
Ken Finnigan

SAMPLE CHAPTER

M A N N I N G

www.itbook.store/books/9781617294242

https://itbook.store/books/9781617294242

Enterprise Java Microservices

by Ken Finnigan

Chapter 1

Copyright 2018 Manning Publications

www.itbook.store/books/9781617294242

https://itbook.store/books/9781617294242

brief contents

PART 1 MICROSERVICES BASICS ..1

1 ■ Enterprise Java microservices 3

2 ■ Developing a simple RESTful microservice 23

3 ■ Just enough Application Server for microservices 36

4 ■ Microservices testing 60

5 ■ Cloud native development 83

PART 2 IMPLEMENTING ENTERPRISE JAVA MICROSERVICES.................99

6 ■ Consuming microservices 101

7 ■ Discovering microservices for consumption 117

8 ■ Strategies for fault tolerance and monitoring 138

9 ■ Securing a microservice 164

10 ■ Architecting a microservice hybrid 188

11 ■ Data streaming with Apache Kafka 211

iii

www.itbook.store/books/9781617294242

https://itbook.store/books/9781617294242

Part 1

Microservices basics

What are Microservices? A microservice consists of a single deployment exe
cuting within a single process. How do microservices differ from traditional Enter
prise Java applications? In what situations is it appropriate to use microservices?
These are just some of the questions that we’ll address in these first five chapters.

 Part 1 also explores the runtime options available for Enterprise Java micro
services, before finishing with how to test microservices and deploy them to the
cloud.

www.itbook.store/books/9781617294242

https://itbook.store/books/9781617294242

www.itbook.store/books/9781617294242

https://itbook.store/books/9781617294242

Enterprise
 Java microservices

This chapter covers
 Enterprise Java history

 Microservices and distributed architecture

 Patterns for migration to microservices

 Enterprise Java microservices

Before you dive in, let’s step back and discuss what I hope you achieve during the
course of this book. We all know that there’s no such thing as a free lunch, so I won’t
pretend that microservices are easy. This chapter introduces microservices—their
concepts, benefits, and drawbacks—to provide a basis on which you can build your
technical knowledge. Chapters 2 and 3 provide an example of a RESTful endpoint
microservice and cover some of your runtime and deployment options for Enter
prise Java microservices.

 So what is an Enterprise Java microservice? In a nutshell, it’s the result of applying
Enterprise Java to the development of microservices. The latter part of this chapter
and the remainder of the book explore in detail what that means.

3

www.itbook.store/books/9781617294242

https://itbook.store/books/9781617294242

4 CHAPTER 1 Enterprise Java microservices

 After you’ve learned the basics of microservices, you’ll delve into tools and tech
niques for use in Enterprise Java to mitigate the drawbacks and complexity of micro
services. Being more familiar with microservices, you’ll then look at an existing
Enterprise Java application and how it could be migrated to take advantage of micro
services. The last few chapters touch on more advanced microservice topics related to
security and event streaming.

1.1 Enterprise Java—a short history
If you’re reading this book, you’re most likely already an experienced Enterprise Java
developer. If you aren’t, I appreciate and applaud your desire to broaden your hori
zons into Enterprise Java!

1.1.1 What is Enterprise Java?

For those who are new to, or need a refresher in, Enterprise Java, what is it? Enterprise
Java is a set of APIs, and their implementations, that can provide the entire stack of an
application from the UI down to the database, communicate with external applica
tions via web services, and integrate with internal legacy systems, to name a few, with
the goal of supporting the business requirements of an enterprise. Though it’s possi
ble to achieve such a result with Java on its own, rewriting all the low-level architecture
required for an application would be tedious and error prone, and would significantly
impact the ability of a business to deliver value in a timely manner.

 It wasn’t long after Java was first released more than 20 years ago that various
frameworks began to crop up to solve the low-level architecture concerns of develop
ers. These frameworks allowed developers to focus on delivering business value with
application-specific code.

Enterprise Java
Many frameworks have come and gone, but two have remained the most popular
through the years: Java Platform, Enterprise Edition (Java EE), and Spring. These two
frameworks account for most development by an enterprise with Enterprise Java.

Java EE incorporates many specifications, each with one or more implementations.
Spring is a collection of libraries, some of which wrap Java EE specifications.

1.1.2 Typical Enterprise Java architecture

In the early days of Enterprise Java, our applications were all greenfield development,
because no preexisting code was being extended.

DEFINITION Greenfield refers to the development of an entirely new applica
tion without any preexisting code that needs to be taken into consideration,
excluding any common libraries that might be required.

www.itbook.store/books/9781617294242

https://itbook.store/books/9781617294242

5 Enterprise Java—a short history

Greenfield development presents the greatest opportunity to develop a clean layered
architecture for an application. Typically, architects would devise an architecture simi
lar to that shown in figure 1.1.

