
www.itbook.store/books/9781617294327

https://itbook.store/books/9781617294327

Understanding API Security
With chapter selections by Justin Richer

and Antonio Sanso

Manning Author Picks

 Copyright 2016 Manning Publications
To pre-order or learn more about these books go to www.manning.com

www.itbook.store/books/9781617294327

http://www.manning.com/
https://itbook.store/books/9781617294327

www.itbo
For online information and ordering of these and other Manning books, please visit
www.manning.com. The publisher offers discounts on these books when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co.
20 Baldwin Road Technical
PO Box 761
Shelter Island, NY 11964

Cover designer: Leslie Haimes

ISBN 9781617294327
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 - EBM - 21 20 19 18 17 16

ok.store/books/9781617294327

http://www.manning.com
https://itbook.store/books/9781617294327

www.itbook.
contents
Introduction v

THE OAUTH DANCE 1
The OAuth Dance
Chapter 2 from OAuth 2 in Action by Justin Richer and Antonio Sanso 2

WORKING WITH WEB APIS 22
Working with web APIs
Chapter 2 from Irresistible APIs: Designing web APIs 

that developers will love by Kirsten K. Hunter 23

COMMUNICATING WITH THE SERVER 47
Communicating with the server
Chapter 7 from SPA Design and Architecture: Understanding 

single-page web applications by Emmit A. Scott, Jr. 48

SHARING AND SECURING WEB THINGS 79
Share: Securing and sharing web Things
Chapter 9 from Building the Web of Things

by Dominique D. Guinard and Vlad M. Trifa 80

WHAT IS AMAZON WEB SERVICES? 112
What is Amazon Web Services?
Chapter 1 from Amazon Web Services in Action 

by Michael Wittig and Andreas Wittig 113
iii

store/books/9781617294327

https://itbook.store/books/9781617294327

CONTENTSiv

www.itboo
IMPLEMENTING SECURITY AS A SERVICE 145
Implementing security as a service
Chapter 8 from SOA Security by Ramarao Kanneganti 

and Prasad A. Chodavarapu 146

 index 187
k.store/books/9781617294327

https://itbook.store/books/9781617294327

v

introduction
We live in a programmable world. Every day new and inventive services come online,
allowing us to connect our lives together like never before. Gone are the days when it
was acceptable for a piece of software to live in its own little silo, disconnected from
the outside world. Today, services are expected to be available for programming, mix-
ing, and building into new applications.

 The web-based Application Programming Interface, or API, is the means by which
services make themselves available in this dynamic world. By exposing an API, a service
can find new life and utility far beyond what its core functionality was designed for.

 But it’s not enough to just expose an API: these APIs need to be secured and pro-
tected in order to be truly useful. An API that’s simply left open to everyone, with no
security controls, cannot be used to protect personalized or sensitive information,
which severely limits its desirability. There have been many approaches to this over the
years, with many proprietary and bolted-on solutions having come and gone. The
OAuth delegation and authorization protocol is one of the most popular standards
for this today, replacing many of these hacks with a standard technology.

 We’ve brought together several chapters from several Manning books that give you
some context for how API security works in the real world by showing how APIs are
put together and how the OAuth protocol can be used to protect them.

www.itbook.store/books/9781617294327

https://itbook.store/books/9781617294327

www.itbook.store/books/9781617294327

https://itbook.store/books/9781617294327

www.itbook.store

 OAuth 2.0 is a delegation and authorization security protocol. Unlike
many other protocols, which are an end to themselves, the OAuth 2.0 protocol is
always used in conjunction with some other technology. OAuth 2.0 provides the
means to secure an API, but it does not provide the API itself. This chapter, The
OAuth Dance, introduces the OAuth 2.0 protocol, showcasing the authorization
code flow used in many web applications today.

The OAuth Dance
/books/9781617294327

https://itbook.store/books/9781617294327

www.itbook.
Chapter 2 from OAuth 2 in Action by Justin
Richer and Antonio Sanso

The OAuth Dance
By now you have a decent overview of what the OAuth 2.0 protocol is and why it is
important. You also likely have an idea of how and where you might want to use the
protocol, but what steps do you have to take to make an OAuth transaction? What
do you end up with when you’re done with an OAuth transaction? How does this
design make OAuth secure?

2.1 Overview of the OAuth 2.0 protocol: getting and
using tokens
OAuth is a complex security protocol, with components sending pieces of informa-
tion to each other in a precise balance that’s akin to a technological dance. Funda-

This chapter covers
 An overview of the OAuth 2.0 protocol

 The different components in an OAuth 2.0
system

 How the different components communicate
with each other

 What the different components communicate.
2

store/books/9781617294327

https://www.manning.com/books/oauth-2-in-action
https://itbook.store/books/9781617294327

3Following an OAuth authorization grant in detail

www.itbook.
mentally, there are two major steps to an OAuth transaction: issuing a token and using
a token. The token represents the access that has been delegated to the client and it
plays a central role in every part of OAuth 2.0. While the details of each step vary
based on several factors, the canonical OAuth transaction consists of the following
sequence of events:

1 The Resource Owner indicates to the Client they would like the Client to act on
their behalf (for example, load my photos from that service so I can print them)

2 The Client requests authorization from the Resource Owner at the Authoriza-
tion Server

3 The Resource Owner grants authorization to the Client
4 The Client receives a Token from the Authorization Server
5 The Client presents the Token to the Protected Resource

 Different deployments of the OAuth process can handle each of these steps in
slightly different ways, often optimizing the process by collapsing several steps into a
single action, but the core process remains essentially the same. Next, we will look at
the most canonical example of OAuth 2.0.

2.2 Following an OAuth authorization grant in detail
Let us take a look at an OAuth authorization grant process in detail. We are going to
be looking at all steps between the actors, tracing the HTTP requests and responses
for each step. In particular, we’ll follow the authorization code grant used with web-
based client applications. These clients will be interactively authorized directly by the
resource owner.

NOTE: The examples in this chapter are pulled from the exercise code that
we’ll use later in the book. While you don’t need to understand the exercises
to follow what’s going on, it might help to run through some of the com-
pleted examples in appendix A. Note that the use of localhost throughout
these examples is purely coincidental, as OAuth can and does work across
multiple independent machines.

 The authorization code grant uses a temporary credential, the authorization code, to
represent the resource owner’s delegation to the client, and it looks like this.

 Let me break this down into individual steps. First, the resource owner goes to the
client application and indicates to the client they would like it to use a particular pro-
tected resource on their behalf. For instance, this is where the user would tell the print-
ing service to use a specific photo storage service.

 When the client realizes that it needs to get a new OAuth access token, it sends the
resource owner to the authorization server with a request from the client asking to be
delegated authority by that resource owner. For example, our photo printer could ask
the photo storage service for the ability to read the photos stored there.
store/books/9781617294327

https://itbook.store/books/9781617294327

4 CHAPTER 2 The OAuth Dance

www.itboo
k.store/books/9781617294327

https://itbook.store/books/9781617294327

5Following an OAuth authorization grant in detail

www.itbook.

 Since we have a web client, this takes the form of an HTTP redirect to the authoriza-
tion server’s authorization endpoint. The response from the client application looks
like this:

HTTP/1.1 302 Moved Temporarily
x-powered-by: Express
Location:

http://localhost:9001/authorize?response_type=code&scope=foo&client_id=o
auth-client-
1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&state=Lwt50DDQKU
B8U7jtfLQCVGDL9cnmwHH1

Vary: Accept
Content-Type: text/html; charset=utf-8
Content-Length: 444
Date: Fri, 31 Jul 2015 20:50:19 GMT
Connection: keep-alive

How do I find the server?
In order to remain maximally flexible, OAuth pushes many details of a real API system
out of scope. In particular, the way that the client knows how to talk to a given pro-
tected resource, or how the client finds the authorization server tied to that protected
resource, are not specified by OAuth. Some protocols built on top of OAuth, like Ope-
nID Connect and UMA, do solve these problems in standard ways, and we will cover
those in chapters 13 and 14. For the purpose of demonstrating OAuth itself, we
assume the client has been statically configured to know how to talk to both the pro-
tected resource and the authorization server.
store/books/9781617294327

https://itbook.store/books/9781617294327

6 CHAPTER 2 The OAuth Dance

www.itboo
 This redirect to the browser causes the browser to send an HTTP GET to the autho-
rization server:

GET /authorize?response_type=code&scope=foo&client_id=oauth-client-
1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&state=Lwt50DDQKU
B8U7jtfLQCVGDL9cnmwHH1 HTTP/1.1

Host: localhost:9001
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:39.0)

Gecko/20100101 Firefox/39.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: http://localhost:9000/
Cookie: i18next=en
Connection: keep-alive

 The client identifies itself and requests particular items, such as scopes, by including
query parameters in the URL it sends. The authorization server can parse those param-
eters and act accordingly, even though the client isn’t making the request directly.

 Next, the authorization server will usually require the user to authenticate. This
step is essential in determining who the resource owner is and what rights they’re
allowed to delegate to the client.

Viewing the HTTP transaction
All of the HTTP transcripts were captured using off-the-shelf tools, and there are quite
a number of them out there. Browser inspection tools, like the Firebug plugin for
Firefox, allow comprehensive monitoring and manipulation of front channel communi-
cations. The back channel can be observed using a proxy system or a network packet
capture program like Wireshark or Fiddler.
k.store/books/9781617294327

https://itbook.store/books/9781617294327

7Following an OAuth authorization grant in detail

www.itbook.
 The user’s authentication passes directly between the user (and their browser) and
the authorization server; it’s never seen by the client application. This essential aspect
protects the user from having to share their credentials with the client application, the
anti-pattern that OAuth was invented to combat (as I discussed in the previous chapter).

 Additionally, since the resource owner interacts with the authorization endpoint
through a browser, their authentication happens through a browser as well. Thus, a
wide variety of authentication techniques are available to the user authentication pro-
cess. OAuth does not dictate the authentication technology, and the authorization
server is free to choose methods such as a username/password pair, cryptographic cer-
tificates, security tokens, , or any number of other possibilities. We have to trust the web
browser to a certain extent here, especially if the resource owner is using a simple
authentication method like username and password, but the OAuth protocol is
designed to protect against several major kinds of browser-based attacks, which we will
cover in chapters 7, 8, and 9.

 This separated approach insulates the client from changes to the user’s authentica-
tion methods, allowing a simple client application to benefit from emergent tech-
niques, such as risk-based heuristic authentication applied at the authorization server.
This does not convey any information about the authenticated user to the client, how-
ever; this is a topic we’ll cover in depth in chapter 11.

 Next, the user authorizes the client application:

 In this step, the resource owner chooses to delegate some portion of their authority
to the client application, and the authorization server has many different options for
how to make this work. The client’s request can include an indication of what kind of
access it’s looking for (known as the OAuth scope, discussed in section 2.4). The autho-
store/books/9781617294327

https://itbook.store/books/9781617294327

8 CHAPTER 2 The OAuth Dance

Notice th
this is on
client and
not on th
authoriza
server

www.itboo
rization server can allow the user to deny some or all of these scopes, or it can let the
user approve or deny the request.

 Furthermore, many authorization servers allow the storage of this authorization
decision for future use. If this is used, then future requests for the same access by the
same client will not prompt the user interactively. The user will still be redirected to the
authorization endpoint, and will still need to be logged in, but the decision of whether
to delegate authority to the client will have already been made during a previous
attempt. The authorization server can even override the end user’s decision based on
an internal policy such as a client whitelist or blacklist.

 Next, the authorization server redirects the user back to the client application:

 This takes the form of an HTTP redirect to the client’s redirect_uri.

HTTP 302 Found
Location:

http://localhost:9000/oauth_callback?code=8V1pr0rJ&state=Lwt50DDQKUB8U7j
tfLQCVGDL9cnmwHH1

 This in turn causes the browser to issue the following request back to the client:

GET /callback?code=8V1pr0rJ&state=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1 HTTP/1.1
Host: localhost:9000
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:39.0)

Gecko/20100101 Firefox/39.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate

at
 the

e
tion
k.store/books/9781617294327

https://itbook.store/books/9781617294327

9Following an OAuth authorization grant in detail

www.itbook.
Referer:
http://localhost:9001/authorize?response_type=code&scope=foo&client_id=o
auth-client-
1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&state=Lwt50DDQKU
B8U7jtfLQCVGDL9cnmwHH1

Cookie: i18next=en
Connection: keep-alive

 Since we’re using the authorization code grant type, this redirect includes the special
code query parameter. The value of this parameter is a one-time-use credential known
as the authorization code, and it represents the result of the user’s authorization decision.
The client can parse this parameter to get the authorization code value when the
request comes in, and it will use that code in the next step. The client will also check
that the value of the state parameter matches the value that it sent in the previous step.

 Now that the client has the code, it can send it back to the authorization server on
its token endpoint:

 The client performs an HTTP POST with its parameters as a form-encoded HTTP
entity body, passing its client_id and client_secret as an HTTP Basic authorization
header. This HTTP request is made directly between the client and the authorization
server, without involving the browser or resource owner at all.

POST /token
Host: localhost:9001
Accept: application/json
Content-type: application/x-www-form-encoded
Authorization: Basic b2F1dGgtY2xpZW50LTE6b2F1dGgtY2xpZW50LXNlY3JldC0x

grant_type=authorization_code&
redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&code=8V1pr0rJ
store/books/9781617294327

https://itbook.store/books/9781617294327

10 CHAPTER 2 The OAuth Dance

www.itboo
 This separation between different HTTP connections ensures that the client can
authenticate itself directly without other components being able to see or manipulate
the token request.

 The authorization server takes in this request and, if valid, issues a token.

 The authorization server performs a number of steps to ensure the request is legiti-
mate. First, it validates the client’s credentials (passed in the Authorization header
here) to determine which client is requesting access. Then, it reads the value of the
code parameter from the body and looks up any information it has about that authori-
zation code, including which client made the initial authorization request, which user
authorized it, and what it was authorized for. If the authorization code is valid, has not
been used previously, and the client making this request is the same as the client that
made the original request, the authorization server generates and returns a new access
token for the client.

 This token is returned in the HTTP response as a JSON object:

HTTP 200 OK
Date: Fri, 31 Jul 2015 21:19:03 GMT
Content-type: application/json

{
"access_token": "987tghjkiu6trfghjuytrghj",
"token_type": "Bearer"
}

 The client can now parse the token response and get the access token value from it
to be used at the protected resource. In this case, we have an OAuth Bearer token, as
indicated by the token_type field in the response. The response can also include a
k.store/books/9781617294327

https://itbook.store/books/9781617294327

11Following an OAuth authorization grant in detail

www.itbook.
refresh token (used to get new access tokens without asking for authorization again) as
well as additional information about the access token, like a hint as to the token’s
scopes and expiration time. The client can store this access token in a secure place for
as long as it wants to use the token, even after the user has left.

 With the token in hand, the client can present the token to the protected resource:

 The client has several methods for presenting the access token, and in this example
we’re going to use the recommended method of using the Authorization header:

GET /resource HTTP/1.1
Host: localhost:9002
Accept: application/json
Connection: keep-alive
Authorization: Bearer 987tghjkiu6trfghjuytrghj

 The protected resource can parse the token out of the header, determine if it’s still
valid, look up information regarding who authorized it and what it was authorized for,
and return the response accordingly. A protected resource has a number of options for

The right to bear tokens
The core OAuth specifications deal with bearer tokens, which means that anyone who
carries the token has the right to use it. All of our examples will also be using bearer
tokens throughout the book, except where specifically noted. Bearer tokens have par-
ticular security properties, which are enumerated in chapter 10, and I discuss non-
bearer tokens in chapter 15 as well.
store/books/9781617294327

https://itbook.store/books/9781617294327

12 CHAPTER 2 The OAuth Dance

www.itboo
doing this token lookup, which we’ll cover in greater depth in a future chapter. The
simplest option is for the resource server and the authorization server to share a data-
base that contains the token information. The authorization server writes new tokens
into the store when they’re generated, and the resource server reads tokens from the
store when they are presented.

2.3 OAuth's actors: clients, authorization servers, resource
owners, and protected resources
As we touched on in the last section, there are four main actors in an OAuth system:
clients, resource owners, authorization servers, and protected resources. Each of these
components is responsible for different parts of the OAuth protocol, and all work
together to make the OAuth protocol work.

 An OAuth client is a piece of software that is attempting to access the protected
resource on behalf of the resource owner, and it uses OAuth to get that access. Thanks
to the design of the OAuth protocol, the client is generally the simplest component in
an OAuth system, and its responsibilities are largely around getting tokens from the
authorization server and using tokens at the protected resource. The client does not
have to understand the token, nor should it ever need to inspect the token’s contents.
Instead, the client uses the token as an opaque string. An OAuth client can be a web
application, a native application, or even an in-browser JavaScript application, and I
cover the differences between these kinds of clients in chapter 6. In our cloud printing
example, the printing service is the OAuth client.
k.store/books/9781617294327

https://itbook.store/books/9781617294327

13OAuth Components: Tokens, scopes, and authorization grants

www.itbook.
 An OAuth protected resource is available through an HTTP server and it requires
an OAuth token to be accessed. The protected resource needs to validate the tokens
presented to it and determine whether and how to serve requests. In an OAuth archi-
tecture, the protected resource has the final say as to whether or not to honor a token.
In our cloud printing example, the photo storage site is the protected resource.

 A resource owner is the entity with the authority to delegate access to the client.
Unlike other parts of the OAuth system, the resource owner is not a piece of software.
In most cases, the resource owner is the person using the client software to access
something they control. For at least part of the process, the resource owner interacts
with the authorization server using a web browser (more generally known as the user
agent). The resource owner might also interact with the client using a web browser, as
they do in our demonstration, but that’s entirely dependent on the nature of the cli-
ent. In our cloud printing example, the resource owner is the end user who wants to
print their photos.

 An OAuth authorization server is an HTTP server that acts as the central compo-
nent to an OAuth system. The authorization server authenticates the resource owner
and client, provides mechanisms for allowing resource owners to authorize clients, and
issues tokens to the client. Some authorization servers also provide additional capabili-
ties such as token introspection and remembering authorization decisions. In our
cloud printing example, the photo storage site runs its own in-house authorization
server for its protected resources.

2.4 OAuth Components: Tokens, scopes, and authorization grants
In addition to these actors, the OAuth ecosystem depends on several other mecha-
nisms, both conceptual and physical. These are the bits that connect the actors above
in a larger protocol.

2.4.1 Access tokens

An OAuth access token, sometimes known as a token, is an artifact issued by the
authorization server to a client that indicates the rights the client has been delegated.
OAuth does not define a format or content for the token itself, but it always repre-
sents the combination of the client’s requested access, the resource owner that autho-
rized the client, and the rights conferred during that authorization (usually including
some indication of the protected resource).

 OAuth tokens are opaque to the client, which means that the client has no need
(and often no ability) to look at the token itself. The client’s job is to carry the token,
requesting it from the authorization server and presenting it to the protected resource.
The token is not opaque to everybody in the system: the authorization server’s job is to
issue the token, and the protected resource’s job is to validate the token. As such, they
both need to be able to understand the token itself and what it stands for. However, the
client is completely oblivious to all of this. This approach allows the client to be much
simpler than it would otherwise need to be, as well as giving the authorization server
and protected resource incredible flexibility in how these tokens are deployed.
store/books/9781617294327

https://itbook.store/books/9781617294327

14 CHAPTER 2 The OAuth Dance

www.itboo
2.4.2 Scopes

An OAuth scope is a representation of a set of rights at a protected resource. Scopes
are represented by strings in the OAuth protocol, and they can be combined into a set
by using a space-separated list. As such, the scope value cannot contain the space char-
acter. The format and structure of the scope value is otherwise undefined by OAuth.

 Scopes are an important mechanism for limiting the access granted to a client.
Scopes are defined by the protected resource, based on the API that it is offering. Cli-
ents can request certain scopes, and the authorization server can allow the resource
owner to grant or deny particular scopes to a given client during its request. Scopes are
generally additive in nature.

 Going back to our cloud printing example from before. The photo storage service’s
API defines several different scopes for accessing the photos: read-photo, read-meta-
data, update-photo, update-metadata, create, and delete. The photo printing service
only needs to be able to read the photos in order to do its job, and so it asks for the
read-photo scope. Once it has an access token with this scope, the printer is able to
read photos and print things out as requested. If the user decides to use an advanced
function that prints a series of photographs into a book based on their date, the print-
ing service will need the additional read-metadata scope. Since this is an additional
access, the printing service needs to ask the user to authorize them for this additional
scope using the regular OAuth process. Once the printing service has an access token
with both scopes, it can perform actions that require either of them, or both of them
together, using the same access token.

2.4.3 Refresh tokens

An OAuth refresh token is similar in concept to the access token, in that it is issued to
the client by the authorization server and the client does not know, or care, what is
inside the token. What is different is that the token is not ever sent to the protected
resource. Instead, the client uses the refresh token to request new access tokens with-
out involving the resource owner.

 Why would a client need to bother with a refresh token? In OAuth, an access token
could stop working for a client at any point. The user could have revoked the token, it
could have expired, or some other system trigger might have made the token invalid.
The client will usually find out about the token being invalid by using it and getting an
error response. The client could get the resource owner to authorize them again. But
what if the resource owner’s not there anymore?

 In OAuth 1.0, the client had no recourse but to wait for the resource owner’s
return. To avoid this, tokens in OAuth 1.0 tended to live forever until explicitly
revoked. This is a bit problematic as it increases the attack surface for a stolen token:
the attacker can keep using the stolen token forever. In OAuth 2.0, access tokens were
given the option to automatically expire, but we needed a way to access resources when
the user wasn’t there anymore. The refresh token now takes the place of the long-lived
token, but instead of being used to get resources, it is used to get new access tokens
k.store/books/9781617294327

https://itbook.store/books/9781617294327

15OAuth Components: Tokens, scopes, and authorization grants

www.itbook.
which, in turn, can get the resources. This limits the exposure of the refresh token and
the access token in separate but complimentary ways.

 Refresh tokens also give the client the ability to down-scope their access. If a client is
granted scopes A, B, and C, but it knows that it only needs scope A to make a particular
call, it can use the refresh token to request an access token for only scope A. This lets a
smart client follow the security principle of least privilege without burdening less-smart
clients with trying to figure out what privileges an API needs. Years of deployment
experience has shown us that OAuth clients tend to be anything but smart, but it’s still
good to have the advanced capability for those who want to exercise it.

 What if the refresh token itself doesn’t work? The client can always bother the
resource owner again, when they are available. In other words, the fallback state for an
OAuth client is to do OAuth again.

2.4.4 Authorization grants

An authorization grant is the means by which an OAuth client is given access to a pro-
tected resource using the OAuth protocol, and if successful it ultimately results in the
client getting a token. This is likely one of the most confusing terms in OAuth 2.0,
since the term is used to define both the specific mechanism by which the user dele-
gates authority, as well as the act of delegation itself. This is further confused by the
authorization code grant type, which we laid out in detail above, as developers will
sometimes look at the authorization code that’s passed back to the client and mistak-
enly assume that this artifact – and this artifact alone – is the authorization grant.
store/books/9781617294327

https://itbook.store/books/9781617294327

16 CHAPTER 2 The OAuth Dance

www.itboo
While it’s true that the authorization code represents a user’s authorization decision,
it’s not itself an authorization grant. Instead, the entire OAuth process is the authori-
zation grant: the client sending the user to the authorization endpoint, receiving the
code, and finally trading the code for the token.

 In other words, the authorization grant is the method for getting a token. In this
book, as in the OAuth community as a whole, I occasionally refer to this as a flow of the
OAuth protocol. There are several different kinds of authorization grants in OAuth,
each with its own characteristics. I’ll cover these in detail in chapter 6, but most of our
examples and exercises, such as the ones in the previous section, are going to be using
the authorization code authorization grant type.

2.5 Interactions between OAuth's actors and components:
back channel, front channel, and endpoints
Now that we know the different parts of an OAuth system, take a look at how exactly
they communicate with each other. OAuth is an HTTP-based protocol, but unlike
most HTTP-based protocols, OAuth communication doesn’t always happen through a
simple HTTP request and response.

