing, but do it in full.”

This pattern applies wherever a system performs multiple functions or the func-
tions it performs are so complex that they need to be broken up into different com-
ponents. An example is a text editor that includes spell checking: these are two
separate functions (editing can be done without spell checking, and spelling can
also be checked on the finished text and does not require editing capabilities), but
neither of these functions is trivial.
23

re/books/9781617294198

https://www.manning.com/books/reactive-design-patterns
https://itbook.store/books/9781617294198

24 CHAPTER 12 Fault tolerance and recovery patterns

www.itboo
 This pattern derives from the Single Responsibility Principle that was formulated by
De Marco in his 1979 book Structured analysis and system specification (Yourdon, New
York). In its abstract form it demands to “maximize cohesion and minimize coupling,”
applied to object-oriented software design it is usually stated as “a class should have
only one reason to change.”1

 From the discussion of divide et regna in chapter 6 we know that in order to break a
large problem up into a set of smaller ones, we can find help and orientation by look-
ing at the responsibilities that the resulting components will have. Applying the pro-
cess of responsibility division recursively allows us to reach any desired granularity and
results in a component hierarchy that we can then implement.

12.1.1 The Problem Setting

As an example consider a service that offers computing capacity in a batch-like fash-
ion: users submit jobs to be processed, stating a job’s resource requirements and
including an executable description of the data sources and the computation that is
to be performed. The service will have to watch over the resources that it manages: it
will have to implement quotas for the resource consumption of its clients and sched-
ule jobs in a fair fashion. It will also have to persistently queue the jobs that it accepts
such that clients can rely upon their eventual execution.

THE TASK

Your mission is to sketch the components that make up the full batch service, noting
for each one what exactly its responsibility is. Start from the top-level and work your
way downwards until you reach components that are concrete and small enough so
that you could task teams with implementing them.

12.1.2 Applying the Pattern

We can immediately conclude that the service implementation will be made up of two
parts: one that does the coordination and that the clients communicate with, and
another that will be responsible for the actual execution of the jobs; this is shown in
figure 12.1. In order to make the whole service elastic, the coordinating part would
tap into an external pool of resources and dynamically spin up or down executor
instances. We can see that the coordination will be a rather complex task and there-
fore we want to break it up further.

 To follow the flow of a single job request
through this system, we start with the job sub-
mission interface that is offered to clients.
This part of the system needs to present a net-
work endpoint that clients can contact; it
needs to implement a network protocol for

1 Uncle Bob, “Principles of OOD” (May 11, 2005; http://butunclebob.com/ArticleS.UncleBob.Principles-
OfOod)

C
lie

nt
s

Coordination Execution

Figure 12.1 Initial component separation
k.store/books/9781617294198

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
https://itbook.store/books/9781617294198

25The Simple Component Pattern

www.itbook.
this purpose and it will interact with the rest of the system on behalf of the clients. We
could break up responsibility even finer along these lines, but for now let us consider
this aspect of representing clients within the client as one responsibility; the client
interface will thus be our second dedicated component.

 Once a job has been accepted and the client has been informed by way of an
acknowledgement message our system must ensure that eventually the job will be exe-
cuted. This can only be achieved by storing the incoming jobs on some persistent
medium and we might be tempted to place this storage within the client interface
component. But we can already anticipate that other parts of the system will have to
access these jobs, for example in order to start their execution. This means that in
addition to representing the clients this component would assume responsibility for
making job descriptions accessible to the rest of the system, which is in violation of the
single responsibility principle.

 Another temptation might be to share the responsibility for the handling of job
descriptions between the interested parties—at least the client interface and the job
executor as we may surmise—but that will also greatly complicate each of these com-
ponents, as they will now have to coordinate their actions, running counter to the
Simple Component Pattern’s goal. It is much simpler to keep one responsibility
within one component and avoid the communication and coordination overhead that
comes with distributing it across multiple components. Besides these runtime con-
cerns we also need to consider the implementation: sharing the responsibility means
that one component needs to know about the inner workings of the other, so their
development needs to be tightly coordinated as well. These are the reasons behind
the second part of “do only one thing, but do it in full.”

 This leads us to identify the storage of job descriptions as another segregated
responsibility of the system and thereby as the third dedicated component. A valid
interjection at this point is that the client interface component might well benefit
from persisting the incoming jobs within its own responsibility, this would allow
shorter response times for the job submission acknowledgement and it also makes the
client interface independent from the job storage component in case of temporary
unavailability. However, such a persistent queue would only have the purpose of even-
tually delivering accepted jobs to the storage component, who then will take responsi-
bility of them. Therefore these notions are not in conflict with each other, we might
implement both if system requirements demand it.

C
lie

nt
s

Coordination

Storage

Client
interface

Job
scheduling Execution

Figure 12.2 Intermediate component
separation with the Coordination
component being broken up in three
distinct responsibilities.
store/books/9781617294198

https://itbook.store/books/9781617294198

26 CHAPTER 12 Fault tolerance and recovery patterns

www.itbook.
Taking stock, by now we have identified the client interface, the job storage, and the
job executor as three dedicated components with non-overlapping responsibilities.
What remains to be done is to figure out which jobs to run in what order, we call this
part “job scheduling.” The current state of our system’s decomposition is shown in fig-
ure 12.2; now we apply this pattern recursively until the problem is broken up into
simple components.

 Probably the most complex task in the whole service is to figure out the execution
schedule for the accepted jobs, in particular when prioritization or fairness is to be
implemented between different clients that share a common pool of resources—the
corresponding allocation of computing shares are usually a matter of intense discus-
sion between competing groups of people.2 The scheduling algorithm will need to
have access to job descriptions in order to extract scheduling requirements (maxi-
mum running time, possible expiry deadline, which kind of resources are needed,
etc.), so this is another client of the job storage component.

 It takes a lot of effort—both for the implementation and at runtime—to plan the
execution order of those jobs that are accepted for execution, and this task is inde-
pendent from deciding which jobs to accept. Therefore it will be beneficial to sepa-
rate the responsibility of job validation into its own component. This also has the
advantage of removing the rejected tasks before they become a burden for the sched-
uling algorithm. The overall responsibility of job scheduling now consists of two com-
ponents, but its overall function should still be represented consistently to the rest of
the system. For example, the executors need to be able to retrieve the next job to run
at any given time independently of whether there is a scheduling run in progress or
not. For this reason we place the external interactions in an overall scheduling com-
ponent of which the validation and planning responsibilities are delegated to sub-
components. The resulting split of responsibilities for the whole system is shown in
figure 12.3.

12.1.3 The Pattern Revisited

The goal of this pattern is to implement the Single Responsibility Principle and we did
that by considering the responsibilities of the overall system at the highest level—cli-
ent interface, storage, scheduling, execution—and separating these into dedicated

2 The authors have some experience with such allocation between different groups of scientists competing for
data analysis resources in order to extract the insights they need for academic publications.

C
lie

nt
s Client

interface

Job scheduling

Storage

Execution
Validation Planning

Figure 12.3 The resulting
component separation
store/books/9781617294198

https://itbook.store/books/9781617294198

27The Error Kernel Pattern

www.itbook.
components, keeping an eye on their anticipated communication needs. We then
dived into the scheduling component and repeated the process, finding that there are
sizable and non-overlapping sub-responsibilities which we split out into their own sub-
components. This left the overall scheduling responsibility in a parent component
because we anticipate coordination tasks that will be needed independently of the
sub-components’ functions.

 By this process we arrived at segregated components that can be treated indepen-
dently during the further development of the system. Each of these has one clearly
defined purpose and each core responsibility of the system lies with exactly one com-
ponent. Though the overall system and the internals of any component may be com-
plex, the Single Responsibility Principle yields the simplest division of components to
further work on—it frees us from always having to consider the whole picture when
working on smaller pieces. This is its quintessential feature: it addresses the concern
of system complexity.

 Additionally, following the Simple Component Pattern simplifies the treatment of
failures as we will exploit in the following two patterns.

12.1.4 Applicability

This is the most basic pattern to follow and it is universally applicable. Its application
may lead you to a fine-grained split of your problem or to the realization that you are
dealing with only one single component—the important part is that afterward you
know why you chose your system structure as you did. It helps all later phases of the
design and implementation to document and remember this, because when questions
come up later of where to place certain functionality in detail you can let yourself be
guided by the simple question of “what is its purpose?” The answer will directly point
you toward one of the responsibilities you identified, or it will send you back to the
drawing board in case you forgot to consider it.

 It is important to remember that this pattern is meant to be applied in a recursive
fashion, making sure that none of the identified responsibilities remain too complex
or high-level. One word of warning, though: once you start dividing up components
hierarchically it is easy to get carried away and go too far—the goal is simple compo-
nents that have a real responsibility, not trivial components without an individual rea-
son to exist.

12.2 The Error Kernel Pattern
“In a supervision hierarchy keep important application state or functionality near the root while
delegating risky operations towards the leaves.”

This pattern builds upon the Simple Component Pattern and is applicable wherever
components of different failure probability and reliability requirements are combined
into a larger system or application—some functions of the system must “never” go
down while others are necessarily exposed to failure. Applying the Simple Component
store/books/9781617294198

https://itbook.store/books/9781617294198

28 CHAPTER 12 Fault tolerance and recovery patterns

www.itbook.
Pattern will frequently leave you in this position, hence it pays to familiarize yourself
well with the Error Kernel.

 This pattern has been established in Erlang programs for decades3 and was one of
the main reasons that inspired Jonas Bonér to implement an Actor framework—
Akka—on the JVM. The name “AKKA” was originally conceived as the palindrome of
“Actor Kernel,” referring to this core design pattern.

12.2.1 The Problem Setting

From the discussion of hierarchical failure handling in chapter 7 we know that each
component of a reactive system is supervised by another component that is responsi-
ble for its lifecycle management. This implies that if the supervisor component fails
then all its subordinates will be affected by the subsequent restart, resetting everything
to a known good state and potentially losing intermediate updates. If the recovery of
important pieces of state data is expensive then such a failure will lead to extensive
service downtimes, a condition that reactive systems aim to minimize.

THE TASK

Consider each of the six components identified in the previous example as a failure
domain and ask yourself which component should be responsible for reacting to its
failures as well as which components will be directly affected by them. Summarize your
findings by drawing the supervision hierarchy for the resulting system architecture.

12.2.2 Applying the Pattern

Since recovering from a component’s failure implies the loss and subsequent recre-
ation of its state, we shall look for opportunities to separate likely points of failure
from the places where important and expensive data are kept. The same applies to
pieces that provide services that shall be highly available: these should not be
obstructed by frequent failure nor long recovery times. In the example we identified
the following disparate responsibilities:

 Communication with clients (accepting jobs and delivering their results)
 Persistent storage of job descriptions and their status
 Overall job scheduling responsibility
 Validation of jobs against quotas or authorization requirements
 Job schedule planning
 Job execution

Each of these responsibilities benefits from being decoupled from the rest. For exam-
ple the communication with clients should not be obstructed by a failure of the job
scheduling logic, just as client-induced failures should not affect the currently run-
ning jobs. The same reasoning applies to the other pieces analogously. This is another
reason in addition to the single responsibility principle for considering them as dedi-
cated components as shown again in figure 12.4.

3 The Ericsson AXD301’s legendary reliability is attributed in part to this design pattern and its success popu-
larized both the pattern and the Erlang language and runtime that were used in its implementation.
store/books/9781617294198

https://itbook.store/books/9781617294198

29The Error Kernel Pattern

www.itbook.
The next step is to consider the failure domains in the system and ask ourselves how
each of them should recover and how costly that process will be. To this end we follow
the path by which a job travels through the system.

 Jobs enter the service through the communication component, which speaks an
appropriate protocol with the clients, maintaining protocol state and validating
inputs. The state that is kept is short-lived, tied to the communication sessions that are
currently open with clients. When this component fails, affected clients will have to re-
establish a session and possibly send commands or queries again, but our component
does not need to take responsibility for these activities. In this sense it is effectively
stateless—the state that it does keep is ephemeral and local. Recovery of such compo-
nents is trivially done by just terminating the old and starting the new runtime
instance.

 Once a job has been received from a client, it will need to be persisted, a responsi-
bility that we placed with the storage component. This component will have to allow
all other components to query the list of jobs, selecting them by current status or cli-
ent account and holding all necessary meta-information. Apart from caches for more
efficient operation, this component does not hold any runtime state; its function is
only to operate a persistent storage medium, therefore it can easily be restarted in
case of failure. This assumes that the responsibility of providing persistence will be
split out into a sub-component—which today is a likely approach—that we would have
to consider as well. If the contents of the persistent storage become corrupted then it
is a business decision whether to implement (partial) automatic resolution of these
cases or leave it to the operations personnel. Automatic recovery would presumably
interfere with normal operation of the storage medium and would therefore fall into
the storage component’s responsibility.

 The next stop of a job’s journey through the batch service is the scheduling com-
ponent. At the top level this one has the responsibilities of applying quotas and
resource request validation, as well as providing the executor component with a
queue of jobs to pick up. The latter is crucial for the operation of the overall batch
service: without it the executors would run idle and the system would fail to perform
its core function. For this reason we place this function at the top of the scheduling

C
lie

nt
s Client

interface

Storage

Execution

Validation Planning

Job scheduling

Figure 12.4 The six components drawn as separate failure domains
store/books/9781617294198

https://itbook.store/books/9781617294198

30 CHAPTER 12 Fault tolerance and recovery patterns

www.itboo
component’s priorities and correspondingly at
the root of its sub-component hierarchy as
shown in figure 12.5.

 While applying the Simple Component Pat-
tern we identified two sub-responsibilities of
the scheduling component. The first is to vali-
date jobs against policy rules like per-client
quotas4 or general compatibility with the cur-
rently available resource set—it would not do to accept a job that needs 20 executor
units when only 15 can be provisioned. Those jobs that pass validation from the input
to the second sub-component that performs the job schedule planning for all cur-
rently outstanding and accepted jobs. Both of these responsibilities are task-based;
they are started periodically and then either complete successfully or fail. Failure
modes include hardware failures as well as not terminating within a reasonable time
frame. In order to compartmentalize possible failures, these tasks should not directly
modify the persistent state of jobs or the planned schedule but instead report back to
their parent component who then takes action, be that notifying clients (via the client
interface component) of jobs that failed their submission criteria or updating the
internal queue of jobs to be picked next.

 Whereas restarting the sub-components proved to be trivial, restarting the parent
scheduling component is more complex—it will need to initiate one successful sched-
ule planning run before it can reliably resume performing its duties. Therefore we
keep the important data and the vital functionality at the root and delegate the poten-
tially risky tasks to the leaves. Here again we note that the Error Kernel Pattern con-
firms and reinforces the results of the Simple Component Pattern: we frequently find
that the boundaries of responsibilities and failure domains coincide and that their
hierarchies match as well.

 Once a job has reached the head of the scheduler’s priority queue it will be picked
up for execution as soon as computing resources become available. We have so far
considered execution to be an atomic component, but when considering failure we
come to the conclusion that we will have to divide its function: the executor needs to
keep track of which job is currently running where and it will also have to monitor the
health and progress of all worker nodes. The worker nodes are those components that
upon receiving a job description will interpret the contained information, contact
data sources, and run the analysis code that was specified by the client. Clearly the fail-
ure of each worker shall be contained to that node and not spread to other workers or
the overall executor, which implies that the execution manager supervises all worker
nodes as shown in figure 12.6.

4 For example one might want to limit the maximal number of jobs queued by one client—both in order to
protect the scheduling algorithm and to enforce administrative limits.

Job scheduling

Parent of...

PlanningValidation

Figure 12.5 Job scheduling sub-hierarchy
k.store/books/9781617294198

https://itbook.store/books/9781617294198

31The Error Kernel Pattern

www.itbook.
 If the system will be elastic, the executor will also
make use of the external resource provision mecha-
nism in order to create new worker nodes or shut
down unused ones. The execution manager is also
in the position to make the decision to enlarge or
shrink the worker pool, because it naturally moni-
tors the job throughput and it can easily be
informed about the current job queue depth—
another approach would be to let the scheduler
decide the desired pool size. In any case it is the
executor that holds the responsibility of starting, restarting, or stopping worker nodes
since it is the only component that knows when it is safe or required to do so.

 Analogous to the client interface component, the same reasoning applies that the
communication with the external resource provision mechanism should be isolated
from the other activities of the execution manager. A communication failure in that
regard should not keep jobs from being assigned to already running executor
instances or job completion notifications from being processed.

 The execution of the job is the main purpose of the whole service, but the journey
of our job through the components is not yet complete. After the assigned worker
node has informed the manager about the completion status, this result needs to be
sent back to the storage component in order to be persisted. If the job’s nature was
such that it must not be run twice, then the fact that the execution was about to start
must also have been persisted in this fashion; in this case a restart of the execution
manager will need to include a check of which jobs were already started but not yet
completed prior to the crash, and corresponding failure results will have to be gener-
ated. In addition to persisting the final job status, the client will need to be informed
about the job’s result, which completes the whole process.

 Now that we have illuminated the function and relationship of the different com-
ponents, we recognize that we have omitted one in the earlier list of responsibilities.
The service itself needs to be orchestrated, composed from its parts, supervised, and
coordinated. We need one top-level component that creates the others and arranges
for jobs and other messages being passed between them. In essence it is this compo-
nent’s function to oversee the message flow and thereby the business process of the
service. This component will be top-level because of its integrating function that is
needed at all times, even though it may be completely stateless by itself. The complete
resulting hierarchy is shown in figure 12.7.

Worker
Resource

pool
interface

Execution

Figure 12.6 Execution component
sub-hierarchy
store/books/9781617294198

https://itbook.store/books/9781617294198

32 CHAPTER 12 Fault tolerance and recovery patterns

www.itboo

12.2.3 The Pattern Revisited

The essence of what we did in the preceding example can be summarized in the fol-
lowing strategy: after applying the Simple Component Pattern, pull important state or
functionality towards the top of the component hierarchy, and push activities that
carry a higher risk for failure downwards towards the leaves. It is expected that the
responsibility boundaries will coincide with failure domains and that narrower sub-
responsibilities will naturally fall towards the leaves of the hierarchy. This process may
lead you to introduce new supervising components that tie together the functionality
of components that are otherwise siblings in the hierarchy, or it might guide you
towards a more fine-grained component structure in order to simplify failure han-
dling or decouple and isolate critical functions to keep them out of harm’s way. The
quintessential function of this pattern is to integrate the operational constraints of the
system into its responsibility-based problem decomposition.

12.2.4 Applicability

The Error Kernel Pattern is applicable if any of the following are true:

 Does your system consist of components that have different reliability require-
ments?

 Do you expect components to have significantly different failure probabilities
and failure severities?

 Does the system have important functionality that it must provide as reliably as
possible while also having components that are exposed to failure?

 Is there important information kept in one part of the system that is expensive
to recreate while other parts are expected to fail frequently?

The Error Kernel Pattern is not applicable if:

 No hierarchical supervision scheme is used
 The system is a Simple Component
 All components are either stateless or tolerant to data loss

Worker

Resource
pool

interface

ExecutionJob scheduling

Batch job service

StorageClient interface

PlanningValidation

Figure 12.7 The hierarchical decomposition of the batch job service
k.store/books/9781617294198

https://itbook.store/books/9781617294198

33The Let-It-Crash Pattern

www.itbook.
We will discuss the second kind of scenarios in more depth in the next chapter when
presenting the Active–Active Replication Pattern.

12.3 The Let-It-Crash Pattern
“Prefer a full component restart to internal failure handling.”

In chapter 7 we discussed “principled failure handling,” noting that the internal
recovery mechanisms of each component are limited because they are not sufficiently
separated from the failing parts—everything within a component can be affected by a
failure. This is especially clear for hardware failures that take down the component as
a whole, but it is also true for corrupted state that is the result of some programming
error that is only observable in rare circumstances. For this reason it is necessary to
delegate failure handling to a supervisor instead of attempting to solve it within the
component itself.

 This approach is also called crash-only software.5 The idea is that transient but rare
failures are often very costly to diagnose and fix, making it preferable to recover a
working system by rebooting parts of it. This way of hierarchical restart-based failure
handling allows to greatly simplify the failure model and at the same time leads to a
more robust system that even has a chance to survive failures that were entirely
unforeseen.

12.3.1 The Problem Setting

We will demonstrate this design philosophy on the example of the worker nodes that
perform the bulk of the work in the batch service whose component hierarchy we
developed in the previous two patterns. Each of these is presumably deployed on its
own hardware—virtualized or not—that it does not share with other components; ide-
ally there is no common failure mode between different worker nodes other than a
computing center outage.

 The problem that we are trying to solve is that the workers’ code may contain pro-
gramming errors that rarely manifest, but when they do they will impede the ability to
process batch jobs. Examples of this kind are very slow resource leaks that can go
undetected for a long time but will eventually kill the machine; this could be open
files, retained memory, background threads, etc. and the leak might not occur every
time but could be caused by a rare coincidence of circumstances. Another example is
a security vulnerability that allows the executed batch job to intentionally corrupt the
state of the worker node in order to subvert its function and perform unauthorized
actions within the service’s private network—such subversion often is not completely
invisible and leads to spurious failures that should better not be papered over.

5 Both of the following articles are by George Candea and Armando Fox: “Recursive Restartability: Turning the
Reboot Sledgehammer into a Scalpel,” USENIX HotOS VIII, 2001 (http://dslab.epfl.ch/pubs/
recursive_restartability.pdf) and “Crash-Only Software,” USENIX HotOS IX, 2003 (https://www.usenix.org/
legacy/events/hotos03/tech/full_papers/candea/candea.pdf)
store/books/9781617294198

http://dslab.epfl.ch/pubs/recursive_restartability.pdf
http://dslab.epfl.ch/pubs/recursive_restartability.pdf
https://www.usenix.org/legacy/events/hotos03/tech/full_papers/candea/candea.pdf
https://www.usenix.org/legacy/events/hotos03/tech/full_papers/candea/candea.pdf
https://itbook.store/books/9781617294198

34 CHAPTER 12 Fault tolerance and recovery patterns

www.itboo
THE TASK

Your mission is to consider the components we have identified for the batch service
and describe how a crash and restart would affect each of them and which implemen-
tation constraints arise from the let-it-crash philosophy.

12.3.2 Applying the Pattern

The Let-It-Crash Pattern by itself is simple: whenever a component—for example a
worker node—is detected to be faulty, no attempts are made to repair the damage.
Instead of doctoring with its internal state we restart it completely, releasing all its
resources and starting up again from scratch. If we obtained the worker nodes by ask-
ing an infrastructure service to provision them then we can go back to the most basic
state imaginable: we decommission the old worker node and provision an entirely new
one. This way no corruption or accumulated failure condition can have survived in
the fresh instance since we start out from a known good state again.

 Applying this approach to the Client Interface nodes means that all currently
active client connections will be severed for the failed node, leading to connection
abort errors in the clients. Upon detecting such an abort condition the client should
try to reconnect, which is our first conclusion. The second follows immediately when
considering that the new connection should not be routed to the failed node: this
usually means changing the load balancer configuration to remove the failed node.
Then a new node needs to be brought online and added to the load balancer to
restore the same processing capacity as before. With these measures we can confi-
dently crash and restart a Client Interface node at any given point in time. We do not
need to consider the internal communication because no other components depend
on this one: the Client Interface only has dependencies and no dependents—the con-
sequence of this is that any new client requests that a fresh node receives will just refer
to the Storage or Scheduling components as the sources of truth; the Client Interface
can be “stateless.”6

 For the Storage component, a node failure means that the stored data are invalid
or lost—the consequence of either possibility is that the data cannot be relied upon
any longer, so these states are fundamentally equivalent. Since the purpose of the
component is to store data permanently, we will have to distribute them as per the dis-
cussion in section 2.3. We will cover data replication in the next chapter; for now it
suffices to assume that there will be other storage nodes that hold copies of the data.
After stopping the failed node we will therefore need to start a new one that synchro-
nizes itself with the other replicas, taking on the share of the responsibility that the
failed node had. If the new node uses the previous node’s permanent storage device
then recovery can be sped up by synchronizing only those updates that occurred after

6 This word has become so widely (mis)used that it does not stand on its own any longer; the author’s view is
that a truly stateless service which does not contain any mutable internal state does not exist (it would not be
a component with a purpose to exist) and a more meaningful interpretation is to equate statelessness with the
absence of persistent mutable state.
k.store/books/9781617294198

https://itbook.store/books/9781617294198

35The Let-It-Crash Pattern

www.itboo
the failure. It should be noted that failure is not the same as shutting down and start-
ing back up again: the storage devices themselves will keep the data across the shut-
down and the system will start up normally afterwards—this can even be done in many
cases of infrastructure outages (like network or power failures).

 In the case of the Scheduling component, a crash and restart means repopulating
the internal state from persistent job storage and resuming operations. This is trivial
for an aborted planning run or a failure during job validation and it can also be han-
dled very simply for the top-level Scheduling component: we used the Error Kernel
Pattern to keep this piece of software rather simple so that we could assume that a
restart cycle takes a sufficiently short time to be deemed an acceptable downtime,
unless specific requirements force us to use replication here as well.

 The Execution component works similarly in that the worker nodes can crash and
be restarted as discussed above, where the supervisor makes sure that the affected
batch job is started again on another available node (or on the newly provisioned
one). For the Resource Pool Interface we can tolerate short downtime while it is
restarted as its services are only rarely needed, and when they are then the reaction
times will be of the order of many seconds of even minutes in any case.

12.3.3 The Pattern Revisited

We have looked at each of the components in our system’s supervision hierarchy and
considered the consequences of a failure and subsequent restart. In some cases we
encountered implementation constraints like having to update the request routing
infrastructure so that the failed node is no longer considered and the replacement is
taken into account once it is ready. In other cases we approached the formulation of
service level agreements by saying that a short downtime may be acceptable in some
cases: in a real system we would quantify this both in the failure frequency (e.g. by way
of the MTBF7) and the extent of the outage (also called MTTR8).

 This pattern can also be turned around so that components are “crashed” inten-
tionally on a regular basis instead of waiting for failures to occur—this could be
termed the Pacemaker Pattern. Deliberately inducing failures has been standard opera-
tion procedure for a long time in high-availability scenarios in order to verify that
failover mechanisms are effective and perform according to their specification. The
concept has been popularized in recent years by the “Chaos Monkey” employed by
Netflix9 to establish and maintain the resilience of their infrastructure. The chaotic
nature of this approach manifests in single nodes being killed at random without
prior selection or human consideration. The idea is that in this way failure modes are
exercised that could potentially be missed in human enumeration of all possible cases.

7 Mean Time Between Failures, see https://en.wikipedia.org/wiki/Mean_time_between_failures
8 Mean Time To Repair, see https://en.wikipedia.org/wiki/Mean_time_to_repair
9 At the time of writing, Netflix is the largest streaming video provider in the U.S. The Chaos Monkey is part of

the SimianArmy project which is available as open-source software at https://github.com/Netflix/Simian-
Army; the approach is described in detail at http://techblog.netflix.com/2012/07/chaos-monkey-released-
into-wild.html.
k.store/books/9781617294198

https://en.wikipedia.org/wiki/Mean_time_between_failures
https://en.wikipedia.org/wiki/Mean_time_to_repair
https://github.com/Netflix/SimianArmy
https://github.com/Netflix/SimianArmy
http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html
http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html
https://itbook.store/books/9781617294198

36 CHAPTER 12 Fault tolerance and recovery patterns

www.itboo
On a higher level, whole data centers or geographic regions are taken offline in a
more prepared manner to verify global resource reallocation—this is done on the live
production system since there is no simulation environment that could practically
emulate the load and client dynamics in such a large-scale application.