 Here you’ll likely recognize familiar pieces of architectures you’ve worked on in
the past: a view layer, a controller, possibly using a reusable business service, and finally,
the model that interacts with the database. You can also see the application packaged as
a WAR, but many combinations of packaging for each layer could be applied, includ
ing JAR and EAR. Typically, the view and controller are packaged in a WAR. The business
service and model are packaged in JARs, either inside a WAR or EAR.

As the years passed, we continued developing greenfield applications with Enter
prise Java using such a pattern, but there reached a point where most enterprises

User

View

WAR

Controller

Business
service

Model

Data

6

5

3a

3b

2

1

JAR

1 A user makes a request from a browser specifying

which view of an application they wish to see.

2 The view calls out to a controller to retrieve

whatever information might by required to construct

itself.

3 The controller can retrieve the information in one of

two ways:

3a Directly interact with the model of the application

to retrieve an object model populated with data.

3b Call one or more business services, possibly to

aggregate data from different sources.

4 A business service can also make many calls to

other business services. It all depends on how the

business features have been architected.

5 The business service calls a model to retrieve the

data it needs. This step is equivalent to 3a.

6 Model classes provide the mapping onto physical

data storage, and are often passed back up through

the layers of the application.

Figure 1.1 Typical Enterprise Java application architecture

www.itbook.store/books/9781617294242

https://itbook.store/books/9781617294242

6 CHAPTER 1 Enterprise Java microservices

were, for the most part, enhancing existing applications. From that day, many Enter
prise Java applications became a legacy burden on enterprises by virtue of the mainte
nance work required—not because of a flaw or deficiency in Java, though there have
been several, but because developers aren’t the best at architecting changes to exist
ing applications and systems. This is complicated further for enterprises that have
hundreds of architects and developers pass through their doors, each bringing their
own preferences and patterns to extending existing applications.

NOTE I’m not sitting in an ivory tower disparaging developers. Many times I’ve
made decisions about how a feature should be implemented without fully
grasping existing functionality—not through any intent or malice, but because
those who wrote the code are no longer employed at the enterprise and there
fore can’t be asked about the code, and because documentation may be lack
ing or nonintuitive. Such a situation means developers are left to make a
judgment call as to whether or not they’ve understood the existing system suf
ficiently to make modifications. Throw in some deadline pressure from man
agement, and such a situation becomes even more fraught with problems.

Over time, many Enterprise Java applications diverged from the clean architecture
shown in figure 1.1 and became a mess of spaghetti more closely resembling figure 1.2.
In figure 1.2 you can see how clear boundaries between functionality within a layer have
become blurred, resulting in components in each layer no longer having a well-defined
purpose.

 This situation is where many enterprises find themselves today. Only a few applica
tions of an enterprise may fit this mold, but this mess of spaghetti is a problem that
must be solved in order for an application to foster future development without signif
icant costs being incurred each time.

1.1.3 What is a monolith?

What defines an Enterprise Java application as a monolith? A monolith is an applica
tion that has all its components contained within a single deployable, and that typi
cally has a release cadence of 3–18 months. Some applications may even have a release
cadence of two years, which doesn’t make for an agile enterprise. Monoliths typically
evolve over time from attempts to make quick iterative enhancements to an applica
tion, without any concern for appropriate boundaries between different parts, or
components, within it. Indicators of an application being a monolith can include the
following:

 Multiple WARs that are part of a single deployment, due to their intertwined
behavior

 EARs that contain potentially dozens of other WARs and JARs to provide all the
necessary functionality

Is figure 1.2 a monolith? It most certainly is, and an extremely bad one, because of the
blurring of functional separation between components.

www.itbook.store/books/9781617294242

https://itbook.store/books/9781617294242

7 Enterprise Java—a short history

User

View View View View View View View View

WAR WAR

EAR

ControllerControllerControllerControllerControllerControllerControllerController

Business
service

Business
service

Business
service

Business
service

Business
service

Business
service

Business
service

Business
service

ModelModelModelModelModelModelModelModel

Data

Figure 1.2 Enterprise Java spaghetti

Why do the preceding factors make an application a monolith? A single deployable
for an application is perfectly fine when you have a small footprint, but when you have
potentially thousands of classes and dozens of third-party libraries, an application
becomes infinitely more complex. Testing even a minor change to the application
would require large amounts of regression testing to ensure that no other part of the
application was impacted. Even if the regression testing were automated, it’d still be a
mammoth task.

www.itbook.store/books/9781617294242

https://itbook.store/books/9781617294242

8 CHAPTER 1 Enterprise Java microservices

 Whether an application is a monolith is also determined in part by its architecture.
Classifying as a monolith isn’t based on the size of the application on disk, or the size
of the runtime being used to execute the monolith. It’s all about how that application
has been architected with respect to the components within it.

 Release cadence is a forcing function for enterprises. If an application is released
only every 3–18 months, the business (unknowingly or not) will focus on larger fea
ture changes that take significant time to develop. No incentive exists to request a
minor tweak that could be made and released in a few hours, or days, when even the
most simple change won’t reach production for months.