2.5.1 Back-channel Communication

Many parts of the OAuth process use a normal HTTP request and response format to
communicate to each other. Since these requests generally happen outside the pur-
view of the resource owner and user agent, they’re collectively referred to as back-
channel communication.

 These requests and responses make use of all the regular HTTP mechanisms to
communicate: headers, query parameters, methods, and entity bodies can all contain
information vital to the transaction. Note that this might be a bit more of the HTTP
stack than you’re used to, as many simple web APIs allow the client developer to pay
attention to the response body.

 The authorization server provides a token endpoint that the client uses to request
access tokens and refresh tokens. The client calls this endpoint directly, presenting a
form-encoded set of parameters that the authorization server parses and processes.
The authorization server then responds with a JSON object representing the token.

OAuth over non-HTTP channels
While OAuth is defined only in terms of HTTP, several specifications have defined how
to move different parts of the OAuth process to non-HTTP protocols. For instance,
there are draft standards defining how to use OAuth tokens over GSS-APIa and CoAPb.
All of these still use HTTP to bootstrap the process, and they tend to translate the
HTTP-based OAuth components as directly as possible to these other protocols.

a RFC 7628
b https://tools.ietf.org/html/draft-ietf-ace-oauth-authz
k.store/books/9781617294327

https://tools.ietf.org/html/draft-ietf-ace-oauth-authz
https://itbook.store/books/9781617294327

17Interactions between OAuth's actors and components: back channel, front channel, and end-

www.itbook.
 Additionally, when the client connects to the protected resource, it’s also making a
direct HTTP call in the back channel. The details of this call are entirely dependent on
the protected resource, as OAuth can be used to protect an extraordinarily wide variety
of APIs and architecture styles. In all of these, the OAuth token is presented by the cli-
ent and the protected resource must be able to understand the token and the rights
that it represents.

2.5.2 Front-channel Communication

In normal HTTP communication, as we saw, the HTTP client sends a request that con-
tains headers, query parameters, an entity body, and other pieces of information
directly to a server. The server can then look at those pieces of information and figure
out how to respond to the request, using an HTTP response containing headers, an
entity body, and other pieces of information. However, in OAuth, there are several
instances where two components cannot make direct requests and responses of each
other, such as when the client interacts with the authorization endpoint of the autho-
rization server. Front-channel communication is a method of using HTTP requests to
communicate indirectly between two systems through an intermediary web browser.

 This technique isolates the sessions on either side of the browser, which allows it to
work across different security domains. For instance, if the user needs to authenticate
to one of the components, they can do so without exposing their credentials to the
other system. We can keep information separate and still communicate in the presence
of the user.

 How can two pieces of software communicate without ever talking to each other?
Front channel communication works by attaching parameters to a URL and indicating
that the browser should follow that URL. The receiving party can then parse the
store/books/9781617294327

https://itbook.store/books/9781617294327

18 CHAPTER 2 The OAuth Dance

www.itboo
incoming URL, as fetched by the browser, and consume the presented information.
The receiving party can then respond by redirecting the browser back to a URL hosted
by the originator, using the same method of adding parameters. The two parties are
thus communicating with each other indirectly through the use of the web browser as
an intermediary. This means that each front channel request and response is actually a
pair of HTTP request and response transactions.
k.store/books/9781617294327

https://itbook.store/books/9781617294327

19Interactions between OAuth's actors and components: back channel, front channel, and end-

www.itbook.
 For example, in the authorization code grant example above, the client needs to
send the user to the authorization endpoint, but it also needs to communicate certain
parts of its request to the authorization server. To do this, the client sends an HTTP
redirect to the browser. The target of this redirect is the server’s URL with certain fields
attached to it as query parameters:

HTTP 302 Found
Location: http://localhost:9001/authorize?client_id=oauth-client-

1&response_type=code&state=843hi43824h42tj

 The authorization server can parse the incoming URL, as any other HTTP request,
and find the information sent from the client in these parameters. When it’s time to
return the authorization code to the client, the authorization server sends an HTTP
redirect to the browser as well, but this time with the client’s redirect_uri as the base.
The authorization server also includes its own query parameters in the redirect:

HTTP 302 Found
Location: http://localhost:9000/oauth_callback?code=23ASKBWe4

 When the browser follows this redirect, it’ll be served by the client application, in
this case through an HTTP request. The client can parse the URL parameters from the
incoming request. In this way, the client and authorization server can pass messages
back and forth to each other through an intermediary without ever talking to each
other directly.

 All information that’s passed through the front channel is accessible to the browser,
both to be read and potentially manipulated before the ultimate request is made. The
OAuth protocol accounts for this by limiting the kinds of information that are passed
through the front channel, and by making sure that none of the pieces of information
used in the front channel can be used on its own to accomplish the task of delegation.
In the canonical case we saw in this chapter, some protocols, such as OpenID Connect,
offer increased security through mechanisms for these front channel messages to be
signed by the client or authorization server to add a further layer of protection, and
we’ll look at that briefly in chapter 13.

What if my client isn’t a web app?
OAuth can be used by both web applications and native applications, but both need
to use the same front channel mechanism to get information back from the authori-
zation endpoint. The front channel always uses a web browser and HTTP redirects,
but they don’t always have to be served by a regular web server in the end. Fortu-
nately, there are a few useful tricks, like internal webservers, application-specific URI
schemes, and push notifications from a backend service that can be used. As long
as the browser can invoke a call on that URI, it will work. We’ll explore all of these
options in detail in chapter 6.
store/books/9781617294327

https://itbook.store/books/9781617294327

20 CHAPTER 2 The OAuth Dance

www.itboo
2.6 Summary
OAuth is a protocol with many moving pieces, but it is built of simple actions that add
up to a secure method for authorization delegation.

 OAuth is about getting tokens and using tokens
 Different components in the OAuth system care about different parts of the

process
 Components use direct (back channel) and indirect (front channel) HTTP to

communicate with each other.

 Now that you have learned what OAuth is and how it works, let’s start building
things! In the next chapter, we will build an OAuth client from scratch.
k.store/books/9781617294327

https://itbook.store/books/9781617294327

21Summary

www.itbook.
Think of OAuth 2 like the web version of a valet key.
This HTTP-based security protocol allows the users of a
service to enable applications to use that service on
their behalf without handing over full control. Web
and mobile apps can securely access information from
other servers for these users, enabling you to give your
users functionality and services from other sites.
Instead of unsafe password-sharing, OAuth offers a
much more secure delegation protocol. OAuth is used
everywhere, from large providers like Facebook and
Google, to small APIs at startups, and even cloud ser-
vices, it’s the worldwide standard. OAuth 2 is the must-

know security protocol on the web today.
 OAuth 2 in Action teaches you practical use and deployment of this protocol from

the perspective of a client, authorization server, and resource server. You’ll begin with
an overview of OAuth and a look at its components and interactions. Then, using lots
of hands-on examples, you’ll build your first OAuth client, followed by an authoriza-
tion server, and then a protected resource. The second part of the book dives into cru-
cial implementation vulnerability topics. Then you learn about tokens, dynamic client
registration, and more advanced topics. This book teaches you to how to distinguish
between different OAuth options and choose the right set for your application. By the
end of this book, you’ll be able to build and deploy applications that use OAuth on
both the client and server sides.

What's inside

 Understand OAuth 2 protocol and design
 Authorization with OAuth 2
 Implementation risks
 Building an OAuth 2 environment
 Protecting and accessing REST APIs

Readers need basic programming skills and knowledge of HTTP and JSON.

store/books/9781617294327

https://www.manning.com/books/oauth-2-in-action
https://www.manning.com/books/oauth-2-in-action
https://itbook.store/books/9781617294327

www.itbook.store

 Good API design balances the technical details of the implementation
with the business value desired by the product managers. Good APIs consider
security even in the design phase. This chapter gives you an overview of web-
based APIs and general API design concerns.

Working with Web APIs
/books/9781617294327

https://itbook.store/books/9781617294327

www.itbook.
Chapter 2 from Irresistible APIs: Designing web
APIs that developers will love by Kirsten K. Hunter

Working with web APIs
In the next few chapters, I’ll cover the server-client interaction in detail, but in this
chapter I’ll help you understand the concepts with a simple example of an API and
sample application. Most basic API examples use a to-do list but that’s kind of over-
used, so I decided to go a different way: I’ve selected a list application with pizza
toppings. Note that this particular application is simple by design; the goal is to
show you how to interact with the API, and how an application interacts with an
API. Of course, if this were a production application it would have a full pizza, or
pizzas, and the database wouldn’t be shared. But for the goals here, I’ve taken out
as much complexity as possible to make the basic principles clear.

 Looking at an API is interesting, but it doesn’t necessarily help you to under-
stand how it can drive an application. Additionally, it’s challenging to perform

This chapter covers
 Structure of a simple API

 Ways to inspect calls to an API

 Interaction between an API and a client
application

 Deployment of the sample API and application
on your system
23

store/books/9781617294327

http://irresistibleapis.com/api/v1.0/toppings
http://irresistibleapis.com/api/v1.0/toppings
https://www.manning.com/books/irresistible-apis
https://www.manning.com/books/irresistible-apis
https://itbook.store/books/9781617294327

24 CHAPTER 2 Working with web APIs

www.itboo
actions such as create and delete in a browser, so in addition to the API I’ve included a
simple application using this API with JavaScript. This application exercises all of the
functionality in the API so you can see how an application interacts with a web API.

 To get an idea of how this works in practice, I’ve created a basic API using Node.js,
a JavaScript-based web server framework. (You can learn more about this framework
at www.nodejs.org.) The API supports all of the needed actions to represent a com-
plete system: create, read, update, and delete. The first task will be to explore the API
in a browser using the read functionality.

 This application runs on a web host at www.irresistibleapis.com/demo. You can
check out the application there and follow along with the concepts in this chapter. If
you’re a developer and want to explore the code more intimately, use the exercises at
the end of the chapter to get the example running on your own system, including
both the Node.js application and the HTML/JavaScript web application. In the sec-
tion 2.6, I also describe the various moving parts to this API and application so you
can play with it as you like.

2.1 HTTP basics
To understand the transactions between the client and the server in API interactions,
you’ll need a basic grasp of how HTTP works. This topic will be covered in more detail
in chapter 4, but for now I’ll give you some high-level information about the protocol.

 HTTP stands for HyperText Transfer Protocol, and you’re probably most familiar
with it as the way web browsers get information from web servers. An HTTP transac-
tion is composed of a request from the client to the server (like a browser asking for a
web page), and a response from the server back to the client (the web page from the
server, for a browser). First, I’ll describe the elements in an HTTP request. You’re
familiar with the URL, the address that you type into the address box on a browser,
but that address is only one portion of the information sent from your browser to the
server in order to process a web request.

2.1.1 HTTP request

Figure 2.1 demonstrates the elements that make up an HTTP request, along with
examples of how these sections are used. The HTTP request is usually sent with head-
ers, setting the context for the transaction. An HTTP request always has a method;
methods are the verbs of the HTTP protocol. To understand what your browser does,
imagine that you’re visiting my main website. Here are the pieces of the request that
are sent by your browser:

 Headers: Accept: text/html—This tells the server that the browser wants to get an
HTML-formatted page back. It’s the most readable format for humans, so it
makes sense that your browser would request it.

 Method: GET—This is the read method in HTTP and is generally the method
used by browsers when reading web pages.
k.store/books/9781617294327

http://irresistibleapis.com/api/v1.0/toppings
www.nodejs.org
www.nodejs.org
www.nodejs.org
www.irresistibleapis.com/demo
https://itbook.store/books/9781617294327

25HTTP basics

www.itbook.
 URL: http://irresistibleapis.com—This is the only piece you actually indicated for
the browser.

 Body: none—A GET request doesn’t need a body, because you’re not changing
anything on the server—you’re just reading what’s there.

All of the actions of CRUD (create, read, update, and delete) are represented by
methods within HTTP:

 Create: POST
 Read: GET
 Update: PUT
 Delete: DELETE

Figure 2.1 An HTTP request will always have a method and will be sent to a specific URL, or resource.
Depending on the specific call, headers may be sent to specify information about the request. If the call
is designed to write new information to the system, a body will be sent to convey that information.
store/books/9781617294327

http://irresistibleapis.com
https://itbook.store/books/9781617294327

26 CHAPTER 2 Working with web APIs

www.itboo
The URL is the unique identifier for the resource. It’s just like any other URL on the
internet, except in this case it’s used to describe the resource in an application system.
If parameters are needed for the request, such as a keyword for search, they’re
included in the parameters of the request. To see how parameters would look, here’s
an example search request:

http://www.example.com/api/v1.0/search?keyword=flintstone&sort=alphabetical

In this example, the resource being called is http://www.example.com/api/v1.0/se-
arch. The question mark and everything following it are parameters giving more in-
formation about what the client wants in the response. A body section is only sent for
create (POST) and update (PUT) transactions.

 Next, I’ll describe the sections of an HTTP response.

2.1.2 HTTP response

Figure 2.2 shows the elements of a typical HTTP server response. The server is likely to
send back several headers giving information about the system and the response. Just
as all requests have a method, all responses have a status code. These status codes will
be described in more detail in chapter 4, but for now it’s sufficient to know that 2XX
means that the request was successful, 3XX is a redirect to another location, 4XX is an
error in the request from the client, and 5XX means the server had a problem. In the
earlier example, calling my website, the server would’ve responded with the following:

Figure 2.2 A response will always have a status code, and a well-designed platform will send headers
to provide information about the response (such as size or the content type). For most requests, a body
will be sent back from the server to provide information about the current status of the resource.
k.store/books/9781617294327

https://itbook.store/books/9781617294327

27The Toppings API

www.itbook.
 Status code: 200—Everything worked correctly.
 Headers:

– Content-Type: text/html—as requested by the client
– Date: <date of response>
– Content-Length: <size of response>

 Body—The content of the page. This is what you see if you “view source” within
the browser—the HTML page that tells the browser how to render the page
and what content to display.

2.1.3 HTTP interactions

Every HTTP transaction between a client and server will be composed of a request,
sent from the client to the server, and a response, sent from the server back to the cli-
ent. There’s no higher level interaction; each request/response is stateless and starts
again from scratch. To help you understand this better, I’ll move on to a discussion of
a specific API.

2.2 The Toppings API
Many different styles of API are available, but the one I’m going to be using and talk-
ing most about here is a Representational State Transfer (REST)-style API, the most
common type of web API.

 As discussed in chapter 1, REST APIs are designed to work with each resource as a
noun. A specific resource within a system has a unique identifier, which is a URL, just
like the ones you visit in the browser. This URL identifies the resource in the system
and is designed to be understandable when viewed. For example, with a REST API you
could view the list of existing toppings with the following request:

http://irresistibleapis.com/api/v1.0/toppings

These are the actual URLs, retrieved with a GET (read) operation. If you put this in a
browser, you’ll see the results displayed in figure 2.3.
You can visit this URL in your browser right now and get the information about a sin-
gle topping or a list of toppings. Figure 2.3 shows what this call will look like in a web
browser. Go ahead and try both of these calls in your own web browser to see how easy
it is to retrieve information from this kind of service. Again, this is just like any other
web request, only formatted for a computer to work with.

 Now, to view a single topping, you’d take the id field from the list you just retrieved
and append it to the URL. Basically, you’re saying “Give me the toppings list” and
then “but just the one with the id of 1.” Almost all APIs work in this way. The parent
level is a list of items, and adding an ID will retrieve a single member of the list.

http://irresistibleapis.com/api/v1.0/toppings/1

The same resource is accessed to update, view. or delete a particular item, simply
using different HTTP methods as described in section 2.1 to tell the server what you
store/books/9781617294327

https://itbook.store/books/9781617294327

28 CHAPTER 2 Working with web APIs

www.itboo
want to do. You can add new items by sending a POST to the list itself (so in the earlier
case, the /toppings endpoint would be used to add a new topping). This type of API
encourages engagement and innovation by the developers, and consistency across
multiple API providers makes it easier to get up and going writing clients.

2.3 Designing the API
To go through the steps, imagine an online website for a pizza parlor. Users are having
trouble interfacing with the pizza ordering system and want to be able to customize
their pizzas. The company wants to increase customer satisfaction. This represents the
Business Value for this platform. Figure 2.4 illustrates each call to the system and how
it would be formatted.
To provide this, they need to create a system that consistently allows their users to pick
different pizza toppings and keep them in a list (Use Case). The company decides to
measure success by determining the increase in people finishing up started orders
(Measurements). Fortunately for this example, it’s relatively easy to figure out how an
API can meet these needs.

Figure 2.3 Example result of a web call in a browser. The response is JSON, a common markup language
for web APIs. As you can see, the formatting makes it easy to understand the content of the response.
k.store/books/9781617294327

http://localhost
http://localhost
https://itbook.store/books/9781617294327

29Designing the API

www.itbook.
 Because I’m creating a resource-based API, each request will be a unique URL
describing one piece of the back-end structure with a method describing what the cli-
ent wants to do with that resource. In this case, I have only two different types of
resources: individual toppings and lists of toppings. Individual topping resources such
as /api/v1.0/toppings/1 are used for viewing, editing, and deleting a single topping.
The list resource /api/v1.0/toppings is used for viewing all toppings or for adding a
new topping to the list. Table 2.1 shows each call to the API and a description of what
it does.

Figure 2.4 This diagram represents the complete set of interactions with the API system. The GET
request reads the current value of the resource, whether it’s a list or an individual item. POST is only
allowed at the list level, and creates a new resource in the system. PUT updates and DELETE deletes
an existing resource. All four of the needed methods, Create, Read, Update, and Delete method
Delete, are represented in this diagram.
store/books/9781617294327

http://registry.npmjs.org/
http://registry.npmjs.org/
mailto:express@2.5.1
https://itbook.store/books/9781617294327

30 CHAPTER 2 Working with web APIs

www.itboo
And that’s it. The platform features create, read, update, and delete operations avail-
able to you by combining the HTTP methods with the URLs for your resources. But
what do you get when you make these calls? When you GET the resource for a single
topping, you get information just about that topping. Try this now in your browser:
http://irresistibleapis.com/api/v1.0/toppings/1.

GET /api/v1.0/toppings/1
{
 "topping": {
 "id": 1,
 "title": "Pepperoni"
 }
}

This response is represented in JavaScript Object Notation (JSON), a formatting syn-
tax first described in chapter 1. JSON will be covered in more detail in chapter 4, but
for now you can see how the data is structured. If you want more information about
JSON you can find it at http://json.org. The curly braces indicate an object, which is a
group of pairings of names and values. What’s represented here is a JSON structure
describing a single object—a “topping,” which has an ID of 1 and a title of Pepperoni.
This is the same resource address a client can access to view, delete, or update an exist-
ing topping. This means that the URL for the single topping is actually the toppings
list of http://irresistibleapis.com/api/v1.0/toppings followed by the ID of the top-
ping from within this structure—so http://irresistibleapis.com/api/v1.0/toppings/1.

 If you GET the resource for the list of toppings directly, the returned information
includes a list instead of a single object. Call this URL in your browser to see the list:
http://irresistibleapis.com/api/v1.0/toppings.

GET /api/v1.0/toppings
{
 "toppings": [
 {
 "id": 1,

Table 2.1 API calls

API Call Description

GET /api/v1.0/toppings List current toppings

GET /api/v1.0/toppings/1 View a single topping

POST /api/v1.0/toppings Create a new topping

PUT /api/v1.0/toppings/1 Update an existing topping

DELETE /api/v1.0/toppings/1 Delete an existing topping

Listing 2.1 Retrieving a single topping

Listing 2.2 Retrieving a list of all toppings

Curly braces
indicate an object

Curly braces
indicate dictionaries

Square braces
indicate lists
k.store/books/9781617294327

http://irresistibleapis.com/api/v1.0/toppings
http://irresistibleapis.com/api/v1.0/toppings/1
http://irresistibleapis.com/api/v1.0/toppings
http://json.org
http://irresistibleapis.com/api/v1.0/toppings/1
https://itbook.store/books/9781617294327

31Using a web API

www.itbook.
 "title": "Pepperoni"
 },
 {
 "id": 2,
 "title": "Pineapple"
 }
]
}

In this case, because the request was for a list of objects, square brackets demonstrate
that the returned object contains a list of “toppings.” Each individual topping looks
the same as listing 2.1. Again, this is simply how information is represented in JSON.
To understand these calls and responses, just remember that an object (with keys and
values) is represented by curly braces, and a list (an unnamed collection of items) is
represented with square brackets. In some programming languages these are referred
to as hashes and arrays.

 Both of these calls can be made from a standard web browser. If other people have
added items to the list, you’ll see those included in the list view as well; this is a live call
into the API system and will return the appropriate information. In this case, the API
is generated by node. If you’re a developer who’s interested in learning more about
the back end of the system, the advanced exercise at the end of the chapter will give
you information about how to run this system on your own, as well as the application
running on top of the API.

 This simple API interaction gives you the opportunity to start understanding some
of the topics covered in chapter 4.

2.4 Using a web API
You can interact with this API in various ways, as you’ll learn in this section. Feel free
to try any or all of these approaches to see how the interaction works.

2.4.1 Browser

A browser can make GET calls to specific resources very easily. Note that this is easy in
the case of my demo API because there’s no authentication to worry about. The chal-
lenge is that the browser doesn’t have any way to easily update, delete, or create new
items. Using the developer tools or web inspector in your browser can give you more
information about the call as well.

 For instance, the Chrome web browser has developer tools that allow you to
inspect the traffic it’s processing. Figure 2.5 shows what these tools look like in the
browser. I’ll break down what you’re seeing here in terms of what I described earlier.
Note that the Chrome tools are showing the request and response combined together
in this tab.
store/books/9781617294327

http://irresistibleapis.com/
https://itbook.store/books/9781617294327

32 CHAPTER 2 Working with web APIs

www.itboo
For the request:

 Headers:
– Accept: text/html, application/xhtml+xml,application/xml; q=0.9,image/webp; */*;

q=0.8—This is the list of accepted formats for this browser request, in order
of preference. Because it includes “*/*” – or “any content type” late in the
list, the browser will accept any type of response and do the best it can with it.

– Many other headers are shown in figure 2.5. Take a look at them and run the
same request on your system to see how they change and what stays the same
in each request/response transaction.

 Method—GET
 URL—http://irresistibleapis.com/api/v1.0/toppings
 Request Body—none
 Status code—200 OK

2.4.2 Command line (curl)

If you’re comfortable with the command line, you can use the curl command to
make calls to the API as well. This tool is fairly straightforward and makes it possible to
interact with the API more completely, using all of the available methods rather than

Figure 2.5 The Chrome browser makes it possible to see information about the request and response
headers, the body of the request or response, and other useful information about the transaction.
Although browsers aren’t designed to send PUT or DELETE responses, the information provided here can
go a long way in helping you to understand the interactions with the platform.
k.store/books/9781617294327

http://irresistibleapis.com/api/v1.0/toppings
https://itbook.store/books/9781617294327

33Using a web API

www.itbook.
limiting transactions to read operations as the browser does. curl is native on Unix-
based systems such as Linux and Macintosh, and you can install it easily for Windows
from http://curl.haxx.se/download.html.

 Let’s take a quick tour through the API using curl. By default, curl uses GET
(read), but you can specify other methods on the command line, as shown in the fol-
lowing examples. Remember that your responses may be different if other people
have been changing things; just go ahead and work with what you get. Don’t be shy—
this API is just for this book, and you can’t break anything important. The best way to
understand this type of system is to work with it yourself.

 First, let’s use curl to look at a single topping. Lines beginning with a dollar sign
indicate a command-line call. The other information is the information returned by
the server itself.

$ curl http://irresistibleapis.com/api/v1.0/toppings/1
{
 "topping": {
 "id": 1,
 "title": "Pepperoni"
 }
}

That seems pretty reasonable. I’d eat a pizza with pepperoni on it. Let’s list all the top-
pings and see what else is on the pizza. Remember that the list for the toppings is at
the parent level, or /api/v1.0/toppings.