 Another way to look at this is to consider the definition of availability: it is the frac-
tion of time during which the system is not failed, i.e. (MTBF – MTTR) / MTBF. This
can be increased either by making MTBF larger—which corresponds to less frequent
but possibly extensive failures—or by making MTTR smaller. In the latter case the max-
imum consecutive downtime period is smaller and the system operates more
smoothly, which is the goal of the Let-It-Crash pattern.

12.3.4 Implementation Considerations

While this pattern is deeply ingrained in reactive application design already, it is nev-
ertheless documented here to take note of its important consequences on the design
of components and their interaction:

 Each component must tolerate a crash and restart at any point in time, just like
a power outage can happen without warning. This means that all persistent
state must be managed such that the service can resume processing requests
with all necessary information and ideally without having to worry about state
corruption.

 Each component must be strongly encapsulated so that failures are fully con-
tained and cannot spread. The practical realization depends on the failure
model for the hierarchy level under consideration: the options range from
shared-memory message passing over separate O/S processes to separate hard-
ware in possibly different geographic regions.

 All interactions between components must tolerate peers crashing. This means
ubiquitous use of timeouts and circuit breakers (described later in this chap-
ter).

 All resources a component uses must be automatically reclaimable by perform-
ing a restart. Within an actor system this means that resources are freed by each
actor upon termination or that they are leased from their parent. For an O/S
process it means that the kernel will release all open file handles, network sock-
ets, etc. when the process exits. For a virtual machine it means that the infra-
structure resource manager will release all allocated memory (also persistent
filesystems) and CPU resources, to be reused by a different virtual machine
image.

 All requests sent to a component must be as self-describing as is practical so that
processing can resume with as little recovery cost as possible after a restart.

12.3.5 Corollary: the Heartbeat Pattern

Let-it-crash describes how failures are dealt with. The other side of this coin is that fail-
ures must first be detected before they can be acted upon. In particularly catastrophic
k.store/books/9781617294198

https://itbook.store/books/9781617294198

37The Let-It-Crash Pattern

www.itboo
cases like hardware failures, the supervising compo-
nent can only detect that something is wrong by
observing the absence of expected behavior. This
obviously requires that some behavior can be
expected, which means that the supervisor and subor-
dinate must communicate with each other on a regu-
lar basis. In cases where there would not otherwise be
a reason for such interchange, the supervisor needs
to send dummy requests whose sole purpose is to see
whether the subordinate is still working properly.
Due to their regular and vital nature these are called
heartbeats. The resulting pattern’s diagram is shown in
figure 12.8.

 One caveat of using dedicated heartbeat messages
is that the subordinate might have failed in a way that allows heartbeats to be pro-
cessed while nothing else can be answered properly. In order to guard against such
unforeseen failures health monitoring should be implemented by monitoring the ser-
vice quality (failure rate, response latency, etc.) during normal operation where
appropriate—sending such statistics to the supervisor on a regular basis can be used
as a heartbeat signal at the same time if it is done by the subordinate itself (as opposed
to the infrastructure, e.g. by monitoring the state of circuit breakers as discussed in
section 12.4).

12.3.6 Corollary: The Proactive Failure Signal Pattern

Applying the Heartbeat Pattern to all failure modes results in a high level of robustness
already, but there are classes of failures where patiently counting out the suspected
component takes longer than necessary: the component can diagnose some failures
itself. A prominent example is that all exceptions that are thrown from an actor imple-
mentation will be treated as failures—exceptions that are handled inside the actor usu-
ally pertain to error conditions resulting from the use of libraries that use exceptions
for this purpose. All uncaught exceptions can be sent by the infrastructure (i.e. the
actor library) to the supervisor in a message signaling
the failure so that the supervisor can act upon it
immediately. Wherever this is possible it should be
viewed as an optimization of the supervisor’s response
time. The messaging pattern between supervisor and
subordinate is depicted in figure 12.9 using the con-
ventions established in appendix A.

 Depending on the failure model it can also be
adequate to rely entirely on such measures. This is
equivalent to saying that for example an actor is
assumed to not have failed until it has sent a failure
signal. Monitoring the health of every single actor in

Check
& ack

1*

Supervisor

Subordinate

Figure 12.8 The supervisor starts
the subordinate, then it performs
periodic health checks by
exchanging messages with it until
no satisfactory answer is returned.

Supervisor

Subordinate

2

Figure 12.9 The supervisor starts
the subordinate and reacts to its
failure signals as they occur.
k.store/books/9781617294198

https://itbook.store/books/9781617294198

38 CHAPTER 12 Fault tolerance and recovery patterns

www.itboo
a system is typically forbiddingly expensive and
relying on these failure signals achieves sufficient
robustness at the lower levels of the component
hierarchy.

 It is not uncommon to combine this pattern
and the Heartbeat Pattern to cover all bases.
Where the infrastructure supports lifecycle moni-
toring—for example see the Deathwatch10 feature
of Akka actors—there is an additional way in
which the supervisor can learn of the subordi-
nate’s troubles: if the subordinate has stopped
itself while the supervisor still expected it to do
something (or if the component is not expected to
ever stop while the application is running) then
the resulting termination notification can be taken
as a failure signal as well. The full communication diagram for such a relationship is
shown in figure 12.10.

 It is important to note that these patterns are not specific to Akka or the Actor
Model; we use these implementations only to give concrete examples of their imple-
mentation. An application based on RxJava would for example use the Hystrix library
for health monitoring, allowing components to be restarted as needed. Another
example is that the deployment of components as microservices on Amazon EC2
could use the AWS API to learn of some nodes’ termination and react in the same
fashion as described for the DeathWatch feature here.

12.4 The Circuit Breaker Pattern
“Protect services by breaking the connection to their users during prolonged failure conditions.”

In the previous sections we discussed how to segregate a system into a hierarchy of
components and sub-components for the purpose of isolating responsibilities and
encapsulating failure domains. This pattern describes how to safely connect different
parts of the system together so that failures do not spread uncontrollably across them.
Its origin lies in electrical engineering: in order to protect electrical circuits from each
other and introduce decoupled failure domains, we have established the technique of
breaking the connection when the transmitted power exceeds a given threshold.

 Translated to a reactive application, this means that the flow of requests from one
component to the next may be broken up deliberately when the recipient is overloaded
or otherwise failing. This serves two purposes: firstly the recipient gets some breathing
room to recover from possible load-induced failures, and secondly the sender decides
that requests will fail instead of wasting time with waiting for negative replies.

10 see http://doc.akka.io/docs/akka/2.4.1/general/supervision.html#What_Lifecycle_Monitoring_Means
and http://doc.akka.io/docs/akka/2.4.1/scala/actors.html#Lifecycle_Monitoring_aka_DeathWatch

Supervisor

Subordinate

2

2
or

Check
& ack

1*

Figure 12.10 The supervisor first
starts the subordinate, then it performs
periodic health checks by exchanging
messages with it (step 1) until either
no answer is returned or a failure signal
is received (step 2).
k.store/books/9781617294198

http://doc.akka.io/docs/akka/2.4.1/general/supervision.html#What_Lifecycle_Monitoring_Means
http://doc.akka.io/docs/akka/2.4.1/scala/actors.html#Lifecycle_Monitoring_aka_DeathWatch
https://itbook.store/books/9781617294198

39The Circuit Breaker Pattern

www.itboo
 While circuit breakers have been used in electrical engineering since the 1920s,
the use of this principle has been popularized in software design only recently, e.g. by
Michael Nygard’s book Release It! (Pragmatic Programmers, 2007).

12.4.1 The Problem Setting

The batch job execution facility we designed in the previous two sections will serve us
yet another time. We already hinted at one place that would do well to include a circuit
breaker: the service is offered to external clients who submit jobs at their own rate and
schedule, and those are not naturally bounded by the capacity of the batch system.

 To visualize what this means, we consider a single client that contacts the batch ser-
vice to submit a single job. The client will get multiple status updates as the submitted
job progresses through the system:

 Upon having received and persisted the job description
 Upon having accepted the job for execution, or upon rejecting it due to policy

violations
 Upon starting execution
 Upon finishing execution

The first of these steps is a very important one: it assures the client that there will be
further updates on this job because it has been admitted into the system and will at
least be examined. Providing this guarantee is quite costly—it involves storing the job
description in non-volatile and replicated memory—and therefore a client could eas-
ily generate more jobs per second than the system can safely ingest. In this case the cli-
ent interface would overload the storage subsystem, which has knock-on effects for
the job scheduling and execution components, who would now experience degraded
performance when accessing job descriptions for their purposes. The system might
still work in this state, but its performance characteristics would be quite different
from normal operation; it would be in “overload mode.”

THE TASK

Your mission is to sketch the use of circuit breakers between the Client Interface and
the Storage component to both ensure that clients cannot willfully overload the stor-
age, as well as to ensure that the Client Interface gives timely responses even when the
Storage component is unreachable or failed.

12.4.2 Applying The Pattern

When implementing the client interface module we will have to write one piece of
code that sends requests to the storage subsystem. If we make sure that all such
requests take this one route then we will have an easy time reacting to the problematic
scenarios outlined above. What we will have to do is keep track of the response latency
for all requests that are made. When we observe that this latency rises consistently
above the agreed limit then we switch into “emergency mode”: instead of trying new
requests we answer all subsequent ones with negative replies right away—we fabricate
k.store/books/9781617294198

https://itbook.store/books/9781617294198

40 CHAPTER 12 Fault tolerance and recovery patterns

www.itboo
the negative replies on behalf of the storage subsystem, since that one cannot do even
that within the allowed time window under the current conditions.

 In addition we should also monitor the failure rate of replies that come back from
the storage subsystem. It does not make much sense to send ever more storage
requests when all of them will be answered negatively anyway. Instead of wasting the
network bandwidth we should switch into “emergency mode” as well, fabricating these
negative replies.

 An example implementation of this scheme in Akka would look like the following:

private object StorageFailed extends RuntimeException

private def sendToStorage(job: Job): Future[StorageStatus] = {
// make an asynchronous request to the storage subsystem
val f: Future[StorageStatus] = …
// map storage failures to Future failures to alert the breaker
f.map {

case StorageStatus.Failed => throw StorageFailed
case other => other

}
}

private val breaker = CircuitBreaker(
system.scheduler, // used for scheduling timeouts
5, // number of failures in a row when it trips
300.millis, // timeout for each service call
30.seconds, // time before trying to close after tripping

)

def persist(job: Job): Future[StorageStatus] =
breaker

.withCircuitBreaker(sendToStorage(job))

.recover {
case StorageFailed => StorageStatus.Failed
case _: TimeoutException => StorageStatus.Unknown
case _: CircuitBreakerOpenException => StorageStatus.Failed

}

The other client interface code will call the persist method and get back a Future rep-
resenting the storage subsystem’s reply, but the remote service invocation will only be
performed if the circuit breaker is in the closed state. Negative replies (of type
StorageStatus.Failed) or timeouts will be counted by breaker, and if it sees five fail-
ures in a row then it will transition into the open state in which it immediately provides
a response that consists of a CircuitBreakerOpenException. After 30 seconds exactly
one request will be let through again to the storage subsystem and if that comes back
successfully and in time then the breaker flicks back into the closed state.

 What we have done so far is illustrated in figure 12.11: the client interface will reply
to the external clients within its allotted time, but in case of storage subsystem overload
or failure, these replies will be fabricated and negative for all clients alike. Though this
protects the system from attacks it is not the best we can do. Just as in electrical engi-
neering we need to break circuits at more than one level—what we have built so far is
the main circuit breaker for the whole apartment building, but we are lacking the
power distribution boards that limit the damage that each individual tenant can do.
k.store/books/9781617294198

https://itbook.store/books/9781617294198

41The Circuit Breaker Pattern

www.itbook.
There is one difference between these per-client circuit breakers and the main one:
they react not primarily to trouble downstream, they enforce a certain maximum cur-
rent to flow through them. While in computer systems this might rather be called rate
limiting, this is exactly the function of circuit breakers in electrical engineering.11

What this means is that instead of tracking the call latencies, we must remember the
times of previous requests and reject new requests that violate a stated limit like “no
more than 100 requests in any 2 sec interval.” Writing such a facility in Scala is quite
straightforward:

import scala.concurrent.duration.FiniteDuration
import scala.concurrent.duration.Deadline
import scala.concurrent.Future

case object RateLimitExceeded extends RuntimeException

class RateLimiter(requests: Int, period: FiniteDuration) {
private val startTimes = {

val onePeriodAgo = Deadline.now - period
Array.fill(requests)(onePeriodAgo)

}

// the index of the next slot to be used, keeping track of when
// the last job was enqueued in it to enforce the rate limit
private var position = 0

private def enqueue(time: Deadline) = {
startTimes(position) = time
position += 1
if (position == requests) position = 0

}

def call[T](block: => Future[T]): Future[T] = {
val now = Deadline.now // obtain current timestamp
if ((now - startTimes(position)) < period) {

Future.failed(RateLimitExceeded)
} else {

enqueue(now)
block

}
}

}

11 In fact the use of the term for the failure-related mode of operation may be seen as a bit of a stretch but since
the name is already established for this type of use we will leave it at that.

Client
interface Storage

Failures

Circuit breaker

Neg. reply Figure 12.11 A circuit breaker
between the client interface and the
storage subsystem
store/books/9781617294198

https://itbook.store/books/9781617294198

42 CHAPTER 12 Fault tolerance and recovery patterns

www.itboo
Now we can combine both kinds of circuit breakers to obtain the full picture shown in
figure 12.12. Clients are identified by their authentication credentials, hence we can
assign one CircuitBreaker for each user independently of how many network connec-
tions they use. For each client we maintain a RateLimiter that protects the client inter-
face from being flooded with requests. On the outgoing side towards the storage
component we use one shared CircuitBreaker to guard against the remote subsystem’s
failures. The per-client code could look like the following:

private val limiter = new RateLimiter(100, 2.seconds)

// this is assumed to not be invoked concurrently as it is for a
// single client
def persistForThisClient(job: Job): Future[StorageStatus] =

limiter
.call(persist(job))
.recover {

case RateLimitExceeded => StorageStatus.Failed
}

ADVANCED USAGE

It is common practice to gate a client that repeatedly violates its rate limit; this is an
incentive to client code writers to properly limit the service calls on their end instead
of always sending at full speed—with the previous code that would be an efficient tac-
tic for achieving maximum throughput. In order to do that we only need to add
another circuit breaker:

private val limiter = new RateLimiter(100, 2.seconds)
private val breaker = CircuitBreaker(system.scheduler,

10, Duration.Zero, 10.seconds)

def persistForThisClient(job: Job): Future[StorageStatus] =
breaker

.withCircuitBreaker(limiter.call(persist(job)))

.recover {
case RateLimitExceeded => StorageStatus.Failed
case _: CircuitBreakerOpenException => StorageStatus.Gated

}

In order to trip the circuit breaker the client will have to send 10 requests while being
above the rate limit; assuming regular request spacing this means that the client needs
to submit at least at 10% higher rate than it is allowed. In this case it will be blocked

Per-client breakers

Storage

Failures

Neg. replyNeg. reply

Rate
limiter

Neg. reply

Figure 12.12 Complete circuit breaker setup between client interface and storage subsystem
k.store/books/9781617294198

https://itbook.store/books/9781617294198

43The Circuit Breaker Pattern

www.itbook.
from service for the next 10 seconds and it will be informed by way of receiving a
Gated status reply. The Duration.Zero in this code has the function of turning off the
timeout tracking for individual request; this is not needed here since it will be per-
formed by the persist call.

12.4.3 The Pattern Revisited

We have decoupled the client interface and the storage subsystem by introducing pre-
determined breaking points on the path from one to the other. Thus we have pro-
tected the storage from being overloaded in general (the main circuit breaker) and
we have protected the client interface’s function from single misbehaving clients (the
rate limiting per-client circuit breakers). Being overloaded is a condition that we
should strive to avoid when possible, because running at 100% capacity is in most
cases less efficient than leaving a bit of headroom. The reason for this is because at
full capacity, more time will be wasted competing for the available resources (CPU
time, memory bandwidth, caches, IO channels) than otherwise when requests can
travel through the system mostly unhindered by congestion.

 The second problem that we considered here was that the client interface cannot
acknowledge reception of a job description before it receives the successful reply from
the storage subsystem. If this reply does not arrive within the allotted time then the
response to the client will be delayed for longer than the SLA allows—the service will
violate its latency bound. This means that during time periods when the storage sub-
system fails to answer promptly, the client interface will have to come to its own con-
clusions; if it cannot ask another (non-local) component then it must locally
determine the appropriate response to its own clients. We have used the circuit
breaker also to protect the client interface from failures of the storage subsystem, fab-
ricating negative responses in case no others are readily available.

 We have seen that the circuit breaker that we installed for overload protection also
handles the situation where the storage subsystem does not answer successfully or in
time. The reaction is independent of the underlying reason. This makes the system more
resilient compared to handling every single error case separately. And this is what is meant by
bulk-heading failure domains to achieve compartmentalization and encapsulation.

12.4.4 Applicability

This pattern is applicable wherever two decoupled components communicate and
where failures—foreseen or unexpected—must not travel upstream to infect and slow
down other components, or where overload conditions must not travel downstream to
induce failure. Decoupling has a cost in that all calls pass through another tracking
step and timeouts need to be scheduled, hence it should not be applied on a too small
level of granularity; it is most useful between different components in a system. This
applies especially to services that are reached via network connections (like authenti-
cation providers or persistent storage) where the circuit breaker also reacts appropri-
ately to network failures by concluding that the remote service is not currently
reachable.
store/books/9781617294198

https://itbook.store/books/9781617294198

44 CHAPTER 12 Fault tolerance and recovery patterns

www.itboo
 Another important use of circuit breakers is that monitoring their state reveals
interesting insight into the runtime behavior and performance of a service. When cir-
cuit breakers that protect a given service are tripping, the operations personnel will
usually want to be alerted in order to look into the outage.

IMPORTANT A circuit breaker is a means to fail fast: it must not be used to
postpone requests and send them later. The problem with such a scheme is
that when the circuit breaker closes, the deferred requests will likely overload
the target system. This phenomenon is called thundering herd and can create
feedback loops that lead to a system oscillating between being unavailable
and being overloaded.

12.5 Summary
In this chapter we have covered a lot of ground on the design and implementation of
resilient systems:

 We started out with describing Simple Components that obey the single respon-
sibility principle.

 We observed the application of hierarchical failure handling in practice while
implementing the Error Kernel Pattern.

 We took note of the implications of relying on component restarts to recover
from failure when contemplating the Let-It-Crash Pattern.

 We learnt how to decouple components from each other using the Circuit
Breaker Pattern for either side’s protection.
k.store/books/9781617294198

https://itbook.store/books/9781617294198

www.itbook.
 Reactive Design Patterns is a clearly-written guide for
building message-driven distributed systems that are
resilient, responsive, and elastic. In it, you’ll find pat-
terns for messaging, flow control, resource manage-
ment, and concurrency, along with practical issues like
test-friendly designs. All patterns include concrete
examples using Scala and Akka. In some cases, you’ll
also see examples in Java, JavaScript, and Erlang. Soft-
ware engineers and architects will learn patterns that
address day-to-day distributed development problems
in a fault-tolerant and scalable way. Project leaders and
CTOs will gain a deeper understanding of the reactive
design philosophy.

The design patterns in this book were collected by the consultants and engineers
of Typesafe during thousands of hours spent building enterprise-quality applications
using Scala and Akka. Although many reactive patterns can be implemented using
standard development tools like Java, others require the capabilities offered by a
functional programming language like Scala and an Actor-based concurrency system
like Akka.

What’s inside

 Learn what reactive system design entails and the theory behind its principles
 Discover best practices and patterns for building reactive applications
 Build applications that can withstand hardware or software failure at any level
 Fully utilize multicore hardware using asynchronous and message-driven solu-

tions
 Scale applications under tremendous load up and down, in and out

Readers should be familiar with a standard programming language like Java, C++, or
C# and be comfortable with the basics of distributed systems. Although most of the
book’s examples use the Scala language, no prior experience with Scala or Akka is
required.
store/books/9781617294198

https://www.manning.com/books/reactive-design-patterns
https://www.manning.com/books/reactive-design-patterns
https://itbook.store/books/9781617294198

My book, Reactive Web Applications, provides the foundations for building
the next generation of web applications with Scala, Akka, the Play Framework,
and Reactive Streams. The following chapter gives a hands-on tour of building a
simple reactive web application that streams data from Twitter asynchronously to
a client’s browser using WebSockets. Given the unreliable nature of computer
networks, it is essential for the stream handling to be done asynchronously so as
not to block computing resources such as threads and memory while the data is
being received. This chapter will give you a sense of what reactive data streaming
looks like at the level of a simple web application where data is being directly
communicated to a user’s browser.

Your first reactive
web application

www.itbook.store/books/9781617294198

https://itbook.store/books/9781617294198

www.itbook.
Chapter 2 from Reactive Web Applications
by Manuel Bernhardt

Your first
 reactive web application
In the previous chapter, we talked about the key benefits of adopting a reactive
approach to web application design and operation, and you saw that the Play
Framework is a good technology for this. Now it’s time to get your hands dirty
and build a reactive web application. We’ll build a simple application that con-
nects to the Twitter API to retrieve a stream of tweets and send them to clients
using WebSockets.

2.1 Creating and running a new project
An easy way to start a new Play project is to use the Lightbend Activator, which is a
thin wrapper around Scala’s sbt build tool that provides templates for creating
new projects. The following instructions assume that you have the Activator

This chapter covers
■ Creating a new Play project
■ Streaming data from a remote server and

broadcasting it to clients
■ Dealing with failure
47

store/books/9781617294198

https://www.manning.com/books/reactive-web-applications
https://itbook.store/books/9781617294198

48 CHAPTER 2 Your first reactive web application

www.itboo
installed on your computer. If you don’t, appendix A provides detailed instructions
for installing it.

 Let’s get started by creating a new project called “twitter-stream” in the workspace
directory, using the play-scala-v24 template:

~/workspace » activator new twitter-stream play-scala-2.4

This will start the process of creating a new project with Activator, using the template
as a scaffold:

Fetching the latest list of templates...

OK, application "twitter-stream" is being created using the "play-scala-2.4"

➥ template.

To run "twitter-stream" from the command line, "cd twitter-stream" then:
/Users/mb/workspace/twitter-stream/activator run

To run the test for "twitter-stream" from the command line,

➥ "cd twitter-stream" then:
/Users/mb/workspace/twitter-stream/activator test

To run the Activator UI for "twitter-stream" from the command line,

➥ "cd twitter-stream" then:
/Users/mb/workspace/twitter-stream/activator ui

You can now run this application from the project directory:

~/workspace » cd twitter-stream
~/workspace/twitter-stream » activator run

If you point your browser to http://localhost:9000, you’ll see the standard welcome
page for a Play project. At any time when running a Play project, you can access the
documentation at http://localhost:9000/@documentation.

PLAY RUNTIME MODES Play has a number of runtime modes. In dev mode
(triggered with the run command), the sources are constantly watched for
changes, and the project is reloaded with any new changes for rapid
development. Production mode, as its name indicates, is used for the
production operation of a Play application. Finally, test mode is active when
running tests, and it’s useful for retrieving specific configuration settings for
the test environment.

Besides running the application directly with the activator run command, it’s possible
to use an interactive console. You can stop the running application by hitting Ctrl-C and
start the console simply by running activator:

~/workspace/twitter-stream » activator
k.store/books/9781617294198

https://itbook.store/books/9781617294198

49Creating and running a new project

www.itbook.
That will start the console, as follows:

[info] Loading project definition from
/Users/mb/workspace/twitter-stream/project

[info] Set current project to twitter-stream
(in build file:/Users/mb/workspace/twitter-stream/)

[twitter-stream] $

Once you’re in the console, you can run commands such as run, clean, compile, and
so on. Note that this console is not Play-specific, but common to all sbt projects. Play
adds a few commands to it and makes it more suited to web application development.

 Table 2.1 lists some useful commands:

When you start the application in the console with run, you can stop it and return to
the console by pressing Ctrl-D.

AUTO-RELOADING By prepending a command with ~, such as ~ run or ~ compile,
you can instruct sbt to listen to changes in the source files. In this way, every time
a source file is saved, the project is automatically recompiled or reloaded.

Now that you’re all set to go, let’s start building a simple reactive application, which, as
you may have guessed from the name of the empty project we’ve created, has some-
thing to do with Twitter.

 What we’ll build is an application that will connect to one of Twitter’s streaming
APIs, transform the stream asynchronously, and broadcast the transformed stream to
clients using WebSocket, as illustrated in figure 2.1. We’ll start by building a small
Twitter client to stream the data, and then build the transformation pipeline that we’ll
plug into a broadcasting mechanism.

Table 2.1 Useful sbt console commands for working with Play

Command Description

run Runs the Play project in dev mode

start Starts the Play project in production mode

clean Cleans all compiled classes and generated sources

compile Compiles the project

test Runs the tests

dependencies Shows all the library dependencies of the project, including transitive ones

reload Reloads the project settings if they have been changed
store/books/9781617294198

https://itbook.store/books/9781617294198

50 CHAPTER 2 Your first reactive web application

www.itboo
2.2 Connecting to Twitter’s streaming API
To get started, we’ll connect to the Twitter filter API.1 At this point, we’ll just focus on
getting data from Twitter and displaying it on the console—we’ll deal with sending it
to clients connecting to our application at a later stage.

 Start by opening the project in your favorite IDE. Most modern IDEs have exten-
sions to support Play projects nowadays, and you can find resources on the topic in
the Play documentation (www.playframework.com/documentation), so we won’t look
into setting up various flavors of IDEs here.