 Release cadence dictated by the time it takes to develop and test changes has a
direct impact on the ability of an enterprise to be agile and respond to a changing
environment. For instance, if a competitor were to begin selling the same widget as
your enterprise for 15% less than you do, can you react? Taking several months to
make a simple change to reduce the selling price of a product could have disastrous
consequences for the bottom line. If that widget was the biggest seller, and the enter
prise was unable to compete on price for three months, it may even be on the verge of
going out of business by the time a price change was released.

 Along with release cadence, it’s critical to note that discussions around micro versus
monolith don’t have any relation to constraints on size. You could have a microservice
that’s 100 MB in size, or a monolith that’s only 20 MB. The definition is more about
the coupling of dependencies between components, leading to the benefit of updat
ing a single component without needing to cascade updates across many components.
This decoupling is what allows for a faster release cadence.

 Though it appears that monolithic Enterprise Java applications are all gloom and
doom, is that really the case? In many situations, it makes sense for an enterprise to
continue with, or develop, a monolith. How do you know if you should stick with a
monolith?

 Your enterprise may have only a few applications that it actively develops and maintains.
It may not make sense to significantly increase the development, testing, and
release burden when you have so few applications.

 If the current development team has a dozen people, splitting them into one- or two-person
teams for microservices may not provide any benefit. In some cases, that split will be
detrimental. Basecamp (https://basecamp.com/) is a perfect example of a
monolith that’s fine the way it is, developed by a team of 12.

 Does your enterprise need multiple releases a week, or even a day? If not, and the exist
ing monolith has a clear separation of components, reducing the release
cadence may be all that’s required to derive increased business agility and
value.

Whether staying with a monolith is the right thing for an enterprise varies, depending
on the current circumstances and the long-term goals.

www.itbook.store/books/9781617294242

https://basecamp.com/
https://itbook.store/books/9781617294242

9 Enterprise Java—a short history

1.1.4 What are the problems associated with monoliths?

In general, an architectural design akin to the one in figure 1.1 is a good idea, but
drawbacks exist as well:

 Inability to scale individual components—This may not seem to be a major prob
lem, but certain factors can alter the impact of poor scaling. If a single instance
of the application requires a large amount of memory or space, scaling that out
to a not-insignificant number of nodes requires a large investment in hardware.

 Performance of individual components—With a single deployment containing
many components, it’s easy for one component to perform worse than the rest.
You then have a single component slowing down the entire system, which isn’t a
good situation, and the operations team won’t be pleased.

 Deployability of individual components—When the entire application is a single
deployment, any changes require a deployment of the entire application, even
if you have a single-line change in one component. That’s not good for business
agility and often results in release cadences of many months to include many
changes in one updated deployment.

 Greater code complexity—When an application has many components, it’s easy for
the functional boundaries between them to become blurred. Blurring the sepa
ration of components further increases the complexity of code, both in terms
of code execution and for a developer understanding the intent of the code.

 Difficulty in accurately testing an application—When the complexity of an applica
tion grows, the amount of testing and time required to ensure that any change
didn’t cause a regression grows. What seems like the smallest and most insignif
icant change can easily lead to unforeseen errors and problems in completely
unrelated components.

All these issues cause great cost to enterprises, as well as slowing the speed with which
they can take advantage of new opportunities. But these potential drawbacks are still
small in comparison to starting from a clean slate.

 If an enterprise has an application that has evolved with new features over a
decade or more, attempting to replace it with a greenfield project would cost hun
dreds of man years in effort. This is a huge factor in why enterprises continue main
taining existing monoliths.

When it’s too costly to replace a monolith with a more modern alternative, that
application becomes entrenched in an enterprise. It becomes a critical application,
and any downtime causes business impacts. This situation becomes ever more com
pounded with continual enhancements and fixes.

 On the flipside, some monoliths have been running well for years and can be easily
managed by a handful of developers without much effort. Maybe they’re in a mainte
nance mode and not under heavy feature development. These monoliths are per
fectly OK as they are. If it ain’t broke, don’t fix it.

www.itbook.store/books/9781617294242

https://itbook.store/books/9781617294242

10 CHAPTER 1 Enterprise Java microservices

 What do you do with monoliths that are too cumbersome to replace with a green
field project, even though the enterprise knows it’s costing them a great deal in busi
ness agility and expense? How do you update them to use newer frameworks and
technologies so they don’t become legacy? We’ll answer these questions next.

1.2 Microservices and distributed architecture
Before delving into the definitions for microservices and distributed architecture, let’s
revisit how figure 1.2 might look when using them; see figure 1.3. This depiction has
certainly cleared up the separation between components by splitting them into sepa
rate microservices with clear boundaries between them.

User

Web server

View

Microservice

Microservice

Microservice

Microservice
Microservice

Microservice Microservice

Controller

ControllerController

Controller

Business
service

Business
service

Business
service

Business
service

Business
service

ModelModelModelModelModel

DataDataDataDataData

Figure 1.3 Enterprise Java microservices

www.itbook.store/books/9781617294242

https://itbook.store/books/9781617294242

11 Microservices and distributed architecture

So what do I mean by a microservice? A microservice consists of a single deployment
executing within a single process, isolated from other deployments and processes,
that supports the fulfillment of a specific piece of business functionality. Each micro
service focuses on the required tasks within a Bounded Context, which is a logical way to
separate the various domain models of an enterprise. We’ll cover this in greater detail
later in this chapter.