$ curl http://irresistibleapis.com/api/v1.0/toppings
{
 "toppings": [
 {
 "id": 1,
 "title": "Pepperoni"
 },
 {
 "id": 2,
 "title": "Pineapple"
 },
 {
 "id": 3,
 "title": "Pickles"
 }
]
}

Wait, what? Pickles? That’s kind of gross. Let’s delete that one. The ID for it is 3, so the
correct path to operate on is /api/v1.0/toppings/3.

Listing 2.3 GET /api/v1.0/toppings/1

Listing 2.4 GET /api/v1.0/toppings
store/books/9781617294327

http://curl.haxx.se/download.html
https://itbook.store/books/9781617294327

34 CHAPTER 2 Working with web APIs

www.itboo
curl -i -X DELETE http://irresistibleapis.com/api/v1.0/toppings/3
{
 "result": true
}

The response here says we succeeded. Just to be sure, let’s pull a list of toppings again.

$ curl http://irresistibleapis.com/api/v1.0/toppings

{
 "toppings": [
 {
 "id": 1,
 "title": "Pepperoni"
 },
 {
 "id": 2,
 "title": "Pineapple"
 }
]
}

Okay, that’s much better. But our pizza has pepperoni and pineapple, and I’d much
prefer ham with my pineapple. Let’s go ahead and change that first one to make the
pizza how I want it. To update an existing item, the command needs to send a PUT to
the resource with the new information required.

$ curl -i -H "Content-Type: application/json" -X PUT -d '{"title":"Ham"}'
http://irresistibleapis.com/api/v1.0/toppings/1

{
 "topping": {
 "id": 1,
 "title": "Ham"
 }
}

Nice, now the pizza is looking pretty good. But really, as far as I’m concerned the pizza
is just a vehicle to get cheese in my mouth, so I’ll add some extra cheese to go with the
Hawaiian pizza I’ve built.

$ curl -H "Content-Type: application/json" -X POST -d '{"title":"Extra extra
 cheese"}' http://irresistibleapis.com/api/v1.0/toppings
{
 "topping": {
 "id": 3,

Listing 2.5 DELETE /api/v1.0/toppings/3

Listing 2.6 GET /api/v1.0/toppings

Listing 2.7 PUT /api/v1.0/toppings/1

Listing 2.8 POST /api/v1.0/toppings/1
k.store/books/9781617294327

https://itbook.store/books/9781617294327

35Using a web API

www.itbook.
 "title": "Extra extra cheese"
 }
}

Let’s do one final check to make sure that the pizza looks good.

$ curl http://irresistibleapis.com/api/v1.0/toppings

{
 "toppings": [
 {
 "id": 1,
 "title": "Ham"
 },
 {
 "id": 2,
 "title": "Pineapple"
 },
 {
 "id": 3,
 "title": "Extra extra cheese"
 }
]
}

Awesome! Now the pizza is just right.
 Note that with curl you can also pass -i for slightly more chatty information, or –v

for a much larger dose of verbose output. If you’re having fun and you’d like to try
those now, feel free. The extra details you’ll see are HTTP transaction details, which
will be described in chapter 4.

2.4.3 HTTP sniffers

Browsers have become very capable at showing information about the calls they’re
making, but this is of limited use for a couple of reasons. As I mentioned earlier, a
browser is really only capable of sending a read request, which restricts the actions
you’re able to explore. When you submit a form, it will create a create (POST) request,
but you don’t have the ability to arbitrarily call these operations in your browser.

 HTTP sniffers are tools that allow you to explore all the HTTP traffic your system
processes. HTTP sniffers watch and report on the network traffic your system is gener-
ating, whether it comes from a browser, an application, or a raw command-line call.
With these tools, you can see the entirety of the HTTP request and response, and this
allows you to debug what’s happening if you’re running into issues.

 If you’re using a Mac, HTTPScoop (www.tuffcode.com) is a very friendly choice.
It’s easy to set up and use, and the output is clear and complete. The downside to this
tool is that it can’t monitor secure transactions (HTTPS calls) and so it’s not going to
work with any API requiring secure calls. For the purposes of this book, though, you’ll
only be accessing a nonsecure API (the demo API) so HTTPScoop is a fine choice—it

Listing 2.9 GET /api/v1.0/toppings
store/books/9781617294327

www.tuffcode.com
https://itbook.store/books/9781617294327

36 CHAPTER 2 Working with web APIs

www.itboo
would be my first choice for any Mac users wanting a reasonably intuitive experience.
The license cost is $15 but you can try it for two weeks for free.

 Figure 2.6 shows an example of the windows in HTTPScoop. For this chapter, I’ll
focus on the main screen listing all calls and the Request/Response tab. Later in the
book you’ll learn about headers, status codes, and other HTTP details so you can
understand how they all interact together. For now, however, consider the request to
be a simple request and response, and don’t worry about the particular details if
you’re not already familiar with HTTP.

For Windows users, the best choice out there is Fiddler, which you can find at
www.telerik.com/fiddler. For Windows, Mac, and Linux, there’s a slightly more com-
plicated choice in Charles (http://www.charlesproxy.com). If you’re quite advanced
in your network administration skills, you can try out Wireshark from https://www.wi-
reshark.org. Wireshark is available and free for every major platform and sniffs all
kinds of traffic, not just web/HTTP traffic, but the interface is quite complex and it
can be difficult to understand what you’re seeing.

EXERCISE 1 Watch the traffic in an HTTP sniffer as you go through the exer-
cises from this chapter. Use the curl calls to access the API directly and see
what the calls look like. For more verbosity with curl, you can use –v in your
command and see more information about the call from the client side. Com-
pare the information in the sniffer to what curl sends and see if you can find
patterns. Which debugging method gives the best information? Which one is
easier for you to use?

Figure 2.6 This is an example of a call being inspected by HTTPScoop. On this basic landing page, you
can see the Request URL, representing the resource. The content type of the response, status code, and
response size are also provided.
k.store/books/9781617294327

www.telerik.com/fiddler
https://itbook.store/books/9781617294327

37Interaction between the API and client

www.itbook.
EXERCISE 2 Make a deliberately incorrect call. Call /api/v1.0/top-
pings/100—there’s not likely 100 toppings on the pizza so this is a bad call.
What kind of output did you get from curl –v? What did the HTTP sniffer
show? The status code tells you how the system responded, which should give
you the information you need to figure out what the issue is.

2.5 Interaction between the API and client
Seeing these GET calls to the API is somewhat interesting, but unfortunately you can’t
see the POST, PUT, or DELETE calls using a browser. curl isn’t very intuitive for explor-
ing a system. Without some kind of application using the API, it’s difficult to explore
and visualize the elegance and simplicity of this kind of interface.

 Keeping in line with the simple API, I’ve created a simple application to exercise
the API, creating a list of toppings for your virtual pizza. Again, for a real application
there would be a full pizza and a method to place the order, but this application is
deliberately as simple as possible so it’s easy to understand how it works.

 I’ll go through the same sequence I did in the last section. Here’s our starting
pizza, with pepperoni, pineapple, and pickles. Loading the initial page causes an API
call to be generated and we get the current list of toppings from the system.

 First, take a look at the JSON representation returned when the API is called
directly at /api/v1.0/toppings, shown in figure 2.7. Figure 2.8 shows how the appli-
cation looks when this API call is made on the back end.

Figure 2.7 Here you see a representation of the API toppings list in JSON, the markup language used
by the platform. As described, the curly braces indicate an object, or dictionary, and the square brackets
represent an array, or list of objects.
store/books/9781617294327

https://itbook.store/books/9781617294327

38 CHAPTER 2 Working with web APIs

www.itboo
Now take a look at the main application at http://irresistibleapis.com/demo. With
the JSON data, the simple application can build the front page. Some of the items are
static—that is, they don’t change. The top half of the page, for instance, is always the
same, with the title of the display and a button to add new toppings. The bottom half,
though, is created based on the information retrieved from the API. Each topping is
listed, and the ID of the topping is used to create an appropriate button to act on that
specific item. The user has no need to understand the relationship between the ID
and the name of the topping, but the IDs used programmatically to set up the page to
be functionally correct. Note how the information in the API in figure 2.4 directly
maps to what’s shown in the application in figure 2.5. The buttons on this page map
directly to the other API calls, as shown in table 2.2.

Table 2.2 The mapping between the API calls and application functions

API call Application function

GET /api/v1.0/toppings Main application page

GET /api/v1.0/toppings/1 View button on main page

POST /api/v1.0/toppings “Add new topping”

DELETE /api/v1.0/toppings/1 Delete button on either page

Figure 2.8 The application view for the toppings list shows the same information as shown in figure 2.4.
This screen is created by calling the toppings list and creating the HTML based on the returned
information. So if the list changes on the server, both figure 2.4 and figure 2.5 would change, with both
showing the same information in different ways.
k.store/books/9781617294327

https://itbook.store/books/9781617294327

39Interaction between the API and client

www.itbook.
As we walk through the API actions, use the HTTP sniffer of your choice to watch the
traffic as the interactions happen. A note here: Because this system is live, other peo-
ple may have added, deleted, or edited the toppings and they may not match. Feel
free to use the buttons to adjust the toppings to match, or just follow along with your
own favorite toppings (Jalapeños? Sun Dried Tomatoes? Legos?).

 The first action in the previous example was removing the pickles from the pizza,
and clicking Delete on this page for the Pickles entry will do just that. This button
knows which ID to operate on because it was embedded in the page when the listing
was rendered.

 Clicking the Delete button will make the DELETE call and then make a call to the
API to re-render the list of toppings with the deleted topping gone. If you’re using an
HTTP sniffer or have configured your browser to show you web traffic, you can see this
call happening from your system. Figure 2.9 shows what it looks like in HTTPScoop.

As you can see, the application pulled a few different framework files, and then got
the full listing for the main page. When I clicked Delete, the application sent a DELETE
request to the API server and then requested a new list of toppings. All of the requests
were successful, so the main page refreshed to show the new list. Figure 2.10 shows the
list after I deleted the offending pickles from the toppings list.

 To edit an existing topping, in this case to change Pepperoni to Ham, click the
View button. Doing so makes the read call for the specific item and allows you to edit
the title. Using this technique to edit the Pepperoni to Ham, and then clicking Save,
causes a PUT to happen exactly as in the original example. Watch your HTTP sniffer or
browser traffic to see how this progression works. Figure 2.11 shows what the edit page

Figure 2.9 This HTTPScoop screen shows a list of all the calls made by the system. In this case, you
can see the DELETE method is called to remove the /toppings/3 resource from the system, and it
was successful, as indicated by the 2XX response in the code column.
store/books/9781617294327

https://itbook.store/books/9781617294327

40 CHAPTER 2 Working with web APIs

www.itboo
looks like for a particular topping—in this case I changed the title from Pepperoni to
Ham. When this change is PUT to the API, it will change the item’s title from Pepper-
oni to Ham, updating the database to reflect the change permanently.

The PUT request, viewed in HTTPScoop, shows the request and response (see figure
2.12).
As with the associated curl request earlier, the debugging demonstrates that the cli-
ent sends a request including the new information for the requested item. A PUT
request replaces information for an existing item in the system. In the response, the
server returns a response showing the new values for the resource. This returned
object matches the object that was PUT to the system. Without HTTPScoop this seems
a little magical, but you should be seeing a pattern by this point; these common oper-
ations are direct mappings to system calls on the back end of the application.

 Again, once the topping is edited, the application redisplays the main page, now
with Ham and Pineapple (figure 2.13).
What’s left then? Now I need to add my extra cheese to the pizza, because it’s my
favorite sort of thing. Clicking the Add New Topping button on the main page gives

Figure 2.10 Once the topping has been deleted from the system, the HTML representation of the
toppings list no longer shows the deleted topping. If the platform call is made (to /toppings) you’ll
see that the change is reflected in the JSON representation as well.

Figure 2.11 The Edit a Topping screen allows you to change the title of an existing resource.
k.store/books/9781617294327

https://itbook.store/books/9781617294327

41Interaction between the API and client

www.itbook.
me a page for adding a new topping, as shown in figure 2.14. Remember, adding a
new item to the list is a POST action, and that’s what will happen on the back end. Fig-
ure 2.15 shows what the API transaction looks like when this POST is sent.
This example demonstrates again the difference between PUT, which updates a spe-
cific existing item, and POST, which creates a new item by adding it to the specified list.

Figure 2.12 When you change the title of an existing resource, the information is sent to the server, and
it sends back the new representation of that item. In this case, the object is quite simple; the title is the
only field that can be changed. This is a simple demonstration of how an update works on an API platform.

Figure 2.13 The list of toppings now includes Ham and Pineapple; the Pickles have been deleted (thank
heavens) and the Pepperoni has been changed to Ham using an update. Again, if you made a call to the
/toppings resource you’d see the changes shown in the JSON representation as well.
store/books/9781617294327

https://itbook.store/books/9781617294327

42 CHAPTER 2 Working with web APIs

www.itboo
After adding this new topping to the system, the application again requests the list of
toppings, which brings the web page back, once again, to the main page. This com-
pletes the circuit using an application to exercise the back-end API. The single page
running this application is quite straightforward, because all the logic and actions are
happening on the back end using the API.

 Now that you’ve had the opportunity to view some specific traffic, take time to play
with the example application with the various HTTP inspection methods. Because this
sample application runs in your browser, you have the option of using developer tools
in your browser to watch the traffic or an HTTP sniffer for this exploration. For the
exercises in this book, you’ll want to use an HTTP sniffer, so pick the one you’re most
comfortable with and start familiarizing yourself with its use.

Advanced Example Note
If you’re a developer and wish to install your own copy of this system, follow the
instructions in section 2.6 to do so. Otherwise, skip to section 2.7 for a summary of
this chapter.

Figure 2.14 The Add a Topping screen is designed to add new toppings to the system. As mentioned
earlier, a create action is generally represented by a POST operation, and that’s what the system will do
in this case.

Figure 2.15 HTTPScoop POST request/response. The only field needed to create a new topping is the
title, and it’s set to Extra extra cheese (yum!). The response shows the ID and title—the entire
representation—of the newly added item.
k.store/books/9781617294327

https://itbook.store/books/9781617294327

43Install your own API and front end

www.itbook.
2.6 Install your own API and front end
This optional section is designed specifically for developers who want to understand
more completely the back-end functionality of the API and sample application. You
can use a Docker container to run the system quickly on your own system or download
the code from my GitHub repository. I’ll walk through the steps to install and use the
Docker container first, and then give more general instructions for grabbing the code
from GitHub to run on your own system.

2.6.1 Installing the system via Docker

Docker is extremely simple to install on Linux systems, and quite easy on OS X and
Windows systems as well. Installing the Docker container is simple once you’ve got the
Docker system set up. Using this container allows you to separate the code and pro-
cesses from the main processes on your system while avoiding the memory and space
management issues of more heavyweight virtual machine systems.

 The Docker installers for installation on Windows and Macintosh are here:

https://www.docker.com/toolbox

If you’re an advanced user running Windows and already have virtualization working
via VBox or another virtualization system, you need to be aware that Docker relies on
VirtualBox, which may conflict with your existing setup. Additionally, boot2docker
requires that virtualization be available on your system, which infrequently requires
changes to the BIOS. Also, virtualization is only available on 64-bit systems. If your sys-
tem is a 32-bit system, you’ll need to install the code directly from GitHub.

 Once you’ve installed Docker using the instructions at the Docker website, you’re
ready to pull and run the container.

 On Linux, issue the command (on one line)

% sudo docker run -p 3000:3000 synedra/irresistible

to bind your system’s port 80 to the Docker container on port 3000.
 On systems using boot2docker (Windows or Mac OS X), the command is as follows

(root access isn’t needed because of the nature of docker-machine):

% docker run -p 3000:3000 synedra/irresistible

The application automatically runs in the Docker container. When using
boot2docker, the Docker engine assigns a separate IP address for Docker containers.
In order to determine the IP address of your Docker container, issue the command
docker-machine ip default. Once you’ve done that, you can access the system at
http://<docker-ip/. Because the server is running on port 80, the default web port,
the browser will find the web server on that port.

 If you’d like to start the container and explore the code, you can do so with the fol-
lowing command, which won’t start the node server:

% docker run -i -t synedra/irresistible /bin/bash
store/books/9781617294327

https://itbook.store/books/9781617294327

44 CHAPTER 2 Working with web APIs

www.itboo
You’ll now be root in a shell within the container. Accessing the system in this way
allows you to look at the code and figure out how all the pieces are working together.
The application itself is composed of the toppings.js file, and the front-end web server
is run from the static/index.html file. The previous command will allow you to access
the application directly without cross-domain issues. You can read more about Docker
port forwarding at https://docs.docker.com/userguide/dockerlinks/.

 If you’re running Docker directly on Linux, you can access the system directly at
http://localhost. If you already have a web service running on the default port, you
can assign a different port in the docker run command.

2.6.2 Installing the system via Git

If you prefer to run the applications on your own system rather than using the Docker
container, you need to have Git and Node.js installed on your system. The commands
needed to pull the repository to your system and install and run node are as follows:

% git clone https://github.com/synedra/irresistible
% cd irresistible/
% curl -sL https://deb.nodesource.com/setup | bash - && apt-get
 install -yq nodejs build-essential
% npm install -g npm
% npm config set registry http://registry.npmjs.org/
% npm install -g express@2.5.1
% npm install express
% npm install
% node toppings.js

From there you can access the system at http://localhost:3000 (or port 3000 on
whichever server you’re using). Node.js runs on port 3000 by default, so if you want to
expose the system on the standard port (80), you’ll want to run a separate server on
the front end—something like Nginx or Apache—and then create a reverse proxy
back to the node server. For security reasons it’s best not to use root to run a bare web
service, and you can’t access the standard ports as a regular user. This is one of the
advantages to using the Docker system—because it’s isolated from the rest of your sys-
tem at its own IP address, it’s safe to run the front-end server on port 80.

2.6.3 Exploring the code

As you’re running the system and exploring it, you’ll see the logs for the system show
up in the terminal window where you started up the web server. Using an HTTP
sniffer, you can watch the API traffic your system is generating as described in section
2.3. Once you’ve started a web browser at http://docker_ip_address/, not only will
you be able to see the traffic in an HTTP sniffer, but you’ll start seeing server entries
in the terminal window that you started.

 The logs show you all the traffic—both front-end calls to / and the back-end requests
to the API. This combined log data makes it easy to see how the systems are interacting.

 If you used the Docker setup, you were placed directly into the /opt/webapp
directory. The Git instructions will put you in the same directory: the webapp subdi-
k.store/books/9781617294327

https://itbook.store/books/9781617294327

45Summary

www.itbook.
rectory of the repository. Table 2.3 shows a listing of the files in the program directory
along with a description of what each one does.

The toppings.js file is used to run the node web server. When you type node toppin-
gs.js the application looks for the index.html file in the static directory and serves it up.

 The application uses Bootstrap, a single-page application framework that makes your
simple applications look pretty. The formatting pieces are mostly contained within the
Bootstrap framework, and overrides are made within the index.html file. This is all to
explain what the id and style attributes are for each <div> on the page. In this case,
it’s using the main-single-template for the outside wrapper, and the inside is a main-sin-
gle container. This function will present the table of items for the page to render.

 The $.get function makes the call to /api/v1.0/toppings, at which point the
back end returns a list of toppings, and this function is called to render the page.

EXERCISE 3 Play around with the page, see how each piece works, and try to
see if you can make the application go directly to the Edit page from the top-
pings list instead of the View page.

2.7 Summary
At this point you’ve either played directly with my hosted service or set up your own.
This chapter covered the following concepts:

 The structure of a simple web API system includes the required actions for a com-
plete platform: create, read, update, and delete.

 A basic HTTP transaction includes a clearly defined request and response, creat-
ing a foundation for web APIs.

 From HTTP sniffers to Chrome Developer Tools, the ability to monitor the traffic
makes it much easier to understand what’s happening between the systems.

 RESTful API ideals define the endpoints as nouns, and not verbs. Between these
ideas and the HTTP transactions they work with, the web API system is complete.
Now that you have an understanding of the various moving pieces in a simple API, you
can begin thinking about your own API at a higher level: how to architect the entire
system to use the simple pieces I discussed here to build a fantastic API system. This
chapter was more about the bottom up, and how the cogs and wheels work together to
make things work. The next chapter will help you to learn how to think top down:
what are the goals for your API system and how can you meet them most efficiently?

Table 2.3 Files included in the program directory

Filename Description

Procfile Used if you want to deploy this to Heroku

Toppings.js The main program for the system

static/index.html A very simple single-page application that exercises the API
store/books/9781617294327

https://itbook.store/books/9781617294327

46 CHAPTER 2 Working with web APIs

www.itboo
Irresistible APIs provides step-by-step guidance for
designing APIs that reflect an application's core busi-
ness value, delight the developers who use them, and
will stand the test of time. In it, business product mana-
gers and developers learn to treat an API as a first class
product. You’ll discover what questions to ask during
design so that the first version is the best possible prod-
uct. Because APIs are a combination of a business need
and a technical implementation, exercises throughout
the book present both sides of the design process, so
that you can engage with the material that's most com-
fortable and relevant for you. When you finish, your

team will be able to design APIs that attract developers, lead your industry, and add
value to your core business.

 A Web API is a platform with a web-style interface developers can use to implement
functionality. Well-designed APIs feel like a natural extension of the application,
rather than just a new interface into the backend database. Designing Web APIs based
on use cases allows an organization to develop irresistible APIs, which developers can
consume easily and which support the business values of the organization. By provid-
ing clear, jargon-free guidance on Web API design principles and processes, this book
breaks down the artificial barriers between business product managers and developers
implementing APIs.

What's inside

 Step-by-step guidance through the API design process
 Design Driven Development
 Tips for setting up your API design team
 The role of API design tools

Written for all members of an API design team regardless of technical level.
k.store/books/9781617294327

https://www.manning.com/books/irresistible-apis
https://www.manning.com/books/irresistible-apis
https://itbook.store/books/9781617294327

www.itbook.store

The Single Page Application (SPA), an increasingly common form of client
software for web applications. This design typically includes much richer
browser-based UI code and relies heavily on frameworks and web APIs. This
chapter considers how SPAs typically interact with RESTful web APIs.

Communicating
with the Server
/books/9781617294327

https://itbook.store/books/9781617294327

www.itbook.
Chapter 7 from SPA Design and Architecture:
Understanding single-page web applications by
Emmit A. Scott, Jr.

Communicating
with the server
In chapter 1, you learned how the adoption of the XMLHttpRequest (XHR) API and
the AJAX movement eventually led to the emergence of SPAs. After XHR was sup-
ported in the browser—as a COM component at first and then natively—developers
could use it to asynchronously load both the application’s scaffolding and its data
without refreshing the page. This opened many new avenues for the ways that web
pages could be constructed.

 Until now, you’ve been focusing on creating the SPA itself. In doing so, you’ve
used XHR to dynamically retrieve the templates used to construct your views but
restricted the data in your sample applications to local stub data. In this chapter,
you’ll take another important step forward. You’re going to move the source data
to the server and learn how to remotely access it from your SPA.

This chapter covers
 The server’s role in an SPA environment

 How MV* frameworks communicate with the
server

 Handling results with callback functions and
promises

 Consuming RESTful services
48

store/books/9781617294327

https://www.manning.com/books/spa-design-and-architecture
https://www.manning.com/books/spa-design-and-architecture
https://itbook.store/books/9781617294327

49

www.itbook.
 We’ll kick things off with a brief look at the communication process between the
SPA client and the server. After you’re clear on the overall process, we’ll look at the
details of what happens on the client.

 On the client side, I’ll focus on how MV* frameworks try to make your life easier
when you need to talk to the server. MV* frameworks that have built-in support for
persistence enhance the XMLHttpRequest API with their own expanded set of fea-
tures. But because each one has to go through XHR, there are certain commonalities I
can point out.

After learning the basics of communicating with the server, you’ll turn your attention
to dealing with the results. You’ll start with traditional callback functions, which
describe what you want to happen when calls succeed or fail. Next, you’ll learn about
the use of promises. Promises are fast becoming the preferred means of dealing with
XHR results by many of today’s MV* frameworks. More important, though, they’re part
of the ECMAScript 6 version of JavaScript. They’re generally considered a cleaner, more
elegant way of dealing with asynchronous processes than simple callback functions.