2.2.1 Getting the connection credentials to the Twitter API

Twitter uses the OAuth authentication mechanism to secure its API. To use the API, you
need a Twitter account and OAuth consumer key and tokens. Register with Twitter (if
you haven’t already), and then you can go to https://apps.twitter.com where you can
request access to the API for an application. This way, you’ll get an API key and an API
secret, which together represent the consumer key. In addition to these keys, you’ll need
to generate request tokens (in the Details tab of the Twitter Apps web application). At
the end of this process, you should have access to four values:

1 The Twitter API documentation can be found at https://dev.twitter.com/streaming/reference/post/
statuses/filter.

Twitter client

Twitter stream transformer

Tweet broadcaster

WebSocket client #2

n# tneilc tekcoSbeW1# tneilc tekcoSbeW

Twitter

Figure 2.1 Reactive Twitter broadcaster
k.store/books/9781617294198

https://dev.twitter.com/streaming/reference/post/statuses/filter
https://dev.twitter.com/streaming/reference/post/statuses/filter
https://apps.twitter.com
http://www.playframework.com/documentation
https://itbook.store/books/9781617294198

51Connecting to Twitter’s streaming API

www.itbook.
■ The API key
■ The API secret
■ An access token
■ An access token secret

Once you have all the necessary keys, you’ll need to add them to the application con-
figuration in conf/application.conf. This way, you’ll be able to retrieve them easily
from the application later on. Add the keys at the end of the file as follows:

Twitter
twitter.apiKey="<your api key>"
twitter.apiSecret="<your api secret>"
twitter.token="<your access token>"
twitter.tokenSecret="<your access token secret>"

2.2.2 Working around a bug with OAuth authentication

As a technical book author, I want my examples to flow and my code to look simple,
beautiful, and elegant. Unfortunately the reality of software development is that bugs
can be anywhere, even in projects with a very high code quality, which the Play
Framework definitely is. One of those bugs has its origins in the async-http-client
library that Play uses, and it plagues the 2.4.x series of the Play Framework. It can’t be
easily addressed without breaking binary compatibility, which is why it will likely not
be fixed within the 2.4.x series.2

 More specifically, this bug breaks the OAuth authentication mechanism when a
request contains characters that need to be encoded (such as the @ or # characters).
As a result, we have to use a workaround in all chapters making use of the Twitter API.
Open the build.sbt file at the root of the project, and add the following line:

libraryDependencies += "com.ning" % "async-http-client" % "1.9.29"

2.2.3 Streaming data from the Twitter API

The first thing we’ll do now is add some functionality to the existing Application con-
troller in app/controllers/Application.scala. When you open the file, it should look
rather empty, like this:

class Application extends Controller {

def index = Action {
Ok(views.html.index("Your new application is ready."))

}

}

The index method defines a means for obtaining a new Action. Actions are the mech-
anism Play uses to deal with incoming HTTP requests, and you’ll learn a lot more
about them in chapter 4.

2 https://github.com/playframework/playframework/pull/4826
store/books/9781617294198

https://github.com/playframework/playframework/pull/4826
https://itbook.store/books/9781617294198

52 CHAPTER 2 Your first reactive web application

www.itboo
 Start by adding a new tweets action to the controller.

import play.api.mvc._

class Application extends Controller {
def tweets = Action {

Ok
}

}

This action won’t do anything other than return a 200 Ok response when accessed. To
access it, we first need to make it accessible in Play’s routes. Open the conf/routes file
and add a new route to the newly created action, so you get the following result.