 From the definition, you can see that a microservice, in and of itself, isn’t useful.
It becomes useful when you have many loosely coupled microservices working
together to fulfill the needs of an application. A microservices architecture contain
ing many microservices communicating with each other can also be referred to as a
distributed architecture.

 To make a microservice useful, it needs to be easily used from other microservices
and components of the entire system. It’s impossible to achieve that when a microservice
attempts to accomplish too much. You want a microservice to focus on a single task.

1.2.1 Do one thing well

In 1978, Douglas McIlroy, best known for developing UNIX pipelines and various
UNIX tools, documented the UNIX philosophy, one part of which is, Make each pro
gram do one thing well. This same philosophy has been adopted by microservice devel
opers. Microservices aren’t the kitchen sink of application development; you can’t
throw everything in them and expect them to function at an optimal level. In that
case, you’d have a monolithic microservice, also referred to as a distributed monolith!

 A well-designed microservice should have a single task to perform that’s suffi
ciently fine-grained, delivering a business capability or adding business value. Going
beyond a single task brings us back to the problems of Enterprise Java monoliths,
which we don’t want to repeat.

 It’s not always easy to figure out a sufficiently granular task for a microservice.
Later in the chapter we’ll discuss Domain-Driven Design as a method to assist in defin
ing that granularity.

1.2.2 What is a distributed architecture?

A distributed architecture consists of multiple pieces that work with each other to make
up the full functionality of an application distributed across processes, and often
across network boundaries as well. What’s distributed can be any part of an applica
tion, such as RESTful endpoints, message queues, and web services, but it’s most defi
nitely not limited to only these components.

 Figure 1.4 shows what a distributed architecture for microservices might look like.
In this depiction, the microservice instances are described as being in a runtime, but that
doesn’t dictate how the instance is packaged. It could be packaged as uber jars or
Linux containers, but many other options are available. The runtime is purely for
delineating the operating environment of a microservice, showing that the microser
vices are running independently.

www.itbook.store/books/9781617294242

https://itbook.store/books/9781617294242

12	 CHAPTER 1 Enterprise Java microservices

User

Data Data

1

Gateway

Microservice

Microservice Microservice

RuntimeRuntime

Runtime

Microservices environment

2
2

3

4 4

1 A user makes a request from a browser to
interact with a particular service. This could be
from a mobile device or from a UI that was
previously retrieved.

2 When the request enters the microservices
environment, it enters the gateway, which
routes the request to the appropriate
microservice.

3 A microservice receives the request and
performs some of its own processing on it
before calling another service.

4 The last microservice in the chain interacts
with the data storage layer for retrieving/writing
records.

Figure 1.4 Typical microservices architecture

NOTE An uber jar, also known as a fat jar, indicates that the JAR file contains
more than a single application or library, and that it can be run from the
command line with java -jar.

1.2.3 Why should you care about being distributed?

Now that you’ve seen a distributed architecture, let’s look at some of the benefits:

 Services are location-independent. Services can locate and communicate with other
services no matter where they’re physically located. Such location indepen
dence allows services to be located on the same virtual hardware, same physical
hardware, same data center, different data centers, or even a public cloud, and
all act is if they’re in the same JVM. The main downside to location indepen
dence is the extra time required to make the network calls between them, and
by the nature of adding new network calls, you’ve reduced the likelihood of suc
cessful completion.

www.itbook.store/books/9781617294242

https://itbook.store/books/9781617294242

13 Microservices and distributed architecture

 Services are language-independent. Though this book focuses on Enterprise Java, we’re
not so naive as to believe that there won’t be times that services need, or are desired,
to be developed in different languages. When services aren’t required to run in the
same environment, you can use different languages for different services.

 Service deployments are small and single-purpose. When a deployment is smaller, less
effort is required for testing, and this makes it possible to shrink the release
cadence of that deployment down to a week or less. Having small, single-purpose
deployments enables an enterprise to more easily react to business needs in a
near-real-time fashion.

 New services are defined by the recomposition of existing service functionality. Having
discrete distributed services throughout your architecture greatly enhances
your ability to recombine those services in new ways to create additional value.
This recombination can be as straightforward as deploying a single new service,
combined with a handful of services already deployed. This enables you to cre
ate something new for the business in a shorter time frame.

Sounds awesome—how can you develop distributed applications right now? You need
to pull back on the reins a bit here. Yes, being distributed does improve a lot of the
issues that we’ve had with Enterprise Java over the years, but it also introduces its own
challenges. Developing distributed applications is in no way a silver bullet, and you
can easily shoot yourself in the foot.

 You’ve seen some benefits of being distributed, but there’s never a free lunch with
most things—and definitely not with distributed architecture. If you have a bunch of
services that interoperate through communication and no coupling, what problems
can that introduce?