 This chapter wraps up with a look at consuming RESTful services with your SPA.
REST is an architectural style for both websites and web services that has gained wide-
spread popularity in recent years—so much so that many MV* frameworks support it
out of the box. Some even use the REST style as a default.

 I won’t go into great detail about designing RESTful services, because that server-
side topic is beyond the scope of this book. I’ll talk about what REST is in the philo-
sophical sense and discuss some of the ways in which MV* frameworks approach REST.

 In the example for this chapter, you’ll continue the preceding chapter’s used video
game store project by adding a shopping cart to it. A shopping cart is a standard fea-
ture for most sites selling goods and/or services online. It’s also the perfect venue for
demonstrating the server communication concepts in this chapter. You’ll explore the
details of your shopping cart later in the book. That being said, the sample project has
some new requirements that we need to discuss.

What’s the optimal way for an SPA to communicate with the server?
Generally, the most optimal way to communicate with the server from your SPA is to
use the objects provided by your MV* framework—provided that the framework sup-
ports server communication. Because its objects are built specifically to work within
the framework, they provide request and response methods that are ready-made to
work with the rest of the framework. You’ll need to customize these objects for your
specific needs, either through configuration or by extending them in some fashion.
Typically, you don’t need to supplement the framework with any additional libraries.

If your framework doesn’t have built-in support for communicating with the server, you
can opt to work directly with the low-level methods of the XMLHttpRequest object
itself, use a general utility library (such as jQuery), or go for a library that has fewer,
more specialized components (such as AmplifyJS, http://amplifyjs.com).
store/books/9781617294327

http://amplifyjs.com
https://itbook.store/books/9781617294327

50 CHAPTER 7 Communicating with the server

www.itboo
7.1 Understanding the project requirements
Unlike in previous chapters, to run the code in this chapter you’ll need a server.
Because most MV* frameworks, including the one we’re using (AngularJS), are server
agnostic, you can pick any server you want. You can also use any server-side language
you want. So whether you like JavaScript, PHP, Python, Ruby, .NET, Java, or any other of
the multitude of languages out there for server-side development, that’s perfectly OK.

 Here are the only two hard requirements for whichever server/language combina-
tion you prefer:

 Support of RESTful services, because the example uses REST

 JSON support, either built in or via an add-on

The example’s server code was developed using Spring MVC (version 4), which is a
Java-based MVC framework. Don’t worry, though, if you don’t know Java or Spring. In
our discussions within the chapter, I’ll refer to the server-side code only conceptually.
A guide to the server-side code’s configuration is available in appendix C. If you prefer
a different server-side tech stack, the appendix begins with a summary of the server-
side objects and tasks so you can structure your own server-side code accordingly. The
entire source for the project is available online for download.

 Now that you’ve been introduced to the project, let’s look at how your SPA can
communicate with the server.

7.2 Exploring the communication process
Though many concepts around communicating with the server are the same for any
type of web application, the next few sections present some of the basics within the
context of a single-page application. I’ll also highlight some specific ways in which the
MV* framework supports the communication process.

7.2.1 Choosing a data type

In order for the SPA running in the browser to communicate with a server, both need
to speak the same language. The first order of business is deciding on the type of data
that will be sent and received. To illustrate, I’ll use the example of a shopping cart, as
I do at the end of the chapter.

 When the user interacts with your shopping cart—whether it’s adding an item,
updating the quantity of an item, or viewing the current state of the cart’s contents—
you’re sending and receiving JSON-formatted text. JSON is commonly used by SPAs
when communicating with servers, though the data type can be anything from plain
text, to XML, to a file.

 Even though you’re using JSON-formatted text as a common data exchange for-
mat, it’s merely a representation of a system’s native object or objects. For the text to
be useful, conversions are happening at both ends. You’ll learn about these a little
later. To ensure that the conversions to native objects work, each side must do its part
to make sure the agreed-upon JSON format is used in the call.
k.store/books/9781617294327

https://itbook.store/books/9781617294327

51Exploring the communication process

www.itbook.
 When a call is made to the server, requests can include information about the inter-
net media types that are acceptable, because a resource can be available in a variety of
languages and media types. The server can then respond with a version of the
requested resource that it deems a best fit. This is called content negotiation. For this
project, you’re interested only in JSON. To express this, you can explicitly declare an
internet media type of application/json for the exchange.

Internet media types are specified using HTTP headers, which are the fields sent in the
transmission that provide information about the request, the response, or what’s con-
tained in the message’s body. The Content-type header tells the other system what to
expect in the request and response. The Accept header can also be specified in the
request to let the server know the media type or types that are acceptable to return.

 After a data type has been selected, an appropriate request method must be used for
the call to be successful. The next section presents common request methods for an
SPA.

7.2.2 Using a supported HTTP request method

When a client makes a request, it can indicate the type of action it would like the
server to perform by specifying the request method. In order for the request to be suc-
cessful, though, the HTTP request method specified in the request must be supported
by the server-side code for that call. If it isn’t, the server may respond with a 405
Method Not Allowed status code.

 Because the HTTP request method describes what should happen to the resource
represented in the request, it’s often called the verb of the call. A request method that
doesn’t modify a resource, such as GET, is considered safe. Any request method that
ends in the same result, no matter how many times its call is executed, is considered
idempotent. For example, you’ll use PUT when the user wants to update the count of a
particular item that’s in the cart. Because PUT is idempotent, you can tell the server
that you want two copies of Madden NFL 10 times in a row, but after the tenth time,
you still have only two copies in the cart.

Internet media types
An internet media type (formerly a MIME type) is a standard way to identify the data
that’s being exchanged between two systems. It’s used by many internet protocols,
including HTTP. Internet media types have the format of type/subtype. In this case,
you’re using a media type of application/json: the type is application, and the
subtype is json.

Optional parameters can also be added by using a semicolon, if required. For exam-
ple, to specify a media type of text, with a subtype of html and a character encoding
of UTF-8, you use text/html; charset=UTF-8.
store/books/9781617294327

https://itbook.store/books/9781617294327

52 CHAPTER 7 Communicating with the server

www.itboo
 Table 7.1 defines a few common HTTP request methods used in our shopping cart
example. Although it’s not a comprehensive list, it does represent the ones most com-
monly used in single-page applications.

Other HTTP methods are specified in the HTTP protocol. For a full list, see
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods.

 The final part of the communication process is the conversion of the data to and
from the internet media type sent and received.

7.2.3 Converting the data

After the data type is agreed upon, both the client and the server must be configured
to send and receive that particular type. For your shopping cart, you’re using JSON
exclusively, so both the code in the browser and the code on the server must be able to
convert to and from this text format.

 On the client, the ability to convert a JavaScript object to JSON may be built into
the MV* framework. If that’s the case, it’s likely the default, and the conversion will
happen automatically when you use the framework to make the server request. If
automatic conversion is not built in, the framework may offer a utility for the conver-
sion of its custom types. For the conversion of JavaScript POJOs, you can use the native
JavaScript command JSON.stringify():

var cartJSONText = JSON.stringify(cartJSObj);

On the server, the JSON-formatted text is converted into a native object of the server-
side language by a JSON parser that’s either built in or available via a third-party
library. Like the HTTP method, the exact method for executing the conversion pro-
cess on the server will vary.
To illustrate the process end to end, let’s use the shopping cart update example again.
Let’s say that the user has increased the quantity of an item in the cart. For the modifi-

Table 7.1 Common HTTP methods used in an SPA

Method Description Example Safe? Idempotent?

GET Typically, GET is used to fetch
data.

View the shopping cart Yes Yes

POST This method is most commonly
used for creating a resource or
adding an item to a resource.

Add an item to the cart No No

PUT Typically, PUT is used like an
update-or-create action, updating
the existing resource or optionally
adding it if it doesn’t exist.

Update the quantity of an
item in the cart

No Yes

DELETE This is used to remove a
resource.

Remove an item from the
cart

No Yes
k.store/books/9781617294327

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods
https://itbook.store/books/9781617294327

53Exploring the communication process

www.itbook.
cation to be verified and processed, you’ll send the updated cart to the server. Figure
7.1 paints a picture of the conversions that happen at both ends.

 After the update function is called, your JavaScript cart object is converted into
JSON-formatted text by the MV* framework. Next, the MV* framework passes the data
to the XMLHttpRequest API. Then the JSON payload is sent in the body of the request
to the server.

 On the client, after the response is received, the returned text is converted once
again. This time it’s converted back into a native JavaScript object. Often this is also
handled automatically for you by the MV* framework. If not, you can use the native
JavaScript command JSON.parse():

var cartJSObj = JSON.parse(returnedCartJSONText);

Now that we’ve discussed the communication process as a whole, let’s go back to the
client to talk about how MV* frameworks help simplify this process.

1. The MV* framework converts the
 JS object to JSON-formatted text

2. The request is sent

3. Server-side
 library converts
 JSON-formatted
 request text to a
 native object

4. Server-side
 code returns
 a cart object

5. Server-side
 library converts
 the native object
 returned to
 JSON-formatted
 text

6. JSON string representing updated
 cart contents is returned

Client

Request
Request method: PUT

Headers

Accept:
application/json
Content-type:
application/json

MV* framework

XHR
object

JavaScript
cart object

JSON conversion
from JS object

Server

Cart as
JSON text

Cart as
JSON text

JSON-native code
conversion library

Native code
cart object

Server-side code:
updateCart(Cart cart)

Updated
native code cart

object

JSON-native code
conversion library

Updated cart
as JSON text

Body

{cartId:123,
 items:[{
 productId:
"madden_nfl_15",
 quantity:2
 }]
}

Response

Headers

Content-type:
application/json

Body

{cartId:123,
 items:[name:
"Madden NFL 15",
productId ...}

etc… rest of cart
contents returned

Figure 7.1 JavaScript objects are converted to JSON and added to the request body for the request. In response,
the server sends back the updated cart as JSON via the response body.
store/books/9781617294327

https://itbook.store/books/9781617294327

54 CHAPTER 7 Communicating with the server

Con
obje
JSO

S
re

www.itboo
7.3 Using MV* frameworks
One thing MV* frameworks are great at is simplifying complex tasks by abstracting
away a lot of the boilerplate code involved. This is certainly true when it comes to com-
municating with the server. This section specifically covers making requests and deal-
ing with the responses. In our discussion, I’ll point out some of the ways in which MV*
frameworks help with the heavy lifting.

7.3.1 Generating requests

If server communication is supported by the framework, it may expose the XHR object
directly or abstract some or all of the XHR functionality with its own proprietary
objects. These custom objects act as wrappers around the XMLHttpRequest object
either directly or indirectly via another library such as jQuery. They add value by hid-
ing many of the tedious, repetitive tasks in making calls and processing the results.

 Before you look at any MV* examples, let’s put things into perspective by using
vanilla JavaScript and the XMLHttpRequest object to make a server call. If you need a
refresher on XHR, refer to appendix B.

 We’ll use the shopping cart again as an example. As you did earlier, you’ll update
the quantity of an existing item in the cart. Because you’re updating the quantity of an
item, you’ll use the PUT HTTP request method. As you learned in the preceding sec-
tion, PUT is commonly used in an update situation. To keep things simple, you’ll use
an abbreviated version of the cart data used in the project:

var cartObj = {
 cartId : 123,
 items : [{
 productId : "madden_nfl_15",
 quantity : 2
 }]
};

The following listing illustrates the plain JavaScript version of an update to the shop-
ping cart using the XMLHttpRequest object directly.

var cartJSON = JSON.stringify(cartObj);

var xhrObj = new XMLHttpRequest();

xhrObj
.open("PUT","/SPA/controllers/shopping/carts",true);

xhrObj
.setRequestHeader("Content-Type","application/json");

xhrObj
.setRequestHeader("Accept","application/json");

xhrObj.send(cartJSON);

Listing 7.1 Shopping cart update using PUT and XHR directly

vert JS 
ct to 

N text

Create new instance of
XMLHttpRequest object

Define the call
properties

Set the content type

Declare the data
type you’ll accept

end the 
quest
k.store/books/9781617294327

https://itbook.store/books/9781617294327

55Using MV* frameworks

Cr
ne
ins

www.itbook.
In this example, you’re not even handling the results. You’ll tackle that in the next
section. Even so, you have to deal with several of the low-level details. You have to man-
ually set the content type and any other headers you need (such as Accept). Addition-
ally, you have to manually convert the JavaScript cart object to JSON-formatted text.

 Generally, if an MV* framework has out-of-the-box support for server communica-
tion, you’ll most likely be generating requests from one of two types of objects: a
model or some type of utility/service object. If the framework requires you to create
an explicitly defined data model, you’ll most likely perform server operations by call-
ing functions on the model itself. If the framework doesn’t have an explicit data
model (the framework considers any source of data an implied model), you’ll proba-
bly work through the framework’s utility/service. AngularJS, for example, provides a
couple of services for server communication: $http and $resource. You’re be using
$resource in the project, and you’ll see it in action a little later.

MAKING REQUESTS VIA A DATA MODEL

With some frameworks (Backbone.js,
for example), you explicitly define a
data model by extending a built-in
model object from the framework. By
extending the framework’s model,
you inherit many capabilities auto-
matically. This includes the built-in
capability to perform the full range of
CRUD (create, read, update, and
delete) operations on a remote
resource (see figure 7.2).

 Don’t worry, though, if you need
to make custom calls. Most frame-
works let you override and customize
their out-of-the box behavior.

 Listing 7.2 extends Backbone.Model to define your shopping cart, passing in the
name of the attribute you want to use as its ID. You’re also defining a base URL for all
server requests. You have to do this only once, because this is just the model’s definition.

 After the model has a definition, you can create new instances of it anytime you
need to use it. All new instances of your shopping cart will then inherit everything you
need for server communication.

var Cart = Backbone.Model.extend({
 idAttribute : 'cartId',
 urlRoot : 'controllers/shopping/carts/',
});

var cartInstance = new Cart(cartObj);
cartInstance.save();

Listing 7.2 Backbone.js version of your shopping cart update

Your model
inherits the
MV* framework
model’s abilities.

MV* framework

MV* model

create()
read()

update()
delete()

Your model

Cart

Figure 7.2 With MV* frameworks, where your
model extends those of the framework, you
automatically inherit abilities from the parent, such
as the ability to make server requests.

Define a model with 
a URL and an IDeate a 

w model
tance

Call its inherited save()
function to initiate the request
store/books/9781617294327

https://itbook.store/books/9781617294327

56 CHAPTER 7 Communicating with the server

Defin
for th
and n
param
(null

t
ept
ure

www.itboo
The Backbone.js code is certainly less verbose. It’s also doing several things under the
covers. For starters, it assumes you’re dealing with JSON (unless you tell it otherwise)
and automatically converts the object passed into its constructor to JSON-formatted
text. In addition, it automatically sets the Content-type and Accept headers for JSON.
Finally, it can automatically decide whether to use PUT or POST based on whether the
object of the request has an ID yet. Again, any of these features can be customized or
overridden.

MAKING REQUESTS THROUGH DATA SOURCE OBJECTS

The other manner in which MV* frameworks make requests to the server is through a
separate data source object. This is typical when a framework, such as AngularJS,
allows you to use anything you want as a data model. With no parent to extend, there
are no canned abilities to inherit. When this is the case, the framework provides a data
source object that you’ll pass your model into when making a call (see figure 7.3).

 Let’s see an example of this alternative MV* approach. Listing 7.3 uses an
AngularJS $resource object to perform your shopping cart update. I mentioned ear-
lier that $resource is one of AngularJS’s services that can be used when communicat-
ing with the server. It has many features for easily modeling requests and dealing with
the server’s response. When you get to this chapter’s project, you’ll delve into the use
of $resource in detail to understand the example. For now, let’s see this style of MV*
code as a comparison with your original, vanilla JavaScript server call.

var CartDataSrc =
 $resource(
 "controllers/shopping/carts", null,
 {updateCart : {method : "PUT"}
 }
);

CartDataSrc.updateCart(cartObj);

Listing 7.3 AngularJS version of your shopping cart update

Data sources are
utility-like objects
you pass your data
into for the call.

No prescribed
model structure

MV* framework

MV* data source object

create()
read()

update()
delete()

Your data
(implied model)

Cart

Figure 7.3 Frameworks that provide server communication, but don’t provide a model
to extend, will most likely provide a data source object instead.

Use the built-in $resource
object to create a data source
i t

e a URL 
e call 
o URL 
eters 

)

AngularJS’s $resource objec
has all CRUD operations exc
update(); you can configUse the updateCart() 

method you added
k.store/books/9781617294327

https://itbook.store/books/9781617294327

57Using MV* frameworks

www.itbook.
Even though you’re not extending anything, the overall concept is the same as our
first MV* example. You can lean on the MV* framework to help you generate the
request. Like Backbone.js, under the covers AngularJS sets the appropriate headers,
converts the JavaScript object into JSON, and uses the HTTP method you defined. As
you saw, though, the authors of this particular framework chose to not include a
method to update the cart (PUT) out of the box. It’s easy enough, though, to custom-
ize the data source object to add this behavior.

 Another feature that MV* frameworks provide is an easy way to deal with the results
of a call to the server. Some frameworks support using callback functions, whereas
others rely on promises. Promises are becoming more and more prevalent with MV*
frameworks, but I’ll make sure you understand using callbacks with asynchronous
requests first.

7.3.2 Processing results with callbacks

When you’re processing an asynchronous task, such as your server call to update the
shopping cart, you don’t always want the application to hang while you wait for the
server to respond. You sometimes need it to continue in the background while your
application handles other tasks. So instead of the update function returning a value
when it’s done, callbacks are passed in to handle the results when it completes. You
can do this because functions can be passed around. This allows any function to take
other functions as arguments.

 When callbacks are passed into a function as arguments, they become like an
extension of it. They can be passed control and continue processing from there.
Using callbacks in this way is called continuation-passing style.

 Let’s take a look, then, at using the continuation-passing style of programming to
process the results of a server call. Because Backbone.js supports callbacks, I’ll use that
framework to illustrate. Let’s add some handlers to your previous shopping cart
update. Figure 7.4 gives an overview.

Control is passed
to whichever
function gets
executed.

1. Callback function references
 are passed in as arguments

2. Cart sent to
 server for update

3. The returned cart data
 is passed on success

4. The error function is
 invoked if the call fails

Cart model
save(success, error)

Request

Response

success()

Updated cart

error()

Error message

Figure 7.4 With callbacks, control passes
from the save() function to either the
success() function or the error()
function after the process has completed.
store/books/9781617294327

https://itbook.store/books/9781617294327

58 CHAPTER 7 Communicating with the server

New
insta
creat

www.itboo
If the call is successful, the save() function invokes the success() function via the
XHR object, passing to it the returned cart data. If the call fails, save() invokes
error(), passing in the details for the failure. In either case, processing is continuing
from the model’s save() function to one of these callback functions.

 Now let’s take a look at some code. You’ll make exactly the same request that you
did earlier with Backbone.js, but this time you’ll do something with the results (see
the following listing).

var cartInstance = new Cart(cartObj);

cartInstance.save(null, {
 success : function(updatedCart, reponse) {
 console.log("Cart ID: " + updatedCart.id);
 },
 error : function(cartUnchanged, response) {
 console.log("Error: " + response.statusText);
 }
});

Not only is this code a little easier to read, but you’re also able to pass in a configura-
tion object to the save() function itself. In this object, you can define success and
error callback functions and any other configuration options supported by save()
that are needed. Backbone.js also helps out by automatically passing the results of the
server call to the callback functions you’ve defined.

 In a successful call, you have access to the updated cart object as well as the
response from the server. When the call fails, you can use the response to find out the
reason for the failure. Moreover, if you need any low-level details about the call, the
save() method also returns a jQuery jqXHR object, which is a wrapper for XHR. For
more details about jqXHR, see http://api.jquery.com/jQuery.ajax/#jqXHR.

 Callbacks are easy to work with and great for simple results, but continuation-pass-
ing style can sometimes become cumbersome if you have multiple tasks to perform
when the call completes.

 Fortunately, a trend with many MV* frameworks is to return a promise instead of
relying on continuation-passing style callbacks. Like callback functions, promises are
nonblocking: the application doesn’t have to stop and wait for the call to finish. This
makes them also ideal for asynchronous processing. As you’ll see in the next section,
they have additional properties and behaviors that make your life much easier when
you have complex requirements for handling results.

7.3.3 Processing results with promises

A promise is an object that represents the outcome of a process that hasn’t yet com-
pleted. When an MV* framework supports promises, its functions that perform asyn-
chronous server calls will return a promise that serves as a proxy for the call’s eventual

Listing 7.4 Processing a shopping cart update via callbacks

Cart
nce 
ed

No model attributes to 
change before saving (null)

Define callbacks for save()
k.store/books/9781617294327

http://api.jquery.com/jQuery.ajax/#jqXHR
https://itbook.store/books/9781617294327

59Using MV* frameworks

www.itbook.
results. It’s through this promise that you can orchestrate complex result-handling
routines. To understand how to use a promise, you must first understand its internal
state before and after the call is made.

WORKING WITH PROMISE STATES

The good news about working with promises is that they exist in only one of the follow-
ing three states:

 Fulfilled —This is the state of the promise when the process resolves successfully.
The value contained within the promise is the result of the process that ran. In
your shopping cart update, this would be the updated cart contents returned by
the server.

 Rejected —This is the promise’s state when the process fails. The promise con-
tains a reason for the failure (usually an Error object).

 Pending —This is the initial state of the promise before the process completes.
In this state, the promise is neither fulfilled nor rejected.

These three states are mutually exclusive and final. After the promise has been ful-
filled or rejected, it’s considered settled and can’t be converted into any other state.
Figure 7.5 uses the shopping cart project to illustrate the three states of a promise.

 A variable assigned to a promise doesn’t remain a null reference while it waits for
the function to return. Instead, a full-fledged object gets returned immediately in a
pending state with an undetermined value. When the process finishes, the promise’s

1. The state of the promise
 begins as pending.

2. When an error occurs,
 the state is rejected.

3. If the call is successful,
 the state is fulfilled.

Pending

Call is
successful?

Yes

?

Rejected

Reason

Fulfilled

Cart data

No

A fulfilled promise’s
value contains the
expected results.

If rejected, the
promise’s value
is the reason for
the rejection.

Figure 7.5 A promise has three mutually exclusive states: pending, fulfilled, and rejected.
store/books/9781617294327

https://itbook.store/books/9781617294327

60 CHAPTER 7 Communicating with the server

The u
return
promi

www.itboo
state changes to either fulfilled, with its value containing the results of the call, or
rejected, with the reason for the failure.

ACCESSING THE RESULTS OF YOUR PROCESS

I haven’t talked about what you do with a promise after it’s returned, in order to
access a process’s results. The Promise API has several useful methods, but the one
you’ll use the most is its then() method.

 The then() method lets you register callback functions that allow the promise to
hand you back a process’s results. The functions you define here are called reactions.
The first reaction function represents the case in which the promise is fulfilled. The
second is optional and represents the case in which the promise is rejected:

promise.then(
 function (value) {
 // reaction to process the success value
 },
 function (reason) {
 // reaction to optionally deal with the rejection reason
 }
);

Because the rejected reaction is optional, the then() method can be written in short-
hand:

promise.then(function (value) {
 // process the success value, ignore rejection
});

Here’s the point to remember about reaction functions: no matter how the code is
formatted, only one of the two functions will ever be executed—never both. It’s one or
the other. In this regard, it’s somewhat analogous to a try/catch block. It’s also worth
noting that the parameter of the reaction function is what the promise hands you
back (with either the fulfilled value or the rejection reason). When that happens, you
have your results.

 Let’s take a look at the then() function in action. The following listing updates
your shopping cart and uses a promise instead of a callback function to process the
results.

CartDataSrc.updateCart(cartObj).$promise
.then(
 function(updatedCart) {
 console.log("Cart ID: " + updatedCart.id);
 },
 function(errorMsg) {
 console.log("Error: " + errorMsg);
 }
);

Listing 7.5 Processing a shopping cart update via a promise

pdate
s a
se

Use the promise’s then()
function to access the results
k.store/books/9781617294327

https://itbook.store/books/9781617294327

61Using MV* frameworks

$res
e retu
promi

www.itbook.
Having a promise returned is built into AngularJS’s $resource methods. As you can
see in the example, you’re writing out the results of the call to the console as you did
before—only this time you’re able to use the returned promise object instead of
diverting control over to a callback function. The then() method passes the success
results or the rejected reason to the functions you give it.