Routes
This file defines all application routes
(Higher priority routes first)
~~~~

Home page
GET / controllers.Application.index
GET /tweets controllers.Application.tweets

Map static resources from the /public folder to the /assets URL path
GET /assets/*file controllers.Assets.at(path="/public", file)

Now when you run the application and access the /tweets file, you should get an
empty page in your browser. This is great, but not very useful. Let’s go one step further
by retrieving the credentials from the configuration file.

 Go back to the app/controllers/Application.scala controller and extend the
tweets action as follows.

import play.api.libs.oauth.{ConsumerKey, RequestToken}
import play.api.Play.current
import scala.concurrent.Future
import play.api.libs.concurrent.Execution.Implicits._

def tweets = Action.async {
val credentials: Option[(ConsumerKey, RequestToken)] = for {

apiKey <- Play.configuration.getString("twitter.apiKey")
apiSecret <- Play.configuration.getString("twitter.apiSecret")
token <- Play.configuration.getString("twitter.token")
tokenSecret <- Play.configuration.getString("twitter.tokenSecret")

Listing 2.1 Defining a new tweets action

Listing 2.2 Route to the newly created tweets action

Listing 2.3 Retrieving the configuration

Uses
Action.async

to return a
Future of a

result for
 the next step

Retrieves the Twitter
credentials from
application.conf
k.store/books/9781617294198

https://itbook.store/books/9781617294198

53Connecting to Twitter’s streaming API

www.itbook.
} yield (
ConsumerKey(apiKey, apiSecret),
RequestToken(token, tokenSecret)

)

credentials.map { case (consumerKey, requestToken) =>
Future.successful {

Ok
}

} getOrElse {
Future.successful {

InternalServerError("Twitter credentials missing")
}

}
}

Now that we have access to our Twitter API credentials, we’ll see whether we can get
anything back from Twitter. Replace the simple Ok result in app/controllers/
Application.scala with the following bit of code to connect to Twitter.

// ...
import play.api.libs.ws._

def tweets = Action.async {
credentials.map { case (consumerKey, requestToken) =>

WS
.url("https://stream.twitter.com/1.1/statuses/filter.json")
.sign(OAuthCalculator(consumerKey, requestToken))
.withQueryString("track" -> "reactive")
.get()
.map { response =>

Ok(response.body)
}

} getOrElse {
Future.successful {

InternalServerError("Twitter credentials missing")
}

}
}

def credentials: Option[(ConsumerKey, RequestToken)] = for {
apiKey <- Play.configuration.getString("twitter.apiKey")
apiSecret <- Play.configuration.getString("twitter.apiSecret")
token <- Play.configuration.getString("twitter.token")
tokenSecret <- Play.configuration.getString("twitter.tokenSecret")

} yield (
ConsumerKey(apiKey, apiSecret),
RequestToken(token, tokenSecret)

)

Listing 2.4 First attempt at connecting to the Twitter API

Wraps the
result in a
successful

Future block
until the

next step

Wraps the
result in a
successful

Future block
 to comply with
the return type

Returns a 500 Internal
Server Error if no

credentials are available

The API URLOAuth
signature of
the request

Specifies a
query string
parameter

Executes an
HTTP GET

request
store/books/9781617294198

https://itbook.store/books/9781617294198

54 CHAPTER 2 Your first reactive web application

www.itboo
Play’s WS library lets you easily access the API by signing the request appropriately
following the OAuth standard. You’re currently tracking all the tweets that contain
the word “reactive,” and for the moment you only log the status of the response
from Twitter to see if you can connect with these credentials. This may look fine at
first sight, but there’s a catch: if you were to execute the preceding code, you
wouldn’t get any useful results. The streaming API, as its name indicates, returns a
(possibly infinite) stream of tweets, which means that the request would never end.
The WS library would time out after a few seconds, and you’d get an exception in
the console.

 What you need to do, therefore, is consume the stream of data you get. Let’s
rewrite the previous call to WS and use an iteratee (discussed in a moment) to simply
print the results you get back.

// ...
import play.api.libs.iteratee._
import play.api.Logger

def tweets = Action.async {

val loggingIteratee = Iteratee.foreach[Array[Byte]] { array =>
Logger.info(array.map(_.toChar).mkString)

}

credentials.map { case (consumerKey, requestToken) =>
WS

.url("https://stream.twitter.com/1.1/statuses/filter.json")

.sign(OAuthCalculator(consumerKey, requestToken))

.withQueryString("track" -> "reactive")

.get { response =>
Logger.info("Status: " + response.status)
loggingIteratee

}.map { _ =>
Ok("Stream closed")

}
}

def credentials = ...

QUICK INTRODUCTION TO ITERATEES

An iteratee is a construct that allows you to consume streams of data asynchronously;
it’s one of the cornerstones of the Play Framework. Iteratees are typed with input and
output types: an Iteratee[E, A] consumes chunks of E to produce one or more A’s.

 In the case of the loggingIteratee in listing 2.5, the input is an Array[Byte]
(because you retrieve a raw stream of data from Twitter), and the output is of type

Listing 2.5 Printing out the stream of data from Twitter

Defines a logging iteratee that consumes
a stream asynchronously and logs the

contents when data is available

Sends a GET
request to the

server and
retrieves the

response as a
(possibly

infinite) stream

Feeds the stream
directly into the

consuming
loggingIteratee;

the contents aren’t
loaded in memory

first but are
directly passed to

the iteratee

Returns a 200 Ok result
when the stream is entirely
consumed or closed
k.store/books/9781617294198

https://itbook.store/books/9781617294198

55Connecting to Twitter’s streaming API

www.itbook.
Unit, which means you don’t produce any result other than the data logged out on
the console.

 The counterpart of an iteratee is an enumerator. Just as the iteratee is an asynchro-
nous consumer of data, the enumerator is an asyn-
chronous producer of data: an Enumerator[E]

produces chunks of E.
 Finally, there’s another piece of machinery that

lets you transform streaming data on the fly, called an
enumeratee. An Enumeratee[From, To] takes chunks of
type From from an enumerator and transforms them
into chunks of type To.

 On a conceptual level, you can think of an enu-
merator as being a faucet, an enumeratee as being a
filter, and an iteratee as being a glass, as in figure 2.2.

 Let’s go back to our loggingIteratee for a sec-
ond, defined as follows:

val loggingIteratee = Iteratee.foreach[Array[Byte]] { array =>
Logger.info(array.map(_.toChar).mkString)

}

The Iteratee.foreach[E] method creates a new iteratee that consumes each input it
receives by performing a side-effecting action (of result type Unit). It’s important to
understand here that foreach isn’t a method of an iteratee, but rather a method of
the Iteratee library used to create a “foreach” iteratee. The Iteratee library offers many
other methods for building iteratees, and we’ll look at some of them later on.

 At this point, you may wonder how this is any different from using other streaming
mechanisms, such as java.io.InputStream and java.io.OutputStream. As men-
tioned earlier, iteratees let you manipulate streams of data asynchronously. In prac-
tice, this means that these streams won’t hold on to a thread in the absence of new
data. Instead, the thread that they use will be freed for use by other tasks, and only
when there’s a signal that new data is arriving will the streaming continue. In contrast,
a java.io.OutputStream blocks the thread it’s using until new data is available.

THE FUTURE OF ITERATEES IN PLAY At the time of writing, Play is largely built
on top of iteratees, enumerators, and enumeratees. Reactive Streams is a new
standard for nonblocking stream manipulation with backward pressure on
the JVM that we’ll talk about in chapter 9. Although we use iteratees in this
chapter and later in the book, the roadmap for the next major release of
Play is to gradually replace iteratees with Akka Streams, which implement the
Reactive Streams standard. Chapter 9 will cover this toolset as well as how to
convert from iteratees to Akka Streams and vice versa.

Let’s now get back to our application. Our approach to turning the Array[Byte] into
a String is very crude (and, as you’ll see later, problematic), but if someone were to

Enumerator

Enumeratee

Iteratee

Figure 2.2 Enumerators,
enumeratees, and iteratees
store/books/9781617294198

https://itbook.store/books/9781617294198

56 CHAPTER 2 Your first reactive web application

www.itboo
tweet about “reactive,” we’d be able to see something. If you want to check that things
are going well, you can write a tweet yourself, as I just did:

[info] application - Status: 200
[info] application - {"created_at":"Fri Sep 19 15:08:07 +0000 2014","id
":512981466662592512,"id_str":"512981466662592512","text":"Writing the
second chapter of my book about #reactive web-applications with #PlayFr
amework. I need a tweet with \"reactive\" for an example.","source":"<a
href=\"http:\/\/itunes.apple.com\/us\/app\/twitter\/id409789998?mt=12\

" rel=\"nofollow\">Twitter for Mac<\/a>","truncated":false,"in_reply_to
_status_id":null,"in_reply_to_status_id_str":null,"in_reply_to_user_id"
:null,"in_reply_to_user_id_str":null,"in_reply_to_screen_name":null,"us
er":{"id":12876952,"id_str":"12876952","name":"Manuel Bernhardt","scree
n_name":"elmanu","location":"Vienna" ...

GETTING MORE TWEETS For all the advantages of reactive applications, the
keyword “reactive” is slightly less popular than more common topics on
Twitter, so you may want to use another term to get faster-paced data. (One
keyword that always works well, and not only on Twitter, is “cat.”)

2.2.4 Asynchronously transforming the Twitter stream

Great, you just managed to connect to the Twitter streaming API and display some
results! But to do something a bit more advanced with the data, you’ll need to parse
the JSON representation to manipulate it more easily, as shown in figure 2.3.

Twitter client

Twitter stream transformer

Tweet broadcaster

WebSocket client #2

n# tneilc tekcoSbeW1# tneilc tekcoSbeW

Twitter

Figure 2.3 Twitter
stream transformation
step
k.store/books/9781617294198

https://itbook.store/books/9781617294198

57Connecting to Twitter’s streaming API

www.itbook.
Play has a built-in JSON library that can take care of parsing textual JSON files into a
structured representation that can easily be manipulated. But you first need to pay a
little more attention to the data you’re receiving, because there are a few things that
can go wrong:

■ Tweets are encoded in UTF-8, so you need to decode them appropriately, taking
into account variable-length encoding.

■ In some cases, a tweet is split over several chunks of Array[Byte], so you can’t
just assume that each chunk can be parsed right away.

These issues are rather complex to solve, and they may take quite some time to get
right. Instead of doing it ourselves, let’s use the play-extra-iteratees library. Add the
following lines to the build.sbt file.

resolvers += "Typesafe private" at
"https://private-repo.typesafe.com/typesafe/maven-releases"

libraryDependencies +=
"com.typesafe.play.extras" %% "iteratees-extras" % "1.5.0"

To make the changes visible to the project in the console, you need to run the reload
command (or exit and restart, but reload is faster).

 Armed with this library, you now have the necessary tools to handle this stream of
JSON objects properly:

■ play.extras.iteratees.Encoding.decode will decode the stream of bytes as a
UTF-8 string.

■ play.extras.iteratees.JsonIteratees.jsSimpleObject will parse a single
JSON object.

■ play.api.libs.iteratee.Enumeratee.grouped will apply the jsSimpleObject
iteratee over and over again until the stream is finished.

We’ll start with a stream of Array[Byte], decode it into a stream of CharString, and
finally parse it into JSON objects of kind play.api.libs.JsObject by continuously
parsing one JSON object out of the incoming stream of CharString. Enumeratee
.grouped continuously applies the same iteratee over and over to the stream until
it’s finished.

 You can set up the necessary plumbing by evolving your code in app/controllers/
Application.conf as follows.

// ...
import play.api.libs.json._
import play.extras.iteratees._

Listing 2.6 Including the play-extra-iteratees library in the project

Listing 2.7 Reactive plumbing for the data from Twitter
store/books/9781617294198

https://itbook.store/books/9781617294198

58 CHAPTER 2 Your first reactive web application

www.itboo
def tweets = Action.async {
credentials.map { case (consumerKey, requestToken) =>

val (iteratee, enumerator) = Concurrent.joined[Array[Byte]]

val jsonStream: Enumerator[JsObject] =
enumerator &>
Encoding.decode() &>
Enumeratee.grouped(JsonIteratees.jsSimpleObject)

val loggingIteratee = Iteratee.foreach[JsObject] { value =>
Logger.info(value.toString)

}

jsonStream run loggingIteratee

WS
.url("https://stream.twitter.com/1.1/statuses/filter.json")
.sign(OAuthCalculator(consumerKey, requestToken))
.withQueryString("track" -> "reactive")
.get { response =>

Logger.info("Status: " + response.status)
iteratee

}.map { _ =>
Ok("Stream closed")

}
}

}

def credentials = ...

The first thing you have to do in this setup is get an enumerator to work with. Iteratees
are used to consume streams, whereas enumeratees produce them, and you need a
producing pipe so you can add adapters to it. The Concurrent.joined method pro-
vides you with a connected pair of iteratee and enumerator: whatever data is con-
sumed by the iteratee will be immediately available to the enumerator.

 Next, you want to turn the raw Array[Byte] into a proper stream of parsed JsObject
objects. To this end, start off with your enumerator and pipe the results to two trans-
forming enumeratees:

■ Encoding.decode() to turn the Array[Byte] into a UTF-8 representation of
type CharString (an optimized version of a String proper for stream manipula-
tion, and part of the play-extra-iteratees library)

■ Enumeratee.grouped(JsonIteratees.jsSimpleObject) to have the stream
consumed over and over again by the JsonIteratees.jsSimpleObject iteratee

The jsSimpleObject iteratee ignores whitespace and line breaks, which is convenient
in this case because the tweets coming from Twitter are separated by a line break.

 Set up a logging iteratee to print out the parsed JSON object stream, and connect it
to the transformation pipeline you just set up using the run method of the enumerator.

Sets up a joined
iteratee and
enumerator

Defines the
stream

transformation
pipeline; each

stage of the pipe
is connected using
the &> operation Plugs the transformed

JSON stream into the
logging iteratee to
print out its results
to the console

Provides the iteratee as the entry point of
the data streamed through the HTTP
connection. The stream consumed by the
iteratee will be passed on to the
enumerator, which itself is the data source
of the jsonStream. All the data streaming
takes place in a nonblocking fashion.
k.store/books/9781617294198

https://itbook.store/books/9781617294198

59Streaming tweets to clients using a WebSocket

www.itbook.
This method tells the enumerator to start feeding data to the iteratee as soon as some
is available.

 Finally, by providing the iteratee reference to the get() method of the WS
library, you effectively put the whole mechanism into motion.

 If you run this example, you’ll now get a stream of tweets printed out, ready to be
manipulated for further use.

FASTER JSON PARSING Although the play-extra-iteratees library is very
convenient, the JSON tooling it offers isn’t optimized for speed; it serves as
more of a showcase of what can be done with iteratees. If I wanted to build a
pipeline for production use, or where performance matters a lot more than
low memory consumption, I’d probably create my own enumeratee and
make use of a fast JSON parsing library such as Jackson.

2.3 Streaming tweets to clients using a WebSocket
Now that we have streaming data being sent by Twitter, let’s make it available to users
of our web application using WebSockets. Figure 2.4 provides an overview of what we
want to achieve.

Transforming enumerator

WebSocket client #1

WebSocket client #2

WebSocket client #n

Iteratee

Actor

Actor

Actor

Broadcast enumerator

IterateeIteratee

Twitter

WS.get()

Figure 2.4 Reactive pipeline from Twitter to the client’s browser
store/books/9781617294198

https://itbook.store/books/9781617294198

60 CHAPTER 2 Your first reactive web application

www.itboo
We want to connect once to Twitter and broadcast the stream we receive to the user’s
browser using the WebSocket protocol. We’ll use an actor to establish the WebSocket
connection for each client and connect it to the same broadcasted stream.

 We’ll proceed in two steps: first, we’ll move the logic responsible for retrieving the
stream from Twitter to an Akka actor, and then we’ll set up a WebSocket connection
that makes use of this actor.

2.3.1 Creating an actor

An actor is a lightweight object that’s capable of sending and receiving messages. Each
actor has a mailbox that keeps messages until they can be dealt with, in the order of
reception. Actors can communicate with each other by sending messages. In most
cases, messages are sent asynchronously, which means that an actor doesn’t wait for a
reply to its message, but will instead eventually receive a message with the answer to its
question or request. This is all you need to know about actors for now—we’ll talk
about them more thoroughly in chapter 6.

 To see an actor in action, start by creating a new file in the actors package, app/
actors/TwitterStreamer.scala, with the following content.

package actors

import akka.actor.{Actor, ActorRef, Props}
import play.api.Logger
import play.api.libs.json.Json

class TwitterStreamer(out: ActorRef) extends Actor {
def receive = {

case "subscribe" =>
Logger.info("Received subscription from a client")
out ! Json.obj("text" -> "Hello, world!")

}
}

object TwitterStreamer {
def props(out: ActorRef) = Props(new TwitterStreamer(out))

}

You want to use your actor to represent a WebSocket connection with a client, man-
aged by Play. You need to be able to receive messages, but also to send them, so you
pass the out actor reference in the constructor of the actor. Play will take care of initializ-
ing the actor using the akka.actor.Props object, which you provide in the props
method of the companion object TwitterStreamer. It will do so every time a new
WebSocket connection is requested by a client.

 An actor can send and receive messages of any kind using the receive method,
which is a so-called partial function that uses Scala’s pattern matching to figure out

Listing 2.8 Setting up a new actor

The receive
method handles

messages sent
to this actor.

Handles the
case of receiving
a “subscribe”
message

Sends out a
simple Hello

World message
as a JSON object

Helper method that initializes
a new Props object
k.store/books/9781617294198

https://itbook.store/books/9781617294198

61Streaming tweets to clients using a WebSocket

www.itbook.
which case statement will deal with the incoming message. In this example, you’re
only concerned with messages of type String that have the value “subscribe” (other
messages will be ignored).

 When you receive a subscription, you first log it on the console, and then (for the
moment) send back the JSON object { “message”: “Hello, world!” }. The exclama-
tion mark (!) is an alias for the tell method, which means that you “fire and forget” a
message without waiting for a reply or a delivery confirmation.

SCALA TIP: PARTIAL FUNCTIONS In Scala, a partial function p(x) is a function
that’s defined only for some values of x. An actor’s receive method won’t
be able to handle every type of message, which is why this kind of function is
a good fit for this method. Partial functions are often implemented using
pattern matching with case statements, wherein the value is matched
against several case definitions (like a switch expression in Java).

2.3.2 Setting up the WebSocket connection and interacting with it

To make use of your freshly baked actor, you need to create a WebSocket endpoint on
the server side and a view on the client side that will initialize a WebSocket connection.

SERVER-SIDE ENDPOINT

We’ll start by rewriting the tweets method of the Application controller (you may
want to keep the existing method as a backup somewhere, because we’ll reuse most of
its parts later on). You’ll notice that we’re not creating a Play Action this time,
because actions only deal with the HTTP protocol, and WebSockets are a different
kind of protocol. Play makes initializing WebSockets really easy.

// ...
import actors.TwitterStreamer

// ...

def tweets = WebSocket.acceptWithActor[String, JsValue] {
request => out => TwitterStreamer.props(out)

}

That’s it! You don’t need to adjust the route in the routes file either, because you’re
essentially reusing the existing mapping to the /tweets route.

 The acceptWithActor[In, Out] method lets you create a WebSocket endpoint
using an actor. You specify the type of the input and output data (in this case, you
want to send strings from the client and receive JSON objects) and provide the Props
of the actor, given the out actor reference that you’re using to communicate with
the client.

Listing 2.9 Setting up the WebSocket endpoint in app/controllers/Application.scala
store/books/9781617294198

https://itbook.store/books/9781617294198

62 CHAPTER 2 Your first reactive web application

www.itboo
SIGNATURE OF THE ACCEPTWITHACTOR METHOD The acceptWithActor method
has a slightly uncommon signature of type f: RequestHeader =>ActorRef =>
Props. This is a function that, given a RequestHeader, returns another function
that, given an ActorRef, returns a Props object. This construct allows you to
access the HTTP request header information for purposes such as performing
security checks before establishing the WebSocket connection.

CLIENT-SIDE VIEW

We’ll now create a client-side view that will establish the WebSocket connection using
JavaScript. Instead of creating a new view template, we’ll simply reuse the existing view
template, app/views/index.scala.html, as follows.

@(message: String)(implicit request: RequestHeader)

@main(message) {
<div id="tweets"></div>
<script type="text/javascript">

var url = "@routes.Application.tweets().webSocketURL()";
var tweetSocket = new WebSocket(url);

tweetSocket.onmessage = function (event) {
console.log(event);
var data = JSON.parse(event.data);
var tweet = document.createElement("p");
var text = document.createTextNode(data.text);
tweet.appendChild(text);
document.getElementById("tweets").appendChild(tweet);

};

tweetSocket.onopen = function() {
tweetSocket.send("subscribe");

};
</script>

}

You start by opening a WebSocket connection to the tweets handler. The URL is
obtained using Play’s built-in reverse routing and resolves to ws://localhost:9000/
tweets. Then you add two handlers: one for handling new messages that you receive,
and one for handling the new WebSocket connection once a connection with the
server is established.

USING URLS IN VIEWS It’s also possible to make use of reverse routing
natively in JavaScript. We’ll look into that in chapter 10.

When a new connection is established, you immediately send a subscribe message
using the send method, which is matched in the receive method of the Twitter-
Streamer on the server side.

Listing 2.10 Client-side connection to the WebSocket using JavaScript

The container in which the
tweets will be displayed

Initializes the
WebSocket

connection using
a URL generated

by Play

The handler called
when a message is
received

The handler
called when the

connection is
opened Sends a subscription

request to the server
k.store/books/9781617294198

https://itbook.store/books/9781617294198

63Streaming tweets to clients using a WebSocket

www.itbook.
 Upon receiving a message on the client side, you append it to the page as a new
paragraph tag. To do this, you need to parse the event.data field, as it’s the string
representation of the JSON object. You can then access the text field, in which the
tweet’s text is stored.

 There’s one change you need to make for your project to compile, which is to pass
the RequestHeader to the view from the controller. In app/controllers/Application
.scala, replace the index method with the following code.

def index = Action { implicit request =>
Ok(views.html.index("Tweets"))

}

You need to take this step because in the index.scala.html view you’ve declared two
parameter lists: a first one taking a message, and a second implicit one that expects a
RequestHeader. In order for the RequestHeader to be available in the implicit scope,
you need to prepend it with the implicit keyword.

 Upon running this page, you should see “Hello, world!” displayed. If you look at
the developer console of your browser, you should also see the details of the event that
was received.

2.3.3 Sending tweets to the WebSocket

Play will create one new TwitterStreamer actor for each WebSocket connection, so it
makes sense to only connect to Twitter once, and to broadcast our stream to all con-
nections. To this end, we’ll set up a special kind of broadcasting enumerator and pro-
vide a method to the actor to make use of this broadcast channel.

Listing 2.11 Declaring the implicit RequestHeader to make it available in the view

Scala tip: implicit parameters
Implicit parameters are a language feature of Scala that allows you to omit one or
more arguments when calling a method. Implicit parameters are declared in the last
parameter list of a function. For example, the index.scala.html template will be com-
piled to a Scala function that has a signature close to the following:

def indexTemplate(message: String)(implicit request: RequestHeader)

When the Scala compiler tries to compile this method, it will look for a value of the
correct type in the implicit scope. This scope is defined by prepending the implicit
keyword when declaring anonymous functions, as here with Action:

def index = Action { implicit request: RequestHeader =>
// request is now available in the implicit scope

}

You don’t need to explicitly declare the type of request; the Scala compiler is smart
enough to do so on its own and to infer the type.
store/books/9781617294198

https://itbook.store/books/9781617294198

64 CHAPTER 2 Your first reactive web application

www.itboo
 We first need an initialization mechanism to establish the connection to Twitter.
To keep things simple, let’s set up a new method in the companion object of the
TwitterStreamer actor in app/actors/TwitterStreamer.scala.

object TwitterStreamer {
def props(out: ActorRef) = Props(new TwitterStreamer(out))

private var broadcastEnumerator: Option[Enumerator[JsObject]] = None

def connect(): Unit = {
credentials.map { case (consumerKey, requestToken) =>

val (iteratee, enumerator) = Concurrent.joined[Array[Byte]]

val jsonStream: Enumerator[JsObject] = enumerator &>
Encoding.decode() &>
Enumeratee.grouped(JsonIteratees.jsSimpleObject)

val (be, _) = Concurrent.broadcast(jsonStream)
broadcastEnumerator = Some(be)

val url = "https://stream.twitter.com/1.1/statuses/filter.json"
WS

.url(url)

.sign(OAuthCalculator(consumerKey, requestToken))

.withQueryString("track" -> "reactive")

.get { response =>
Logger.info("Status: " + response.status)
iteratee

}.map { _ =>
Logger.info("Twitter stream closed")

}

} getOrElse {
Logger.error("Twitter credentials missing")

}
}

}

With the help of the broadcasting enumerator, the stream is now available to more
than just one client.

A WORD ON THE CONNECT METHOD Instead of encapsulating the connect()
method in the TwitterStreamer companion object, it would be better
practice to establish the connection in a related actor. The methods
exposed in the TwitterStreamer connection are publicly available, and
misuse of them may seriously impact your ability to correctly display streams.
To keep this example short, we’ll use the companion object; we’ll look at a
better way of handling this case in chapter 6.

Listing 2.12 Initializing the Twitter feed

Initializes an
empty variable

to hold the
broadcast

enumerator

Sets up a joined
set of iteratee

and enumerator

Sets up the
stream

transformation
pipeline, taking

data from the
joined enumerator

Initializes the
broadcast enumerator
using the transformed

stream as a source
Consumes the

stream from
Twitter with the
joined iteratee,

which will pass it
on to the joined

enumerator
k.store/books/9781617294198

https://itbook.store/books/9781617294198

65Streaming tweets to clients using a WebSocket

www.itbook.
You can now create a subscribe method that lets your actors subscribe their Web-
Socket clients to the stream. Append it to the TwitterStreamer object as follows.

object TwitterStreamer {

// ...

def subscribe(out: ActorRef): Unit = {
if (broadcastEnumerator.isEmpty) {

connect()
}
val twitterClient = Iteratee.foreach[JsObject] { t => out ! t }
broadcastEnumerator.foreach { enumerator =>

enumerator run twitterClient
}

}

In the subscribe method, you first check if you have an initialized broadcast-
Enumerator at your disposal, and if not, establish a connection. Then you create a
twitterClient iteratee, which sends each JSON object to the browser using the
actor reference.

 Finally, you can make use of this method in your actor when a client subscribes.

class TwitterStreamer(out: ActorRef) extends Actor {
def receive = {

case "subscribe" =>
Logger.info("Received subscription from a client")
TwitterStreamer.subscribe(out)

}
}

When running the chain, you should now see tweets appearing on the screen, one
after another. You can open multiple browsers or tabs to see more client connections
being established.

 This setup is very resource-friendly given that you only make use of asynchronous
and lightweight components that don’t block threads: when no data is sent from
Twitter, you don’t unnecessarily block threads waiting or polling. Instead, each time
new data comes in, the parsing and subsequent communication with clients happen
asynchronously.

PROPER DISCONNECTION HANDLING One thing we haven’t done here is
properly handle client disconnections. When you close the browser tab or
otherwise disconnect the client, your twitterClient iteratee will continue
trying to send new messages to the out actor reference, but Play will have

Listing 2.13 Subscribing actors to the Twitter feed

Listing 2.14 TwitterStreamer actor subscribing to the Twitter stream
store/books/9781617294198

https://itbook.store/books/9781617294198

66 CHAPTER 2 Your first reactive web application

www.itboo
closed the WebSocket connection and stopped the actor, which means that
messages will be sent to the void. You can observe this behavior by seeing
Akka complain in the log about “dead letters” (actors sending messages to
no-longer-existing endpoints). To properly handle this situation, you’d need
to keep track of subscribers and check if each actor is still in the list of
subscribers prior to sending each message. You can find an example of how
this is done in the source code for this chapter, available on GitHub.

2.4 Making the application resilient and scaling out
We’ve built a pretty slick and resource-efficient application to stream tweets from our
server to many clients. But to meet the failure-resilience criterion of a reactive web appli-
cation, we need to do a bit more work: we need a good mechanism to detect and deal
with failure, and we need to be able to scale out to respond to higher demand.

2.4.1 Making the client resilient

To be completely resilient, our application would need to be able to deal with a multi-
tude of failure scenarios, ranging from Twitter becoming unavailable to our server
crashing. We’ll look into a first level of failure handling on the client side here, in
order to alleviate the pain inflicted on our users if the stream of tweets were to be
interrupted. We’ll cover the topic of responsive clients in depth in chapter 8.

 If the connection with the server is lost, we should alert the user and attempt to
reconnect. This can be achieved by rewriting the <script> section of our index.scala
.html view, as follows.

function appendTweet(text) {
var tweet = document.createElement("p");
var message = document.createTextNode(text);
tweet.appendChild(message);
document.getElementById("tweets").appendChild(tweet);

}

function connect(attempt) {
var connectionAttempt = attempt;
var url = "@routes.Application.tweets().webSocketURL()";
var tweetSocket = new WebSocket(url);
tweetSocket.onmessage = function (event) {

console.log(event);
var data = JSON.parse(event.data);
appendTweet(data.text);

};
tweetSocket.onopen = function() {

connectionAttempt = 1;
tweetSocket.send("subscribe");

};
tweetSocket.onclose = function() {

if (connectionAttempt <= 3) {

Listing 2.15 Resilient version of the JavaScript

Encapsulates
the WebSocket

connection logic
in a reusable

function

The onclose handler, called
when the WebSocket
connection is closed

Attempts
up to three
connection

retries
k.store/books/9781617294198

https://itbook.store/books/9781617294198

67Making the application resilient and scaling out

www.itbook.
appendTweet("WARNING: Lost server connection,
attempting to reconnect. Attempt number " + connectionAttempt);

setTimeout(function() {
connect(connectionAttempt + 1);

}, 5000);
} else {

alert("The connection with the server was lost.");
}

};
}

connect(1);

To avoid repeating the same code twice, you start by moving the logic for displaying a
new message into the appendTweet method and the logic for establishing a new Web-
Socket connection into the connect method. The latter now takes as its argument the
connection attempt count, so you know when to give up trying and can then inform
the user about the progress.

 The onclose handler of the WebSocket API is invoked whenever the connection
with the server is lost (or can’t be established). This is where you plug in your failure-
handling mechanism: when the connection is lost, you inform the user in an unobtru-
sive manner (by appending a warning message to the existing tweet stream) and then
attempt to reconnect after a waiting period of five seconds. If you haven’t succeeded
after three reconnection attempts, you alert the user in a more direct fashion (in this
example, by using a native browser alert). If you succeed at reconnecting, you reset
the connection attempt count to 1.

FURTHER COPING MECHANISMS It’s not uncommon for a web application to
lose connection with the server. One popular mechanism implemented in
many clients, such as Gmail, is to wait for increasing amounts of time
between two reconnection attempts (first a few seconds, then a minute, and
so on), while still informing the user and also giving them a means to
reestablish the connection manually by clicking a link or button. This
disconnection scenario is quite frequent with mobile devices and laptops, so
it’s good for an application to have an automated reconnection mechanism
in place to optimize the user experience.

SERVER-SIDE FAILURE HANDLING So far we’ve only handled failures on the
client side; we haven’t looked into mechanisms to deal with failure handling
on the server side. This is not, unfortunately, because there are no failures
on the server side, but rather because this topic is too big to cover in this
chapter’s example application. Don’t worry, though. We’ll revisit this aspect
of the application in detail in chapters 5 and 6.

2.4.2 Scaling out

We now have a pretty slick and resource-efficient application that can stream tweets to
many clients. But what if we were to build a fairly popular application, and we wanted

Executes the
wrapped function
call after a delay

of 5000
milliseconds

Attempts reconnection
and increments the
number of retries

In case of
failure, alerts

the user with a
more prominent

alert
Initiates the first
connection attempt
store/books/9781617294198

https://itbook.store/books/9781617294198

68 CHAPTER 2 Your first reactive web application

www.itboo
to handle more connections than a single node could manage? One mechanism we’ll
consider is replica nodes that could replicate our initial connection, as shown in figure 2.5.

 Let’s say we wanted to reuse the same connection to Twitter (because Twitter doesn’t
let us reuse the same credentials many times, and we don’t want to create a new user and
get new API credentials for each node). We already have a mechanism in place that lets
clients view the stream using WebSockets, and we also have a mechanism to broadcast