 Location independence for services is great, but how do they find each other? You
need a means of defining services logically, regardless of what their physical loca
tion or IP address might be. With a means of discovery, you can locate a service
by its logical name and ignore wherever it might be physically located. Service dis
covery serves this purpose. Part 2 of this book covers how to use service discovery.

 How do you handle failure without impacting customers? You need a means of
gracefully degrading functionality when services fail, instead of crashing the
application. You need service resilience and fault tolerance to provide alterna
tives when services fail. Part 2 covers how to provide fault tolerance and resil
ience for your services.

 Having hundreds or thousands of services, versus a handful of applications,
places additional burdens on operations. Most operations teams aren’t experi
enced in dealing with such a large number of services. How do you mitigate
some of this complexity? Monitoring needs to play a major part here—in partic
ular, automated monitoring. You need to automate the monitoring of hundreds
of services to reduce the burden on operations, while also providing informa
tion that’s as near to real-time as possible about the entire system.

www.itbook.store/books/9781617294242

https://itbook.store/books/9781617294242

14 CHAPTER 1 Enterprise Java microservices

1.2.4 What can be done to assist in developing microservices?

Microservice development is hard, so what can you do to make it easier? There’s no
panacea for making it easy, but this section covers a couple of options for making
microservice development more manageable.

1.2.5 Product over project

Netflix has been a major proponent of the product-over-project idea for its microser
vices since rewriting its entire architecture under the leadership of Adrian Cockroft.

 All these years, we’ve been developing projects and not products. Why? Because
we develop an application that meets a set of requirements and then hand it over to
operations. The application might require two weeks or two years to develop, but it’s
still a project if, at the end, the application is handed over and the team disbanded.
Some team members may be retained for a period to handle maintenance requests
and enhancements, but the effort is still considered a project followed by lots of
mini projects.

 So how do you develop a product? Developing a product means that a single team
owns it for the entirety of its lifespan, whether that be 2 months or 20 years. The team
will develop it, release it, manage the operational aspects of the application, resolve
production issues—pretty much everything.

 Why does the differentiation between a project and a product matter? Owning a
product engenders a greater sense of responsibility about the way an application is
developed. How? Do you want to be paged in the middle of the night because an
application is failing? I know I don’t!

 How does a shift of focus from project to product help with developing microser
vices? When you’re seeking a release cadence of a week or less, as is typical for true
microservices, it’s hard to reach that release frequency with developers who aren’t
familiar with the codebase, as would be the case with a project approach.

1.2.6 Continuous integration and delivery

Without continuous integration and delivery, developing microservices becomes a
great deal more difficult.

Continuous integration refers to the processes that ensure any change, or commit, to
a source repository results in a new build of the application, including all associated
tests of that application. This provides quick feedback on whether or not changes
broke the application, provided the tests are sufficient enough to discover it.

Continuous delivery is a reasonably new phenomenon that has come from the DevOps
movement, whereby application changes are continuously delivered between environ
ments, including production, to ensure expeditious delivery of application changes. A
manual step may occur to approve a build going into production, but not always. Hav
ing a manual step is likely for critical user applications and less so for others. Continu
ous delivery is usually offered by means of a build pipeline, which can consist of
automatic or manual steps, such as a manual step to approve a release for production.

www.itbook.store/books/9781617294242

https://itbook.store/books/9781617294242

15 Patterns for migration to microservices

Continuous integration and delivery, referred to as CI/CD, are key tools in facilitat
ing a short release cadence. Why? They enable developers to find possible bugs earlier
in the process in an automated manner. But more important, CI/CD significantly
reduces the amount of time between determining that a piece of code is ready for pro
duction and having it live for users. If a release process takes a day or two to complete,
that isn’t conducive to releasing multiple times a day or even once a day.

Another important benefit of CI/CD is the ability to be more incremental in deliv
ering functionality. The goal isn’t just to be able to physically release code faster;
being able to deploy smaller pieces of functionality is crucial for minimizing risk as
well. If a small change reaches production that causes a failure, backing out that
change is a relatively easy task.

1.3 Patterns for migration to microservices
You’ve looked at Enterprise Java with its existing monoliths and you’ve learned about
microservices in a distributed architecture. But how do you get from one to the other?
This section delves into patterns that can be applied to the problem of splitting an
existing monolith into multiple microservices.

1.3.1 Domain-Driven Design

Domain-Driven Design (DDD) is a set of patterns and methodologies for modeling our
understanding of the domains in our software. A key part of this is the Bounded Con
text pattern (https://martinfowler.com/bliki/BoundedContext.html), which enables
you to segregate parts of the system to be modeled at a single time.

 This topic is far too broad to be covered in a few small paragraphs in this book,
especially because many books are already dedicated to DDD. But we’ll cover it briefly
here as another piece in the puzzle of developing with microservices. DDD can be
used both in greenfield microservice development and in migrating to microservices.