 Another perk of using promises is that you can chain multiple then() methods
together if more than one thing needs to happen after your call has been made.

CHAINING PROMISES

Often after a process has run, you want several things to happen after the fact. In addi-
tion, you may need these things to happen in order, ensuring that the next event hap-
pens only if the one before it succeeds. This is not only possible but also easy to do
with promises.

NOTE jQuery’s implementation of promises doesn’t support every scenario
described in this section. See https://blog.domenic.me/youre-missing-the-
point-of-promises for more details.

So far in your shopping cart update, you’ve been printing the results to the console.
In a real application, you want to perform the following tasks after the server call
finishes:

1 Recalculate the cart’s total, applying necessary discounts.
2 Update the view with the results.
3 Reuse the message service to update the user that the call was a success.

Moreover, you want these tasks performed in order, and only if each task is successful
should the next one begin. This ensures that the user won’t be erroneously notified
that everything went swimmingly if an error happens to occur along the way (see the
following listing).

var promise = CartDataSrc.updateCart(cartObj).$promise

promise.then(function(updatedCart) {
 return shoppingCartSvc
 .calculateTotalCartCosts(updatedCart);
})
.then(function(recalculatedCart) {
 replaceCartInView(recalculatedCart);
})
.then(function() {
 messageSvc.displayMsg("Cart updated!");
})
["catch"](function(errorResult) {
 messageSvc.displayError(errorResult);
});

Listing 7.6 Using promises to force control flow

ourc
rns a
se

Return recalculated cart 
for use in next then()

Display recalculated cart

Display a user message

Handle any errors that 
occurred along the way
store/books/9781617294327

https://blog.domenic.me/youre-missing-the-point-of-promises for more details
https://blog.domenic.me/youre-missing-the-point-of-promises for more details
https://itbook.store/books/9781617294327

62 CHAPTER 7 Communicating with the server

www.itboo
This works because each then() returns a promise. If the reaction of the previous
then() returns a promise, its value is used in the subsequent promise handed to the
next then(). If the reaction returns a simple value, this value becomes the value in the
promise passed forward. This allows you to chain them all together and makes for a
straightforward and clean approach.

 Being able to chain together multiple tasks in sequence in a few lines of code is
amazing, but chaining can help you in other ways. Another amazing thing about chain-
ing promises is that you can have more than one asynchronous process in the chain.

CHAINING MULTIPLE ASYNCHRONOUS PROCESSES IN SEQUENCE

Sometimes when you need several tasks to run in order, more than one may be asyn-
chronous. Because you don’t know when asynchronous processes will finish, trying to
place one into a sequence with other tasks might be pretty challenging. It’s easy,
though, using promises. Because each then() is resolved before the next one is exe-
cuted, the entire chain executes sequentially. This is still true even if multiple asyn-
chronous processes are in the chain.

 To demonstrate, let’s pretend that the server APIs require you to use the cart ID
that’s returned by the shopping cart update in a subsequent GET call in order to prop-
erly display the cart onscreen. The following listing illustrates how to use promises to
do this.

var promise = CartDataSrc.updateCart(cartObj).$promise

promise.then(function(cartReturned) {
 return shoppingCartSvc
 .getCartById(cartReturned.cartId);
})
.then(function(fetchedCart) {
 return shoppingCartSvc
 .calculateTotalCartCosts(fetchedCart);
})
.then(function(recalculatedCart) {
 replaceCartInView(recalculatedCart);
})
.then(function() {
 messageSvc.displayMsg(userMsg);
})
["catch"](function(errorResult) {
 messageSvc.displayError(errorResult);
});

In this chain, your update happens first. Then, after it returns, your next server call
fires. Because the GET call from $resource already creates a promise, its value will be
used in the promise passed to the next then().

 Before finishing this discussion of promises, let’s get a quick overview of error han-
dling. You saw error handling in some of the examples, but I didn’t go over any details.

Listing 7.7 Executing more than one server call in order

Use the cart returned in the
update for the next server call

Use the fetched cart 
for the recalculation
k.store/books/9781617294327

https://itbook.store/books/9781617294327

63Using MV* frameworks

www.itbook.
7.3.4 Promise error handling

You can handle rejected promises in two ways. You saw the first way early on. Option 1
is to use the second reaction function of the promise’s then() method. The second
reaction is the one triggered when there’s a rejection:

promise.then(
 function (value) {
 },
 function (reason) {
 // deal with the rejection
 }
);

Option 2 is to add an error-handling method called catch() to the end of your chain:

.catch(function (errorResult) {
 // deal with the rejection
});

Some browsers take issue with a method called catch(), because it’s a preexisting
term in the JavaScript language. Alternatively, you can use this syntax:

["catch"](function(errorResult) {
 // deal with the rejection
});

TIP Writing .catch() as ["catch"] looks strange but will help you avoid
potential issues for any older browsers that don’t support ECMAScript 5. If you
use this syntax, as shown in these examples, notice that it doesn’t have a dot in
front of it.

You saw the second option being used with your shopping cart call. It used the mes-
sage service to log the error and broadcast a user-friendly message to the user:

["catch"](function(errorResult) {
 messageSvc.displayError(errorResult);
});

With either method of error handling, rejections are passed down the chain to the
first available error handler. This behavior seems obvious with the catch() method.
What’s less obvious is that this is true even when using the optional reaction function
for error handling. If a rejection occurs somewhere up the chain, and either type of
error-handling method is encountered somewhere down the chain (even if it’s several
then()s later), that error handler will be triggered and passed the error thrown.

 As illustrated in our shopping cart examples, promises are powerful yet easy to use
if you understand them. Frameworks and libraries sometimes add even more func-
tionality, on top of what this chapter covers on promises. See their documentation for
specific details.

 Even if you have a project that requires you to support older browser versions, you
can still use promises via your MV* framework if promises are supported or via a
store/books/9781617294327

https://itbook.store/books/9781617294327

64 CHAPTER 7 Communicating with the server

www.itboo
third-party library. The following are a few of the many popular promise third-party
libraries at the time of this writing:

 bluebird —https://github.com/petkaantonov/bluebird
 Q—https://github.com/kriskowal/q
 RSVP.js —https://github.com/tildeio/rsvp.js
 when —https://github.com/cujojs/when
 WinJS —http://msdn.microsoft.com/en-us/library/windows/apps/

br211867.aspx

Aside from all of these being promise libraries, they also conform to the current pre-
ferred promise standard called Promise/A+. This is the same standard that native Java-
Script promises are based on. If you’d like to read more about the Promise/A+
specification, a good resource is https://github.com/promises-aplus/promises-spec.

 As an aside, jQuery also has its own version of promises, but as of this writing they
aren’t Promise/A+ compliant. With jQuery, promise functionality is done via its
Deferred object. If you’re interested, a great resource is the jQuery site itself:
http://api.jquery.com/category/deferred-object.

 Promises are also being implemented into the ECMAScript 6 (Harmony) version of
JavaScript. Even before the specifications have been finalized, they already have lim-
ited support in many of today’s browsers.

 At this point, you’re almost ready for our project. But you need to review the con-
sumption of RESTful services first.

7.4 Consuming RESTful web services
This section covers consuming RESTful web services from your SPA. In many single-
page applications today, these types of services are extremely common.

7.4.1 What is REST?

REST stands for Representational State Transfer. REST isn’t a protocol or even a specifica-
tion but an architectural style for distributed hypermedia systems. It has gained such
widespread popularity that many MV* frameworks not only provide out-of-the-box sup-
port for it but also favor this style by default.

 In a RESTful service, APIs define the media types that represent resources and
drive application state. The URL and the HTTP method used in the API define the pro-
cessing rules for a given media type. The HTTP method describes what’s being done,
and the URL uniquely identifies the resource affected by the action. REST can best be
defined by describing its set of guiding principles.

7.4.2 REST principles

This section presents a few of the REST principles that most affect how you consume
RESTful web services. This will also give you a good idea of what REST is about.
k.store/books/9781617294327

http://api.jquery.com/category/deferred-object
https://github.com/promises-aplus/promises-spec
https://github.com/petkaantonov/bluebird
https://github.com/kriskowal/q
https://github.com/tildeio/rsvp.js
https://github.com/cujojs/when
http://msdn.microsoft.com/en-us/library/windows/apps/br211867.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br211867.aspx
https://itbook.store/books/9781617294327

65Consuming RESTful web services

www.itbook.
EVERYTHING IS A RESOURCE

One of the fundamental concepts in REST is that everything is a resource. A resource is
represented with a type and conceptually maps to an entity or set of entities. A
resource could be a document, an image, or information that represents an object
such as a person. The notion of a resource could also extend to a service such as
today’s weather or, in our case, a shopping cart.

EVERY RESOURCE NEEDS A UNIQUE IDENTIFIER

Each resource in a RESTfull service should have a unique URL to identify it. This often
entails creating and assigning unique IDs to the resource. You want to make sure that
any ID you use in a URL in no way jeopardizes the security or integrity of your applica-
tion. A common security measure is to assign a randomly generated ID for any
resource that’s personal or confidential. To ensure that the ID is used by only the
intended user, the server-side code makes sure the requester is the authenticated user
assigned to the resource and has the proper authorization to perform the action on
the resource.

REST EMPHASIZES A UNIFORM INTERFACE BETWEEN COMPONENTS

You’ve already seen how HTTP methods are considered the verb of a web service call.
Resource identifiers and HTTP methods are used to provide a uniform way of access-
ing resources. Table 7.2 gives some examples from the project.

It’s important to note that the style of URL used isn’t part of REST, even though you
sometimes see the phrase RESTful URL used in articles about REST.

INTERACTIONS ARE STATELESS

Session state for your application should be held in your SPA and shouldn’t rely on cli-
ent context being stored on the server between requests. Each request made by the

Table 7.2 URLs in REST uniquely identify a resource, and the HTTP method describes that action being
 performed on the resource.

REST

URL: /shopping/carts/CART_ID_452
Method: GET
Purpose: Fetch cart

URL: /shopping/carts/CART_ID_452/products/cod_adv_war
Method: POST
Purpose: Add an item to the cart

URL: /shopping/carts/CART_ID_452
Method: PUT
Purpose: Update the entire cart’s contents

URL: / shopping/carts/CART_ID_452/products/cod_adv_war
Method: DELETE
Purpose: Remove all instances of a particular product from the cart
store/books/9781617294327

https://itbook.store/books/9781617294327

66 CHAPTER 7 Communicating with the server

www.itboo
SPA to the server should convey all the information needed to fulfill the request and
allow the SPA to transition to a new state.

 Again, we’ve barely scratched the surface of REST here. For more information
about REST and REST architecture, see http://en.wikipedia.org/wiki/Representati-
onal_state_transfer.

7.4.3 How MV* frameworks help us be RESTful

Thinking in terms of REST can take a little getting used to. Fortunately, MV* frame-
works such as Backbone.js and AngularJS support REST right out of the box. For
example, when you used Backbone.js for your shopping cart update, it automatically
added the ID from your model to your URL so that the URL uniquely identifies the
resource in the request. Frameworks that don’t have explicit models, such as Angu-
larJS, might allow you to use path variables in a URL template to create a RESTful URL.
You’ll see examples of path variables in a moment, when you look how AngularJS’s
$resource object is used in your project.

 MV* frameworks also help you consume RESTful services by making it easy to send
the correct HTTP request method. They usually either come with canned functions for
GET, POST, PUT, and DELETE or allow you to effortlessly generate them via configuration.

 Now that you have a general idea of RESTful services and their guiding principles,
you’re finally ready to tackle the project. In this project, you’ll get to see firsthand how
promises and REST work together to maintain a shopping cart.

7.5 Project details
You’ll continue building on the preceding chapter’s used video game project by add-
ing a shopping cart. As usual, you’ll use AngularJS for your MV* framework. It has
built-in support for both promises and the consumption of RESTful services. As indi-
cated at the beginning of this chapter, we discuss the server side of the application
only conceptually here.

 Because many server-side languages and frameworks might be used instead of what
you’re using, I include a small summary of the tasks the server will need to perform
for each call in appendix C. This way, you can create the server-side code by using a
different tech stack if you wish. As always, the complete code is available for download.
Let’s begin by walking through the setup of your data source.

7.5.1 Configuring REST calls

Earlier in this chapter, you learned about the $resource object from AngularJS. It
makes consuming RESTful services easier, and its methods all return promises. You’ll
use it for every server call in your project. Although I try to keep our discussions
framework neutral, you’ll have to take a moment to further review how $resource
works. It can be a little intimidating at first. After you walk through how it works,
though, you’ll see how easy it is to use. After a gentle introduction to $resource, you’ll
proceed with how it’ll be configured in your example SPA’s shopping cart service.
k.store/books/9781617294327

http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer
https://itbook.store/books/9781617294327

67Project details

www.itbook.
Creating URLs with AngularJS’s $resource
Like some of the other MV* frameworks, AngularJS offers support for RESTful service
web service consumption out of the box by using its $resource object. This object
adds a lot of sugar coating for the underlying XMLHttpRequest object to hide much
of the boilerplate code you’d have to otherwise write yourself.

The main goal of $resource is to make it easy to work with RESTful services. Having
a consistent and uniform way to represent resources is one of the principles of REST.
After a URL style has been established, the $resource factory will help you create
URLs that conform to this style easily.

The $resource factory enables you to define a template that will create resource
URLs for each type of REST call you need to make. To use $resource, you can pass
a URL, optional default parameters, and an optional set of actions to its constructor:

$resource(DEFAULT URL, DEFAULT URL PARAMS, OPTIONAL ACTIONS)

The following will serve as your default URL:

"controllers/shopping/carts"

The default will be used if you don’t override it. But in this project, you’re defining
custom functions that will override it with their own URLs. Each custom action can
have its own. To construct the URLs in the structure needed by your RESTful web ser-
vices, you can use URL path parameters. As with routes, using a colon in front of a
string in the URL indicates a parameter. Here’s an example URL from your configura-
tion that includes URL path parameters:

"controllers/shopping/carts/:cartId/products/:productId"

The next argument, the optional parameter list, acts like a data map. It tells the
$resource object that in one or more of these calls, this optional parameter list may
be used. This list is in the form of key-value pairs. The left side is the name of a
parameter in the URL. The right side is the value for the parameter. The @ symbol tells
$resource that the value is a data property name, not just a string. With it present,
the data object passed in will be scanned for a property with that name, and its value
will be used in the URL’s path.

{
 cartId : "@cartId",
 productId : "@productId "
}

For example, if you passed in an object called myCart for the call, then the value for
the URL parameter cartId would come from myCart.cartId. The value for the URL
parameter productId would come from myCart.productId.

The nice thing about using $resource as a REST URL template is that you get a set
of REST calls out of the box that are preconfigured with the following HTTP methods:

get()—GET

query()—GET (intended for a list; by default it expects an array)

save()—POST
store/books/9781617294327

https://itbook.store/books/9781617294327

68 CHAPTER 7 Communicating with the server

www.itboo
Now that you’ve looked at $resource basics, let’s look at the entire code for the
$resource instance used for your shopping cart (see the following listing). This will give
you a picture of the type of calls that will be made inside the shopping cart service.

var Cart = $resource("controllers/shopping/carts", {
 cartId : "@cartId",
 productId : "@productId"
}, {
 // cart methods
 getCart : {
 method : "GET",
 url : "controllers/shopping/carts/:cartId"
 },
 updateCart : {
 method : "PUT",
 url : "controllers/shopping/carts/:cartId"
 },
 // item-level methods
 addProductItem : {
 method : "POST",
 url : "controllers/shopping/carts/:cartId/products/:productId"

(continued)

delete()—DELETE

remove()—DELETE (identical to delete(), in case the browser has a problem with
the delete() action)

If you want to customize your calls as we’re doing, you can pass in the optional set
of named functions (or actions in Angular-speak). You can use the action to create a
completely customized call or override one of the out-of-the-box functions. For exam-
ple, to create a custom action called updateCart(), you can include the following in
your set of actions:

updateCart : {
 method : "PUT",
 url : "controllers/shopping/carts/:cartId"
}

After you have the $resource object configured, any calls you make with it automat-
ically return a promise. You’ve already seen how to use them to work with the results
of your calls.

In this chapter’s examples, you’re using $resource inside your shopping cart service
because you have additional processes taking place before the data is returned to
the controller. For simple data returns, you might want to wrap the $resource in
another AngularJS object (such as a factory) and include it directly in your controller.

To see the complete documentation for $resource, visit the AngularJS site at
https://docs.angularjs.org/api/ngResource/service/$resource.

Listing 7.8 Configuration for your REST calls

Assign the $resource 
created to a variableDefine default 

parameters

Define actions for 
the rest of your calls
k.store/books/9781617294327

https://docs.angularjs.org/api/ngResource/service/$resource
https://itbook.store/books/9781617294327

69Project details

www.itbook.
 },
 removeAllProductItems : {
 method : "DELETE",
 url : "controllers/shopping/carts/:cartId/products/:productId"
 },
});

With getCart(), you can get the cart’s content anytime you need it. You’ll use add-
ProductItem() to add a new product to the cart or use removeAllProductItems() to
remove all quantities of a given product type. You can use updateCart() to update the
entire cart.

TIP Though you’re not implementing security in this application, usually
each call you make is validated for security and data integrity in the server-
side code.

Because the previous chapter covered the application, in this section you’ll focus only
on the code around your server calls and how to process the results. Let’s begin with
adding new product items to the cart.

7.5.2 Adding product items to the cart

Following the URL format chosen earlier, you include the cart ID and the product ID
in your RESTful service call to add a product item to the shopping cart (see table 7.3).
If the product already exists in the cart, the quantity increases.

You’ve modified the product display page to include a new button that will make the
call to add a product item to the cart. When this button is clicked, it calls the
addItem() action in your shopping cart’s $resource’s configuration. The following
listing shows the modified view containing the new button.

angular.module("data.appData", [])

<section class="product_info">
 <h2>
 {{results.name}}

 Used Price:

Table 7.3 RESTful call to add a product to the shopping cart

Method URL HTTP method Request Response

Cart.addProductItem() /shopping /carts/
CART_ID_89/product
s/
cod_adv_war

POST Products Cart

Listing 7.9 Updated product display view
store/books/9781617294327

https://itbook.store/books/9781617294327

70 CHAPTER 7 Communicating with the server

www.itboo
 {{results.discountPrice | currency:"$":0}}

 <button id="product_info_add_btn"
 ng-click="addToCart('{{results.productId}}')">
 Add to Cart
 </button>
 </h2>

 <section id="product_info_img_container">

 </section>

 <section id="product_info_summary">
 {{results.summary}}
 </section>
</section>

Figure 7.6 shows what the finished view looks like.
 Using an ng-click binding, you’ve bound the button click to a function called

addToCart() on the $scope (ViewModel) in the controller to handle the new user
action. In turn, this function calls the addToCart() function of your shopping cart ser-
vice (see listing 7.10). As a reminder, the AngularJS $stateParams object allows you to
access parameters from the route that was executed.

Pass the product ID 
of the game found

Figure 7.6 The product display page now features a button to add the item to the
shopping cart.
k.store/books/9781617294327

https://itbook.store/books/9781617294327

71Project details

www.itbook.

$scope.addToCart = function() {
 shoppingCartSvc.addToCart($stateParams.productId);
};

After the function call is made, the addToCart() function in the shopping cart service
makes the RESTful call to the server for processing (see the following listing).

function addToCart(productId) {
 return Cart.addProductItem({
 cartId : createorGetExistingCart(),
 productId : productId
 }).$promise.then(function(cartReturned) {

 messageSvc.displayMsg("Item added to cart!");

 console.log("Item added successfully to cart ID "
 + cartReturned.cartId);
 })

 ["catch"](function(error) {
 messageSvc.displayError(error);
 });
}

The product ID and the cart ID get mapped to the default parameters of your add-
ProductItem() custom action in the $resource configuration that you saw earlier.
After the user has added items to the cart, a new view needs to display the cart’s con-
tents. For this, you’ve added a brand-new view to the application.

7.5.3 Viewing the cart

In this call, you use the cart ID that was generated locally when the user landed on the
welcome page. You can use it to get the current state of the cart. Table 7.4 lists this
call’s properties.

To be able to view the cart from anywhere, a new link is added to the header. Clicking
the link executes the viewCart route, which takes you to the shopping cart view:

View Cart

Listing 7.10 Application’s data holds cart ID

Listing 7.11 Function to make the addItem() call

Table 7.4 RESTful call to get the shopping cart to display its contents in the view

Method URL HTTP method Request Response

Cart.getCart() /shopping
/carts/CART_ID_89

GET Empty Cart

Use the shopping cart 
service to add the item

Pass the cart ID and the
product ID as call parameters

Promise chain: display 
user message

Handle any errors
store/books/9781617294327

https://itbook.store/books/9781617294327

72 CHAPTER 7 Communicating with the server

www.itboo
When the controller behind the shopping cart view is called, the first thing it does is
make a GET call to retrieve the cart from the server. You’ll look at this call from the
controller first and then the shopping cart service.

 In the controller where the call originates, the getCart() function returns the
promise generated by the $resource call. As you may remember from our discussion
of promises, the promise referenced here will be pending until the call completes:

var promise = shoppingCartSvc.getCart();
handleResponse(promise, null);

You’re also handing off the promise to a generic JavaScript function in the shopping
cart controller that will handle the promise returned. The nice thing about promises
is that they can be passed around like any other JavaScript object. In each call,
whether it’s fetching the cart, updating it, or removing an item, you’ll process the
promise in the same way every time (see the next listing).

function handleResponse(promise, userMsg){

 promise.then(function(cartReturned) { B
 return shoppingCartSvc
 .calculateTotalCartCosts(cartReturned);
 })

 .then(function(recalculatedCart) {
 replaceCartInView(recalculatedCart);
 })

 .then(function(recalculatedCart) {
 messageSvc.displayMsg(userMsg);
 })

 ["catch"](function(errorResult) {
 messageSvc.displayError(errorResult);
 });
};

In the shopping cart service, your call to get the cart becomes a one-liner thanks to
the magic of the out-of-the-box support for REST in your MV* framework. Here you’re
passing an object with the ID of your cart as the payload of your call. The object will be
scanned by $resource for a property name that matches the cartId URL parameter.
Because you’ve stored the cart ID in the cartData object in the client, you can use it
when you need the ID in the URL:

function getCart() {
 return Cart.getCart({cartId : cartData.cartId})
 .$promise;
}

Listing 7.12 Generic function to handle all cart promises

Promise and optional 
user message passed in

Recalculate cart

Update the view

Display user message

Handle any errors
k.store/books/9781617294327

https://itbook.store/books/9781617294327

73Project details

www.itbook.
Also remember that Cart is the variable name assigned to the $resource object you cre-
ated. When the Cart.getCart() call completes, the promise is returned to the control-
ler for the processing you saw previously. If all the promises are fulfilled in the promise
chain when the call completes, the view displays all the items currently in the cart. It also
shows the original price of each item, its used price, as well as the cost savings. At the top
of the cart is a running total of all items and their used prices (see figure 7.7).

 With your cart returned, the user can use the UI controls to update it or delete
items from it.

7.5.4 Updating the cart

When you update the cart, you’re not sending only the new items; you’re sending and
receiving the entire cart. The RESTful URL identifies the cart you’re updating, and the
request body has the updated cart data. Table 7.5 has this call’s properties.

For each entry, you provide an input control to let the user enter a new item count.
You also have a button that will update the entire cart by each item. Each update

Table 7.5 RESTful call to update the shopping cart with new input from the user

Method URL HTTP method Request Response

Cart.updateCart() /shopping
/carts/CART_ID_89

PUT Cart Cart

Figure 7.7 The shopping cart view allows the user to modify the cart’s contents.
store/books/9781617294327

https://itbook.store/books/9781617294327

74 CHAPTER 7 Communicating with the server

Make
upda
retur
prom

www.itboo
button updates the entire cart in the same manner. It’s repeated beside each item only
for convenience.