an incoming Twitter stream to WebSocket clients. The only thing we need in order to
have working replica nodes that connect to a master node is a means to configure them
and get them to connect to our master node instead of Twitter.

 To achieve this, we’ll set up a new subscription mechanism that allows other nodes
to consume data from the initial stream (the one coming from Twitter). We’ll set up a
new controller action to stream out the content and make the necessary modifications
to run the application in replica mode.

 First, you need to set up a means for the controller method to subscribe to the stream.

def subscribeNode: Enumerator[JsObject] = {
if (broadcastEnumerator.isEmpty) {

connect()
}
broadcastEnumerator.getOrElse {

Enumerator.empty[JsObject]
}

}

Listing 2.16 Subscribing other nodes to the broadcast Twitter feed

Master node

Replica 1 Replica 2

Client Client Client Client Client Client

Twitter

Figure 2.5 Scaling out using replica nodes
k.store/books/9781617294198

https://itbook.store/books/9781617294198

69Making the application resilient and scaling out

www.itbook.
This method, like the existing subscribe method, first makes sure that the connection
to Twitter is initialized, and then simply returns the broadcasting enumeratee. You can
now use the enumeratee in a controller method in your Application controller.

class Application extends Controller {

// ...

def replicateFeed = Action { implicit request =>
Ok.feed(TwitterStreamer.subscribeNode)

}
}

The feed method simply feeds the stream provided by the enumerator as an HTTP
request.

 You now need to provide a new route for this action in conf/routes:

GET /replicatedFeed controllers.Application.replicateFeed

If you now visit http://localhost:9000/replicatedFeed, you’ll see the stream of JSON
documents displayed with continuous additions to the page.

 You now have almost everything in place to set up a replica node. The last thing
you need to do is connect to the master node instead of the original Twitter API. You
can do this very easily by replacing the URL used in a replica node with the master
node’s URL. In a production setup, you’d use the application configuration for this.
To keep things simple for this example, we’ll use a JVM property that can easily be
passed along. Add the following logic in the connect() method of the Twitter-
Streamer companion object, replacing the existing URL declaration:

val maybeMasterNodeUrl = Option(System.getProperty("masterNodeUrl"))
val url = maybeMasterNodeUrl.getOrElse {

"https://stream.twitter.com/1.1/statuses/filter.json"
}

Now, start a new terminal window and start another Activator console (don’t close the
existing running application):

activator -DmasterNodeUrl=http://localhost:9000/replicatedFeed

Then run the application on another port:

[twitter-stream] $ run 9001

Upon visiting http://localhost:9001, you’ll see the stream from the other node. You
can start more of those nodes on different ports to check if the replication works as
expected. Given how the setup works, you can also chain more replicating nodes by
passing the URL of a replicating node as masterNodeUrl to another node.

Listing 2.17 Streaming the replicated Twitter feed in the controller
store/books/9781617294198

https://itbook.store/books/9781617294198

70 CHAPTER 2 Your first reactive web application

www.itboo
FAILURE HANDLING IN A REPLICATED SETUP Although scaling out makes your
application capable of handling a higher demand in terms of connections, it
also makes failure handling quite a bit more complicated. Given the
limitation of only one node being able to connect to Twitter, you’re in a
situation where there is a single point of failure—if this node were to go
down, you’d be in trouble. In a real system, you’d seek to avoid having a
single point of failure, and instead have a number of master nodes. You’d
also need to devise a mechanism to cope with the loss of a master server.

2.5 Summary
In this chapter, we built a reactive web application using Play and Akka. We used a few
key techniques for reactive applications:

■ Using asynchronous actions for handling incoming HTTP requests
■ Streaming and transforming tweets asynchronously using iteratees, enumera-

tees, and enumerators
■ Establishing WebSocket connections using an Akka actor and connecting it to

the stream
■ Dealing with failure on the client side
■ Scaling out using a simple replication model

k.store/books/9781617294198

https://itbook.store/books/9781617294198

www.itbook.
The emerging reactive model is ideal for high-
performance web applications that need to manage
the unpredictably-bursty behavior of the web, along
with the potential instability of running on networks
you don’t fully control. By using application compo-
nents that communicate asynchronously as they react
to user and system events, reactive applications are
more scalable, responsive, and fault-tolerant than
standard monolithic applications. For web developers
working in Java or Scala, the Play Framework makes it
easy to implement reactive applications without taking
on the overhead of building everything from scratch.

Reactive Web Applications teaches web developers how
to benefit from the reactive application architecture and presents hands-on examples
using the Play Framework. This book quickly introduces Play as a framework to handle
the plumbing of your application. As you move through the book, you’ll alternate
between chapters that introduce reactive ideas like asynchronous programming, man-
aging distributed state, and fault tolerance and examples that show you how to build
such applications using Play. Readers new to Play will be able to learn from the ground
up. If you’re already using Play, you’ll get a deeper look at how to implement reactive
web applications effectively.

What’s inside

❡ Introduces the reactive application architecture
❡ Learn the basics of Play Framework
❡ Examples in Scala
❡ Asynchronous programming with Futures, Actors, and Reactive Streams

 This book assumes only that you’re comfortable programming with a higher-level
language such as Java or C#, and can read Scala code. No prior experience with Play
Framework or reactive applications is required.
store/books/9781617294198

https://www.manning.com/books/reactive-web-applications
https://www.manning.com/books/reactive-web-applications
https://itbook.store/books/9781617294198

www.itbook.store
The Apache Spark data-processing platform handles many of the complex
aspects of processing large data streams in applications. The following chapter
introduces MLlib, a library that makes it possible to apply machine learning
techniques on incoming data. The particular technique introduced in this chap-
ter is linear regression.

 Machine learning has regained popularity since the recent evolution in hard-
ware made it available to a much broader set of developers and organizations,
enabling them to make more accurate decisions based on the data at hand. After
reading this chapter, you’ll have a sense of how machine learning works in prac-
tice and how Apache Spark supports it.

Getting smart with MLlib
/books/9781617294198

https://itbook.store/books/9781617294198

www.itbook.sto
Chapter 7 from Spark in Action
by Petar Zečević and Marko Bonaći

Getting smart with MLlib
Machine learning is a scientific discipline studying the use and development of algo-
rithms that make computers accomplish complicated tasks without explicitly pro-
gramming them. That is, the algorithms eventually learn how they can solve a given
task. These algorithms include various methods and techniques from statistics,
probability, and information theory.

 Today, machine learning is ubiquitous. Some examples include online stores
that offer you similar items that other users have viewed or bought, email clients
that automatically move emails to spam, advances in autonomous driving recently
developed by several car manufacturers, and speech and video recognition. It’s also
becoming a big part of online business: finding hidden relationships in user habits

This chapter covers
 Machine learning basics

 Performing linear algebra in Spark

 Scaling and normalizing features

 Training and applying a linear regression model

 Evaluating the model’s performance

 Using regularization

 Optimizing linear regression
73

re/books/9781617294198

https://www.manning.com/books/spark-in-action
https://itbook.store/books/9781617294198

74 CHAPTER 7 Getting smart with MLlib

www.itboo
and actions (and learning from them) can bring critical added value to existing prod-
ucts and services.

 But with the advent of companies handling huge amounts of data (known as Big
Data), more scalable machine learning packages are needed. Spark provides distrib-
uted and scalable implementations of various machine learning algorithms and makes
it possible to handle those continuously growing data sets1.

 Spark offers distributed implementations of the most important and most often
used machine learning algorithms, and new implementations are constantly being
added. Spark‘s distributed nature helps you apply machine learning algorithms on
very large data sets with adequate speed. Spark, as a unifying platform, lets you per-
form most of the machine learning tasks (such as data collection, preparation, analysis,
model training, and evaluation), all inside the same system and using the same API.

 In this chapter, you’ll use linear regression to predict Boston housing prices. Regres-
sion analysis is a statistical process of modeling relationships between variables, and lin-
ear regression, as a special type of the regression analysis, assumes those relationships to
be linear. It’s historically one of the most widely used and simplest regression methods
in statistics.

 While using linear regression to predict housing prices, you’ll learn about linear
regression itself: how to prepare the data, train the model, use the model to make pre-
dictions, and evaluate the model’s performance and optimize it. We’ll begin with a
short introduction to machine learning and a primer on using linear regression in
Spark.

 First, a disclaimer. Machine learning is such a vast subject that it’s impossible to
fully cover it here. To learn more about machine learning in general, check out Real-
World Machine Learning, by Henrik Brink and Joseph W. Richards (Manning, 2016
[est.]), and Machine Learning in Action, by Peter Harrington (Manning, 2012). A sea of
other resources can be found online; Stanford’s “Machine Learning” course by Andrew
Ng is an excellent starting point.2

7.1 Introduction to machine learning
Let’s start with an example of using machine learning in real life. Let’s say you’re run-
ning a website that lets people sell their cars online. And let’s say you’d like your sys-
tem to automatically propose to your sellers reasonable starting prices when they post
their ads. You know that regression analysis can be used for that purpose by taking
data of previous sales, analyzing characteristics of the cars and their selling prices, and
modeling the relation between them. But you don’t have enough ads in your data-
base, so you decide to get car prices from publicly available sources. You find a lot of
interesting car sale records online, but most of the data is available in CSV files, and
large parts of it are PDF and Word documents (containing car sale offers).

1 Spark is not the only framework that provides a distributed machine learning package. There are other frame-
works, such as Graphlab, Flink, and Parameter Server.

2 See http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=MachineLearning
k.store/books/9781617294198

http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=MachineLearning
https://itbook.store/books/9781617294198

75Introduction to machine learning

www.itbook.
 You first parse PDFs and Word documents to identify and match similar fields
(manufacturer, model, make, and so on). You know that a regression analysis model
can’t handle string values of various fields (“automatic” and “manual,” for example), so
you come up with a way to convert these values to numeric ones. Then you notice that
important fields are missing from some of the records (“year manufactured,” for exam-
ple) and you decide to remove those records from your data set.

 When you finally have the data cleaned up and stored somewhere, you start exam-
ining various fields—how they are correlated and what their distributions look like
(this is important for better understanding the hidden dependencies of the data).
Then you decide which regression analysis model to use.

 Let‘s say you choose linear regression, because based on the correlations you cal-
culated, you assume the main relations to be linear.

 Before building a model, you normalize and scale the data (more on how and why
this is done soon) and split it into training and validation data sets. You finally train
your model using the training data (you use the historical data to set weights of the
model to predict the future data where the price is not known; we will explain this
later), and you get a usable linear regression model. But when you test it on your vali-
dation data set, the results are horrible. You change some of the parameters used for

Figure 7.1 Typical steps in
a machine learning project
store/books/9781617294198

https://itbook.store/books/9781617294198

76 CHAPTER 7 Getting smart with MLlib

www.itboo
training the model, test it again, and repeat the process until you get a model with
acceptable performance.

 Finally, you incorporate the model in your web application and start getting emails
from your clients wondering how you‘re doing that (or clients complaining about bad
predictions).

 What this example illustrates is that a machine learning project consists of multiple
steps. Although typical steps are shown on figure 7.1, the whole process can usually be
broken down into the following:

1 Data collection—First, the data needs to be gathered from various sources. The
sources can be log files, database records, signals coming from sensors, and so
on. Spark can help in loading the data from relational databases, CSV files,
remote services, and distributed file systems like HDFS, or from real-time
sources using Spark Streaming.

2 Data cleaning and preparation—Data is not always available in a structured format
appropriate for machine learning (text, images, sounds, binary data, and so
forth), so you need to devise and carry out a method of transforming this
unstructured data into numerical features. Additionally, you need to handle
missing data and the different forms in which the same values can be entered
(for example, “VW” and “Volkswagen” are the same carmaker). Often data also
needs to be scaled so that all dimensions are of comparable ranges.

3 Data analysis and feature extraction—Next you analyze the data, examine its corre-
lations, and visualize them (using various tools) if necessary. (The number of
dimensions might be reduced in this step if some of them don’t bring any extra
information, for example, if they are redundant.) You then choose the appro-
priate machine learning algorithm (or set of algorithms) and split the data into
training and validation subsets—this is important because you would like to see
how the model behaves on the data not seen during the training phase. Or you
decide on a different cross-validation method, where you continuously split the
data set into different training and validation data sets and average the results
over the rounds.

4 Training the model—Here you train a model by running an algorithm that learns
a set of algorithm-specific parameters from the input data.

5 Model evaluation—You then put the model to use on the validation data set and
evaluate its performance according to some criteria. At this point, you may
decide you need more input data or that you need to change the way features
were extracted. You may also change the feature space or switch to a different
model. In any of these cases, you would go back to step 1 or step 2.

6 Using the model—Finally, you deploy the built model to the production environ-
ment of your website.

The mechanics of using an API (Spark or some other machine learning library) to
train and test the models is only the last and the shortest part of the process. Equally
k.store/books/9781617294198

https://itbook.store/books/9781617294198

77Introduction to machine learning

www.itbook.
important are collection, preparation, and analysis of data, where knowledge about
the problem domain is needed. Therefore, these two machine learning chapters are
mostly about steps 4 and 5 described previously.

7.1.1 Definition of machine learning

Machine learning is one of the largest research areas within artificial intelligence, a sci-
entific field that studies algorithms for simulating intelligence. Ron Kohavi and Foster
Provost in their article “Glossary of Terms” describe machine learning in these words:

Machine learning is a scientific discipline that explores the construction and study
of algorithms that can learn from and make predictions on data.3

This is in contrast to traditional programming methods where an algorithm that
needs to do what it’s explicitly programmed for (like parsing an XML file with a cer-
tain structure) is explicitly programmed into it. Such traditional methods can’t be eas-
ily expanded to cover similar tasks, like parsing XML files with a similar structure. As
another example, making a speech-recognition program that recognizes different
accents and voices would be impossible by explicitly programming it, because the
sheer number of variations in the way a single word can be pronounced would neces-
sitate that many versions of the program.

 Instead of incorporating the explicit knowledge about the problem area in the
program itself, machine learning relies on methods from the fields of statistics, proba-
bility, and information theory to discover and use the knowledge inherent in data and
then change the behavior of a program accordingly in order to be able to solve the
initial task (such as recognizing speech).

7.1.2 Classification of machine learning algorithms

The most basic classification of machine learning algorithms divides them into two
classes called supervised and unsupervised learners. A data set for supervised learning is
pre-labeled (information about the expected prediction output is provided with the
data), whereas one for unsupervised learning contains no labels and the algorithm
needs to determine them itself.

 Supervised learning is used for many practical machine learning problems today,
such as spam detection, speech and handwriting recognition, computer vision, and
more. A spam-detection algorithm, for example, is trained on examples of emails
manually marked as spam or not spam (labeled data) and learns how to classify future
emails.

 Unsupervised learning is also a powerful tool that is is widely used. Among other
purposes, it’s used for discovering structure within data—for example, groups of simi-
lar items known as clusters)—anomaly detection, image segmentation, and so on.

3 Ron Kohavi; Foster Provost (1998). "Glossary of terms", Editorial for the Special Issue on Applications of Machine
Learning and the Knowledge Discovery Process, vol. 30, 271–274.
store/books/9781617294198

https://itbook.store/books/9781617294198

78 CHAPTER 7 Getting smart with MLlib

www.itboo
CLASSIFICATION TO SUPERVISED AND UNSUPERVISED ALGORITHMS

In supervised learning, an algorithm is given a set of known inputs and matching out-
puts, and it has to find a function that can be used to transform the given inputs to the
true outputs even in the case of input data not seen during the training phase. The
same function can then be used to predict outputs of any future input. The typical
supervised learning tasks are regression and classification.

 Regression attempts to predict the values of continuous output variables based on a
set of input variables. Classification aims to classify sets of inputs into two or more
classes (discrete output variables) . Both regression and classification models are trained
based on a set of inputs with known outputs—where known outputs are the output
variables values or classes, which are supervised problems.

 In the case of unsupervised learning, the output is not known in advance, and the
algorithm has to find some structure in the data without additional information pro-
vided. A typical unsupervised learning task is clustering. With clustering, the goal of
the algorithm is to discover dense regions, called clusters, in the input data by analyz-
ing similarities between the input examples. There are no known classes used as a ref-
erence.

 For an example of differences between supervised and unsupervised learning, con-
sider figure 7.2. It shows the often used Iris flower data set4 created in 1936. The data
set contains widths and lengths of petals and sepals5 of 150 flowers of three iris flower
species: Iris setosa, Iris versicolor, and Iris virginica (50 flowers of each species). For the
sake of simplicity, only sepal length and width are given in figure 7.2. That way we can
plot the data set in two dimensions.

 Sepal length and sepal width are features (or dimensions) of input, and the flower
species is the output (or target variable, a label). We would like our algorithm to find a
mapping function that correctly maps sepal length and sepal width to flower species
for existing and future examples.

NOTE For historical reasons, and because of many possible application areas,
a single concept in machine learning can have several different names. Inputs
are also called examples, points, data samples, observations, or instances. In Spark,
training examples for supervised learning are called labeled points. Features
(sepal length and sepal width in the Iris data set, for example) are also called
dimensions, attributes, variables, or independent variables.

On the graph on the lefthand side of figure 7.2, flower species corresponding to each
input are marked with dots, circles, and x marks, which means that the flower species
are known in advance. We call this the training set because it can be used to train (or
fit) the parameters of the machine learning model to determine the mapping func-
tion. You would then test the accuracy of your trained model using a test set containing

4 Iris flower data set, Wikipedia (http://en.wikipedia.org/wiki/Iris_flower_data_set)
5 A sepal is a part of flower that supports its petals and protects the flower in bud.
k.store/books/9781617294198

http://en.wikipedia.org/wiki/Iris_flower_data_set
https://itbook.store/books/9781617294198

79Introduction to machine learning

www.itbook.
a different set of labeled examples. If satisfied with its performance, you would then
let it predict labels for some real data.

 The graph on the right in figure 7.2, on the other hand, shows clustering (a form
of unsupervised learning), which requires the algorithm to find the mapping function
and the categories. As you can see, all the examples are marked with the same symbol
(a dot), and the algorithm needs to find the "most likely" grouping system for the
given examples.

 In the graph showing clustering, there is obviously a clear separation between the
group of examples in the lower left-hand corner of the graph and the rest of the
examples, but the separation between the other two categories is not that clear. You
can probably already guess that an unsupervised learning algorithm will be less suc-
cessful in correctly separating this data set into the three flower categories—that’s
because the supervised learning algorithm has much more data to learn from.

ALGORITHM CLASSIFICATION BASED ON THE TYPE OF TARGET VARIABLE

Besides classifying machine learning algorithms as supervised and unsupervised, they
can also be classified according to the type of the target variable into classification and
regression algorithms.

 The Iris data set mentioned in the last section is an example of a classification prob-
lem because target variables are categorical (or qualitative), which means that they can
take on a limited number of values (discrete values). In classification algorithms, the
target variable is also called a label, class, or category and the algorithm itself is called a
classifier, recognizer, or categorizer.

 In the case of regression algorithms, the target variable is continuous or quantitative,
(a real number).

Figure 7.2 Supervised and unsupervised learning in the Iris flower data set. Data set for supervised learning is
pre-labeled, whereas the one for unsupervised learning contains no labels because the algorithm needs to
determine them itself.
store/books/9781617294198

https://itbook.store/books/9781617294198

80 CHAPTER 7 Getting smart with MLlib

www.itboo
Both regression and classification are plainly supervised learning algorithms because
the estimation function is fitted according to a priori known values. Figure 7.3 shows
an example of linear regression with only one feature, shown on axis x. The output
value is shown on axis y.

 The goal of regression is to find, based on a set of examples, a mathematical func-
tion that will be as close an approximation of the relationship between features and
the target variable as possible. The regression in figure 7.3 is a simple linear regres-
sion because there is only one independent variable (making it simple), and the
hypothesis function is modeled as a linear function (a straight line). If there were two
variables, you could plot the estimation function in 3D space as a plane. When there
are more features, the function becomes a hyperplane.

7.1.3 Machine learning with Spark

All the advantages of Spark extend to machine learning, too. The most important
aspect of Spark is its distributed nature. It enables you to train and apply machine
learning algorithms on very large data sets with adequate speed.

 The second advantage is Spark‘s unifying nature; it offers a platform for perform-
ing most of tasks. You can collect, prepare, and analyze the data and train, evaluate,
and use the model—all inside the same system and using the same API.

 Spark offers distributed implementations of the most popular machine learning
algorithms, and new ones are constantly added. Spark’s primary machine learning API
is called MLlib. It based on the MLbase project in Berkeley, California. Since its inclu-
sion in Spark version 0.8, MLlib has been expanded and developed by the open
source community.

 Spark version 1.2 introduced a new machine learning API called Spark ML. The
idea behind Spark ML is to provide a generalized API that can be used for training
and tuning different algorithms in the same way. It also provides pipelines, sequences

Figure 7.3 Example of a simple
linear regression problem
k.store/books/9781617294198

https://itbook.store/books/9781617294198

81Linear algebra in Spark

www.itbook.
of machine learning–related processing steps that are collected together and han-
dled as a unit.

 The new Spark ML API is developed in parallel with the “old” Spark MLlib API.
Spark MLlib will continue to be supported and expanded.

SUPPORTING LIBRARIES

Spark relies on several low-level libraries for performing optimized linear algebra oper-
ations. These are Breeze and jblas for Scala and Java and NumPy for Python. Refer to
the official documentation (https://spark.apache.org/docs/latest/mllib-guide
.html#dependencies) for how to configure these. We will use the default Spark build,
but that decision shouldn’t influence functional aspects described in this chapter.

7.2 Linear algebra in Spark
Linear algebra is a branch of mathematics focusing on vector spaces and linear opera-
tions and mappings between them expressed mainly by matrices. Linear algebra is
essential for understanding the math behind most machine learning algorithms, so if
you don’t know much about vectors and matrices, you should have a peek at appendix
C for a primer on linear algebra.

 Matrices and vectors in Spark can be manipulated locally (inside the driver or
executor processes) or in a distributed manner. Implementations of distributed matri-
ces in Spark enable you to perform linear algebra operations on huge amounts of
data, spanning numerous machines. For local linear algebra operations, Spark uses
the very fast Breeze and jblas libraries (and NumPy in Python), and it has its own
implementations of distributed ones.

7.2.1 Local vector and matrix implementations

Local vector and matrix implementations in Spark are located in the package
org.apache.spark.mllib.linalg. We’ll examine Spark’s linear algebra API with a set
of examples you can run in your Spark shell. To start the shell in local mode, use the
command spark-shell --master local[*]. We’ll assume you’re running Spark in
the spark-in-action virtual machine.

Sparse and dense vectors and matrices
Spark supports sparse and dense vectors and matrices. A vector or matrix is sparse
if it contains mostly zeros. It’s more efficient to represent such data with pairs of indi-
ces and values at those indices. A sparse vector or matrix can be likened to a map
(or dictionary in Python).

On the other hand, a dense vector or matrix contains all of the data—values at all
index positions not storing the indices, similar to an array or a list.
store/books/9781617294198

https://spark.apache.org/docs/latest/mllib-guide.html#dependencies
https://spark.apache.org/docs/latest/mllib-guide.html#dependencies
https://itbook.store/books/9781617294198

82 CHAPTER 7 Getting smart with MLlib

www.itboo
GENERATING LOCAL VECTORS

Local vectors in Spark are implemented with two classes: DenseVector and Sparse-
Vector, implementing a common interface called Vector, making sure that both
implementations support exactly the same set of operations. The main class for creat-
ing vectors is the Vectors class and its dense and sparse methods. The dense method
has two versions: it can take all elements as inline arguments or it can take an array of
elements. For the sparse method, you need to specify a vector size, an array with indi-
ces, and an array with values. The following three vectors (dv1, dv2, and sv) contain
the same elements and, hence, represent the same mathematical vectors:

import org.apache.spark.mllib.linalg.{Vectors,Vector}
val dv1 = Vectors.dense(5.0,6.0,7.0,8.0)
val dv2 = Vectors.dense(Array(5.0,6.0,7.0,8.0))
val sv = Vectors.sparse(4, Array(0,1,2,3), Array(5.0,6.0,7.0,8.0))

NOTE Make sure to always use sorted indices for constructing your sparse
vectors (the second argument of the sparse method). Otherwise, you may get
unexpected results.

You can access a specific element in the vector by its index like this:

scala> dv2(2)
res0: Double = 7.0

You can get the size of the vector with the size method:

scala> dv1.size
res1: Int = 4

To get all elements of a vector as an array, you can use the toArray method or:

scala> dv2.toArray
res2: Array[Double] = Array(5.0, 6.0, 7.0, 8.0)

LINEAR ALGEBRA OPERATIONS ON LOCAL VECTORS

Linear algebra operations on local vectors can be done using the Breeze library, which
Spark uses internally for the same purposes. toBreeze functions exist in Spark vector
and matrix local implementations, but they are declared as private. The Spark com-
munity has decided not to allow end users access to this library, because they do not
want to depend on a third-party library. But you will most likely need a library for han-
dling local vectors and matrices.

 An alternative would be to create your own function for converting Spark vectors
to Breeze classes, which is not really that hard to do. We propose the following solu-
tion:

import org.apache.spark.mllib.linalg.{DenseVector, SparseVector, Vector}
import breeze.linalg.{DenseVector => BDV,SparseVector => BSV,Vector => BV}
def toBreezeV(v:Vector):BV[Double] = v match {
 case dv:DenseVector => new BDV(dv.values)
 case sv:SparseVector => new BSV(sv.indices, sv.values, sv.size)
}

k.store/books/9781617294198

https://itbook.store/books/9781617294198

83Linear algebra in Spark

www.itbook.
Now you can use this function (toBreezeV) and the Breeze library to add vectors and
calculate their dot products. For example:

scala> toBreezeV(dv1) + toBreezeV(dv2)
res3: breeze.linalg.Vector[Double] = DenseVector(10.0, 12.0, 14.0, 16.0)
scala> toBreezeV(dv1).dot(toBreezeV(dv2))
res4: Double = 174.0

The Breeze library offers more linear algebra operations, and we invite you to exam-
ine its rich set of functionalities. You should note that the names of Breeze classes con-
flict with the names of Spark classes, so be careful when using both in your code. One
solution is to change the class names during import, as in the preceding toBreezeV
function example.

GENERATING LOCAL DENSE MATRICES

Similar to the Vectors class, the Matrices class also has the methods dense and
sparse for creating matrices. The dense method expects number of rows, number of
columns, and an array with the data (elements of type Double). The data should be
specified column-wise, which means that the elements of the array will be used
sequentially to populate columns. For example, to create the following matrix as a
DenseMatrix:

Use a code snippet similar to this one:

scala> import org.apache.spark.mllib.linalg.{DenseMatrix, SparseMatrix,
Matrix, Matrices}

scala> import breeze.linalg.{DenseMatrix => BDM,CSCMatrix => BSM,Matrix =>
BM}

scala> val dm = Matrices.dense(2,3,Array(5.0,0.0,0.0,3.0,1.0,4.0))
dm: org.apache.spark.mllib.linalg.Matrix =
5.0 0.0 1.0
0.0 3.0 4.0

A Matrices object provides some “shortcut” methods for quickly creating identity and
diagonal matrices and matrices with all zeros and ones. The eye(n) method6 creates a
dense identity matrix of size n x n. The method speye is the equivalent for creating a
sparse identity matrix. Methods ones(m, n) and zeros(m, n) create dense matrices
with all ones or zeros of size m x n. The diag method takes a Vector and creates a diag-
onal matrix (its elements are all zeros, except the ones on its main diagonal) with ele-
ments from the input Vector placed on its diagonal. Its dimensions will be equal to
the size of the input Vector.

 Additionally, you can generate a DenseMatrix filled with random numbers in a range
from 0 to 1 using the rand and randn methods of the Matrices object. The first

6 Identity matrices are usually denoted with the letter I, pronounced the same as the word “eye,” hence the pun
in the method name.

M 5 0 1
0 3 4

=

store/books/9781617294198

https://itbook.store/books/9781617294198

84 CHAPTER 7 Getting smart with MLlib

www.itboo
method generates numbers according to a uniform distribution, and the second one
according to Gaussian distribution. (Gaussian distribution, also known as normal dis-
tribution, has that familiar bell-shaped curve you have most probably seen.) Both dis-
tributions take the number of rows, the number of columns, and an initialized
java.util.Random object as arguments. The sprand and sprandn methods are equiv-
alent methods for generating SparseMatrix objects.

NOTE These methods (eye, rand, randn, zeros, ones, and diag) are not avail-
able in Python.

GENERATING LOCAL SPARSE MATRICES

Generating sparse matrices is a bit more involved than generating dense ones. You
also pass number of rows and columns to the sparse method, but the nonzero ele-
ment values (in sparse matrices only, nonzero elements are needed) are specified in
CSC (Compressed Sparse Column) format7. CSC format is made of three arrays, con-
taining column pointers, row indices, and the nonzero elements. A row indices array
contains the row index of each element in the elements array. The column pointers
array contains ranges of indices of elements that belong to the same column.

NOTE SparseMatrix is not available in Python.

For the previous M matrix example (the same matrix used previously), the arrays for
specifying the matrix in CSC format are as follows:

The colPtrs array tells us that the elements from index 0 (inclusive) to 1 (non-inclu-
sive), which is only element ‘5’ belong to the first column. Elements from index 1 to 2,
which is only element ‘3’, belong to the second column. Finally, elements from index
2 to 4 (elements ‘1’ and ‘4’) belong to the third column. The row index of each ele-
ment is given in the rowIndices array.

 To create the SparseMatrix object corresponding to the matrix M, you would use
this line of code:

val sm = Matrices.sparse(2,3,Array(0,1,2,4), Array(0,1,0,1),
Array(5.,3.,1.,4.))

(Note that the indices are specified as Ints, and the values as Doubles.)
 You can convert SparseMatrix to DenseMatrix and vice versa with the correspond-

ing toDense and toSparse methods. But you will need to explicitly cast the Matrix
object to the appropriate class:

scala> import org.apache.spark.mllib.linalg. {DenseMatrix,SparseMatrix}