 A sufficiently large application or system can be divided into multiple Bounded
Contexts, enabling design and development to focus on the core domain of a given
Bounded Context at any one point. This pattern acknowledges that it’s difficult to
come up with a domain model for an entire enterprise at any one time, because too
many complexities exist. Dividing such a model into manageable Bounded Contexts
provides a way to focus on a portion of that model without concerning yourself with
the remainder of the, likely unknown, domain model. Figure 1.5 is an example to
help you understand the concepts behind DDD.

 Say you have a store that wants to develop microservices, and its domain model con
sists of an order, items within an order, a product, and a supplier of that product. The
current domain model combines the different ways a Product can be defined. From the
perspective of an Order, it doesn’t care who supplies the product, how many are cur
rently in stock, what the manufacturer price is, or any other information that’s relevant
to only the administration of the business. Conversely, the administration side isn’t nec
essarily concerned with how many orders a product may be associated with.

www.itbook.store/books/9781617294242

https://martinfowler.com/bliki/BoundedContext.html
https://martinfowler.com/bliki/BoundedContext.html
https://itbook.store/books/9781617294242

16 CHAPTER 1 Enterprise Java microservices

1
1

1..*

Order

Order
item

1

0..*

0..*

Product

Supplier

Figure 1.5 Store domain model

Figure 1.6 shows you now have Product in each Bounded Context; each represents a
different view of a product. The Order Bounded Context has only information such as
a product code and description. All the product information required by the business
is within the Product Bounded Context.

Order Bounded Context Product Bounded Context

1

1

1..*

0..*
Product

Order

Order
item

Product

1

0..*

Supplier

Figure 1.6 Separate Bounded Contexts

www.itbook.store/books/9781617294242

https://itbook.store/books/9781617294242

17 Patterns for migration to microservices

In some cases, a clean split will exist in the domain model of a Bounded Context, but
in others there will be commonality between the separate models, as in the preceding
example. In this situation, it’s important to consider that although a part of the domain
model is shared between Bounded Contexts, one domain can be classed as the owner.

Having defined the owner of a piece of the domain, it becomes necessary to make
that domain available to external Bounded Contexts—but in a way that doesn’t
implicitly tie the two Bounded Contexts together. This does make it trickier to handle
the boundary, but patterns such as Event Sourcing can help with this problem.

NOTE Event sourcing is the practice of firing events for every state change in
an application, which is usually recorded as a log in a certain format. Such a
log can then be used to rebuild entire database structures, or as in this case, as
a way to populate a piece of a domain model that’s owned externally.

How do all these Bounded Contexts fit together? Each Bounded Context forms part
of a greater whole, a context map. A context map is a global view of an application,
identifying all the required Bounded Contexts and the way they should communicate
and integrate with each other.

 In this example, because you’ve split Product into two, you’d need such a data feed
from the Product to Order Bounded Contexts to be able to populate the Product with
appropriate data.

 As you saw in our example, one side benefit of shared domain models in Bounded
Contexts is that each can have its own view of the same data. An application is no lon
ger forced into viewing a piece of data in the same way as its owner does. This can pro
vide huge benefits when a domain needs only a small subset of the data in each record
that the owner might hold. For additional information on Domain-Driven Design and
Bounded Contexts, I recommend Functional and Reactive Domain Modeling by Debasish
Ghosh (Manning, 2016).

1.3.2 Big Bang pattern

The Big Bang pattern for migrating to microservices in an enterprise is by far the most
complicated and challenging. It entails breaking apart every single piece of an existing
monolith into microservices, such that there’s a single cutover from one to the other.

 Because deployment is a single cutover—a Big Bang—to production, developing
for such a change can take just as long as developing on a monolith. Certainly, by the
end of the process, you’ve moved to microservices, but this pattern would be a bump
ier road for most enterprises than other patterns for migrating to microservices—
especially when considering the internal process and procedure changes required to
move between the two deployment models. Such an abrupt change would be trau
matic and potentially damaging to an enterprise.

 The Big Bang pattern isn’t recommended for most enterprises as a means of
migrating, and most definitely not for those who aren’t experienced with microser
vices already.

www.itbook.store/books/9781617294242

https://itbook.store/books/9781617294242

18 CHAPTER 1 Enterprise Java microservices

1.3.3 Strangler pattern

The Strangler pattern is based on the Strangler Application defined by Martin Fowler
(www.martinfowler.com/bliki/StranglerApplication.html). Martin describes this pat
tern as a way to rewrite an existing system by gradually creating a new system at the
edges of the existing one. The new system slowly grows over several years, until the old
system is strangled into nonexistence.

 You may find a similar end result as the Big Bang pattern—not necessarily a bad
thing—but it’s achieved over a much longer time span while still delivering business
value in the interim. This approach significantly reduces the risk involved, compared
to the Big Bang pattern. Through monitoring progress of the application over time,
you can adjust the way you implement microservices as you learn with each new one
implemented. This is another huge advantage over the Big Bang pattern: being able
to adjust and react to issues that might arise in processes or procedures. With a Big
Bang approach, an enterprise is tied into its processes until everything has cutover.