Quantity:

<input type="text" ng-model="game.quantity" size="4">

<button class="cartItemButton" ng-click="updateQuantity()">
 Update
</button>

The updateQuantity() function needs no parameters because it always passes the
entire cart. In the controller, you rely on the shopping cart service to make the update
and pass the promise returned to your generic promise handler (see the following list-
ing).

$scope.updateQuantity = function() {
 var uCart =
 shoppingCartSvc.createCartForUpdate($scope.cart);

 var promise = shoppingCartSvc.updateCart(uCart);

 handleResponse(promise, "Cart updated!");
};

In the shopping cart service, you have a JavaScript function to create a cart object to
send to the server. To make the request leaner, in the next listing you include only IDs
and updatable properties.

function createCartForUpdate(cartFromView) {

 var cart = {
 cartId : cartFromView.cartId,
 totalCount : cartFromView.totalCount,
 items : new Array()
 };

 angular.forEach(cartFromView.items, function(item) {
 var pItem = {
 productId : item.productId,
 quantity : item.quantity
 };
 cart.items.push(pItem);
 });

 return cart;
};

Listing 7.13 Controller code for cart updates

Listing 7.14 Building the update request object

Create a request object 
for the request body

 the 
te call,
n the
ise

Pass the promise and user
message to the generic handler

Create the object with a
placeholder for the items array

Iterate over the cart
items and add them
to the request
k.store/books/9781617294327

https://itbook.store/books/9781617294327

75Project details

r

www.itbook.
When the request object is ready, you can make the update request. Again, thanks to
our MV* framework’s support for REST, you have a one-liner:

function updateCart(cart) {
 return Cart.updateCart(cart).$promise;
};

Like the other call, the update returns the promise to the controller so the promise
chaining can process the results.

 The last thing you need to do in the cart is provide the ability to remove items
from it. In the next section, you’ll examine how to remove all quantities of a particular
product type from the cart.

7.5.5 Removing products from the cart

To remove all items of a product from the cart, the most obvious choice in HTTP
methods is DELETE. You need to make sure that you’re identifying both the cart and
the product, just as you did when you added it. Table 7.6 has this call’s properties.

In addition to users having the ability to update the quantity, the Delete button next
to each product enables users to remove it completely. In the view, you’ve bound the
button’s click to the removeItem() function on the controller. The function call
passes forward the product ID of the product that’s being deleted.

<button class="cartItemButton"
ng-click="removeItem(game.productId)">Delete</button>

In the controller, as with getting the cart or updating it, you make the call and pass the
returned promise to the generic promise handler (see the following listing).

$scope.removeItem = function(productId) {
 var promise =
 shoppingCartSvc.removeAllProductItems(productId);

 handleResponse(promise, "Cart removed!");
};

Finally, you get to the matching code in the shopping cart service where the call is
made (see the following listing). The cart’s ID from your cart data object is mapped to

Table 7.6 RESTful call to remove all items of a product from the shopping cart

Method URL HTTP method Request Response

Cart.removeAllProductItems() /shopping
/carts/
CART_ID_89/
products/
cod_adv_war

DELETE Empty Cart

Listing 7.15 Controller code for cart deletes

Pass the product ID, 
get a promise back

Pass the promise and user
message to the generic handle
store/books/9781617294327

https://itbook.store/books/9781617294327

76 CHAPTER 7 Communicating with the server

www.itboo
the cartId URL parameter, and the product ID passed in is mapped to the productId
parameter.

function deleteItem(productId) {
 return Cart.removeItem(

 {
 cartId : cartData.cartId,
 productId : productId
 }

).$promise;
};

Don’t forget that if you want to create the project in your own environment, the
server-side supplement in appendix C begins with a summary of the objects and tasks.
This is included in case you’re using a different tech stack than the example’s code.
Also, as usual, the complete source code is available for download.

7.6 Chapter challenge
Now here’s a challenge for you to see what you’ve learned in this chapter. In the pre-
ceding chapter’s challenge, you created a movie search. You displayed movie titles that
matched wholly or partially the text the user typed into an input field. A key-up event
was bound to a function that published the field’s contents with each keystroke. A
search module subscribed to that topic and performed a search accordingly. The
search also used pub/sub to publish the results, which were displayed in an unor-
dered list below the input field.

 Extend this exercise by putting the stub data and the search logic on the server.
You’ll still have a client-side module listening for the input field contents to be pub-
lished. In turn, it will fire the server call every time it hears the topic. On the server,
you can use any technologies you’re comfortable with. Make the server call a RESTful
service call. Use a RESTful URL and an appropriate HTTP request method for this type
of request. Use a promise to process the server call. Upon success, publish the results
of the search. Write any errors to the console.

7.7 Summary
We covered a lot of ground in this chapter. Let’s review:

 The server is still important to the single-page application, providing features
such as security, validation, and standard APIs for accessing back-end data.

 Having an agreement between the client and the server on the data type and
the HTTP methods is essential for a call to be successful.

 Native objects on both ends are converted to the agreed-upon data format in
both the request and the response.

Listing 7.16 Controller code for cart deletes

Pass the cart ID and 
product ID to the call

Return a promise 
to the controller
k.store/books/9781617294327

https://itbook.store/books/9781617294327

77Summary

www.itbook.
 MV* frameworks that support server communication often take care of routing
tasks, such as providing standard request types out of the box and handling
data conversions.

 MV* frameworks typically support server communication either through
extending a parent model or via a data source object.

 Call results are handled either through callbacks using continuation-passing
style or through promises, depending on the framework or library used.

 A promise represents the outcome of a pending asynchronous process. It starts
as pending but eventually transitions to either fulfilled or rejected when the call
completes.

 A promise has several methods, but the most commonly used one is then().
This method allows you to register two functions (called reactions) to process a
fulfilled or rejected promise.

 The reaction for a fulfilled promise gives you access to the result data of a pro-
cess. The reaction for a rejected promise contains the rejected reason (usually
an Error object).

 Reactions can be chained together to control the flow of a group of processes,
even if other asynchronous calls are in the chain.

 Promise errors can be handled either through the rejection reaction or via a
catch() method.

 REST stands for Representational State Transfer and is an architectural style for
developing web services.

 In REST, everything is a resource and should have a unique URL representing it.
 HTTP methods describe the action for the resource. The four most common

are GET, POST, PUT, and DELETE.
store/books/9781617294327

https://itbook.store/books/9781617294327

78 CHAPTER 7 Communicating with the server

www.itboo
The next step in the development of web-based soft-
ware, single-page web applications deliver the sleekness
and fluidity of a native desktop application in a
browser. If you’re ready to make the leap from tradi-
tional web applications to SPAs, but don’t know where
to begin, this book will get you going.

 SPA Design and Architecture teaches you the design
and development skills you need to create SPAs. You’ll
start with an introduction to the SPA model and see
how it builds on the standard approach using linked
pages. The author guides you through the practical
issues of building an SPA, including an overview of

MV* frameworks, unit testing, routing, layout management, data access, pub/sub, and
client-side task automation. This book is full of easy-to-follow examples you can apply
to the library or framework of your choice.

What’s inside

 Working with modular JavaScript
 Understanding MV* frameworks
 Layout management
 Client-side task automation
 Testing SPAs

This book assumes you are a web developer and know JavaScript basics.
k.store/books/9781617294327

https://www.manning.com/books/spa-design-and-architecture
https://www.manning.com/books/spa-design-and-architecture
https://itbook.store/books/9781617294327

www.itbook.store

 Gartner research predicts that there will be tens of billion web-connected
devices deployed by 2020, creating a complex network of APIs, communication
protocols, and application designs. This chapter introduces API security in the
world of connected devices, using several techniques and protocols including
OAuth.

Sharing and
Securing Web Things
/books/9781617294327

https://itbook.store/books/9781617294327

www.itbook.
Chapter 9 from Building the Web of Things
by Dominique D. Guinard and Vlad M. Trifa

Share: Securing
and sharing web Things
In most cases, Internet of Things deployments involve a group of devices that com-
municate with each other or with various applications within closed networks—
rarely over open networks such as the internet. It would be fair to call such deploy-
ments the “intranets of Things” because they’re essentially isolated, private net-
works that only a few entities can access. But the real power of the Web of Things
lies in opening up these lonely silos and facilitating interconnection between
devices and applications at a large scale.

This chapter covers
 A short overview of security risks and issues on

the Web of Things

 A brief theoretical introduction to HTTPS,
certificates, and encryption

 Best practices and techniques for web-based
authorization and access control

 Learning to implement these best practices
and tools on your Raspberry Pi

 Implementing the Social Web of Things in the
WoT gateway
80

store/books/9781617294327

https://www.manning.com/books/building-the-web-of-things
https://itbook.store/books/9781617294327

81

www.itbook.
 Why would you even want this? When it comes to a critical IoT system such as a net-
work of industrial machines in a large factory in Shenzhen, the security system of the
British Museum, or simply own collection of smart devices at home, you certainly
don’t want these networks to be open to anyone. But when it comes to public data
such as data.gov initiatives, real-time traffic/weather/pollution conditions in a city, or
a group of sensors deployed in a jungle or a volcano, it would be great to ensure that
the general public or researchers anywhere in the world could access that data. This
would enable anyone to create new innovative applications with it and possibly gener-
ate substantial economic, environmental, and social value. Another use case is the
smart hotel scenario presented in chapter 1, where hotel guests (and only they) should
have access to some services and devices in their room (and only there) during their
stay (and only then). Because the public infrastructure is becoming not only digital but
also pervasive, the earlier we could build, deploy, and scale those systems while maxi-
mizing the ability to share data between devices, users, and applications, the better it
would be for all of us. How to share this data in secure and flexible way is what Layer 3
provides, as shown in figure 9.1.

 The prerequisite for this is to use a common protocol and data format between
devices and applications, which we covered extensively in the previous chapters. But
once devices are connected to a public network, the most important problem to solve
is how to ensure that only a specific set of users can access only a specific set of
resources at a specific time and in a specific manner. In the next sections we’ll show
how to do this by building on the concepts and tools you’ve already seen. First, we’ll

Layer 3:
Share

Layer 2:
Find

Layer 1:
Access

Networked
things

JSON
WebSockets

Gateway

ProxyHTML REST API
Webhooks HTTP

URI/URL CoAPMQTT

Web Thing Model

Search engines

Schema.orgLink header

REST Crawler JSON-LD

mDNS

Semantic Web

RDFa

HATEOAS

Linked Data

API tokens

OAuth

Social WoT

Social networks

PKI

DTLS

JWT

TLS

Delegated
authenticationEncryption

6LoWPAN
Beacons

NFC Thread
QR ZigBee

Ethernet Wi-Fi
3/4/5 GBluetoothNetworked

things

6LoWPAN
Beacons

NFC Thread
QR ZigBee

Ethernet Wi-Fi
3/4/5 GBluetooth

Layer 1:
Access

JSON
WebSockets

Gateway

ProxyHTML REST API
Webhooks HTTP

URI/URL CoAPMQTT

Layer 2:
Find

Web Thing Model

Search engines

Schema.orgLink header

REST Crawler JSON-LD

mDNS

Semantic Web

RDFa

HATEOAS

Linked Data

Figure 9.1 The Share layer of the Web of Things. This layer focuses on how
devices and their resources must be secured so that they can only be
accessed by authorized users and applications.
store/books/9781617294327

https://itbook.store/books/9781617294327

82 CHAPTER 9 Share: Securing and sharing web Things

www.itboo
show how Layer 3 of the WoT architecture covers the security of Things: how to
ensure that only authorized parties can access a given resource. Then we’ll show how
to use existing trusted systems to allow sharing physical resources via the web.

9.1 Securing Things
Right now, the hottest topic (or potato, to be more accurate!) of the IoT world is argu-
ably security.1 We keep hearing all over the news about the IoT and the endless possi-
bilities of an all-connected world. Sadly, this vision is also continuously tainted by
major security breaches: personal information, credit card data, sensitive documents,
or passwords from millions of users being stolen by hackers. Such happenings not
only can severely hurt the reputation of a company but also can have disastrous effects
for the users. Ultimately, every security breach hurts the entire web because it erodes
the overall trust of users in technology. No one wants their smart fridges sending spam
emails2 about dubious pills, inheritances, or unclaimed lottery gains.

 Security in the Web of Things is even more critical than in the web. Because web
Things are physical objects that will be deployed everywhere in the real world, the risks
associated with IoT attacks can be catastrophic. Digitally augmented devices allow col-
lecting much more information about people with a fine-grained resolution, such as
when you got your last insulin shot, what time you go jogging and where, and the like.
But more important, unauthorized access to physical objects can be dangerous—
remotely controlling your brand new BMW3 or house,4 anyone? Despite those risks,
recent reports have shown a sad state of affairs in the world of IoT security.5 Although
many vulnerabilities—called exploits in hacker parlance—are widely known and patches
for them are readily available, it has been reported that the majority of IoT solutions
don’t comply with even the most basic security best practices; think clear-text passwords
and communications, invalid certificates, old software versions with exploitable bugs,
and so on. In other words, you don’t even have to be a security expert to use existing
weaknesses in many services or devices and gain access to unauthorized content.

 This book is not about network security, so don’t expect to become an expert in
this field by the end of this chapter. But because it’s such a crucial issue for any pro-
duction system or consumer product connected to the internet, we’ll cover the basics
you need to know when building IoT solutions in the form of a set of best practices for
building secure and reliable devices and applications. If you can’t wait any longer, an
excellent resource is the Open Web Application Security Project (OWASP) Internet of
Things project,6 which contains useful, down-to-earth, and practical information
about how to build safer IoT applications and systems.

1 http://venturebeat.com/2016/01/16/ces-2016-the-largest-collection-of-insecure-devices-in-the-world
2 http://www.theguardian.com/technology/2014/jan/21/fridge-spam-security-phishing-campaign
3 http://www.wired.com/2015/08/bmw-benz-also-vulnerable-gm-onstar-hack/
4 http://www.forbes.com/sites/kashmirhill/2013/07/26/smart-homes-hack/
5 See “Insecurity in the Internet of Things,” https://www.symantec.com/iot/.
6 https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project
k.store/books/9781617294327

https://www.symantec.com/iot/
http://venturebeat.com/2016/01/16/ces-2016-the-largest-collection-of-insecure-devices-in-the-world
http://www.theguardian.com/technology/2014/jan/21/fridge-spam-security-phishing-campaign
http://www.wired.com/2015/08/bmw-benz-also-vulnerable-gm-onstar-hack/
http://www.forbes.com/sites/kashmirhill/2013/07/26/smart-homes-hack/
https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project
https://itbook.store/books/9781617294327

83Securing Things

www.itbook.
Roughly speaking, securing the IoT comes down to solving three major problems
summarized in figure 9.2:

 First, we must consider how to encrypt the communications between two enti-
ties (for example, between an app and a web Thing) so that a malicious inter-
ceptor—a “man in the middle”—can’t access the data being transmitted in
clear text. This is referred to as securing the channel and will be covered in sec-
tion 9.1.1.

 Second, we must find a way to ensure that when a client talks to a host, it can
ensure that the host is really “himself,” which is the topic discussed in section
9.1.2. For example, in chapter 4, you downloaded and installed NOOBS from
our website. But you did so via HTTP instead of HTTPS, and we didn’t provide
an SHA checksum available for that image over HTTPS. In essence, you had to
trust that whatever you downloaded was really what we gave you and not a cor-
rupted OS image inserted by an attacker.

 Third, we must ensure that the correct access control is in place. We need to set
up a method to control which user can access what resource of what server or
Thing and when and then to ensure that the user is really who they claim to be.
This topic will be covered in section 9.2.

Huh? It's
encrypted!”

Yo, heater!
Set temperature

to 50°F.

Lena’s mobile app
Heater unit

Attacker sniffing network packets

9or8ncnor4zcof8zsilfnlinhoniy
oiunpcs3um984cu98mcpgmpj
macu89znc89tzc9ou89p4cyuk
09tp38a8nv98tmsvz5985zsov
qrprn8c9oqz34ciu47i87znc4iz
89ocrn8zrm8mx389r3fiwmc48
n98zcrsn87z4zm98ct9z8mc34

Am I really talking to
the heater, or to a fake
device trying to steal

my passwords?

Problem 2

Is it really Lena who
sent me this request? If so,
is she allowed to change

my temperature?

Problem 3

Am I sure that
no one can see the

message I am sending
to the heater?

Problem 1

Figure 9.2 The three principal challenges in securing the IoT. First, communications must be
encrypted to prevent unauthorized entities from reading the messages between a client and a server.
Second, the client must be sure they are really talking to whom they they are. Third, the server must
be sure that a message comes from an authorized client allowed to send that request.
store/books/9781617294327

https://itbook.store/books/9781617294327

84 CHAPTER 9 Share: Securing and sharing web Things

www.itboo
After exploring these three problems and their solutions, in section 9.3 we’ll blur
another line: the one between the Social Web and the Web of Things. We’ll put
together everything you’ve learned so far to build an application that allows you to use
third-party social network identities to share Things with your friends.

9.1.1 Encryption 101

As you’ve seen before, there’s more to security than encryption. Nevertheless, encryp-
tion is an essential ingredient for any secure system. Without encryption, any attempt
to secure a Thing will be in vain because attackers can sniff the communication and
understand the security mechanisms that were put in place.

 Using a web protocol without encryption can be compared to sending a postcard
via snail mail: anyone can read the content of the postcard at any stage. Adding
encryption to a web protocol is like putting the postcard in a thick and sealed enve-
lope: even if you can see the envelope, you can’t read the card!

SYMMETRIC ENCRYPTION

The oldest form of encoding a message is symmetric encryption. The idea is that the
sender and receiver share a secret key that can be used to both encode and decode a
message in a specific way; for example, by substituting or shifting some characters by a
number. This type of encryption is the easiest to put in place for resource-limited IoT
devices, but the problem is that as soon someone discovers the key, they can decode
and encode any message. To use a symmetric key successfully, the key has to be shared
with trusted parties securely, such as by giving the key to the recipient in person.

ASYMMETRIC ENCRYPTION

In the internet era, another method called asymmetric encryption has become popular
because it doesn’t require a secret to be shared between parties. This method uses two
related keys, one public and the other private (secret), as shown in figure 9.3. A host

Lena’s app encrypts
a message using the
heater’s public key.

Heater decrypts the
message using its
own private key.

Encrypted message

Encrypt Decrypt

Lena’s mobile app
Heater unit

Figure 9.3 Asymmetric encryption in an IoT context. The heater shares its public key with Lena.
It’s then up to Lena’s mobile app to encrypt messages sent to the heater. Thanks to the power of
cryptography, the only way to decrypt the message is with the private key of the heater.
k.store/books/9781617294327

https://itbook.store/books/9781617294327

85Securing Things

www.itbook.
can freely share its public key with anyone over the internet. When any client wants to
send a message to the host, it can use the public key to encode the message before
sending it. Once a message is encoded with the public key, it can be decoded only with
the private key that’s known only by the host. This way, any message sent by a client
(for example, a web app) to a server (for example, a web Thing) can be opened only
by the server and not by an eavesdropper.

9.1.2 Web security with TLS: the S of HTTPS!

Fortunately , there are standard protocols for securely encrypting data between clients
and servers on the web. The best known protocol for this is Secure Sockets Layer
(SSL). SSL has long been the technology that sits behind the S in HTTPS, which is the
method used to encrypt all the communications between your browser and a web
server. But a number of important vulnerabilities in the SSL protocol have been dis-
covered over the years, making it possible for attackers to crack the security SSL pro-
vides. In 2014, major vulnerabilities in the SSL 3.0 protocols were found; for example,
POODLE,1 Heartbleed,2 and Shellshock.3 These events inked the death of this proto-
col, which was replaced by the much more secure but conceptually similar Transport
Layer Security (TLS).4

 This highlights two important points. First, no method or system is secure forever.
Second, open protocols—and especially web protocols—are closely monitored and
fixed as soon as flaws are identified. In consequence, all communications over the
Web of Things are to be encrypted with TLS. We won’t give a full description of TLS
here because it would take a chapter on its own—or a whole book, for that matter—
but we’ll review the basics of TLS and focus on the key concepts while simplifying the
complex bits.

TLS 101
Despite its name, TLS is an Application layer protocol (see chapter 5). TLS not only
secures HTTP (HTTPS) communication but is also the basis of secure WebSocket
(WSS) and secure MQTT (MQTTS). TLS has two main roles. First, it helps the client
ensure that the server is who it says it is; this is the SSL/TLS authentication. Second, it
guarantees that the data sent over the communication channel can’t be read by any-
one other than the client and the server involved in the transaction (also known as
SSL/TLS encryption).

1 https://blog.mozilla.org/security/2014/10/14/the-poodle-attack-and-the-end-of-ssl-3-0/
2 https://en.wikipedia.org/wiki/Heartbleed
3 https://en.wikipedia.org/wiki/Shellshock_(software_bug)
4 The long legacy of SSL means that today the acronym SSL is used as an umbrella term for both TLS and SSL.
store/books/9781617294327

https://en.wikipedia.org/wiki/Heartbleed
https://blog.mozilla.org/security/2014/10/14/the-poodle-attack-and-the-end-of-ssl-3-0/
https://en.wikipedia.org/wiki/Shellshock_(software_bug)
https://itbook.store/books/9781617294327

86 CHAPTER 9 Share: Securing and sharing web Things

www.itboo

A typical TLS exchange between a client and a server is shown in figure 9.4.1 This is
what happens when you use your browser to connect to an HTTPS website, such as
https://manning.com. Here’s a summary of the most important steps:

1 The client, such as a mobile app, tells the server, such as a web Thing, which
protocols and encryption algorithms it supports. This is somewhat similar to the
content negotiation process we described in chapter 6.

2 The server sends the public part of its certificate to the client. The goal here is
for the client to make sure it knows who the server is. All web clients have a list
of certificates they trust.2 In the case of your Pi, you can find them in

1 If you want an even simpler way of explaining TLS to your cat, check “What’s Behind the Padlock”:
https://casecurity.org/wp-content/uploads/2013/01/ssl-1200.jpg.

2 Firefox and Chrome, for example, trust certificates signed by those CAs; see https://mozillacaprogram
.secure.force.com/CA/IncludedCACertificateReport.

Hi, I understand:
protocols, versions, ciphers

Server

Let’s use:
protocol, version, cipher

My certificate: certificate chain

Do I trust a certificate in chain? Yes!

encrypt(preMasterSecret,
serverPubKey)

Encrypted preMasterSecret

Derive masterSecret
decrypt(preMasterSecret,
myPrivateKey)

Derive masterSecret

Some content:
encrypt(content, masterSecret)

Some content:
encrypt(content, masterSecret)

ServerClient

Client

Figure 9.4 SSL/TLS handshake: the client and the server first negotiate the protocols and encryption
algorithms, and then the server sends its certificate chain to prove who it is to the client. Finally, the
client sends a preMasterSecret from which the client and server derive a masterSecret used to encrypt
all the future messages.
k.store/books/9781617294327

https://mozillacaprogram.secure.force.com/CA/IncludedCACertificateReport
https://mozillacaprogram.secure.force.com/CA/IncludedCACertificateReport
https://casecurity.org/wp-content/uploads/2013/01/ssl-1200.jpg
https://manning.com
https://itbook.store/books/9781617294327

87Securing Things

www.itbook.
/etc/ssl/certs. SSL certificates form a trust chain, meaning that if a client
doesn’t trust certificate S1 that the server sends back, but it trusts certificate S2
that was used to sign S1, the web client can accept S1 as well.

3 The rest of the process generates a key from the public certificates. This key is
then used to encrypt the data going back and forth between the server and the
client in a secure manner. Because this process is dynamic, only the client and
the server know how to decrypt the data they exchange during this session. This
means the data is now securely encrypted: if an attacker manages to capture
data packets, they will remain meaningless.