scala> sm.asInstanceOf[SparseMatrix].toDense
res0: org.apache.spark.mllib.linalg.DenseMatrix =

7 Compressed Column Storage, Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods, Jack Dongarra et al., http://netlib.org/linalg/html_templates/node92.html

colPtrs 0 1 2 4[]= rowIndices 0 1 0 1[]= elements 5 3 1 4[]=, ,
k.store/books/9781617294198

http://netlib.org/linalg/html_templates/node92.html
https://itbook.store/books/9781617294198

85Linear algebra in Spark

www.itbook.
5.0 0.0 1.0
0.0 3.0 4.0
scala> dm.asInstanceOf[DenseMatrix].toSparse
2 x 3 CSCMatrix
(0,0) 5.0
(1,1) 3.0
(0,2) 1.0
(1,2) 4.0

LINEAR ALGEBRA OPERATIONS ON LOCAL MATRICES

Similarly to vectors, you can access specific elements of a Matrix by indexing it like
this:

scala> dm(1,1)
res1: Double = 3.0

You can efficiently create a transposed matrix using the transpose method:

scala> dm.transpose
res1: org.apache.spark.mllib.linalg.Matrix =
5.0 0.0
0.0 3.0
1.0 4.0

For other local matrix operations similar to vectors, conversion to Breeze matrices is
necessary. The online repository contains toBreezeM and toBreezeD functions that
you can use for converting local and distributed matrices to Breeze objects.

 Once converted to Breeze matrices, you can use operations like element-wise addi-
tion and matrix multiplication. We leave it up to you to further explore the Breeze API.

7.2.2 Distributed matrices

Distributed matrices are necessary when you’re using machine learning algorithms on
huge datasets. They are stored across many machines, and they can have a large num-
ber of rows and columns. Instead of using Ints for indexing rows and columns, for
distributed matrices use Longs. There are four types of distributed matrices in Spark,
defined in the package org.apache.spark.mllib.linalg.distributed: RowMatrix,
IndexedRowMatrix, BlockMatrix, and CoordinateMatrix.

ROWMATRIX

RowMatrix stores the rows of a matrix in an RDD of Vector objects. This RDD is acces-
sible as the rows member field. Number of rows and columns can be obtained with
numRows and numCols. RowMatrix can be multiplied by a local matrix (producing
another RowMatrix) using the method multiply. RowMatrix also provides other use-
ful methods, not available for other distributed implementations. We describe those
later.

 Every other type of Spark distributed matrix can be converted to a RowMatrix
using the built-in toRowMatrix methods, but there are no methods for converting a
RowMatrix to other distributed implementations.
store/books/9781617294198

https://itbook.store/books/9781617294198

86 CHAPTER 7 Getting smart with MLlib

www.itboo
INDEXEDROWMATRIX

IndexedRowMatrix is an RDD of IndexedRow objects, each containing an index of the
row and a Vector with row data. Although there is no built-in method for converting a
RowMatrix to IndexedRowMatrix, it’s fairly easy to do:

import org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix
import org.apache.spark.mllib.linalg.distributed.IndexedRow
val rmind = new IndexedRowMatrix(rm.rows.zipWithIndex().map(x =>

IndexedRow(x._2, x._1)))

COORDINATEMATRIX

CoordinateMatrix stores its values as an RDD of MatrixEntry objects, which contain
individual entries and their (i,j) positions in the matrix. This is not an efficient way of
storing data, so you should use CoordinateMatrix for storing only sparse matrices.
Otherwise, it could consume too much memory.

BLOCKMATRIX

BlockMatrix is the only distributed implementation with methods for adding and mul-
tiplying other distributed matrices. It stores its values as RDDs of tuples ((i,j), Matrix) . In
other words, BlockMatrix contains local matrices (blocks) referenced by their posi-
tion in the matrix. Sub-matrices take up blocks of the same sizes (of "rows per block"
and "columns per block" dimensions), except for the last sub-matrices, which can be
smaller (to allow the total matrix to be of any dimensions). The validate method
checks whether all blocks are of the same size (except the last ones).

LINEAR ALGEBRA OPERATIONS WITH DISTRIBUTED MATRICES

Linear algebra operations with distributed matrix implementations are somewhat lim-
ited, so you will need to implement some of these yourself. For example, element-wise
addition and multiplication of distributed matrices is available only for BlockMatrix
matrices. The reason is that only BlockMatrices offer a way to efficiently handle these
operations for matrices with many rows and columns.

 Transposition is available only for CoordinateMatrix and BlockMatrix.
 The other operations, like matrix inverse, for example, have to be done manually.

7.3 Linear regression
Now we finally get to do some machine learning. In this section, you’ll learn how lin-
ear regression works and apply it on a sample data set. In the process, you’ll learn how
to analyze and prepare the data for linear regression and how to evaluate your
model’s performance. You will also learn some important concepts, such as bias-vari-
ance tradeoff, cross-validation, and regularization.

7.3.1 About linear regression

Historically, linear regression has been one of the most widely used regression meth-
ods and one of the basic analytical methods in statistics, and it’s still widely used today.
That’s because modeling linear relationships is much easier than modeling nonlinear
ones. Interpretation of resulting models is also easier. The theory behind linear
k.store/books/9781617294198

https://itbook.store/books/9781617294198

87Linear regression

www.itbook.
regression also forms the basis for more advanced methods and algorithms in
machine learning.

 Like other types of regression, linear regression lets you use a set of independent
variables to make predictions about a target variable and quantify the relationship
between them. Linear regression makes an assumption that there is a linear relation-
ship (hence the name) between the independent and target variables. Let’s see what
this means when we have only one independent and one target variable, which is also
called simple linear regression. Using simple linear regression, we can plot the problem
in two dimensions: the x-axis being the independent variable and the y-axis being the
target variable. Later, we’ll expand this into a model with more independent variables,
which is called multiple linear regression.

7.3.2 Simple linear regression

As an example, we’ll use the UCI Boston housing data set8. Although the data set is
rather small and, as such, does not represent a Big Data problem, it’s nevertheless
appropriate for explaining machine learning algorithms in Spark. Besides, this
enables you to use it on your local machine if you want to do so.

 The data set contains mean values of owner-occupied homes in the suburbs of Bos-
ton and 13 features that can be used to predict home values. These features include
the crime rate, number of rooms per dwelling, accessibility to highways, and so on.

 For our simple linear regression example, we’ll predict home prices based on the
average number of rooms per dwelling. You might not really need to use linear regres-
sion to find out that the price of a house probably rises if there are more rooms in it.
That is something obvious and intuitive. But linear regression does enable you to
quantify that relationship—to say what is the expected price for a certain number of
rooms? If we were to plot the average number of rooms on the x-axis and the average
price on the y-axis, we would get output similar to that shown in figure 7.4.

 There is obviously a correlation between the two variables: almost no expensive
houses have a small number of rooms, and no inexpensive houses have a large num-
ber of rooms. Linear regression enables us to find a line that goes through the middle
of these data points and, in that way, to approximate the most likely home price we
could expect given an average number of rooms. We’ve already calculated this line as
shown in figure 7.4. Let’s see what the method is for finding it.

 Generally, if you want to draw a line in two-dimensional space, you need two values:
the slope of the line and the value at which the line intersects the y-axis, also called the
intercept. If we denote the number of rooms as x, the function for calculating the home
price as h (which stands for hypothesis), and the intercept and slope as w0 and w1,
respectively, the line can be described with the following formula:

8 UCI Machine Learning Repository, Housing Data Set, https://archive.ics.uci.edu/ml/datasets/Housing

h x() w0 w1x+=
store/books/9781617294198

https://archive.ics.uci.edu/ml/datasets/Housing
https://itbook.store/books/9781617294198

88 CHAPTER 7 Getting smart with MLlib

www.itboo
Our goal is to find the weights w0 and w1 that would best fit our data. Linear regres-
sion’s method for finding appropriate weight values is to minimize the so-called cost
function. The cost function returns a single value that can be used as a measure of how
well the line, determined by weights, fits all examples in a data set. Different cost func-
tions could be used. The one used in linear regression is the mean of the squared dif-
ferences between predicted and real values of the target variable for all the m
examples in the data set (mean squared error). The cost function (we call it C in the
equation) can be written like this:

If we give this function a set of m examples x(1) to x(m) (with matching target values y(1)

to y(m)) and the weights w0 and w1, which we think would be most appropriate for the
data, the function would give us a single error value. If this value is lower than a sec-
ond one, obtained for a different set of weights, that means our first model (deter-
mined by chosen weights w0 and w1) better fits the data set.

 But how do we get the "best-fit weights?" We can find the minimum of the cost
function. If we were to plot the cost function with respect to weights w0 and w1, it
would form a curved plane in a 3-dimensional space, similar to the one in figure 7.5.
The shape of the cost function depends on your data set. In our example, the cost
function has a "valley" along which many points correspond to low error values. That

Figure 7.4 Mean home prices in Boston by average number of rooms per dwelling.
Linear regression was used to find a best-fit line for this data (shown on the graph).

c w0 w1,() 1
2m
------- h x i()() y i()–()

2

i 1=

m

 1
2m
------- w0 w1x i() y i()–+()

2

i 1=

m

= =
k.store/books/9781617294198

https://itbook.store/books/9781617294198

89Linear regression

www.itbook.
means we could draw many lines (defined by weights w0 and w1) in figure 7.4 that
would fit our data set equally well.

 You use the mean squared error cost function in linear regression because it offers
certain benefits: the squares of individual deviations can’t cancel each other out (they
are always positive), even though the corresponding deviations might be negative; the
function is convex, which means there are no "local minima," only a global minimum;
and an analytical solution for finding its minimum exists.

7.3.3 Expanding the model to multiple linear regression

There is a nice vectorized solution for finding the minimum of the cost function C,
but let’s first expand the model to a multiple linear regression one. As we said previ-
ously, expanding the model to a multiple linear regression means that examples will
have more dimensions (independent variables). In our example, we need to add the
remaining 12 dimensions of our housing data set. This adds additional information to
the data set and enables the model to make better predictions based on that addi-
tional information. It also means that, from this point on, we will not be able to plot
the data nor the cost function anymore, because the linear regression solution now
becomes a 13-dimensional hyperplane (instead of a line in two dimensions).

 After adding the remaining 12 dimensions to our data set, our hypothesis function
becomes

where n, in our example, is equal to 12. On the right side, you can see the vectorized
version of the same expression. To be able to introduce the vectorized notation

Figure 7.5 The cost function of the
housing data set, depending on weights
w0 and w1. The "valley" in the middle
shows that many combinations of w0
and w1 can fit the data equally well.

h x() w0 w1x1 … wnxn+ + + wTx= =
store/books/9781617294198

https://itbook.store/books/9781617294198

90 CHAPTER 7 Getting smart with MLlib

www.itboo
(because the intercept value w0 is multiplied by 1), we need to extend the original vec-
tor x with an additional component, x0, which has a constant value of 1:

We can now rewrite the cost function of our multiple linear regression model like this:

This is also a vectorized version of the cost function (as indicated by bold letters in this
equation).

FINDING THE MINIMUM WITH THE NORMAL EQUATION METHOD

Finally, the vectorized solution to the problem of minimizing the cost function, in
respect to the weights w0 to wn, is given by the normal equation method formula:

X here is a matrix with m rows (m examples) and n + 1 columns (n dimensions plus 1s
for x0). w and y are vectors with n + 1 weights and m target values, respectively. Unfor-
tunately, the scope of this book does not allow us to explain the math behind this for-
mula.

FINDING THE MINIMUM WITH GRADIENT DESCENT

Directly solving this equation with the previous formula can be very expensive and not
easy to do (because of the matrix multiplications and matrix inversion calculations
required), especially if there are a large number of dimensions and rows in the data
set. So we’ll use the gradient descent method, which is more commonly employed—and
you can use it in Spark, too.

 Gradient descent algorithms work iteratively. Such an algorithm starts from a cer-
tain point, representing a best-guess of the weight parameters’ values (this point can
also be randomly chosen), and for each weight parameter wj, calculates a partial deriv-
ative of the cost function with respect to that weight parameter. Partial derivative tells
the algorithm how to change the weight parameter in question to descend to the min-
imum of the cost function as quickly as possible. The algorithm then updates the
weight parameters according to the calculated partial derivatives and calculates the
value of the cost function at the new point. If the new value is less than some tolerance
value, we say that the algorithm converged, and the process stops. See figure 7.6 for an
illustration.

 As an example of gradient descent algorithm, let’s return to our simple linear
regression example and its cost function, pictured again in figure 7.6. The dots on the
white line in the figure are points the algorithm visits in each step. The black line itself
is the shortest path from the starting point to the minimum of the cost function.

xT 1 x1 … xn[]=

c w() 1
2m
------- wTx i() y i()–()

2

i 1=

m

=

w XTX()
1–
X Ty=
k.store/books/9781617294198

https://itbook.store/books/9781617294198

91Analyzing and preparing the data

www.itbook.
The partial derivative of the cost function C, with respect to any weight parameter wj,
is given by this formula:

(Please note that x0 is equal to 1 for all examples, as mentioned previously.)
 If the partial derivative is negative, the cost function decreases with an increase of

weight parameter wj. You can now use this value to update the weight parameter wj to
decrease the value of your cost function. And you would do it for all weight parameters
as part of a single step:

After updating all weight parameters, you would calculate the cost function again (the
second point along the black line in figure 7.6), and if it’s still unacceptably high, you
would update the weights again using partial derivatives. You would repeat this pro-
cess until convergence (the value of cost function remains stable).

 Parameter γ (Greek letter gamma) is the step size parameter that helps stabilize the algo-
rithm. We will have more to say about the step size parameter later.

7.4 Analyzing and preparing the data
That was a good dose of theoretical background for our linear regression example.
Now it’s time to implement all that using Spark’s API. You will now download the hous-
ing data set, prepare the data, fit a linear regression model, and use the model to pre-
dict target values of some examples.

Figure 7.6 A gradient descent
algorithm determines the minimum
value for the cost function in the simple
linear regression model for the housing
data set. The white line connects the
points the algorithm visits in each step.

∂
∂wj
-------C w() 1

m
---- h x i()() y i()–()x i()

j

i 1=

m

=

wj: wj ϒ ∂
∂wj
--------C w()– wj ϒ 1

m
----– h x i()() y i()–()x i()

j for every j,
i 1=

m

= =
store/books/9781617294198

https://itbook.store/books/9781617294198

92 CHAPTER 7 Getting smart with MLlib

www.itboo
 To begin, download the housing data set (housing.data) from our online reposi-
tory (use our GitHub repository9 and not the one from UCI machine learning reposi-
tory because we changed the data set a bit). We will assume you cloned the GitHub
repository to the /home/spark/first-edition folder in the virtual machine. You can
find the description of the data set in the file ch07/housing.names.

 First, start the Spark shell in your home directory and load the data with the follow-
ing code:

import org.apache.spark.mllib.linalg.Vectors
val housingLines = sc.textFile("first-edition/ch07/housing.data", 6)
val housingVals = housingLines.map(x =>

Vectors.dense(x.split(",").map(_.trim().toDouble)))

We are using six partitions for the housingLines RDD, but you can choose another
value, depending on your cluster environment10.

 Now you have your data parsed and available as Vector objects. But before doing
anything useful with it, acquaint yourself with the data first. The first step when deal-
ing with any machine learning problem is to analyze the data and notice its distribu-
tion and interrelationships among different variables.

7.4.1 Analyzing data distribution

To get a feeling for the data you just loaded, you can calculate its multivariate statistical
summary. You can obtain that value from the corresponding RowMatrix object like
this:

import org.apache.spark.mllib.linalg.distributed.RowMatrix
val housingMat = new RowMatrix(housingVals)
val housingStats = housingMat.computeColumnSummaryStatistics()

Or you can use the Statistics object for the same purpose:

import org.apache.spark.mllib.stat.Statistics
val housingStats = Statistics.colStats(housingVals)

You can now use the obtained MultivariateStatisticalSummary object to examine
average (the mean method), maximum (the max method), and minimum (the min
method) values in each column of the matrix. For example, minimum values in the
columns are these:

scala> housingStats.min
res0: org.apache.spark.mllib.linalg.Vector = [0.00632,0.0,0.46,0.0,0.385,

3.561,2.9,1.1296,1.0,187.0,12.6,0.32,1.73,5.0]

You can also get the L1 norm (sum of absolute values of all elements per column) and
L2 norm (also called Euclidian norm; equal to the length of a vector/column) for each

9 https://github.com/spark-in-action/first-edition/blob/master/ch07/housing.data
10 If you need more information about the number of partitions required, chapter 4 would be a good place to

look for it.
k.store/books/9781617294198

https://github.com/spark-in-action/first-edition/blob/master/ch07/housing.data
https://itbook.store/books/9781617294198

93Analyzing and preparing the data

www.itbook.
column, with methods normL1 and normL2. Variance of each column can be obtained
with the variance method.

DEFINITION Variance is a measure of dispersion of a data set and is equal to
the average of squared deviations of values from their mean value. Standard
deviation is calculated as the square root of variance. Covariance is a measure of
how much two variables change relative to each other.

All of this can be very useful when examining data for the first time, especially when
deciding whether feature scaling is necessary (described shortly).

7.4.2 Analyzing column cosine similarities

Understanding column cosine similarities is another thing that helps when analyzing
data. Column cosine similarities represent an angle between two columns, viewed as vec-
tors. A similar procedure can be used for other purposes as well (for example, for
finding similar products, or similar articles).

 You obtain column cosine similarities from the RowMatrix object:

val housingColSims = housingMat.columnSimilarities()

PYTHON The columnSimilarities method is not available in Python.

The resulting object is a distributed CoordinateMatrix containing an upper-triangu-
lar matrix (upper-triangular matrices contain data only above their diagonal). Value at i-
th row and j-th column in the resulting housingColSims matrix gives a measure of
similarity between i-th column and j-th column in the housingMat matrix. The values
in the housingColSims matrix can go in value from –1 to 1. A value of –1 means the
two columns have completely opposite orientations (directions), a value of 0 means
they are orthogonal to one another, and a value of 1 means the two columns (vectors)
have the same orientation.

 The easiest way to see the contents of this matrix is to convert it to a Breeze matrix
using our toBreezeD method and then print the output with our utility method
printMat that you can find in our repository listing, which we omit due to brevity. To
do this, first paste the printMat method definition into your shell and execute the fol-
lowing:

printMat(toBreezeD(housingColSims))

This will pretty-print the contents of the matrix (you can also find the expected out-
put in our online repository). If you look at the last column of the result, it gives you a
measure of how well each dimension in the data set corresponds to the target variable
(average price). This is the contents of the last column: 0.224, 0.528, 0.693, 0.307,
0.873, 0.949, 0.803, 0.856, 0.588, 0.789, 0.897, 0.928, 0.670, 0.000. The biggest value
here is the sixth value (0.949), which corresponds to the column containing the aver-
age number of rooms. Now you can see that it was no coincidence that we chose that
exact column for our previous simple linear regression example—it has the strongest
store/books/9781617294198

https://itbook.store/books/9781617294198

94 CHAPTER 7 Getting smart with MLlib

www.itboo
similarity with the target value and thus represents the most appropriate candidate for
simple linear regression.

7.4.3 Computing the covariance matrix

Another method for examining similarities between different columns (dimensions)
of the input set is the covariance matrix. It’s important in statistics for modeling linear
correspondence between variables. In Spark, you compute the covariance matrix sim-
ilarly to column statistics and column similarities, using the RowMatrix object:
val housingCovar = housingMat.computeCovariance()
printMat(toBreezeM(housingCovar))

PYTHON The computeCovariance method is not available in Python.

The expected output is also available in our online repository. If you spend a moment
studying it, you’ll notice that there is a large range of values in the matrix and that
some of them are negative and some are positive. You’ll also probably notice that the
matrix is symmetric (that is, each (i, j) element is the same as a (j, i) element).

 This is because the variance-covariance matrix contains the variance of each col-
umn on its diagonal and covariance of the two matching columns on all other posi-
tions. If a covariance of two columns is zero, there is no linear relationship between
them. Negative values mean that the values in the two columns move in opposite
directions from their averages, whereas the opposite is true for positive values.

 Spark also offers two other methods for examining correlations between series of
data: Spearman’s and Pearson’s methods. Because an explanation of those methods is
beyond the scope of this book, you can access them through the org.apache.spark
.mllib.stat.Statistics object.

7.4.4 Transforming to labeled points

Now that we’ve examined the data set, we can get on to preparing the data for linear
regression. First, we have to put each example in the data set in a structure called
LabeledPoint, which is used in most of Spark’s machine learning algorithms. It con-
tains the target value and the vector with the features. housingVals containing Vector
objects with all variables, and the equivalent housingMat RowMatrix object, were use-
ful when we were examining the data set as a whole (in the previous sections), but
now we need to separate the target variable (the label) from the features.

 To do that, we can just transform the housingVals RDD (the target variable is in
the last column):

import org.apache.spark.mllib.regression.LabeledPoint
val housingData = housingVals.map(x => {
 val a = x.toArray
 LabeledPoint(a(a.length-1), Vectors.dense(a.slice(0, a.length-1)))
})
k.store/books/9781617294198

https://itbook.store/books/9781617294198

95Analyzing and preparing the data

www.itbook.
7.4.5 Splitting the data

The second important step is splitting the data into training and validation sets. A
training set is used to train the model, and a validation set is used to see how well the
model performs on data that wasn’t used to train it. The usual split ratio is 80% for the
training set and 20% for the validation set.

 We can split the data very easily in Spark with the RDD’s built-in randomSplit
method:

val sets = housingData.randomSplit(Array(0.8, 0.2))
val housingTrain = sets(0)
val housingValid = sets(1)

The method returns an array of RDDs, each containing approximately the requested
percentage of orginal data.

7.4.6 Feature scaling and mean normalization

We’re not done with data preparation yet. As you probably noticed when we were
examining distribution of our data, there are large differences in data spans between
the columns. For example, data in the first column goes from 0.00632 to 88.9762, and
the data in the fifth column from 0.385 to 0.871.

 Interpreting results from a linear regression model trained with data like this can
be difficult and can render some data transformations (which we’re going to perform
in the coming sections) problematic. It’s often a good idea to standardize the data
first, which can’t hurt your model. There are two ways you can do this: with feature scal-
ing and with mean normalization.

 Feature scaling means that the ranges of data are scaled to comparable sizes. Mean
normalization means that the data is translated so that the averages are roughly zero.
We can do both in a single pass, but we need a StandardScaler object to do that. In
the constructor, you specify which of the standardization techniques you want to use
(we will use both) and then you fit it according to some data:

import org.apache.spark.mllib.feature.StandardScaler
val scaler = new StandardScaler(true, true).
 fit(housingTrain.map(x => x.features))

Fitting finds column summary statistics of the input data and uses these statistics (in
the next step) to do the actual scaling. We fitted the scaler according to the training
set, and we’ll then use the same statistics to scale both the training and validation sets
(only data from the training set should be used for fitting the scaler):

val trainScaled = housingTrain.map(x => LabeledPoint(x.label,
scaler.transform(x.features)))

val validScaled = housingValid.map(x => LabeledPoint(x.label,
scaler.transform(x.features)))

Now you’re finally ready to use the housing data set for linear regression.
store/books/9781617294198

https://itbook.store/books/9781617294198

96 CHAPTER 7 Getting smart with MLlib

www.itboo
7.5 Fitting and using a linear regression model
A linear regression model in Spark is implemented by the class LinearRegression-
Model in the package org.apache.spark.mllib.regression. It’s produced by fitting
a model and holds the fitted model’s parameters. When you have fitted a LinearRe-
gressionModel object, you can use its predict method on individual Vector exam-
ples to predict the corresponding target variables. You construct the model using the
LinearRegressionWithSGD class, which implements the algorithm used for training
the model. But you can do this in two ways. The first is the standard Spark way of
invoking the static train method:

val model = LinearRegressionWithSGD.train(trainScaled, 200, 1.0)

Unfortunately, this does not allow you to find the intercept value (only the weights),
so use the second, nonstandard method:

import org.apache.spark.mllib.regression.LinearRegressionWithSGD

val alg = new LinearRegressionWithSGD()

alg.setIntercept(true)

alg.optimizer.setNumIterations(200)

trainScaled.cache()

validScaled.cache()

val model = alg.run(trainScaled)

Within a few seconds of executing this code, you’ll have your Spark linear regression
model ready to use for predictions. The data sets are cached, which is important for
iterative algorithm, such as machine learning ones, because they tend to reuse the
same data many times.

7.5.1 Predicting the target values

You can now use the trained model to predict the target values of vectors in the valida-
tion set by running predict on every element. Our validation set contains labeled
points, but you only need the features. You also need the predictions together with
the original labels, so you can compare them. This is how you can map labeled points
to pairs of predicted and original values:

val validPredicts = validScaled.map(x => (model.predict(x.features),
x.label))

The moment of truth has arrived. You can see how well your model is doing on the
validation set by simply examining the contents of validPredicts:

scala> validPredicts.collect()
res123: Array[(Double, Double)] = Array((28.250971806168213,33.4),

(23.050776311791807,22.9), (21.278600156174313,21.7),
(19.067817892581136,19.9), (19.463816495227626,18.4), ...

Instantiate object
Set option to find intercept value

Set number of iterations to run

Caching input data is important

Start training of model
k.store/books/9781617294198

https://itbook.store/books/9781617294198

97Fitting and using a linear regression model

www.itbook.
Some predictions are close to original labels and some are further off. To quantify the
success of your model, calculate the root mean squared error (the root of the cost
function defined previously):

scala> math.sqrt(validPredicts.map{case(p,l) => math.pow(p-l,2)}.mean())
res0: Double = 4.775608317676729

The average value of target variables (home prices) is 22.5—which we learned earlier
when we were calculating column statistics—so a root mean squared error of 4.78
seems rather large. But if we take into account that the variance of home prices is
84.6, the number suddenly looks much better.

7.5.2 Evaluating the model’s performance

This is not the only way you can evaluate the performance of your regression model.
Spark offers the RegressionMetrics class for this purpose. You give it an RDD with
pairs of predictions and labels, and it returns several useful evaluation metrics:

scala> import org.apache.spark.mllib.evaluation.RegressionMetrics
scala> val validMetrics = new RegressionMetrics(validPredicts)
scala> validMetrics.rootMeanSquaredError
res1: Double = 4.775608317676729
scala> validMetrics.meanSquaredError
res2: Double = 22.806434803863162

Beside the root mean squared error that you previously calculated yourself, Regres-
sionMetrics also gives you the following:

 meanAbsoluteError—Average absolute difference between a predicted and
real value (3.044 in our case).

 r2—Coefficient of determination R2 (0.71 in our case) is a value between 0 and
1 and represents the fraction of variance explained. It’s a measure of how much a
model accounts for the variation in the target variable (predictions) and how
much of it is “unexplained.” A value close to 1 means that the model explains a
large part of variance in the target variable.

 explainedVariance—A value similar to R2 (0.711 in our case).

All of these are used in practice, but coefficient of determination can give you some-
what misleading results (it tends to rise when the number of features increases,
whether they are relevant or not). For that reason, we’ll use the root mean squared
error (RMSE) from now on.

7.5.3 Interpreting the model parameters

The set of weights the model has learned can tell you something about the influence
of individual dimensions on the target variable. If a particular weight is near zero, the
corresponding dimension does not contribute to the target variable (price of hous-
ing) in a significant way (assuming the data has been scaled—otherwise even low-
range features might be important).
store/books/9781617294198

https://itbook.store/books/9781617294198

98 CHAPTER 7 Getting smart with MLlib

www.itboo
 You can inspect absolutes of the individual weights with the following snippet of
code:

scala> println(model.weights.toArray.map(x => x.abs).
 | zipWithIndex.sortBy(_._1).mkString(", "))
(0.112892822124492423,6), (0.163296952677502576,2), (0.588838584855835963,3),

(0.939646889835077461,0), (0.994950411719257694,11),
(1.263479388579985779,1), (1.660835069779720992,9),
(2.030167784111269705,4), (2.072353314616951604,10),
(2.419153951711214781,8), (2.794657721841373189,5),
(3.113566843160460237,7), (3.323924359136577734,12)

The model’s weights Vector is first converted to a Scala Array, then the absolute val-
ues are calculated, an index is attached to each weight using the Scala’s zipWithIndex
method, and finally, the weights are sorted by their values.

 You can see that the most influential dimension of the data set is the one with index
12, which corresponds to the LSTAT column, or the “percentage of lower status of the
population.” (You can find the column descriptions in the housing.names file in the
book’s online repository.) The second-most influential dimension is the column with
index 7, or “weighted distances to five Boston employment centers.” And so on.

 The two least influential dimensions are the “proportion of owner-occupied units
built prior to 1940” and the “proportion of non-retail business acres per town.” Those
dimensions can be removed from the dataset without influencing the model’s perfor-
mance significantly. In fact, that might even improve it a bit because in that way, the
model would “get focused” on the important features more.

7.5.4 Loading and saving the model

Because training a model using lots of data can be an expensive and lengthy opera-
tion, Spark offers a way to save the model to a file system as a Parquet file (covered in
chapter 5) and simply load it later, when needed. Most Spark MLlib models can be
saved using the save method. You just pass a SparkContext instance and a file system
path to it, similar to this:

model.save(sc, "chapter07output/model")

Spark uses the path for creating a directory and creates two Parquet files in it: data
and metadata.

 In case of linear regression models, the metadata file contains the model‘s imple-
mentation class name, the implementation’s version, and the number of features in
the model. The data file contains the weights and the intercept of the linear regres-
sion model.

 To load the model, use the corresponding load method, again passing to it a Spark-
Context instance and the path to the directory with the saved model. For example:

import org.apache.spark.mllib.regression.LinearRegressionModel
val model = LinearRegressionModel.load(sc, "ch07output/model")

The model can then be used for predictions.
k.store/books/9781617294198

https://itbook.store/books/9781617294198

99Tweaking the algorithm

www.itbook.
7.6 Tweaking the algorithm
In section 7.3.3, you saw the gradient descent formula:

Parameter γ (Greek letter gamma) in the formula is the step size parameter, which helps
to stabilize the gradient descent algorithm. But it can be difficult to find the optimal
value for this parameter. If it’s too small, the algorithm will take too many small steps
to converge. If it’s too large, the algorithm might never converge. The right value
depends on the data set.

 It’s similar with number of iterations. If it’s too large, fitting the model will take too
much time. If it’s too small, the algorithm might not reach the minimum.

 Although we only set the number of iterations for our previous run of the linear
regression algorithm (the step size we used had the default value of 1.0), you can set
both of these parameters when using LinearRegressionWithSGD. But you can’t tell
Spark "iterate until the algorithm converges" (which would be ideal). You have to find
the optimal values for these two parameters yourself.

7.6.1 Finding the right step size and number of iterations

One way to find satisfactory values for these two parameters is to experiment with sev-