1.3.4 Hybrid pattern

Now that you’ve seen both the Big Bang and Strangler patterns, let’s look at the Hybrid
pattern. I feel this pattern will become the predominant pattern for enterprises migrat
ing to and developing microservices.

 This pattern begins life in a similar fashion to the Strangler. The difference is that you
never fully strangle the original monolith. You retain some functionality within a mono
lith and integrate that with new microservices. Figure 1.7 shows the path of a request
through an existing Enterprise Java monolith and a new microservices architecture:

1 A user makes a request from a browser specifying which view of an application
they wish to see.

2 The view calls out to a controller to retrieve whatever information might be
required to construct itself.

3 The controller calls a business service, possibly to aggregate data from different
sources.

4 The business service then passes the request into the microservices environ
ment, where it enters the gateway.

5 The gateway routes the request to the appropriate microservice based on rout
ing rules that have been defined.

6 A microservice receives the request and performs some of its own processing on
it before calling another microservice.

7 The last microservice in the chain interacts with the data storage layer to
read/write records.

An architecture such as that in figure 1.7 provides a great deal of flexibility for growth
and delivering business value in a timely fashion. Components that require high per
formance and/or high availability can be deployed to the microservices environment.

www.itbook.store/books/9781617294242

http://www.martinfowler.com/bliki/StranglerApplication.html
https://itbook.store/books/9781617294242

19 What are Enterprise Java microservices?

User

View

Runtime

Microservices environment Enterprise Java monolith

Runtime Runtime

Controller

Business
service

Model

Data Data Data

3

4

5

6

7

2

1

JAR

Gateway

Microservice Microservice

Microservice

Figure 1.7 Enterprise Java and microservices hybrid architecture

Components that are too costly to be migrated to the new architecture can remain
deployed on an Enterprise Java platform.

You’ll focus on the Hybrid pattern later in the book, when you migrate an existing
Enterprise Java application to use microservices.

1.4 What are Enterprise Java microservices?
As I mentioned at the beginning of the chapter, Enterprise Java microservices are
purely microservices developed with Enterprise Java. So let’s take a look at a simple
example to see it in practice.

 Let’s create a simple RESTful Java EE microservice that uses CDI and JAX-RS. This
microservice exposes a RESTful endpoint to greet the user by name; the message
returned is being provided via a CDI service you inject (listing 1.1).

www.itbook.store/books/9781617294242

https://itbook.store/books/9781617294242

20 CHAPTER 1 Enterprise Java microservices

Listing 1.1 CDI service

@RequestScoped

public class HelloService {

 public String sayHello(String name) {

return "Hello " + name;

 }

}

Service method that takes a single
parameter and returns it prefixed “Hello”

CDI annotation that says you want a new
HelloService instance for each servlet
Request made. In this instance, because
you’re not storing state, it could easily
have been @ApplicationScoped instead.

The preceding service defines a single sayHello() method that returns Hello com
bined with the value of the name parameter.

 You can then @Inject that service into your controller.

Listing 1.2 JAX-RS endpoint

You inject an
instance of

HelloService that
you can use.

Defines the type
of HTTP requests

the method
handles

The method
produces a text
response only.

CDI annotation that states you

need only a single instance for

the entire application
 Defines the RESTful URL
path of this controller. In @ApplicationScoped

this case, it’s set to “/hello”. @Path("/hello")

public class HelloRestController {

 @Inject

 private HelloService helloService;

 @GET

 @Path("/{name}")

 @Produces("text/plain")

Specifies the URL path for the
method. You also specify a
parameter called name that
can be passed on the URL of
the request.

 public String sayHello(@PathParam("name") String name) {

 return helloService.sayHello(name);

 }
 Assigns the path
} Calls sayHello on the injected service parameter called

passing the name parameter value name as the
method parameter

If you’ve developed JAX-RS resources before, you’ll recognize everything in the pre
ceding code. What does that mean? It means that you can develop microservices with
Enterprise Java just as if you were developing an Enterprise Java application. The abil
ity to develop a microservice with existing Enterprise Java knowledge is a significant
advantage in using Enterprise Java for microservices.

 This microservice example is simplified because you’re dealing with only the pro
ducer side of the equation. If the service also consumed other microservices, it would
be more complex. But you’ll come to that in part 2 of this book.

 Though the preceding example was implemented with Java EE APIs, it could just
as easily have been implemented using Spring instead.

www.itbook.store/books/9781617294242

https://itbook.store/books/9781617294242

21 What are Enterprise Java microservices?

1.4.1 Why Enterprise Java is a good fit for microservices

You’ve seen how easy it is to develop a RESTful endpoint as an Enterprise Java micro
service, but why should you? Wouldn’t you be better off using a newfangled frame
work or technology specifically built for microservices? You have plenty to choose
from right now: Go, Rust, and Node.js are just some examples.