9.1.3 Enabling HTTPS and WSS with TLS on your Pi

Now that you’ve seen the theory, it’s time for a bit of practice! Let’s secure the API of
your WoT Pi to ensure that traffic between the Pi and its clients is encrypted. Note that
the process we define here works as well on all the other Linux devices we talked
about—for example, the Intel Edison or the BeagleBone—as well as on any Linux- or
Unix-based machines. Go ahead and generate a certificate. First, you need to make sure
the OpenSSL library is installed. On your Pi go to the /resources directory and run

sudo apt-get install openssl

This should tell you something along the lines of openssl is already the newest
version. Or it will be installed if not present. Now, to generate the certificates, run

openssl req -sha256 -newkey rsa:2048 -keyout privateKey.pem -out caCert.pem 
-days 1095 -x509

Because this command is self-explanatory we won’t detail it. No? Fine, let’s dig into it!
The command does two things in one. First, it generates a private key (-newkey
rsa:2048 -keyout privateKey.pem) that will be used to sign the certificate using the
sha256 hashing algorithm. While it does this, you’ll see a Generating a 2048 bit RSA
private key message followed by a prompt to provide a passphrase, essentially a pass-
word to protect your private key. Make sure you keep this one safe because you’ll need
it soon!

 Second, it will generate a new certificate (-out caCert.pem) that will last for 1,095
days using the x509 data format, and it also prompts you with a few questions, as
shown in listing 9.1. The common name is the hostname for which this certificate
should be valid; for example, raspberrypi.local if you’re on your Pi or localhost if
you’re running these examples on your machine. The information you provide here
will be exposed in the certificate and will be visible to all clients.

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

Listing 9.1 Information requested when generating a self-signed certificate
store/books/9781617294327

https://itbook.store/books/9781617294327

88 CHAPTER 9 Share: Securing and sharing web Things

 If in s
mode
the H
modu r

Creat
HTTPS
using
config

www.itboo
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]: UK
State or Province Name (full name) [Some-State]: London
Locality Name (eg, city) []:London
Organization Name (eg, company) [Internet Widgits Pty Ltd]: Web of Things
Organizational Unit Name (eg, section) []: Web of Things
Common Name (e.g. server FQDN or YOUR name) []: raspberrypi.local
Email Address []:book@webofthings.io

At the end of this process, two files will be generated:
 caCert.pem is the public part of the certificate your Pi server will send to the clients

when connecting to it via TLS.
 privateKey.pem is the private key of your Pi server and hence should be kept,

well...private.
 You’re now ready to turn your Pi unencrypted HTTP and WS APIs into secure

HTTPS and WSS APIs. All you need to do is modify the code of the wot-server.js file at
the root of your WoT PI project (see chapters 7 and 8). Copy the content of wot-
server.js into a new wot-server-secure.js file and modify it as shown in the following list-
ing, which enables HTTPS and WSS.

[...]
var createServer = function (port, secure) {
 if (process.env.PORT) port = process.env.PORT;
 else if (port === undefined) port = resources.customFields.port;
 if (secure === undefined) secure = resources.customFields.secure;

 initPlugins();

 if(secure) {
 var https = require('https');
 var certFile = './resources/change_me_caCert.pem';
 var keyFile = './resources/change_me_privateKey.pem';
 var passphrase = 'webofthings';

 var config = {
 cert: fs.readFileSync(certFile),
 key: fs.readFileSync(keyFile),
 passphrase: passphrase
 };

 return server = https.createServer(config, restApp)
 .listen(port, function () {
 wsServer.listen(server);
 console.log('Secure WoT server started on port %s', port);
 })
 } else {
 var http = require('http');
 return server = http.createServer(restApp)

Listing 9.2 Modifying the WoT Pi server to serve HTTPS and WSS content

This should be the
hostname, IP, or domain
name corresponding to your
Pi or the local machine you
test the code from.

Start the internal 
hardware plugins.

ecure
, import
TTPS
le.

The actual certificate
file of the server

The private key of the 
server generated earlie

The password of 
the private key

e an
 server
the
 object.

By passing it the server
you create, the
WebSocket library will
automatically detect and
enable TLS support.
k.store/books/9781617294327

https://itbook.store/books/9781617294327

89Securing Things

www.itbook.
 .listen(process.env.PORT | port, function () {
 wsServer.listen(server);
 console.log('Unsecure WoT server started on port %s', port);
 })
 }
};

function initPlugins() {
 var LedsPlugin = require('./plugins/internal/ledsPlugin').LedsPlugin;
 var PirPlugin = require('./plugins/internal/pirPlugin').PirPlugin;
 var Dht22Plugin = require('./plugins/internal/dht22Plugin').Dht22Plugin;

 pirPlugin = new PirPlugin({'simulate': true, 'frequency': 5000});
 pirPlugin.start();

 ledsPlugin = new LedsPlugin({'simulate': true, 'frequency': 5000});
 ledsPlugin.start();

 dht22Plugin = new Dht22Plugin({'simulate': true, 'frequency': 5000});
 dht22Plugin.start();
}

module.exports = createServer;

process.on('SIGINT', function () {
 ledsPlugin.stop();
 pirPlugin.stop();
 dht22Plugin.stop();
 console.log('Bye, bye!');
 process.exit();
});

Finally, modify the wot.js file to require wot-server-secure.js, and start the server by
running nodewot.js. Now, go to https://localhost:8484/properties/pir in your
browser. You should get a warning saying that the connection is not private. What this
really means appears in the small print: ERR_CERT_AUTHORITY_INVALID. This means
that the certificate was generated by you and not by a certificate authority (CA) trusted
by your browser. There are two ways to fix this: you can buy a certificate from a trusted
CA, as explained in the next section, or you can tell your computer to trust the certi-
ficate you just created. The best way to do this is by adding the certificate to the trust
store of your browser. The operation will differ depending on which environment
you’re using, but here’s how to add it to Firefox: click I Understand The Risk (because
now you do, don’t you?), Add Exception, and finally Confirm Security Exception.
Other browsers like Chrome use the trust store of the underlying operating system.
Hence, to ensure Chrome accepts your certificate, go to Preferences > Settings > Show
Advanced Settings; in HTTPS/SSL click Manage Certificates. This should open the
trust store of your operating system, where you can import the certificate. Adding self-
signed SSL certificates directly to your operating system1 will make it much easier for
you to develop secure applications for your Pi.

1 http://blog.getpostman.com/2014/01/28/using-self-signed-certificates-with-postman/
store/books/9781617294327

http://blog.getpostman.com/2014/01/28/using-self-signed-certificates-with-postman/
https://itbook.store/books/9781617294327

90 CHAPTER 9 Share: Securing and sharing web Things

www.itboo
Once your browser trusts the certificate of your WoT Pi, you should be able to get the
content returned and the browser should display the usual lock icon on the address
bar. If you click it, you’ll see the details of your TLS certificate, as shown in figure 9.5.

BEYOND SELF-SIGNED CERTIFICATES

Clearly, having to deal with all these security exceptions isn’t nice, but these excep-
tions exist for a reason: to warn clients that part of the security usually covered by
SSL/TLS can’t be guaranteed with the certificate you generated. Basically, although
the encryption of messages will work with a self-signed certificate (the one you created
with the previous command), the authenticity of the server (the Pi) can’t be guaran-
teed. In consequence, the chain of trust is broken—problem 2 of figure 9.2. In an IoT
context, this means that attackers could pretend to be the Thing you think you’re talk-
ing to. This isn’t a big deal when your Things are accessible only on the local network,
but as soon as you make them available on the web, this becomes critical.

 The common way to generate certificates that guarantee the authenticity of the
server is to get them from a well-known and trusted certificate authority (CA). There
are a number of them on the web, such as Thawte, Symantec, and GeoTrust. The good

The certificate is trusted because
we added it to the trust store.

The domain corresponds
to this certificate.

The channel is encrypted.

The connection is
secured by TLS 1.2.

Figure 9.5 The server of the WoT Pi can now be accessed via HTTPS. The details of the secure
connection and certificates can be reviewed by clicking the small lock icon on the address bar.
k.store/books/9781617294327

https://itbook.store/books/9781617294327

91Securing Things

www.itbook.
thing about certificates issued by such CAs is that they verify who created the certifi-
cates, albeit with various degrees of rigor. This means that a client has a greater cer-
tainty of which server it’s talking to (authentication). In consequence, these
certificates, or certificates generated using these, are trusted by a number of clients
such as web browsers. More concretely, this means that web browsers and operating
systems have these certificates in their trust store.

 The problem is that certificates issued by well-known CAs are certainly not free.
The business of selling web security is a lucrative one! A direct and unfortunate conse-
quence of this is that a number of sites use cheaper CAs that do a poorer job of check-
ing to whom they deliver certificates, or they decide to not use secured connections at
all. But this is rapidly changing: a number of major actors on the web, such as Mozilla,
Akamai, Cisco, and the Internet Security Research Group, got together to create the
Let’s Encrypt1 project, an automated CA providing free and secure certificates for the
public’s benefit. There are even ways to automatically generate certificates using Let’s
Encrypt from a Raspberry Pi running a Node server with Express.2 Now that you have
the basics of TLS, you should consider this when moving your Pi to the World Wild
Wide Web.

1 https://letsencrypt.org
2 https://github.com/DylanPiercey/auto-sni

The nerd corner—I want my Pi to be on the web!
Once the development and testing phase of your WoT Pi is finished, you’ll likely want
to make it accessible over the web with its own public domain; for example,
mypi.webofthings.io. To do this, you could use Yaler,a which is a great service and
open source project that offers a relay to securely access your embedded devices
through your firewall and supports mobile Things connecting to different networks.
Alternatively, if you want to go the DIY route, you can use a dynamic DNS service—
unless you already have a fixed IP address—that keeps monitoring the IP address of
your home router to determine when it changes. There are a number of those, but
Duck DNS is straightforward and free. Moreover, it provides clear explanations of how
to install it on a Pi.b Once this is set up, you’ll also have to set up port forwarding on
your home router.c Then, you might also need to generate (or buy) a certificate with
a common name corresponding to the new Duck DNS subdomain of your Pi; for exam-
ple, mypi.duckdns.org. Once you’ve done all of this, your Pi should be truly on the
world-wide Web of Things. But your Pi will also be ready for attackers to try to hack it,
so make sure you protect it well, at the very least by reading to the end of this chapter
and implementing the concepts we describe!

a https://www.yaler.net/raspberrypi
b http://www.duckdns.org/install.jsp#pi
c http://portforward.com/
store/books/9781617294327

https://github.com/DylanPiercey/auto-sni
https://letsencrypt.org
http://portforward.com/
https://www.yaler.net/raspberrypi
http://www.duckdns.org/install.jsp#pi
https://itbook.store/books/9781617294327

92 CHAPTER 9 Share: Securing and sharing web Things

www.itboo
9.2 Authentication and access control
Once we encrypt the communication between Things and clients as shown in the pre-
vious section, we want to enable only some applications to access it. Let’s get back to
our hotel scenario to understand this issue. The hotel control center application
needs to have full access to all devices in the network and the ability to configure and
administer them. But Lena, who stays in room 212, only needs to access the devices
and services in that room. Besides, she shouldn’t be able to configure them, only to
send a limited set of commands. First, this means that the Things—or a gateway to
which Things are connected—need to be able to know the sender of each request
(identification). Second, devices need to trust that the sender really is who they claim to
be (authentication). Third, the devices also need to know if they should accept or reject
each request depending on the identity of this sender and which request has been
sent (authorization). If encryption is like sending a postcard in a sealed envelope,
authentication and authorization are like sending that envelope via registered mail:
the postman will deliver the letter only to the correct recipient as long as they can
prove their identity with a valid ID.

9.2.1 Access control with REST and API tokens

Nowadays, we go through this authentication process all the time on the web, namely
every time we enter our username and password on a website. When we use our user-
name/password to log into a website, we initiate a secure session with the server that’s
stored for a limited time in the server application’s memory or in a local browser
cookie. During that time, we can send other requests to the server without authenti-
cating again. This method (called server-based authentication) is usually stateful because
the state of the client is stored on the server. But as you saw in chapter 6, HTTP is a
stateless protocol; therefore, using a server-based authentication method goes against
this principle and poses certain problems. First, the performance and scalability of the
overall systems are limited because each session must be stored in memory and over-
head increases when there are many authenticated users. Second, this authentication
method poses certain security risks—for example, cross-site request forgery.1

 To circumvent these issues, an alternative method called token-based authentication
has become popular and is used by most web APIs. The idea is that a secret token—a
long string of characters—that’s unique for each client can be used to authenticate
each request sent by that client. Because this token is added to the headers or query
parameters of each HTTP request sent to the server, all interactions remain stateless.
Because no session or state needs to be kept on the server(s), applications can be
scaled horizontally without having to worry about where the session of each user is
stored.

1 This method exploits the fact that a malicious website can use your browser to send requests on your behalf
to another website you’re logged into. See https://en.wikipedia.org/wiki/Cross-site_request_forgery.
k.store/books/9781617294327

https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://itbook.store/books/9781617294327

93Authentication and access control

www.itbook.
 Obviously, the API token should be generated using a cryptographically secure
pseudo-random generator1 and should be treated like a password: stored in an
encrypted manner.

 To generate an API token with Node.js, you can use the crypto.randomBytes()
function.2 You’ll find the function in the /utils/utils.js file shown in the next listing.

exports.generateApiToken = function(length, chars) {
 if (!length) length = 32;
 if (!chars) chars =

'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789';
 var randomBytes = crypto.randomBytes(length);
 var result = new Array(length);

 var cursor = 0;
 for (var i = 0; i < length; i++) {
 cursor += randomBytes[i];
 result[i] = chars[cursor % chars.length];
 }

 return result.join('');
};

You can call this function by uncommenting the following line in the http.js file:

console.info('Here is a crypto-secure API Key: ' + utils.generateApiToken());

When you launch the WoT Pi server, you’ll see in the terminal a new API token, which
you can copy and paste into the value of the apiToken key in the resources/auth.json
file. This will be the API token you need to send any request to your Pi.

 You’ll now modify the WoT Pi application so that for each request that comes in,
you check if the request is signed using a valid API token; see the following listing. The
best way to do this is to use the middleware pattern shown in the previous section.
You’ll create an auth.js file in the middleware folder, which has a function that will be
called each time a new request comes to your API and which checks if it is signed and
valid.

var keys = require('../resources/auth');

module.exports = function() {
 return function (req, res, next) {
 console.log(req.method + " " + req.path);
 if (req.path.substring(0, 5) === "/css/") {
 next();

1 https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator

Listing 9.3 utils/utils.js: generate a crypto-secure API token

2 https://nodejs.org/api/crypto.html#crypto_crypto_randombytes_size_callback

Listing 9.4 auth.js: authentication middleware

Allow unauthorized 
access to the css folder.
store/books/9781617294327

https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
https://nodejs.org/api/crypto.html#crypto_crypto_randombytes_size_callback
https://itbook.store/books/9781617294327

94 CHAPTER 9 Share: Securing and sharing web Things

Check h
URL pa
or POS
for tok

If token
valid AP
return
FORBID

www.itboo
 } else {
 var token = req.body.token || req.get('authorization') ||
 req.query.token;
 console.log(req.params);
 if (!token) {
 return res.status(401).send({success: false, message: 'API token
 missing.'});
 } else {
 if (token !== keys.apiToken) {
 return res.status(403).send({success: false, message: 'API
 token
 invalid.'});
 } else {
 next();
 }
 }
 }
 }
};

Finally, you need to add this middleware function to the middleware chain in serv-
ers/http.js. Start by requiring the middleware with auth = require('./../middle-
ware/auth'), then add it to the chain using app.use(auth()); right after the CORS
middleware. Now, run the WoT server once again and then try accessing https://loc-
alhost:8484/properties/pir. You should now get an error message. Try again with
https://localhost:8484/properties/pir?token=YOUR_TOKEN (or with Postman by
adding the Authorization header with your token as value) and it should work: your
API now requires a valid token!

 In this minimal example, you manually check each request against a hard-coded
API token. We wanted to show you the basics of how token-based authentication
works, so this is not a robust and scalable solution ready for production applications.
You’ll need to use a more elaborate solution that suits your use case and devices. Will
you have many different users that all need to have their own API token, or is it fine to
have only a single token? How granular does your access control need to be? How
often will you need to add, remove, or change these permissions? As an exercise,
you’re welcome to extend this simple token-based implementation to support many
users and tokens and also the various end points of your Thing (including WebSock-
ets interactions; see /servers/websocket.js for a solution).

The nerd corner—I want better tokens!
Generating tokens manually and implementing a minimal token-based authentication
system from scratch as shown before is a great exercise to help you understand how
it works. But for anything more than that, you’ll be better off using an actual standard.
JSON Web Tokensa (JWT) is particularly interesting here because it not only generates

a https://jwt.io

eader or
rameters 
T body 
en.

If no token provided, return 
401 UNAUTHORIZED.

 is not the
I token,

403
DEN.

If everything is good, save to
request for use in other routes.
k.store/books/9781617294327

https://jwt.io
https://itbook.store/books/9781617294327

95Authentication and access control

www.itbook.
9.2.2 OAuth: a web authorization framework

In the previous section, we gave a brief introduction to API tokens, how they work, and
how you can implement them on web Things. API tokens are a good starting point,
and along with encryption (TLS), they are arguably the bare minimum a WoT device
should offer in terms of security. But as soon as we need to share the resources of a
device with several users having different authorization rights, simple API tokens like
the ones we’ve introduced present two challenges.

 First, we need a process for web applications to generate and retrieve tokens
dynamically, ideally through an API. Obviously, we can’t just create an API endpoint
that returns tokens. This would be insecure and we’d be back where we started
because we’d need to secure that API as well. Besides, creating a bespoke mechanism
to get tokens wouldn’t foster interoperability; it would make the process complicated
and bespoke for each device and/or API.

 Second, API tokens shouldn’t be valid forever. API tokens, just like passwords,
should change regularly. We should also be able to invalidate any token manually
when needed. This ensures that when an API token has leaked, we can disable it. But
again, creating a custom API to renew tokens wouldn’t foster interoperability between
web clients and web Things.

 What to do? It turns out there’s a web standard coming to our rescue: OAuth.1

OAuth is an open standard for authorization and is essentially a mechanism for a web
or mobile app to delegate the authentication of a user to a third-party trusted service;
for example, Facebook, LinkedIn, or Google. OAuth makes this delegated authentica-
tion process secure and simple by dynamically generating access tokens using only
web protocols. OAuth also allows sharing resources and between applications. For
instance, you can allow some of your Facebook friends to securely access some of your
documents on Google.

 In short, OAuth standardizes how to authenticate users, generate tokens with an
expiration date, regenerate tokens, and provide access to resources in a secure and
standard manner over the web. Sound like exactly what we need, doesn’t it? Let’s see

secure tokens but also offers a standard mechanism to send encrypted payloads
over insecure connections. In other words, JWT makes it possible to send secure con-
tent over HTTP and WebSocket packets without using TLS. This is particularly appeal-
ing for the WoT because it removes the self-generated certificate warnings in the
browser you encountered earlier because certificates aren’t required for interactions
between an app and Thing within a local network. It’s certainly not as standard and
battle-tested as TLS, but we’ve had some promising results in our own tests. There
are JWT libraries for many languages including Node.js, so go ahead and give it a try!

1 https://tools.ietf.org/html/rfc6749
store/books/9781617294327

https://tools.ietf.org/html/rfc6749
https://itbook.store/books/9781617294327

96 CHAPTER 9 Share: Securing and sharing web Things

www.itboo
how to do this in practice using the most recent version of the OAuth standard:
OAuth 2.0.

OAUTH ROLES

A typical OAuth scenario involves four roles:

 A resource owner—This is the user who wants to authorize an application to
access one of their trusted accounts; for example, your Facebook account.

 The resource server—Is the server providing access to the resources the user wants
to share? In essence, this is a web API accepting OAuth tokens as credentials.

 The authorization server—This is the OAuth server managing authorizations to
access the resources. It’s a web server offering an OAuth API to authenticate
and authorize users. In some cases, the resource server and the authorization
server can be the same, such as in the case of Facebook.

 The application—This is the web or mobile application that wants to access the
resources of the user. To keep the trust chain, the application has to be known
by the authorization server in advance and has to authenticate itself using a
secret token, which is an API key known only by the authorization server and
the application.

The flow of a typical OAuth-delegated authentication mechanism is shown in figure
9.6. At the end of the token exchange process, the application will know who the user
is and will be able to access resources on the resource server on behalf of the user. The
application can then also renew the token before it expires using an optional refresh
token or by running the authorization process again.

Application

Authorization request

Authorization grant

Authorization grant from user, app ID, and app secret

Access token; refresh token (optional)

Access token

Protected resource

User Authorization server Resource server

Mobile app Lena Heater Heater

Figure 9.6 OAuth delegated authentication and access flow. The application asks the user if they
want to give it access to resources on a third-party trusted service (resource server). If the user
accepts, an authorization grant code is generated. This code can be exchanged for an access token
with the authorization server. To make sure the authorization server knows the application, the
application has to send an app ID and app secret along with the authorization grant code. The access
token can then be used to access protected resources within a certain scope from the resource server.
k.store/books/9781617294327

https://itbook.store/books/9781617294327

97The Social Web of Things

www.itbook.
 OAuth has become a successful protocol, and as a consequence, a large number of
services on the web such as social networks (for example, Facebook, Google+, Linke-
dIn, and Twitter), developer services (for example, GitHub and BitBucket), and many
other websites (such as TripAdvisor and Meetup) support OAuth. But what about the
IoT? How does OAuth relate to our web Things?

OAUTH AND THE WEB OF THINGS

For a start, if all Things become OAuth servers in place of generating API tokens, web
clients will then have a standard way to obtain tokens to access the resources of
devices.

 Let’s get back to our hotel scenario once again. Lena is the user in figure 9.6 and
she has a user account on the heater unit of figure 9.2, which is both the authorization
server and the resource server. Lena uses a mobile app to control the heater, as shown
in figure 9.6. The application asks Lena to log into the heater with her user account,
and then the application exchanges the resulting authorization grant for an access
token from the heater unit. The heater unit accepts the access token and provides
access to the heater to the application on behalf of Lena.

 If Lena was interacting with her heater in her home, this would be a practical sce-
nario. But in the case of the hotel, that means that the heater and all other devices
would need to know about Lena and all the other hotel clients. Besides, all devices
would also need to know all the applications that would interact with them and would
need to have generated a secret token for each of them. It’s pretty obvious this
approach would be a nightmare to maintain!

 Implementing an OAuth server on a Linux-based embedded device such as the Pi
or the Intel Edison isn’t hard because the protocol isn’t really heavy. But maintaining
the list of all applications, users, and their access scope on each Thing is clearly not
going to work and scale for the IoT. We’ll look at a better approach in the next section.

9.3 The Social Web of Things
Using OAuth to manage access control to Things is tempting, but not if each Thing
has to maintain its own list of users and application. This is where the gateway integra-
tion pattern we discovered in chapter 7 can help. What if you had only a single proxy
that would know the Things you have at home (or in the entire hotel) and also know
the various users involved, so it could manage access control in place of these Things?
“But then I still have to create user accounts on this proxy for each user,” we hear you

The nerd corner—I want my Pi to be an OAuth server!
If you do want to turn your Pi into an OAuth server, go ahead! It will be a good exercise
to help you better understand the protocol and will actually make the implementation
in the next section more secure. A good place to start is the node-oauth2-server
Node.js module for Express, which should run seamlessly on your Pi, Edison, or Bea-
gleBone.
store/books/9781617294327

https://itbook.store/books/9781617294327

98 CHAPTER 9 Share: Securing and sharing web Things

www.itboo
say. Of course, you could do that, but a much better approach would be to use the
notion of delegated authentication offered by OAuth, which allows you to use the
accounts you already have with OAuth providers you trust, such as Facebook, Twitter,
or LinkedIn.

 Not only does this approach allow you to reuse the user accounts you already have
in other web services, but it also allows you share access to your devices via existing
social network relationships. These concepts are often referred to as the Social Web of
Things.1 Let’s see what this would look like in more detail. As with all things security,
this won’t be the easiest ride but will definitely be a rewarding one.

9.3.1 A Social Web of Things authentication proxy

The idea of the Social Web of Things is to create an authentication proxy that controls
access to all Things it proxies by identifying users of client applications using trusted
third-party services. The detailed steps for this workflow are shown in figure 9.7.