eral combinations and find the one that gives the best results. We put together a func-
tion that can help you do this. Find the iterateLRwSGD function in our online
repository (in the ch07-listings.scala and ch07-listings.py files) and paste it into
your Spark shell. This is the complete function:

import org.apache.spark.rdd.RDD
def iterateLRwSGD(iterNums:Array[Int], stepSizes:Array[Double],
 train:RDD[LabeledPoint], test:RDD[LabeledPoint]) = {
 for(numIter <- iterNums; step <- stepSizes) {
 val alg = new LinearRegressionWithSGD()
 alg.setIntercept(true).optimizer.setNumIterations(numIter).
 setStepSize(step)
 val model = alg.run(train)
 val rescaledPredicts = train.map(x =>
 (model.predict(x.features), x.label))
 val validPredicts = test.map(x => (model.predict(x.features), x.label))
 val meanSquared = math.sqrt(rescaledPredicts.map(
 {case(p,l) => math.pow(p-l,2)}).mean())
 val meanSquaredValid = math.sqrt(validPredicts.map(
 {case(p,l) => math.pow(p-l,2)}).mean())
 println("%d, %5.3f -> %.4f, %.4f".format(numIter,
 step, meanSquared, meanSquaredValid))
 }
}

The iterateLRwSGD function takes two arrays, containing different numbers of itera-
tions and step size parameters, and two RDDs, containing training and validation data.

wj: wj ϒ ∂
∂wj
--------C w()– wj ϒ 1

m
----– h x i()() y i()–()x i()

j for every j,
i 1=

m

= =
store/books/9781617294198

https://itbook.store/books/9781617294198

100 CHAPTER 7 Getting smart with MLlib

www.itboo
For each combination of step size and number of iterations in the input arrays, the
function returns the root mean squared error (RMSE) of training and validation sets.
Here’s what the printout should look like:

scala> iterateLRwSGD(Array(200, 400, 600), Array(0.05, 0.1, 0.5, 1, 1.5, 2,
3), trainScaled, validScaled)

200, 0.050 -> 7.5420, 7.4786
200, 0.100 -> 5.0437, 5.0910
200, 0.500 -> 4.6920, 4.7814
200, 1.000 -> 4.6777, 4.7756
200, 1.500 -> 4.6751, 4.7761
200, 2.000 -> 4.6746, 4.7771
200, 3.000 -> 108738480856.3940, 122956877593.1419
400, 0.050 -> 5.8161, 5.8254
400, 0.100 -> 4.8069, 4.8689
400, 0.500 -> 4.6826, 4.7772
400, 1.000 -> 4.6753, 4.7760
400, 1.500 -> 4.6746, 4.7774
400, 2.000 -> 4.6745, 4.7780
400, 3.000 -> 25240554554.3096, 30621674955.1730
600, 0.050 -> 5.2510, 5.2877
600, 0.100 -> 4.7667, 4.8332
600, 0.500 -> 4.6792, 4.7759
600, 1.000 -> 4.6748, 4.7767
600, 1.500 -> 4.6745, 4.7779
600, 2.000 -> 4.6745, 4.7783
600, 3.000 -> 4977766834.6285, 6036973314.0450

You can see several things from this output. First, the testing RMSE is always greater
than training RMSE (except for some corner cases). That’s to be expected. Further-
more, for every number of iterations, both errors decline rapidly as step size increases,
following some inverse exponential function. That makes sense because for smaller
numbers of iterations and smaller step sizes, there were simply not enough iterations
to get to the minimum.

 Then the error values flatten out, more quickly for larger numbers of iterations.
This also makes sense because there are some limitations to how well you can fit a data
set. And models fitted with larger numbers of iterations will perform better. For step
size value of 3, the error values explode. This step size value is simply too large, and
the algorithm misses the minimum. It seems that step size of 0.5 or 1.0 gives the best
results if the number of iterations stays the same.

 You may also have noticed that running more iterations does not help much. For
example, a step size of 1.0 with 200 iterations gives you almost the same training RMSE
as with 600 iterations.

7.6.2 Adding higher-order polynomials

It seems that the testing RMSE of 4.7760 is the lowest error you can get for the housing
dataset. But your model can actually do better. Very often data does not follow a sim-
ple linear formula (a straight line in a 2-dimensional space) but may be some kind of
k.store/books/9781617294198

https://itbook.store/books/9781617294198

101Tweaking the algorithm

www.itbook.
a curve. Curves can often be described with functions containing higher-order polyno-
mials. For example:

This hypothesis is capable of matching data governed by some nonlinear relationship.
You will see an example of this in the next section.

 Spark doesn‘t offer a method of training a nonlinear regression model that
includes higher-order polynomials, such as the preceding hypothesis. Instead, you can
employ a little trick and do something that has a similar effect: you can expand your
data set with additional features obtained by multiplying the existing ones. For exam-
ple, if you have features x1 and x2, you could expand the data set to include x1

2 and
x2

2. Adding the interaction term x1x2 helps in cases when x1 and x2 influence the target
variable together.

 Let‘s do that now with our data set. You will use a simple function for mapping
each Vector in the data set to include the square of each feature:

def addHighPols(v:Vector): Vector =
{
 Vectors.dense(v.toArray.flatMap(x => Array(x, x*x)))
}
val housingHP = housingData.map(x => LabeledPoint(x.label,

addHighPols(x.features)))

housingHP RDD now contains LabeledPoints from our original housingData RDD,
but expanded with additional features containing second order polynomials. We now
have 26 features instead of the previous 13:

scala> housingHP.first().features.count()
res0: Int = 26

Now it’s necessary to once again go through the process of splitting the data set for
training and testing subsets and to scale the data in the same way we did previously:

val setsHP = housingHP.randomSplit(Array(0.8, 0.2))
val housingHPTrain = setsHP(0)
val housingHPValid = setsHP(1)
val scalerHP = new StandardScaler(true, true)
scalerHP.fit(housingHPTrain.map(x => x.features))
val trainHPScaled = housingHPTrain.map(x => LabeledPoint(x.label,

scalerHP.transform(x.features)))
val validHPScaled = housingHPValid.map(x => LabeledPoint(x.label,

scalerHP.transform(x.features)))
trainHPScaled.cache()
validHPScaled.cache()

You can now see how the new model behaves with different numbers of iterations and
step sizes:

iterateLRwSGD(Array(200, 400), Array(0.4, 0.5, 0.6, 0.7, 0.9, 1.0, 1.1, 1.2,
1.3, 1.5), trainHPScaled, validHPScaled)

h x() w0 x3 w1 x2 w2x w3+ + +=

Add squares
to a Vector

Map original
data set
store/books/9781617294198

https://itbook.store/books/9781617294198

102 CHAPTER 7 Getting smart with MLlib

www.itboo
As you can see from the results (omitted for brevity, but available in our online reposi-
tory), RMSE explodes for the step size of 1.3, and you get the best results for the step
size of 1.1. The error values are lower than before. The best RMSE is 3.9836 (for 400
iterations), compared to 4.776 before. You can conclude that adding higher-order
polynomials helped the linear regression algorithm find a better performing model.

 But is this the lowest RMSE you can get with this data set? Let‘s see what happens if
you increase the number of iterations (and use the best-performing step size of 1.1):

scala> iterateLRwSGD(Array(200, 400, 800, 1000, 3000, 6000), Array(1.1),
trainHPScaled, validHPScaled)

200, 1.100 -> 4.1605, 4.0108
400, 1.100 -> 4.0378, 3.9836
800, 1.100 -> 3.9438, 3.9901
1000, 1.100 -> 3.9199, 3.9982
3000, 1.100 -> 3.8332, 4.0633
6000, 1.100 -> 3.7915, 4.1138

With more iterations, the testing RMSE is even starting to increase. (Depending on
your data set split, you may get different results.) So which step size should you
choose? And why is RMSE increasing?

7.6.3 Bias-variance tradeoff and model complexity

The situation where the testing RMSE is increasing while the training RMSE is decreas-
ing is known as overfitting. What happens is that the model gets too attuned to the
“noise” in the training set and becomes less accurate when analyzing new, real-world
data that does not possess the same properties as the training set. There is also an
opposite term—underfitting—where the model is too simple and is incapable of ade-
quately capturing the complexities of the data. Understanding these phenomena is
important for correctly using machine learning algorithms and getting the most out
of your data.

 For example, figure 7.7 shows a sample data set (red circles) following a quadratic
function. The linear model (left-hand graph) is not capable of properly modeling the
data. The quadratic function in the middle is just about right, and the function with
higher-order polynomials on the right overfits the data set.

Figure 7.7 The linear model (left) underfits the data set, a model with higher-order polynomials
(right) overfits it, and a quadratic model (middle) fits nicely.
k.store/books/9781617294198

https://itbook.store/books/9781617294198

103Tweaking the algorithm

www.itbook.
You normally want your model to fit the data in your training data set, but also to be
expandable to some other, presently unknown data. It’s not necessarily possible to do
both perfectly.

 And that leads us to the bias-variance tradeoff. Bias here pertains to the model. For
example, the linear model on the left-hand side of figure 7.7 has a high bias: it’s
assuming the linear relationship between the independent and target variables, so it’s
biased. The model on the right-hand side has a high variance because the values it
predicts are oscillating more. Bias-variance tradeoff says that you can’t necessarily have
both at the same time and that you need to seek an equilibrium, or middle ground.

 How do you know if your model has high bias (it’s underfitted) or high variance
(it’s overfitted)?

 Let us return to our example. Generally, overfitting occurs when the ratio of
model complexity and training set size gets large. If you have a complex model, but
also a relatively large training set, overfitting is less likely to occur. You saw that RMSE
on our validation set started to rise when you added higher-order polynomials and
trained the model with more iterations. Higher-order polynomials bring more com-
plexity to the model, and more iterations overfit the model to the data while the algo-
rithm is converging. Let’s see what happens if we try even more iterations:

scala> iterateLRwSGD(Array(10000, 15000, 30000, 50000), Array(1.1),
trainHPScaled, validHPScaled)

10000, 1.100 -> 3.7638, 4.1553
15000, 1.100 -> 3.7441, 4.1922
30000, 1.100 -> 3.7173, 4.2626
50000, 1.100 -> 3.7039, 4.3163

You can see that the training RMSE
continues to decrease while the test-
ing RMSE continues to rise. And
that’s typical for an overfitting situa-
tion: training error falls and then pla-
teaus (which would happen for even
more iterations), and testing error
falls and then starts to rise, meaning
that the model learns training set–
specific properties, instead of charac-
teristics representative of the whole
population. If you were to plot this,
you would get a graph similar to fig-
ure 7.8.

 To answer the question of which
values for the number of iterations
and step size to choose: choose the
values corresponding to the mini-
mum of the testing RMSE curve, at

Figure 7.8 Error as a function of the number of
iterations used. Test root means square error falls but
then starts to rise at a certain point. Parameters
corresponding to that point should be chosen for the
model because the model is starting to overfit the data.
store/books/9781617294198

https://itbook.store/books/9781617294198

104 CHAPTER 7 Getting smart with MLlib

www.itboo
the point before it starts to rise. In this case, 400 iterations and step size of 1.1 give very
good results (testing RMSE of 3.98).

7.6.4 Plotting residual plots

But how can you tell if you need to keep adding higher-order polynomials? Or if you
need to add any in the first place? And where do you stop? Examining residual plots can
help you answer those questions.

 Residual is the difference between the predicted and actual values of the target vari-
able. In other words, for a single example in your training data set, the residual is the
difference between its label’s value and what your model says the label’s value should
be. Residual plots have residuals on the y-axis and the predicted values on the x-axis.

 Residual plot should show no noticeable patterns—it should have the same height
at all points on the x-axis, and if you were to plot a best-fit line (or a curve) through
the plotted values, the line should stay flat. If it shows a shape similar to the letter u
(or inverted u), that means a nonlinear model would be more appropriate for some
of the dimensions.

 The two residual plots for our two models (the original linear regression model
and the one with added second-order polynomials) are shown in figure 7.9. The one
on the left shows a shape of inverted u-curve. The one on the right, although still not
perfect, shows an improvement as the shape is more balanced.

 As we said, the new residual plot is still not perfect, and further dimension trans-
formations might help, but probably not much. A line in the lower right-hand part of
both figures is also visible. This is due to several outliers, or points that represent some

Figure 7.8 Residual plots for two linear regression models. The model on the left was fitted using the
original housing data set and shows an inverted u-curve shape. The one on the right was fitted using the
data set with added second-order polynomials and shows a more balanced pattern.
k.store/books/9781617294198

https://itbook.store/books/9781617294198

105Tweaking the algorithm

www.itbook.
kind of exceptions. In this case, there are several instances of expensive houses
($50,000) that should otherwise be not as expensive. This could also be caused by a
missing variable—some factor making a house expensive (aesthetics, for example),
but not present in the data set.

 Residual plots can also help you in a number of other situations. For example, if
the plot shows a fan-in or a fan-out shape (the residuals show greater variance at one
end of the plot than at the other, a phenomenon called heteroscedasticity11), one solu-
tion besides adding higher-order polynomials might be to transform the target variable
logarithmically so that your model predicts log(y) (or some other function) and not y.

 Further discussion of this important topic is beyond the scope of this book. The
main thing to remember is that you should always spend some time studying residual
plots to get further information on how your model is actually doing.

7.6.5 Avoiding overfitting by using regularization

Let’s get back to overfitting. You have seen how it decreases your model’s perfor-
mance. You can avoid overfitting using a method called regularization, which increases
the bias of your model and decreases variance by penalizing large values in the model
parameters.

 Regularization adds an additional element (we denote it as ?) to the cost function
that penalizes complexity in the model. There are different regularization types. The
most common ones are L1 and L2 regularizations (named after L1 and L2 norms dis-
cussed in section 7.4.2), and they are the ones available in Spark. Linear regression
with L1 regularization is called Lasso regression, and the one with L2 regression is called
Ridge regression.

 The cost function with the regularization element ? looks like this:

β is a product of two elements: γ, the regularization parameter, and L1 or L2
 norm of the weight vector. As we said in section 7.4.2, L1 norm is the sum of

absolute values of vector’s elements, and L2 norm is the square root of the sum of
squares of vector’s elements, which is equal to the length of the vector.

 What the regularization actually does is increase the error in proportion to abso-
lute weight values. In that way, the optimization function tries to deemphasize individ-
ual dimensions and slow down the algorithm as the weights get larger. L1
regularization (Lasso regression) is more aggressive in this process. It’s capable of
reducing individual weights to zero and thus completely removing some of the fea-
tures from the data set.

 In addition, both L1 and L2 regularizations in Spark decrease the step size in pro-
portion to the number of iterations. This means that the longer the algorithm runs,

11 For further information, see the Wikipedia page on heteroscedasticity (https://en.wikipedia.org/wiki/
Heteroscedasticity).

C w() 1
2m
------- wTx i() y i()–()

2
β+

i 1=

m

 1
2m
------- wTx i() y i()–()

2
λ w I II⁄|| ||+

i 1=

m

= =

w I()
w II()
store/books/9781617294198

https://en.wikipedia.org/wiki/Heteroscedasticity
https://en.wikipedia.org/wiki/Heteroscedasticity
https://itbook.store/books/9781617294198

106 CHAPTER 7 Getting smart with MLlib

www.itboo
the smaller steps it will take. (This is not related to regularization per se, but is part of
L1 and L2 regularization implementations in Spark.)

 Regularization can help you in situations where you’re overfitting the model to the
data set. By increasing the regularization parameter (λ), you can decrease overfitting.
Besides that, regularization can help you get to lower error values quicker, when you
have many dimensions, because it lowers the influence of dimensions that have less
impact on performance.

 But the downside is that regularization requires you to configure an extra parame-
ter, which adds additional complexity to the process.

USING LASSO AND RIDGE REGRESSIONS IN SPARK

In Spark, you can set Lasso and Ridge regressions manually by changing the regParam
and updater properties of LinearRegressionWithSGD.optimizer object or by using
LassoWithSGD and RidgeRegressionWithSGD classes. The latter is what we did.

 You can find two additional methods in our online repository: iterateLasso and
iterateRidge. They are similar to the iterateLRwSGD we used before, but they take
an additional regParam argument and train different models.

 You can try these two methods and see the RMSE values Lasso and Ridge regression
give on the data set with second-order polynomials we used before (trainHPScaled
and validHPScaled) with the same step size as before and with the value of regression
parameter of 0.01, which gives the best results:

iterateRidge(Array(200, 400, 1000, 3000, 6000, 10000), Array(1.1), 0.01,
trainHPScaled, validHPScaled)

iterateLasso(Array(200, 400, 1000, 3000, 6000, 10000), Array(1.1), 0.01,
trainHPScaled, validHPScaled)

The results (available in our repository online) show that Ridge gives lower MRSE than
Lasso regression and that Ridge is better even than the ordinary least squares (OLS)
regression used previously (3.966 for 1000 iterations instead of 3.984 for 400 itera-
tions). Note that the increase in test RMSE, which was happening for numbers of itera-
tions larger than 400 and which was the effect of overfitting, also happens for Ridge
and Lasso regressions. Only for Ridge regressions, the overfitting kicks in later. If we
were to increase the regularization parameter, we would see MRSE increase later, but
the MRSE levels would be greater.

 Which regularization method and which regularization parameter you should
choose is difficult to say because it depends on your data set. You should apply an
approach similar to the one we used for finding the number of iterations and the step
size (train several models with different parameters and pick the ones with the lowest
error).

 The most common method for doing this is k-fold cross-validation.

7.6.6 K-fold cross-validation

K-fold cross-validation is a method of model validation. It consists of dividing the data
set into k subsets of roughly equal sizes and training k models, excluding a different
k.store/books/9781617294198

https://itbook.store/books/9781617294198

107Optimizing linear regression

www.itbook.
subset each time. The excluded subsets are used as the validation set and the union of
all the remaining subsets as the training set.

 For each set of parameters you want to validate, train all k models and calculate the
mean error across all k models. Finally, you choose the set of parameters giving you
the smallest average error.

 Why is this important? Because fitting a model depends very much on the training
and validation sets used. If you take our housing data set, split it randomly into train-
ing and validation sets again, and then go through all the actions we did in this chap-
ter, you will notice that the results and parameters will be different, maybe even
dramatically so. K-fold cross-validation can help you decide which of the parameter
combinations to choose.

 We will have more to say about k-fold cross-validation when we talk about Spark’s
new ML Pipeline API in the next chapter.

7.7 Optimizing linear regression
We have a couple more things to say about linear regression optimization. As you saw
in earlier examples, LinearRegressionSGD (and its parent class GeneralizedLinear-
Algorithm) has an optimizer member object you can configure. We previously used
the default GradientDescent optimizer and configured it with the number of itera-
tions and the step size.

 There are two additional methods you can employ to make linear regression find
the minimum of the cost function faster. The first is to configure the GradientDes-
cent optimizer as a mini-batch stochastic gradient descent. The second is to use
Spark’s LBFGS optimizer (see section 7.7.2).

7.7.1 Mini-batch stochastic gradient descent

As explained in section 7.4.2, gradient descent updates the weights in each step by
going through the whole data set. If you recall, the formula used for updating each
weight parameter is this:

This is also called batch gradient descent (or BGD, for short). In contrast, mini-batch sto-
chastic gradient descent uses only a subset of data in each step, and instead of i going
from 1 to m (the whole data set), it only goes from 1 to k (as some fraction of m). If k is
equal to 1—which means the algorithm considers only one example in each step—the
optimizer is simply called stochastic gradient descent (SGD).

 Mini-batch SGD is much less computationally expensive, especially when parallel-
ized, but it compensates for this parallelization with more iterations. It has more diffi-
culties to converge, but it gets to the minimum close enough (except in some rare
cases). If mini-batch size (k) is small, the algorithm is more stochastic, meaning it
will have a more random route toward the cost function minimum. If k is larger, the

wj: wj ϒ 1
m
----– h x i()() y i()–()x

i()
j

i 1=

m

=
store/books/9781617294198

https://itbook.store/books/9781617294198

108 CHAPTER 7 Getting smart with MLlib

www.itboo
algorithm will be more stable. In both cases, though, it reaches the minimum and
can get very close to BGD results.

 Let us now see how to use mini-batch SGD in Spark. The same GradientDescent
optimizer we used before is used for mini-batch SGD, but you need to specify an addi-
tional parameter (miniBatchFraction). miniBatchFraction takes a value between 0
and 1. If it’s equal to 1 (which is the default), a mini-batch SGD becomes a BGD
because the whole data set is considered in each step.

 Parameters for mini-batch SGD can be chosen similar to how we did it previously,
only now there is one more parameter to be configured. If a step size parameter
worked on BGD, that does not mean it will work on mini-batch SGD, so the parame-
ter‘s value has to be chosen in the same way we did it before, or preferably, using the
k-fold cross-validation.

 A good starting point for the mini-batch fraction parameter is 0.1, but it will prob-
ably have to be fine-tuned further. The number of iterations can be chosen so that the
data set as a whole is iterated about 100 times in total (and sometimes even less). For
example, if the fraction parameter is 0.1, specifying 1,000 iterations guarantees that
elements in the data set are taken into account 100 times (on average). For perfor-
mance reasons, in order to balance computation and communication between nodes
in the cluster, the mini-batch size (absolute size, not the fraction parameter) must typ-
ically be at least two orders of magnitude larger than the number of machines in the
cluster12.

 In our online repository, you’ll find the method iterateLRwSGDBatch, which is a
variation of iterateLRwSGD with one additional line:

alg.optimizer.setMiniBatchFraction(miniBFraction)

The signature of the method is also different as its parameter takes three arrays:
besides number of iterations and step sizes, it also takes an array with mini-batch frac-
tions. The method tries all combinations of the three values and prints the results
(training and testing MRSE). You can try it out on our data set expanded with feature
squares (trainHPScaled and validHPScaled RDDs). First, to get a feeling for the step
size parameter in context of the other two, execute this command:

iterateLRwSGDBatch(Array(400, 1000), Array(0.05, 0.09, 0.1, 0.15, 0.2, 0.3,
0.35, 0.4, 0.5, 1), Array(0.01, 0.1), trainHPScaled, validHPScaled)

The results (available online) show that the step size of 0.4 works best. Now let’s use
that value and see how the algorithm behaves when we change other parameters:

iterateLRwSGDBatch(Array(400, 1000, 2000, 3000, 5000, 10000), Array(0.4),
Array(0.1, 0.2, 0.4, 0.5, 0.6, 0.8), trainHPScaled, validHPScaled)

The results (again, available online) show that 2,000 iterations are enough to get the
best MRSE of 3.965, which is slightly better even than our previous best MRSE of 3.966

12 Adding vs. Averaging in Distributed Primal-Dual Optimization, Chenxin Ma et al., www.cs.berkeley.edu/
~vsmith/docs/cocoap.pdf
k.store/books/9781617294198

www.cs.berkeley.edu/~vsmith/docs/cocoap.pdf
www.cs.berkeley.edu/~vsmith/docs/cocoap.pdf
https://itbook.store/books/9781617294198

109Optimizing linear regression

www.itbook.
(for Ridge regression). The results also show that with more than 5,000 iterations, we
get into overfitting territory. This lowest MRSE was accomplished with mini-batch frac-
tion of 0.5.

 If your data set is huge, mini-batch fraction of 0.5 might be too large to get good
performance results. You should experiment with lower mini-batch fractions and
more iterations. Some experimenting will be needed.

 We can conclude that mini-batch SGD can give you the same MRSE as BGD. Because
of its performance improvements, you should prefer it to BGD.

7.7.2 LBFGS optimizer

LBFGS is a limited-memory approximation of the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm for minimizing multidimensional functions. Classic BFGS algorithm
calculates an approximate inverse of the so-called Hessian matrix, which is a matrix of
second-degree derivatives of a function, and keeps an n x n matrix in memory, where n
is the number of dimensions. Limited-memory BFGS only keeps less than 10 last calcu-
lated corrections and is that more memory efficient, especially for larger numbers of
dimensions.

PYTHON LBFGS regression optimizer is not available in Python.

LBFGS can give you really good performance. And it’s much simpler to use because,
instead of requiring the number of iterations and the step size, its stopping criterion is
the convergence tolerance parameter. It stops if the MRSE after each iteration changes less
than the value of the convergence tolerance parameter. This is a much more natural
and simpler criterion.

 You also need to give it the maximum number of iterations to run (in case it does
not converge), the number of corrections to keep (this should be less than 10, which
is the default), and the regularization parameter (it gives you freedom to use L1 or L2
regularization).

 You can find our iterateLBFGS method in our online repository and paste it into
your Spark Scala shell to try it out like this—but before running it, you might want to
set the Breeze library logging level to WARN (the snippet is available online):

iterateLBFGS(Array(0.005, 0.007, 0.01, 0.02, 0.03, 0.05, 0.1), 10, 1e-5,
trainHPScaled, validHPScaled)

0.005, 10 -> 3.8335, 4.0383
0.007, 10 -> 3.8848, 4.0005
0.010, 10 -> 3.9542, 3.9798
0.020, 10 -> 4.1388, 3.9662
0.030, 10 -> 4.2892, 3.9996
0.050, 10 -> 4.5319, 4.0796
0.100, 10 -> 5.0571, 4.3579

Now wasn’t that fast? It just flew by. And it was simple, too. The only parameter we
needed to tweak is the regularization parameter because the other two do not influence
the algorithm much, and these defaults can be used safely. Obviously, a regularization
store/books/9781617294198

https://itbook.store/books/9781617294198

110 CHAPTER 7 Getting smart with MLlib

www.itboo
parameter of 0.02 gives us the best MRSE of 3.9662. And that is almost the same as our
previous best MRSE, which took us great effort to get to.

7.8 Summary
 Supervised learning uses labeled data for training. Unsupervised learning algo-

rithms discover the inner structure of unlabeled data through model fitting.
 Regression and classification differ by the type of target variable: it’s continuous

(a real number) for regression and categorical (a set of discreet numbers) for
classification.

 Before using the data for linear regression, it’s a good idea to analyze its distri-
bution and similarities. You should also normalize and scale the data and split it
into training and validation data sets.

 A root mean squared error (RMSE) is commonly used for evaluating a linear
regression model’s performance.

 The learned parameters of a linear regression model can give you insight into
how each feature affects the target variable.

 Adding higher-order polynomials to the data set enables you to apply linear
regression to nonlinear problems and can yield better results on some data sets.

 Increasing a model’s complexity can lead to overfitting. Bias-variance tradeoff
says that you can either have high bias or high variance, but not both.

 Ridge and Lasso regularizations help in reducing overfitting for linear regres-
sion.

 Mini-batch stochastic gradient descent optimizes performance of the linear
regression algorithm.

 The LBFGS optimizer in Spark takes much less time to train and offers great
performance.
k.store/books/9781617294198

https://itbook.store/books/9781617294198

www.itbook.
Working with big data can be complex and challeng-
ing, in part because of the multiple analysis frame-
works and tools required. Apache Spark is a big-data-
processing framework perfect for analyzing near-real-
time streams and discovering historical patterns in
batched datasets. But Spark goes much further than do
other frameworks. By including machine learning and
graph-processing capabilities, it makes many special-
ized data-processing platforms obsolete. Spark’s uni-
fied framework and programming model significantly
lowers the initial infrastructure investment, and
Spark’s core abstractions are intuitive for most Scala,
Java, and Python developers.

 Spark in Action teaches you to use Spark for stream and batch data processing. It
starts with an introduction to the Spark architecture and ecosystem followed by a taste
of Spark’s command line interface. You then discover the most fundamental concepts
and abstractions of Spark, particularly resilient distributed datasets (RDDs) and the
basic data transformations that RDDs provide. The first part of the book also intro-
duces you to writing Spark applications using the core APIs. Next, you’ll learn about
different Spark components: how to work with structured data using Spark SQL, how
to process near-real-time data with Spark Streaming, how to apply machine learning
algorithms with Spark MLlib, how to apply graph algorithms on graph-shaped data
using Spark GraphX, and a clear introduction to Spark clustering.

What’s inside

 Spark code in Java, Scala, and Python
 Spark installation and configuration guided tour
 Scaffolding a new Eclipse Spark Scala project (zero-configuration)
 How to process structured data with Spark SQL

 How to ingest data with Spark Streaming
 Mastering graph computation with GraphX
 Two real-life case studies
 Configuring, monitoring, and tuning Spark
 Spark DevOps with Docker

Readers should be familiar with Java, Scala, or Python. No knowledge of Spark or
streaming operations is assumed, but some acquaintance with machine learning is
helpful.
store/books/9781617294198

https://www.manning.com/books/spark-in-action
https://www.manning.com/books/spark-in-action
https://itbook.store/books/9781617294198

www.itbook.store
The operational infrastructure of a large application can become quite
complex. In reactive applications, allocating computing resources efficiently and
dynamically is crucial. The following chapter introduces Apache Mesos, an
emerging framework designed to manage and allocate hardware resources for
executing large data-handling jobs. In it, you’ll learn how to use Mesos to run
Spark jobs.

 Given that it is often impossible to predict exactly how much data a reactive
application needs to be able to handle at a given time, there must be a mecha-
nism in place that allows new hardware resources to be automatically provi-
sioned when they're needed and discarded when the job is done. Dynamic
hardware resource allocation is crucial for reacting to changes in the load of a
reactive application.

Managing datacenter
resources with Mesos
/books/9781617294198

https://itbook.store/books/9781617294198

www.itbook.
Chapter 2 from Mesos in Action
by Roger Ignazio

Managing datacenter
resources with Mesos
The previous chapter introduced the Apache Mesos project, how it works, and how
it compares to the architecture of a traditional datacenter. This chapter explores
the benefits of Mesos by applying a real-world scenario: demonstrating multiple
applications using Mesos cluster resources. The chapter demonstrates Apache Spark,
a popular data-processing framework.

 If you’re not familiar with Spark, don’t worry: the following sections use Spark
as a demonstration of how Mesos distributes workloads and shares resources
among multiple applications. I use Spark as an example to teach you about resource
sharing and workload scheduling on a general-purpose Mesos cluster, and how
Mesos compares to statically partitioned clusters within a datacenter. You’ll also get
a brief introduction to the Mesos and Spark web interfaces, and, who knows, maybe
you’ll even learn a thing or two about Spark in the process. Let’s get started.

This chapter covers
■ Introducing Mesos with a real-world example
■ Comparing standalone and general-purpose

clusters
■ Launching a Spark job on a Mesos cluster
■ Exploring a framework’s interaction with Mesos
113

store/books/9781617294198

https://www.manning.com/books/mesos-in-action
https://itbook.store/books/9781617294198

114 CHAPTER 2 Managing datacenter resources with Mesos

www.itboo
2.1 A brief introduction to Spark
To quote the project’s website, “Apache Spark is a fast and general engine for large-
scale data processing.” It lives in the “big data” space along with other popular proj-
ects, such as Hadoop, and is often used for data science and analytics. In many cases,
Spark performs tasks faster and more efficiently than Hadoop’s MapReduce, both in
memory and on disk.

 Spark also provides APIs for several popular programming languages, including
Python, Scala, and Java, and supports streaming workloads, interactive queries, and
machine-learning libraries, in addition to MapReduce-like batch processing.

At the most basic level, Spark requires a cluster manager for distributing work, and
access to a Hadoop-compatible data source. Out of the box, Spark includes support
for several cluster managers:

■ Spark standalone
■ Mesos
■ Hadoop YARN
■ Pseudo-distributed (running locally on your laptop or workstation)

Although it’s possible to run Spark locally and use the CPU cores on your laptop or
workstation, that’s useful only for development purposes: the number of CPU cores
limits the number of executors. When you set up a production Spark cluster, you have
two options: deploy a standalone, statically partitioned Spark cluster on a predeter-
mined number of servers, or use a cluster manager such as Mesos or YARN to run the
Spark job’s tasks for you.

 To best illustrate what a general-purpose cluster manager such as Mesos can offer,
I’ll compare and contrast Spark standalone with Mesos in the next few sections.

A brief history of Spark
In 2009, Matei Zaharia began development on Spark in the AMPLab at the University
of California, Berkeley, the same organization that supported the development of
Mesos. In fact, Matei is also one of the co-creators of Mesos.

After being open sourced in 2010, Spark was donated to the Apache Software Foun-
dation and entered the Apache Incubator in 2013. It graduated to become a top-level
project in 2014.

Databricks, a company co-founded by Matei in 2013, seeks to commercialize on
Spark’s successes and help clients with big data problems. Databricks remains a
large contributor to the open source Spark project.
k.store/books/9781617294198

https://spark.apache.org/docs/latest/running-on-mesos.html