 In some situations, using a newer technology may make more sense. But if an
enterprise has significant investment in Enterprise Java through existing applications,
developers, and so forth, it makes a lot more sense to continue using that technology,
because developers have one less thing to learn in developing a microservice. And by
technology I don’t mean Java EE or Spring per se; it’s more about the APIs that a tech
nology offers and developers’ familiarity with those APIs. If the same APIs can be used
with monoliths, microservices, or whatever the next buzzword is to hit developer
mindshare, that’s far more valuable than relearning APIs for each type of develop
ment situation.

 If a developer is building microservices for an enterprise for the first time, using a
technology that the developer already knows and understands allows that developer to
focus on the requirements of a microservice—without being concerned about learn
ing the nuances of a language or framework at the same time.

Using a technology that’s been around for nearly 20 years also has significant
advantages. Why? A technology that’s been around that long is almost guaranteed not
to disappear in the near future. Can anyone say Cobol?

 It’s a great comfort to enterprises to know that whatever technology they’re devel
oping and investing in isn’t going to be defunct in a few short years. Such a risk is typ
ically why enterprises are reluctant to invest in extremely new technology. Though it
can be frustrating not being able to use the latest and greatest, it does have advan
tages, at least for an enterprise.

 Enterprises aren’t the only factor that need to be considered when choosing a
technology for developing microservices. You also need to consider the following:

 Experience and skills of developers in the marketplace—There’s no point in choosing
a particular technology for microservice development if you don’t have a suffi
ciently large pool of resources to choose from. A huge pool of developers have
Enterprise Java experience, so using that is advantageous.

 Vendor support—It’s all well and good to choose a technology for developing
microservices, but if no vendors are offering support of that technology, it’s dif
ficult. It’s difficult because enterprises like to have a vendor available 24/7 for
support problems with a technology, usually in a production situation. Without
vendor support, an enterprise needs to employ those who work directly on that
technology to guarantee they can resolve any issues of their microservices in
production.

 Cost of change—If an enterprise has been developing with Enterprise Java for a
decade or more and has a stable group of developers who have worked on

www.itbook.store/books/9781617294242

https://itbook.store/books/9781617294242

22	 CHAPTER 1 Enterprise Java microservices

projects over that time, does it make sense for an enterprise to abandon that
history and carve out a new path with different technology? Though in some
cases, that does make sense, the majority of enterprises should stick with
experience and skills even if moving to microservices.

 Existing operational experience and infrastructure—In addition to developers, the
convenience of having years of operational experience with Enterprise Java is
just as critical. Applications don’t monitor and fix themselves, though that
would be nice. Having to hire or retrain operations staff on new languages and
frameworks can be just as time-consuming as doing it for developers.

Summary
 A microservice consists of a single deployment executing within a single process.
 An Enterprise Java monolith is an application in which all its components are

contained within a single deployment.
 An Enterprise Java microservice is a microservice developed using Enterprise

Java frameworks.
 An Enterprise Java monolith isn’t suitable for a fast release cadence.
 Implementing microservices isn’t a silver bullet and requires additional consid

eration to implement successfully.
 Migrating to microservices from a monolith can be best achieved with the

Hybrid pattern.
 An enterprise’s history of Enterprise Java development shouldn’t be disre

garded in the decision to implement microservices.

www.itbook.store/books/9781617294242

https://itbook.store/books/9781617294242

JAVA

Enterprise Java Microservices

Ken Finnigan

L
arge applications are easier to develop and maintain when
you build them from small, simple components. Java
developers now enjoy a wide range of tools that support

microservices application development, including right-sized
app servers, open source frameworks, and well-defi ned
patterns. Best of all, you can build microservices applications
using your existing Java skills.

Enterprise Java Microservices teaches you to design and build
JVM-based microservices applications. You’ll start by learning
how microservices designs compare to traditional Java EE
applications. Always practical, author Ken Finnigan intro
duces big-picture concepts along with the tools and techniques
you’ll need to implement them. You’ll discover ecosystem
components like Netflix Hystrix for fault tolerance and master
the Just enough Application Server (JeAS) approach. To ensure
smooth operations, you’ll also examine monitoring, security,
testing, and deploying to the cloud.

What’s Inside
● The microservices mental model
● Cloud-native development
● Strategies for fault tolerance and monitoring
● Securing your fi nished applications

This book is for Java developers familiar with Java EE.

Ken Finnigan leads the Thorntail project at Red Hat, which
seeks to make developing microservices for the cloud with
Java and Java EE as easy as possible.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/enterprise-java-microservices

M A N N I N G $49.99 / Can $65.99 [INCLUDING eBOOK]

“Frameworks, patterns, and

concepts that Java developers

need to be successful in a

microservices world.”
 —Andrew Block, Red Hat

“A complete overview of

how to implement micro

services in a company

environment, with different

solutions to the same problem

given and explained.”
 —Damián Mazzini, UBA Argentina

“Covers everything a

developer must know before

stepping from monolith to

 microservices architecture.
—Kelum Prabath Senanayake ”

Equinix

“A great guide through the

world of Java enterprise

microservices with cool use

cases and code examples.”
 —Alexandros Koufoudakis

Red Hat

See first page

www.itbook.store/books/9781617294242

https://itbook.store/books/9781617294242