https://itbook.store/books/9781617294198

115A brief introduction to Spark

www.itbook.
2.1.1 Spark on a standalone cluster

In figure 2.1, you see that a Spark driver program connects to a cluster manager—the
Spark master—that in turn distributes tasks to various worker nodes.

In the graphic, the Spark Driver refers to the machine running the Spark job, and the
SparkContext is the main entry point to Spark. The SparkContext is responsible for
connecting to a cluster manager and running tasks on the cluster. It’s also responsible
for creating Spark’s distributed data sets. As you can also see, the two worker nodes in
the Spark cluster are single-purpose: they are machines dedicated to running Spark
tasks, and nothing else.

 As you learned in the previous chapter, Mesos provides an excellent means for run-
ning multiple applications on a single cluster, and launching multiple tasks on a single
worker node. Instead of setting up one or more statically partitioned Spark clusters,
you can use Mesos to share cluster resources across multiple applications. Let’s see
what it looks like to run Spark on Mesos.

2.1.2 Spark on Mesos

Although setting up Spark to use a standalone cluster isn’t a problem, consider the
needs of multiple teams needing their own Spark clusters, or consider the bigger pic-
ture: multiple, statically partitioned clusters in a single datacenter.

SparkContext

Spark driver

Spark master

(Cluster manager)

Spark cluster

Spark slave

Spark

executor

Tasks

Spark slave

Spark

executor

Tasks

The Spark driver refers
to the machine actually
running the job.

Spark standalone
establishes a cluster
with a single purpose:
to run Spark jobs.

The SparkContext is the
main entry point into
Spark, and connects
to a cluster manager.

Figure 2.1 Components and architecture for a standalone Spark cluster
store/books/9781617294198

https://itbook.store/books/9781617294198

116 CHAPTER 2 Managing datacenter resources with Mesos

www.itboo
 If you’re deploying these static clusters on physical hardware, you’re clearly dedi-
cating a certain amount of capital to that workload—and only that workload—without
the possibility of sharing resources. Likewise, if you set up statically partitioned clus-
ters on an Infrastructure as a Service (IaaS) provider like Amazon Web Services
(AWS), you might be wasting money due to cloud instances sitting idle. Regardless of
whether your workloads are running on premises or in the cloud, fine-grained
resource sharing can help increase a system’s utilization, and therefore improve data-
center efficiency.

 To illustrate this point, let’s take a look at figure 2.2. You have two standalone clus-
ters serving two applications: Spark (the data-processing example used up to this
point) and Jenkins, a popular, open source continuous integration framework. The
use of Jenkins itself isn’t particularly important for this example; what’s important is
that it’s some other application that needs to run on multiple servers.

As figure 2.2 illustrates, you now have two statically partitioned clusters: one for Spark
and one for Jenkins. Each cluster includes its own cluster manager (Spark master and
Jenkins master) and two worker nodes on which to launch tasks or builds. You can also
clearly see the static partitions (or silos, if you will) that these two services fall into, and
that isn’t any way to share compute resources between the two clusters. Chances are
that neither of these services is using their computing resources 100% of the time. If

Spark master

(Cluster manager)

Spark cluster

Spark slave

Spark

executor

Tasks

Spark slave

Spark

executor

Tasks

The Spark cluster executes
Spark jobs—and only Spark
jobs—on two servers.

Jenkins master

(Cluster manager)

Jenkins CI cluster

Jenkins slave

Jenkins

executor

Tasks

Jenkins slave

Jenkins

executor

Tasks

The Jenkins cluster executes
Jenkins jobs—and only Jenkins
jobs—on two servers.

Figure 2.2 Visualizing two statically partitioned, or siloed, clusters
k.store/books/9781617294198

https://itbook.store/books/9781617294198

117A brief introduction to Spark

www.itbook.
the Spark cluster was 50% underpowered, and the Jenkins cluster 50% overpowered,
Spark—and the data scientists using the Spark cluster—would benefit by being able to
use the resources of three machines instead of just two.

 Now let’s consider running each of these systems atop a general-purpose cluster
manager like Mesos that allows for this sort of fine-grained resource sharing. In fig-
ure 2.3, you’re able to share compute resources and run multiple workloads on a sin-
gle Mesos slave by allowing Mesos to isolate each framework’s executors using Linux
control groups (cgroups). At scale, this will lead to better resource utilization across
the many machines within a modern datacenter.

 Now that you’ve taken the time to understand how Spark can use Mesos for its clus-
ter manager, and why adopting a general-purpose cluster manager like Mesos can lead
to increased efficiency by sharing compute resources, let’s take a look at what it’s like
to run a Spark job on a Mesos cluster. This will give you a better idea of how Mesos
runs tasks before we get into installation and configuration of the cluster in chapter 3.

Mesos masters

(Cluster manager)

Mesos cluster

Mesos slave

Jenkins

executor

Tasks

Spark

executor

Tasks

Workloads are isolated using Linux
cgroups or Docker containers.

Spark and Jenkins can use a single Mesos cluster
to share resources, instead of establishing their
own standalone clusters, leading to better
overall resource utilization.

Mesos is a general-purpose
cluster manager that can be
used by multiple applications.

Mesos slave

Jenkins

executor

Tasks

Spark

executor

Tasks

SparkContext

Spark driver

Jenkins job

Jenkins master

Figure 2.3 Mesos managing cluster resources for two applications
store/books/9781617294198

https://itbook.store/books/9781617294198

118 CHAPTER 2 Managing datacenter resources with Mesos

www.itboo
2.2 Running a Spark job on Mesos
The standalone Spark cluster discussed earlier in this chapter follows an architecture
just as you might expect with any other distributed system: a master schedules work on
one or more worker nodes. Figure 2.3 demonstrated how you could use Mesos to
avoid statically partitioning your datacenter into multiple clusters, and instead declare
the compute resources your workload requires of a single, general-purpose cluster.
Now let’s take a look at Mesos in action by demonstrating how it distributes work for a
framework like Spark.

NOTE This section is about running Spark in the context of Mesos, not
necessarily a primer on Spark itself. Although I show you how to run the
example job on a Mesos cluster, you shouldn’t expect to learn about using
Spark for real-world data-processing jobs in this text. If you’re interested in
learning more about Spark, please check out the Spark project page at
http://spark.apache.org and Spark in Action by Petar Zečević and Marko Bonaći
(Manning, 2016).

2.2.1 Finding prime numbers in a set

To demonstrate how Spark connects to a Mesos cluster, accepts resource offers,
launches executors, and executes tasks, I’ll demonstrate a simple job in Spark. The
job will create a data set of integers between 1 and 100,000,000, and then use Spark to
determine which integers in the set are prime numbers (numbers that are not equal
to 1 and are divisible only by 1 and themselves).

 Instead of setting up a standalone Spark cluster for this job, Spark will use Mesos as
a cluster manager for scheduling and distributing the individual tasks to available
compute resources in the cluster. But before you get into running Spark on a Mesos
cluster, let’s discuss the order of events that takes place when a framework interacts
with a Mesos cluster. Figure 2.4 maps out Spark registering as a Mesos framework,
accepting resource offers from the Mesos master, and finally, launching tasks on a
Mesos slave.

 Several things are happening in this figure, and you’ll see a breakdown of what’s
happening a little later in the chapter. For now, it’s important to understand the
following:

1 The SparkContext connects to ZooKeeper to determine the leading Mesos master.
2 The SparkContext registers with the leading Mesos master as a new framework.
3 The SparkContext receives resource offers from the leading Mesos master, with

which it can launch tasks to perform its data-processing workloads.

Having learned the events—and the order they occur—from figure 2.4, let’s take the
time now to launch the Spark job and observe real output from the cluster. After you
have a Mesos cluster up and running (which you’ll learn about in the next chapter),
feel free to install Spark and run the example.
k.store/books/9781617294198

http://spark.apache.org
https://itbook.store/books/9781617294198

119Running a Spark job on Mesos

www.itbook.
TIP Installation instructions for Spark on Mesos are available on the Spark
website, http://spark.apache.org/docs/latest/running-on-mesos.html.

2.2.2 Getting and packaging up the code

I’ve included the example code for this Spark job with the book’s supplementary
materials, available on GitHub and on manning.com. The easiest way to get the exam-
ple code is to clone the repository by using Git:

$ git clone https://github.com/rji/mesos-in-action-code-samples
$ cd mesos-in-action-code-samples/chapter02/spark-primes-example

Mesos master

(leader)

ZooKeeper

ensembleSparkContext

Spark driver

3. The framework
registers with the
leading Mesos
master and waits
for resource offers.

4. The Mesos slave
continuously offers
resources to the
Mesos master.

5. One or more
offers are sent to
the SparkContext.

Mesos slave

Spark executor

Tasks

6. The SparkContext
accepts the
resource offer.

2. ZooKeeper returns
information about
the leading Mesos
master to the
SparkContext.

1. The SparkContext
queries ZooKeeper
for the leading
Mesos master.

7. Tasks are launched
on the Mesos slave.

Figure 2.4 Events that occur when Spark runs tasks on a Mesos cluster
store/books/9781617294198

http://spark.apache.org/docs/latest/running-on-mesos.html
https://itbook.store/books/9781617294198

120 CHAPTER 2 Managing datacenter resources with Mesos

www.itboo
Next, you need to package the job and its dependencies into a single Java Archive
(JAR) file that can be used with the spark-submit command-line tool. Because this
particular example is written in the Scala programming language, you’ll need to
ensure that a recent Java Development Kit (JDK) and Scala are both present on the
system you’re using to submit the job. I’ll refer to this as the gateway machine.

 After those prerequisites are met, package up the example by using sbt, a build
tool for Scala that’s similar to Maven or Ant in the Java community. If sbt isn’t already
installed on your system, you can find installation instructions for Linux, Mac OS X,
and Windows at www.scala-sbt.org/release/tutorial.

 Proceed to package the example by running the following command:

$ sbt package

After packaging has completed, you’re ready to submit the job to a Mesos cluster.
Although I won’t cover the Mesos installation and configuration process until the next
chapter, I thought it might be beneficial for you to understand how the cluster works
before we dive in to deploying it.

2.2.3 Submitting the job

Having already packaged the example code into a simple JAR file, let’s go ahead and
submit the job. The following example assumes that Spark is installed at /opt/spark:

/opt/spark/bin/spark-submit --class com.manning.mesosinaction.PrimesExample

➥ target/scala-2.10/spark-primes-example_2.10-0.1.0-SNAPSHOT.jar

➥ 100000000

This job should only take a few minutes to complete.

2.2.4 Observing the output

After submitting the job by using the spark-submit command, you observe a decent
amount of output on your console; by default, Spark is logging to the console with
INFO-level verbosity. The following listing includes some of the more important log
messages, and I’ll explain what they mean in the context of Mesos.

15/04/12 22:35:56 INFO Utils: Successfully started service 'sparkDriver'
 on port 45957.

15/04/12 22:35:56 INFO Utils: Successfully started service
 'HTTP file server' on port 49444.

15/04/12 22:35:56 INFO SparkUI: Started SparkUI at
 http://10.132.171.224:4040

Listing 2.1 Spark job output when running on a Mesos cluster
k.store/books/9781617294198

http://www.scala-sbt.org/release/tutorial
http://www.scala-sbt.org/release/tutorial
https://itbook.store/books/9781617294198

121Running a Spark job on Mesos

Zoo

Spark
r
its

fram

Th
frame
unreg

f

www.itbook.
I0412 22:35:57.401646 8991 sched.cpp:157] Version: 0.22.2

2015-04-12 22:35:57,415:8901(0x7f8ed93eb700):ZOO_INFO@check_events@1703:
 initiated connection to server [10.132.171.224:2181]

I0412 22:35:57.418431 8993 detector.cpp:452] A new leading master
 (UPID=master@10.132.171.224:5050) is detected

I0412 22:35:57.418504 8993 sched.cpp:254] New master detected at
 master@10.132.171.224:5050

I0412 22:35:57.420454 8993 sched.cpp:448] Framework registered with
 20150412-214000-3769336842-5050-2832-0005

15/04/12 22:35:57 INFO MesosSchedulerBackend: Registered as framework ID
 20150412-214000-3769336842-5050-2832-0005

15/04/12 22:35:57 INFO SparkContext: Starting job: collect at
 PrimesExample.scala:22

15/04/12 22:39:34 INFO SparkContext: Job finished: collect at
 PrimesExample.scala:22, took 217.099354417 s

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79

99999839 99999847 99999931 99999941 99999959 99999971 99999989

15/04/12 22:40:10 INFO SparkUI: Stopped Spark web UI at http://
 10.132.171.224:4040

15/04/12 22:40:10 INFO DAGScheduler: Stopping DAGScheduler

I0412 22:40:10.902202 8931 sched.cpp:1589] Asked to stop the driver

I0412 22:40:10.902323 8997 sched.cpp:831] Stopping framework
 '20150412-214000-3769336842-5050-2832-0005'

15/04/12 22:40:10 INFO MesosSchedulerBackend: driver.run() returned
 with code DRIVER_STOPPED

15/04/12 22:40:11 INFO SparkContext: Successfully stopped SparkContext

Although a lot more activity exists in the Spark logs, and you probably don’t need
INFO-level verbosity on a regular basis, the lines selected for this listing serve as a good
example to understand how Spark is using Mesos to handle its workload, or at least
the order of events when launching a Spark workload on Mesos, just as we visualized
previously in figure 2.4.

 Now that you understand this order of events for a real-world workload, let’s take a
look at more ways you can observe the output and status of the frameworks and tasks
running on a Mesos cluster.

Spark
queries
Keeper
for the
leading
Mesos

master.

Our
Context
egisters
elf as a
Mesos
ework.

The Spark driver
executes tasks
on the Mesos
cluster.

Output
omitted
for brevity

The Spark-
Context
shuts
down its
scheduler.

e Spark
work is
istered

rom the
Mesos

master.
store/books/9781617294198

https://itbook.store/books/9781617294198

122 CHAPTER 2 Managing datacenter resources with Mesos

www.itboo
2.3 Exploring further
Having just submitted and run a Spark job on a Mesos cluster—and observed the out-
put from the job on the console—perhaps it’s a good time to start introducing you to
the various happenings under the hood. In this section, you’ll take a quick look at the
Mesos and Spark web interfaces so you can observe the work being performed on
your cluster in real time. Although you won’t install and configure Mesos until the
next chapter, the next few sections serve as a starting point for topics that you’ll learn
in part 2 of this book.

2.3.1 Mesos UI

The Mesos masters provide a web interface for viewing the status of the cluster and
the work being performed. This web interface provides information on the cluster,
including the following:

■ Overview of all tasks and their current status
■ Registered frameworks and associated tasks
■ Mesos slaves, their resources, and the tasks they’re currently executing
■ Outstanding resource offers (offers that haven’t yet been accepted or rejected)

In figure 2.5, you can see that the Spark Primes Example framework is registered to
the cluster, is currently consuming 6 CPUs and 2.6 GB memory, and is running several
tasks. For now, don’t worry about every feature in the web interface; you’re concerned
only with observing how the cluster responds to a single Spark job running on it, in an
attempt to familiarize you with the features available in Mesos. Chapter 5 revisits the
web interface in greater depth.

 Clicking the Sandbox link for any of those tasks allows you to drill down into the
files and log output present in the Mesos sandbox, or working directory, for individual
tasks. In figure 2.6, the sandbox contains your Spark job’s JAR file and files that have
captured the console output from stdout and stderr.

2.3.2 Spark UI

In addition to the web interface provided by Mesos, Spark launches its own web inter-
face for monitoring the progress of your Spark jobs. You saw evidence of this in the
Spark job’s output in listing 2.1. Although accessing this interface isn’t necessary for
the proper functioning of the Mesos cluster, it does provide a nicer, cluster manager–
agnostic view of the progress of a particular Spark job.

k.store/books/9781617294198

https://itbook.store/books/9781617294198

123Exploring further

www.itbook.
Unique framework
ID generated by the
Mesos master

Information about the
framework, including
active tasks and
resources consumed

Active tasks for the
framework, and their
location in the cluster

Figure 2.5 The Spark Primes Example framework is consuming cluster resources and running tasks.

Console output—stdout and
stderr—are captured in text
files in a task’s sandbox

Figure 2.6 Files within a Mesos sandbox for a single Spark task
store/books/9781617294198

https://itbook.store/books/9781617294198

124 CHAPTER 2 Managing datacenter resources with Mesos

www.itboo
In figure 2.7, you can see that the job’s only stage, “collect at PrimesExample.scala:22,”
is currently running on the cluster and has completed 5/8 of its tasks.

 Regardless of whether this job was running on Mesos or on another cluster man-
ager, the tasks would be distributed in a similar fashion. The difference, however, is
that Mesos allows you to run multiple frameworks—and their tasks—alongside each
other in an isolated manner.

2.4 Summary
Although this example was about how Mesos schedules and distributes work on a clus-
ter in the context of a Spark job, hopefully it was beneficial for you to see an example
Mesos workload—and Mesos in action—all in a single chapter. By doing so, you now
know what you can expect after deploying Mesos. To recap, you learned the following
from this chapter:

■ Distributed frameworks such as Apache Spark and Jenkins CI can use Mesos as
their cluster manager, simultaneously.

■ Mesos’ fine-grained resource sharing can lead to higher resource utilization
across the datacenter.

Spark splits its workload into
individual tasks. The user can
monitor the progress of Spark’s
tasks here, without diving into
the Mesos UI.

Figure 2.7 The Spark web interface shows the progress of the Spark Primes Example job
k.store/books/9781617294198

https://itbook.store/books/9781617294198

125Summary

www.itbook.
■ A Spark job is composed of a number of individual tasks, or units of work, that
are distributed on the Mesos cluster.

■ The Mesos web interface provides a glimpse into the current state of the cluster.
store/books/9781617294198

https://itbook.store/books/9781617294198

www.itboo
Modern datacenters are complex environments, and
when you throw Docker and other container-based sys-
tems into the mix, there’s a great need to simplify.
Mesos is an open source cluster management platform
that transforms the whole datacenter into a single pool
of compute, memory, and storage resources that you
can allocate, automate, and scale as if you’re working
with a single supercomputer.

 Mesos in Action introduces readers to the Apache
Mesos cluster manager and the concept of application-
centric infrastructure. Filled with helpful figures and
hands-on instructions, this book guides you from your
first steps creating a highly-available Mesos cluster
through deploying applications in production and writ-
ing native Mesos frameworks.

What’s inside

■ Spinning up your first Mesos cluster
■ Scheduling, resource administration, and logging
■ Deploying containerized applications with Marathon, Chronos, and Aurora
■ Writing Mesos frameworks using Python

Readers need to be familiar with the core ideas of datacenter administration and need
a basic knowledge of Python or a similar programming language.
k.store/books/9781617294198

https://www.manning.com/books/mesos-in-action
https://www.manning.com/books/mesos-in-action
https://itbook.store/books/9781617294198

Index

www.itbook.sto
Symbols

@ character 51
&> operation 58
character 51
~ character 49

Numerics

200 Ok 54
500 Internal Server Error 53

A

acceptWithActor method 61–62
Action.async builder 52
actions 51
activator command 48
active party 5
Akka actors, Deathwatch feature of 38
akka.actor.Props object 60
algorithms, for machine learning 77–80

based on type of target variable 79–80
supervised and unsupervised algorithms

78–79
AMPLab 114
analyzing and preparing data 91–95

analyzing column cosine similarities 93–94
analyzing data distribution 92–93
computing covariance matrix 94
feature scaling and mean normalization 95
splitting data 95
streaming data 2

Apache Samza 12–13
Apache Spark Streaming 9–11
Apache Storm 11–12

distributed stream processing
architecture 7–13

generalized architecture 7–9
in-flight data analysis 3–7
key features of stream-processing

frameworks 13
transforming to labeled points 94

Apache Samza 12–13
Apache Spark Streaming 9–11
Apache Storm 11–12
application driver 8, 19
artificial intelligence 77
async-http-client library 51
at-least-once guarantee 13
at-most-once guarantee 13
attributes 78

B

best-fit weights 88
BFGS (Broyden-Fletcher-Goldfarb-Shanno) 109
BGD (batch gradient descent) 107
bias-variance tradeoff 103
BlockMatrix 86
Bonaci, Marko 118
Breeze library 83
broadcast enumerator 64–65
build.sbt file 51

C

case statements 61
categorical variables 79
Chaos Monkey 35–36
CharString 57–58
chosen weights 88
127

re/books/9781617294198

https://itbook.store/books/9781617294198

128 INDEX

www.itboo
Circuit Breaker Pattern 38–44
applicability 43–44
applying pattern 39–43
problem setting 39

circuit breakers 39, 41–44
classification algorithm 78–79
clean command 49
Client Interface nodes 34
client-interface component 30
closed state 40
colPtrs array 84
column cosine similarities, analyzing 93–94
columnSimilarities method 93
communication component 29
compile command 49
computeCovariance method 94
Concurrent.joined method 58
continuous queries 3
Continuous Query model 4
continuous variables 79
CoordinateMatrix 86, 93
Coordination component 25
cost function 88
covariance 93
covariance matrix 94
credentials, to Twitter API 50–51
CSC (Compressed Sparse Column) format 84

D

data analysis 76
data at rest 4
data cleaning 76
data collection 76
data distribution, analyzing 92–93
data loss 19
data preparation 76
data samples 78
data sources 9
data stream 18
Databricks (company) 114
datacenter resource management 113
dead letters 65
Deathwatch feature, of Akka actors 38
dense local matrices, generating 83–84
dense method 82–83
dense vectors 81
DenseMatrix 83–84
dependencies command 49
deploying model 76
dev mode 48
dimensions 78, 89
discrete values 79

distributed matrices, linear algebra in 85–86
BlockMatrix 86
CoordinateMatrix 86
IndexedRowMatrix 86
linear algebra operations on local matrices 86
RowMatrix 85

distributed stream processing architecture 7–13
dot symbol 79
driver 10
dv1 vector 82
dv2 vector 82

E

enumeratee 55
enumerator 55
Error Kernel Pattern 27–33

applicability 32–33
applying pattern 28–31
problem setting 28

exactly-once guarantee 13
examples 78
excecution component 29–30, 35, 39
exclamation mark 61
explainedVariance 97

F

fan-in shape 105
fan-out shape 105
fault tolerance and recovery patterns

Circuit Breaker Pattern 38–44
applicability 43–44
applying pattern 39–43
problem setting 39

Error Kernel Pattern 27–33
applicability 32–33
applying pattern 28–31
problem setting 28

Let-It-Crash Pattern 33–38
applying pattern 34–35
implementation considerations 36
problem setting 33–34

Simple Component Pattern 23–27
applicability 27
applying pattern 24–26
problem setting 24

feature extraction 76
feature scaling 95
features of input 78
fraction of variance explained 97
future block 53
k.store/books/9781617294198

https://itbook.store/books/9781617294198

129INDEX

www.itbook.
G

gateway machine 120
Gaussian distribution 84
generalized architecture 7–9
GeneralizedLinearAlgorithm class 107
GET request 53–54
get() method 59
GitHub repository 92
gradient descent, finding minimum with 90–91
GradientDescent optimizer 107–108

H

Hadoop YARN 114
Heartbeat Pattern 36–37
heartbeats 37
heteroscedasticity 105
higher-order polynomials 100–102
home/spark/first-edition folder 92
housing.names file 98
housingColSims matrix 93
HTTP GET request 53
HTTP protocol 61
HTTP requests 51
hyperplane 80
hypothesis 87

I

implicit keyword 63
implicit parameters 63
independent variables 78, 89
IndexedRowMatrix 86
in-flight data analysis 3–7
INFO-level 121
input stream 18
instances 78
interaction term 101
intercept 87
Iteratee library 54–55
iteratees 54–56
iterateLasso method 106
iterateLBFGS method 109
iterateLRwSGD function 99, 108
iterateLRwSGDBatch method 108
iterateRidge method 106

J

java.util.Random object 84
Jenkins framework 116–117
job scheduling 26

jobs, defined 11
JsObject object 58
JSON library 57
jsSimpleObject 57–58
JVM property 69

K

k-fold cross-validation 106–107

L

labeled points 78, 94
LabeledPoint 94
labels 79
Lasso regressions 106
LassoWithSGD class 106
LBFGS optimizer 109–110
Let-It-Crash Pattern 33–38

applying pattern 34–35
implementation considerations 36
problem setting 33–34

linear algebra, in Spark 81–86
distributed matrices 85–86
local vector and matrix implementations 81–85

linear regression 86–91
fitting and using linear regression model 96–98

evaluating model's performance 97
interpreting model parameters 97–98
loading and saving model 98
predicting target values 96–97

multiple linear regression 89–91
finding minimum with gradient descent

90–91
finding minimum with normal equation

method 90
optimizing 107–110

LBFGS optimizer 109–110
stochastic gradient descent, mini-batch

107–109
overview 86–87
simple linear regression 87–89

LinearRegressionModel class 96
LinearRegressionSGD class 107
LinearRegressionWithSGD class 96, 99
LinearRegressionWithSGD.optimizer object 106
local matrices

dense, generating 83–84
linear algebra operations on 85
sparse, generating 84

local vectors
generating 82
linear algebra operations on 82–83
store/books/9781617294198

https://itbook.store/books/9781617294198

130 INDEX

www.itboo
M

machine learning 74–81
algorithms for, classification of 77–80

based on type of target variable 79–80
supervised and unsupervised algorithms

78–79
defined 77
with Spark 80–81

matrices
local

dense 83–84
linear algebra operations on 85
sparse 84

overview 81
Matrices class 83
max method 92
mean method 92
mean normalization 95
meanAbsoluteError 97
Mesos UI 122
message delivery semantics 13
metadata file 98
min method 92
miniBatchFraction parameter 108
MLlib

analyzing and preparing data 91–95
analyzing column cosine similarities 93–94
analyzing data distribution 92–93
computing covariance matrix 94
feature scaling and mean normalization 95
splitting data 95
transforming to labeled points 94

fitting and using linear regression model 96–98
evaluating model's performance 97
interpreting model parameters 97–98
loading and saving the model 98
predicting target values 96–97

linear algebra in Spark 81–86
distributed matrices 85–86
local vector and matrix implementations

81–85
linear regression 86–91

multiple linear regression 89–91
overview 86–87
simple linear regression 87–89

optimizing linear regression 107–110
LBFGS optimizer 109–110
mini-batch stochastic gradient descent

107–109
tweaking algorithm 99–107

adding higher-order polynomials 100–102
avoiding overfitting by using

regularization 105–106
bias-variance tradeoff and model

complexity 102–104

finding right step size and number of
iterations 99–100

k-fold cross-validation 106–107
plotting residual plots 104–105

model evaluation 76
model training 76
multiple linear regression 89–91

finding minimum with gradient descent 90–91
finding minimum with normal equation

method 90
multiply method 85
MultivariateStatisticalSummary object 92

N

normal distribution 84
normL1 method 93
normL2 method 93

O

OAuth authentication, working around bug
with 51

observations 78
OLS (ordinary least squares) 106
onclose handler 67
optimizer member 107
org.apache.spark.mllib.linalg package 81
org.apache.spark.mllib.regression package 96
org.apache.spark.mllib.stat.Statistics object 94
out actor reference 60–61
outliers 104
output destination 18
overfitting

avoiding by using regularization 105–106
overview 102

P

Pacemaker Pattern 35
partial function 60–61
passive party 5
persist method 40
pipelines 80
play.api.libs.iteratee.Enumeratee.grouped 57
play.api.libs.JsObject 57
play.extras.iteratees.Encoding.decode 57
play.extras.iteratees.JsonIteratees.jsSimpleObject

57
play-scala-v24 template 48
points 78
predict method 96
printMat method 93
priori 80
k.store/books/9781617294198

https://itbook.store/books/9781617294198

131INDEX

www.itbook.
Proactive Failure Signal Pattern 37–38
production mode 48
props method 60
Props object 62

Q

qualitative variables 79
quantitative variables 79
queryable persistent state 16

R

rand mthod 83
randn method 83
receive method 60–62
recovery patterns. See fault tolerance and recovery

patterns
regParam property 106
regression algorithm 78–79
regression analysis model 75
RegressionMetrics class 97
regularization, avoiding overfitting by using

105–106
reload command 49, 57
replica nodes 67
RequestHeader 62–63
residual plots 104–105
resource management 19
Ridge regressions 106
RidgeRegressionWithSGD class 106
RMSE (root mean squared error) 100
rollback recovery 20
rowIndices array 84
RowMatrix object 85, 92–94
run command 48–49
run() method 58

S

Samza 12–13
save method 98
SBT build tool 47, 120
Scala programming language 120
scheduling component 26, 29–30, 35, 39
sepal length 78
sepal width 78
Service (IaaS) provider 116
SGD (stochastic gradient descent), mini-

batch 107–109
Simple Component Pattern 23–27

applicability 27
applying pattern 24–26
problem setting 24

simple linear regression 87–89
Single Responsability Principle. See Simple

Component Pattern
size method 82
slope value 87
Spark

linear algebra in 81–86
distributed matrices 85–86
local vector and matrix implementations

81–85
machine learning with 80–81

Spark Driver 115
Spark framework 114–117

on Mesos 115–121
finding prime numbers in set 118
getting and packaging up code 119–120
observing output 120–121
submitting job 120

on standalone cluster 115
overview 114
Spark UI 122–124

Spark in Action (Bonaci and Zecevic) 118
Spark Primes Example framework 122–123
Spark Streaming 9–11
SparkContext 115, 118
spark-shell --master local[*] command 81
spark-submit command 120
sparse local matrices, generating 84
sparse method 82, 84
sparse vectors 81
SparseMatrix object 84
splitting data 95
sprand method 84
sprandn method 84
standard deviation 93
StandardScaler object 95
start command 49
state management 15–17
state-machine approach 19
step size parameter 91
storage component 25–26, 29, 34, 39, 42
Storm 11–12
stream processor 8, 18
streaming manager 8, 18
StreamingContext 10
stream-processing frameworks

message delivery semantics 13
overview 13

String type 61
supervised algorithms 78–79
supervised learners 77
sv vector 82
switch expression 61
store/books/9781617294198

https://itbook.store/books/9781617294198

132 INDEX

www.itboo
T

tell method 61
test command 49
test mode 48
test set 78
toArray method 82
toBreeze function 82
toBreezeD function 85
toBreezeD method 93
toBreezeM function 85
toBreezeV function 83
toDense method 84
topology 11
toSparse method 84
tracking behavior 6
train method 96
trainHPScaled 106, 108
training set 78
tuples 86
Twitter API 50–59

asynchronously transforming stream 56–59
getting connection credentials to 50–51
streaming data from 51–56
streaming tweets to clients using websocket

59–66
creating actor 60–61
sending tweets to websocket 63–66
setting up websocket connection and inter-

acting with it 61–63
working around bug with OAuth

authentication 51

U

UCI Boston housing data set 87
underfitting 102
Unit type 54–55

unsupervised algorithms 78–79
unsupervised learners 77
updater property 106

V

validate method 86
validation set 95
validHPScaled 106, 108
validPredicts 96
variables 78
variance method 93
Vector objects 92
Vectors class 82–83
vectors, local

generating 82
linear algebra operations on 82–83

W

WebSockets, streaming tweets to clients using
59–66

creating actor 60–61
sending tweets to websocket 63–66
setting up websocket connection and interact-

ing with it 61–63
weights 88
WS library 54

Y

YARN 114

Z

Zaharia, Matei 114
zipWithIndex method 98
k.store/books/9781617294198

https://itbook.store/books/9781617294198

	Reactive Data Handling
	contents
	Introduction
	Analyzing streaming data
	4.1 Understanding in-flight data analysis
	4.2 Distributed stream processing architecture
	4.3 Key features of stream-processing frameworks
	4.3.1 Message delivery semantics

	4.4 Summary
	What’s inside

	Fault tolerance and recovery patterns
	12.1 The Simple Component Pattern
	12.1.1 The Problem Setting
	12.1.2 Applying the Pattern
	12.1.3 The Pattern Revisited
	12.1.4 Applicability

	12.2 The Error Kernel Pattern
	12.2.1 The Problem Setting
	12.2.2 Applying the Pattern
	12.2.3 The Pattern Revisited
	12.2.4 Applicability

	12.3 The Let-It-Crash Pattern
	12.3.1 The Problem Setting
	12.3.2 Applying the Pattern
	12.3.3 The Pattern Revisited
	12.3.4 Implementation Considerations
	12.3.5 Corollary: the Heartbeat Pattern
	12.3.6 Corollary: The Proactive Failure Signal Pattern

	12.4 The Circuit Breaker Pattern
	12.4.1 The Problem Setting
	12.4.2 Applying The Pattern
	12.4.3 The Pattern Revisited
	12.4.4 Applicability

	12.5 Summary
	What’s inside

	Your first reactive web application
	2.1 Creating and running a new project
	2.2 Connecting to Twitter’s streaming API
	2.2.1 Getting the connection credentials to the Twitter API
	2.2.2 Working around a bug with OAuth authentication
	2.2.3 Streaming data from the Twitter API
	2.2.4 Asynchronously transforming the Twitter stream

	2.3 Streaming tweets to clients using a WebSocket
	2.3.1 Creating an actor
	2.3.2 Setting up the WebSocket connection and interacting with it
	2.3.3 Sending tweets to the WebSocket

	2.4 Making the application resilient and scaling out
	2.4.1 Making the client resilient
	2.4.2 Scaling out

	2.5 Summary
	What’s inside

	Getting smart with MLlib
	7.1 Introduction to machine learning
	7.1.1 Definition of machine learning
	7.1.2 Classification of machine learning algorithms
	7.1.3 Machine learning with Spark

	7.2 Linear algebra in Spark
	7.2.1 Local vector and matrix implementations
	7.2.2 Distributed matrices

	7.3 Linear regression
	7.3.1 About linear regression
	7.3.2 Simple linear regression
	7.3.3 Expanding the model to multiple linear regression

	7.4 Analyzing and preparing the data
	7.4.1 Analyzing data distribution
	7.4.2 Analyzing column cosine similarities
	7.4.3 Computing the covariance matrix
	7.4.4 Transforming to labeled points
	7.4.5 Splitting the data
	7.4.6 Feature scaling and mean normalization

	7.5 Fitting and using a linear regression model
	7.5.1 Predicting the target values
	7.5.2 Evaluating the model’s performance
	7.5.3 Interpreting the model parameters
	7.5.4 Loading and saving the model

	7.6 Tweaking the algorithm
	7.6.1 Finding the right step size and number of iterations
	7.6.2 Adding higher-order polynomials
	7.6.3 Bias-variance tradeoff and model complexity
	7.6.4 Plotting residual plots
	7.6.5 Avoiding overfitting by using regularization
	7.6.6 K-fold cross-validation

	7.7 Optimizing linear regression
	7.7.1 Mini-batch stochastic gradient descent
	7.7.2 LBFGS optimizer

	7.8 Summary
	What’s inside

	Managing datacenter resources with Mesos
	2.1 A brief introduction to Spark
	2.1.1 Spark on a standalone cluster
	2.1.2 Spark on Mesos

	2.2 Running a Spark job on Mesos
	2.2.1 Finding prime numbers in a set
	2.2.2 Getting and packaging up the code
	2.2.3 Submitting the job
	2.2.4 Observing the output

	2.3 Exploring further
	2.3.1 Mesos UI
	2.3.2 Spark UI

	2.4 Summary
	What’s inside

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