 Again, we have four actors: a Thing, a user using a client application, an authenti-
cation proxy, and a social network (or any other service with an OAuth server). The
client app can use the authentication proxy and the social network to access resources
on the Thing. This concept can be implemented in three phases:

1 The first phase is the Thing proxy trust. The goal here is to ensure that the proxy
can access resources on the Thing securely. If the Thing is protected by an API
token (device token), it could be as simple as storing this token on the proxy. If
the Thing is also an OAuth server, this step follows an OAuth authentication
flow, as shown in figure 9.6. Regardless of the method used to authenticate,
after this phase the auth proxy has a secret that lets it access the resources of the
Thing.

2 The second phase is the delegated authentication step. Here, the user in the client
app authenticates via an OAuth authorization server as in figure 9.6. The
authentication proxy uses the access token returned by the authorization server
to identify the user of the client app and checks to see if the user is authorized
to access the Thing. If so, the proxy returns the access token or generates a new
one to the client app.

3 The last phase is the proxied access step. Once the client app has a token, it can
use it to access the resources of the Thing through the authentication proxy. If
the token is valid, the authentication proxy will forward the request to the
Thing using the secret (device token) it got in phase 1 and send the response
back to the client app.

In order not to leak any tokens at any step, all the communication has to be encrypted
using TLS. The details for each phase are summarized in figure 9.7.

1 The Social Web of Things was a concept developed in Dom’s thesis (http://webofthings.org/2011/12/01/
phd-web-of-things-app-archi/) based on the Friends and Things project: http://webofthings.org/2010/02/
02/sharing-in-a-web-of-things/.
k.store/books/9781617294327

http://webofthings.org/2011/12/01/phd-web-of-things-app-archi/
http://webofthings.org/2011/12/01/phd-web-of-things-app-archi/
http://webofthings.org/2010/02/02/sharing-in-a-web-of-things/
http://webofthings.org/2010/02/02/sharing-in-a-web-of-things/
https://itbook.store/books/9781617294327

99The Social Web of Things

www.itbook.
LEVERAGING SOCIAL NETWORKS

You might have noticed that we overlooked one step in the process: how does the auth
proxy know what resources a user can access, or even if they can access any resources
at all? Someone needs to configure the proxy with a number of user identifiers

Auth proxy

Give me a token, this is my secret

Secret token

Redirect to Facebook

Please login

Here are my credentials

Redirect to auth proxy

Redirect to auth proxy

Give me a Facebook access token

Facebook access token

Check user,
store/generate

user token

Give me access to /temp

Redirected to Facebook

Give me access to /temp, here is my user access token

Give me access to /temp, here is my secret token

Temp is 77°F

Temp is 77°F

Use this user token to access resources

Thing Client app Facebook

Auth proxy Thing Client app Facebook

Phase 1: Thing proxy trust (e.g., via OAuth), refresh on expiration

Phase 2: Delegated authentication via OAuth server (e.g., Facebook, Twitter)

Phase 3: Proxied access via OAuth server (e.g., Facebook, Twitter)

Figure 9.7 Social Web of Things authentication proxy: the auth proxy first establishes a secret with
the Thing over a secure channel. Then, a client app requests access to a resource via the auth proxy.
It authenticates itself via an OAuth server (here Facebook) and gets back an access token. This token
is then used to access resources on the Thing via the auth proxy. For instance, the /temp resource is
requested by the client app and given access via the auth proxy forwarding the request to the Thing
and relaying the response to the client app.
store/books/9781617294327

https://itbook.store/books/9781617294327

100 CHAPTER 9 Share: Securing and sharing web Things

www.itboo
corresponding to the users who can access the system along with a list of resources
they can access. In the case of our hotel, we could ask the guests to log in with their
Facebook accounts or, even better, with the Booking.com profile they used to book
the hotel room in the first place! Then we could save their social identifiers in the
auth proxy, along with the paths to the devices in their room. In the case of a home
automation system, you can even imagine granting access to lists of friends or rela-
tives. Figure 9.8 is an example of a user interface on the auth proxy that can let you
share resources with your friends.

Figure 9.8 User interface of a Social Web of Things authorization proxy: First (upper left), the UI allows the user
to select a Thing to be shared and (lower left) the resource of the Thing that should be shared; for example,
/temperature. Then (upper right) it lets the owner of the Thing log into their social network, such as Facebook, and
(lower right) select a friend to share with or a list of friends. Here we share the temperature sensor of the Spot1
device with Dom’s sister via Facebook. [Source: Friends and Things Social Web of Things project1]

The good news is that nothing here needs to be hard-coded. Thanks to the fact that
our Things speak web (see chapters 5 and 6), we can discover their resources (see
chapter 7) and map them to our connections on various OAuth-compliant social net-
works! This is the very idea of the Social Web of Things: instead of creating abstract
access control lists, we can reuse existing social structures as a basis for sharing our
Things. Because social networks increasingly reflect our social relationships, we can

1 hhttp://webofthings.org/2010/02/02/sharing-in-a-web-of-things/
k.store/books/9781617294327

http://webofthings.org/?s=social+web+of+things
https://itbook.store/books/9781617294327

101The Social Web of Things

www.itbook.
reuse that knowledge to share access to our Things with friends via Facebook, or work
colleagues via LinkedIn.

9.3.2 Implementing a Social WoT authentication proxy

Now that you’ve seen the theory, let’s put this into practice and implement a simple
authentication proxy for the Social Web of Things, as shown in figure 9.9.

The complete code for this part is located in the chapter9-sharing/social-auth folder,
but we’ll only look at the details of some parts here. The proxy could be built directly
on top of the WoT Pi code we built in the previous chapters, but as we said before, it
makes more sense to implement it as a standalone proxy that can be deployed either
on the Pi or somewhere else because it might proxy the access to more than one
device.

CREATING A FACEBOOK APPLICATION

Before we can begin coding, we need to make sure that Facebook knows our auth
proxy as an authorized Facebook application. To create a Facebook app, you’ll need a
Facebook account and to apply for a Facebook developer account. If you’re not into
cat videos or holiday selfies and therefore don’t have a Facebook account, feel free to
pick another OAuth provider such as Google, Twitter, or GitHub and replace “Face-
book” with the OAuth provider you picked in all the following sections. We won’t
detail how to implement support for other providers, but the principle will be similar,
so you shouldn’t have too much trouble doing this exercise.

 Go to https://developers.facebook.com and apply for a Facebook developer
account if you don’t already have one. Under My Apps select Register As A Developer.
Then you can select My Apps > Add A New App. Select Website, give your app a name,

1. Login 2. Get token

Auth
token

3. GET /temp
and token

HTTPS
token

Social network OAuth
authorization server

Client app

Local network

/pir
Passive infrared sensor

/temp
Temperature sensor

192.168.1.18:8484
Web Thingdevices.webofthings.io:5050

Figure 9.9 A Social Web of Things authentication proxy for your Pi: client apps obtain a token via
OAuth on Facebook; this token can then be used to access the Pi resources via the auth proxy. The
auth proxy must be accessible on the web, or at least on the same network as the client app, but the
Pi can be on a local network as long as the auth proxy can access it.
store/books/9781617294327

https://developers.facebook.com
https://itbook.store/books/9781617294327

102 CHAPTER 9 Share: Securing and sharing web Things

www.itboo
and select Skip Quick Start. You should now have a new Facebook app; fill the fields as
shown in figure 9.10 by clicking Settings under your app name.

 Once you’ve done this, you can note the two bits of information you need: the app
ID and the app secret of your Facebook application. You’ll need to send these to Face-
book to authenticate your client app. Note that until your app is published publicly,
only you and the people you invite as developers/admins will be able to log in via this
Facebook app.

PASSPORT.JS: THE AUTHENTICATION MIDDLEWARE FOR EXPRESS

Now that your Facebook app is ready, you need to integrate it into your code. You
begin by creating a simple Express application with an HTTPS server. You can find this
application in chapter9-sharing/social-auth/authProxy.js, but we won’t detail it here
because it’s similar to the Express apps you created in chapter 8 and the previous sec-
tions. Next, you’ll create the component that authenticates users via Facebook. You
implement it using one of the most popular Node.js modules, Passport.js.1 Passport is
an impressive authentication middleware that provides simple integration of a num-
ber of authentication techniques—more than 300!—including OAuth and, hence, all
the social networks implementing it.

 After installing Passport via npm install --s passport, you install the Facebook
authentication module of Passport, called a strategy, via npm install --s passport-
facebook. If you want to authenticate via Twitter, LinkedIn, or GitHub, you’ll need to

1 http://passportjs.org/

App ID and secret

Give your app
a name

The domains
you will use
for your app

The main page of
your auth proxy

Figure 9.10 Setting up a new Facebook application for our Social WoT auth proxy. The app ID and
secret will be used by Facebook to authenticate our app.
k.store/books/9781617294327

http://passportjs.org/
https://itbook.store/books/9781617294327

103The Social Web of Things

L
a
n

This U
called
Faceb
succes

www.itbook.
install the corresponding Passport strategy; for example, passport-twitter or
passport-linkedin. As long as you pick a network that supports OAuth, the imple-
mentation of the proxy with your chosen authentication strategy will be almost the
same as the one used for Facebook.

IMPLEMENTING A FACEBOOK AUTHENTICATION STRATEGY

You’re now ready to add Facebook authentication support to your proxy. The provid-
ers/facebook.js file shows you how to do that. As shown in the following listing, you
have to implement a number of functions to work with a Passport strategy.

var passport = require('passport'), [...]

var acl = require('../config/acl.json');
var facebookAppId = 'YOUR_APP_ID';
var facebookAppSecret = 'YOUR_APP_SECRET';
var socialNetworkName = 'facebook';
var callbackResource = '/auth/facebook/callback';
var callbackUrl = 'https://localhost:' + acl.config.sourcePort +
 callbackResource;

module.exports.setupFacebookAuth = setupFacebookAuth;
function setupFacebookAuth(app) {
 app.use(cookieParser());
 app.use(methodOverride());
 app.use(session({secret: 'keyboard cat', 

 resave: true, saveUninitialized: true}));
 app.use(passport.initialize());
 app.use(passport.session());

 passport.serializeUser(function (user, done) {
 done(null, user);
 });

 passport.deserializeUser(function (obj, done) {
 done(null, obj);
 });

 passport.use(new FacebookStrategy({
 clientID: facebookAppId,
 clientSecret: facebookAppSecret,
 callbackURL: callbackUrl
 },
 function (accessToken, refreshToken, profile, done) {

 auth.checkUser(socialId(profile.id), accessToken,
 function (err, res) {
 if (err) return done(err, null);
 else return done(null, profile);
 });
 }));

Listing 9.5 providers/facebook.js: a Facebook authentication strategy

Configuration
variables: FB app
ID, app secret,
name, and the UR
to call back after
user authenticatio
on Facebook

Initialize Passport and support
storing the user login in sessions.

If you had a database of
users, you’d use these
two methods to load and
save users.

The credentials used to authenticate
your auth proxy as a Facebook app

RL will be
 by
ook after a
sful login.

The “verify” function, called by
the framework after a
successful authentication with
the provider; here you check if
the user is known by the proxy
and store their token if so.
store/books/9781617294327

https://itbook.store/books/9781617294327

104 CHAPTER 9 Share: Securing and sharing web Things

Trigger
authent
process
redirect
to faceb

www.itboo
 app.get('/auth/facebook',
 passport.authenticate('facebook'),
 function (req, res) {});

 app.get(callbackResource,
 passport.authenticate('facebook', {session: true, 

 failureRedirect: '/login'}),
 function (req, res) {
 res.redirect('/account');
 });

 app.get('/account', ensureAuthenticated, function (req, res) {
 auth.getToken(socialId(req.user.id), function (err, user) {
 if (err) res.redirect('/login');
 else {
 req.user.token = user.token;
 res.render('account', {user: req.user});
 }
 });
 });

 function socialId(userId) {
 return socialNetworkName + ':' + userId;
 };
 [...]
};

At first sight, this flow might seem a bit complex. It consists of a number of routes that
redirect the user to a Facebook login page and back from Facebook to your proxy
alongside a code that can be exchanged for a token. Passport takes care of all the
nitty-gritty details for you. The good news is that all authentication strategies have to
implement the same methods, so what you learned here can be applied to other social
networks as well!

 This was the core of the Facebook authentication mechanism, and now you also
need to make sure users have a user interface (HTML views) for all the routes you cre-
ated. You can certainly write HTML pages from scratch, but it’s easier to reuse Handle-
bars, the templating engine we used in the previous chapters. The pages we created
are located in the /views folder. At a minimum you’ll need a login.html page with a
link to /auth/facebook to trigger the authentication process. You’ll also need an
account.html page to which the user will be redirected upon a successful Facebook
authentication.

IMPLEMENTING ACCESS CONTROL LISTS

Now that your application allows users to authenticate via Facebook using OAuth, you
need to decide which user can access which resource on which Thing. In essence, you
need to create an access control list (ACL). There are various ways to implement ACLs,
such as by storing them in the local database. To keep things simple, you’ll use a JSON
configuration file, which can be found in config/acl.json and is shown in the next list-
ing. This file keeps track of which users can access which resources on your Pi.

the
ication
, and
 the user
ook.com.

Facebook.com will redirect the user to the
callbackUrl, so this function will never be called!

This route will be called by Facebook
after user authentication. If it fails you,
redirect to /login; otherwise to /account.

If the user is authenticated,
you get their token and
display their account page;
otherwise redirect to /login.

A unique social identifier is formed
by concatenating the social userId
and the social network name.
k.store/books/9781617294327

https://itbook.store/books/9781617294327

105The Social Web of Things

An array o
resources
want to pr

The resour
you want t
allow acces
without
authentica r

ed

www.itbook.
 {
 "protected": [
 {
 "uid": "facebook:10207489314897153",
 "resources": [
 "/properties", "/properties/temperature",
 "/properties/humidity",
 "/properties/pir", "/leds/1", "/leds/2", "/actions/ledState"
]
 }, {...}
],
 "open": [
 "/", "/model", "/account", "/login", "/logout", "/auth/facebook",
 "/auth/facebook/callback"
],
 "things": [
 {
 "id": "WoTPi",
 "url": "https://127.0.0.1:8484",
 "token": "cKXRTaRylYWQiF3MICaKndG4WJMcVLFz"
 }, {...}
],
 "config": {
 "sourcePort" : 5050
 }
}

A difficulty might be finding the user IDs of users you want to share with using their
social network identifier. A good way is to ask them to log in first because this will dis-
play their social network ID on the account page you got back from Facebook. Alter-
natively, you can use the Facebook Graph API explorer1 tool. Make sure you add your
own ID in the ACL!

 Now that your ACL is in place, you need to check what you get back from Facebook
against it to ensure the users who are trying to log in are really welcome. Similarly, you
need to check that they can access the Things’ resources requested. You implement
this using a middleware in /middleware/auth.js, as shown in the next listing.

var acl = require('../config/acl.json'), [...]

exports.socialTokenAuth = function (req, res, next) {
 if (isOpen(req.path)) {
 next();
 } else {
 var token = req.body.token || req.param('token') ||
 req.headers['Authorization'];
 if (!token) {

Listing 9.6 config/acl.json: the access control list JSON file

1 https://developers.facebook.com/tools/explorer/

Listing 9.7 Authorizing user requests: /middleware/auth.js

f the
you
otect

User IDs are concatenations 
of the social network name 
and the social network ID.

The list of resources user
facebook:10207489314897153 is allowed to access;
replace the number with your Facebook ID.

ces
o
s

tion The list of Things this proxy covers alongside thei
root URL and secret token; could also be generat
dynamically via OAuth if the Thing supports it.

Require your 
ACL config file.

If the request is for an open
path, call the next middleware.
store/books/9781617294327

https://developers.facebook.com/tools/explorer/
https://itbook.store/books/9781617294327

106 CHAPTER 9 Share: Securing and sharing web Things

Otherw
access
check t
this tok

www.itboo
 return res.status(401).send({success: false, message: 'API token
 missing.'});
 } else {
 checkUserAcl(token, req.path, function (err, user) {
 if (err) {
 return res.status(403).send({success: false, message: err});
 }
 next();
 });
 }
 }
};

function checkUserAcl(token, path, callback) {
 var userAcl = findInAcl(function (current) {
 return current.token === token && current.resources.indexOf(path)
 !== -1;
 });
 if (userAcl) {
 callback(null, userAcl);
 } else {
 callback('Not authorized for this resource!', null);
 }
};
function findInAcl(filter) {
 return acl.protected.filter(filter)[0];
};

function isOpen(path) {
 [...] if (acl.open.indexOf(path) !== -1) return true;
}

exports.checkUser = checkUser;
function checkUser(socialUserId, token, callback) {
 var result = findInAcl(function(current) {
 return current.uid === socialUserId;
 });
 if(result) {
 result.token = token;
 callback(null, result);
 } else {
 callback('User not found!', null);
 }
};
[...]

PROXYING RESOURCES OF THINGS

Finally, you need to implement the actual proxying: once a request is deemed valid by
the middleware, you need to contact the Thing that serves this resource and proxy the
results back to the client. This part is no different from any other HTTP proxy. To
implement it, you’ll use a blazing-fast Node module for building proxies called

ise, get the
token and
he ACL for
en.

return a 
us code.

Otherwise, the user is
good to go, and you call
the next middleware.

Can we find a user with 
the given token and 
the given path?

Handle open resources.

Called by facebook.js 
when a user is 
authenticated

If the user ID you got from
Facebook is present in your
ACL, you have a winner!

Store the user token to
allow them to make
subsequent calls to
resources they can access.
k.store/books/9781617294327

https://itbook.store/books/9781617294327

107The Social Web of Things

Proxy mid
function;
secret tok
the Thing.

www.itbook.
node-http-proxy.1 Install it via npm install --save http-proxy. Then use this mod-
ule to build another middleware in /middleware/proxy.js, as shown in the next listing.

var https = require('https'),
 fs = require('fs'),
 config = require('../config/acl.json').things[0],
 httpProxy = require('http-proxy');

var proxyServer = httpProxy.createProxyServer({
 ssl: {
 key: fs.readFileSync('./config/change_me_privateKey.pem', 'utf8'),
 cert: fs.readFileSync('./config/change_me_caCert.pem', 'utf8'),
 passphrase: 'webofthings'
 },
 secure: false
});

module.exports = function() {
 return function proxy(req, res, next) {
 req.headers['authorization'] = config.token;
 proxyServer.web(req, res, {target: config.url});
 }
};

That’s it! You should now have a full Social Web of Things authentication proxy. To
test it, run node authProxy.js. Then, start the WoT Pi using node wot.js with simple
token authentication enabled, as shown in section 9.2.1, or with OAuth if you imple-
mented it.

 Try to access a resource of your Pi via the proxy with an invalid token; for example,
https://raspberrypi.local:5050/properties/pir?token=1234. As expected, this will
return an error: Not authorized for this resource!

 Now, let’s get an access token to issue a valid request: start by browsing to
https://IP:5050/login. This should prompt you to log in on Facebook (if your
browser doesn’t have a Facebook login cookie sitting in the cupboard) and then
should ask you if you authorize the proxy Facebook app to access your profile. If you
accept, you’ll land on your profile page, as shown in figure 9.11, where you can see
your access token. Copy it and open https://raspberrypi.local:5050/proper-
ties/pir?token=YOUR-TOKEN once again, but this time with your new token. If every-
thing works, you should get the HTML representation of the PIR sensor. Take a deep
breath and think about what you just did: you merged the Social Web with the physical
world!

1 https://github.com/nodejitsu/node-http-proxy

Listing 9.8 Proxying requests to Things: /middleware/proxy.js

Load the Thing that 
can be proxied 
(there’s only one here).

Initialize the proxy server,
making it an HTTPS proxy to
ensure end-to-end encryption.Do not verify the certificate (true

would refuse a local certificate).

dleware
add the
en of

Proxy the request; notice
that this middleware doesn’t
call next() because it should
be the last in the chain.
store/books/9781617294327

https://github.com/nodejitsu/node-http-proxy
https://raspberrypi.local:5050/properties/pir?token=1234
https://raspberrypi.local:5050/properties/pir?token=YOUR-TOKEN
https://raspberrypi.local:5050/properties/pir?token=YOUR-TOKEN
https://itbook.store/books/9781617294327

108 CHAPTER 9 Share: Securing and sharing web Things

www.itboo

9.4 Beyond the book
In this chapter, you learned how to blend the Social Web and the Web of Things to get
to the Social Web of Things. Not a small achievement for a single chapter! Although
you should certainly enjoy the moment, you should also realize that we barely

The nerd corner—I want more of this!
As usual, there are many possible ways of extending this example because we kept
the implementation simple. Here are a few extension ideas: you could use what you
learned in chapter 8 to implement a system for the proxy to automatically discover
web Thing model-compliant Things. You could also make the ACL much easier to deal
with by implementing wildcards; for example, /properties/*. Or you could create a
UI for the proxy that lets you share with your friends or that lets you add authorized
users dynamically (for our hotel scenario). If you’re still hungry for more, you could
also implement proxying for WebSockets; node-http-proxy supports it as well.
Finally, you could implement an OAuth server on the Pi—for example, using node-
oauth2-server—and change the proxy to dynamically get an OAuth access token
from the Pi instead of a simple token; this would make the flow more secure and
much more flexible.

Facebook prompts you to
accept this app request

Your access token

Figure 9.11 First, Facebook will prompt the user to accept the application request. After a successful
Facebook authentication, the user is redirected to their Account page on the auth proxy, where they
can retrieve their access token to be used in subsequent calls to the Things behind the proxy.
k.store/books/9781617294327

https://itbook.store/books/9781617294327

109Beyond the book

www.itbook.
scratched the surface of security for the IoT and the WoT. We didn’t cover a number
of aspects, from ensuring privacy to protecting Things against distributed denial of
service attacks or securing software and firmware updates.

 By definition, perfect security is unattainable. Securing computer networks is a
constant battle between security experts and hackers, where security systems always
need to be one step ahead because the better our machines and tools get, the easier it
is to break secure systems. Network security should be a constant discipline rather
than a one-off event, and you need to keep informed and updated as you pursue your
IoT adventure.1

 As the IoT moves out of its teenage years and into adulthood, different focal points
will appear. First, security will become ubiquitous and a must-have, rather than a nice-
to-have. But just as HTTP might be too heavy for resource-limited devices, security pro-
tocols such as TLS and their underlying cypher suites are too heavy for the most
resource-constrained devices. This is why lighter-weight versions of TLS are being
developed, such as DTLS,2 which is similar to TLS but runs on top of UDP instead of
TCP and also has a smaller memory footprint. Although such protocols represent
interesting evolutions, some researchers are looking at revolutions! For example,
some researchers started looking at a concept they refer to as device democracy.3 In this
model, devices become more autonomous and favor peer-to-peer interactions over
centralized cloud services. Security is ensured using a blockchain mechanism: similar
to the way bitcoin transactions are validated by a number of independent parties in
the bitcoin network, devices could all participate in making the IoT secure. Without a
doubt, IoT security will change drastically in the next few years, as the web itself will
evolve to match today’s needs.

1 Some good bedside readings: 
- http://h30499.www3.hp.com/t5/Fortify-Application-Security/HP-Study-Reveals-70-Percent-of-Internet-of-
 Things-Devices/ba-p/6556284
- https://www.owasp.org/index.php/Main_Page
- http://arstechnica.com/security/2016/01/how-to-search-the-internet-of-things-for-photos-of-
 sleeping-babies/
- http://techcrunch.com/2015/10/24/why-iot-security-is-so-critical

2 https://en.wikipedia.org/wiki/Datagram_Transport_Layer_Security
3 http://www-935.ibm.com/services/us/gbs/thoughtleadership/internetofthings/

The nerd corner—I want the future of secure application management!
As mentioned before, managing applications or firmware updates on an embedded
device can be tricky to get right and secure: if you don’t do it right, such as by using
an insecure HTTP server, attackers could use your update mechanism to inject what-
ever they like on your customers’ devices! Luckily, as the IoT matures, interesting,
secure, and scalable solutions appear to help you deploy code on your Things. As
an example, resin.io lets you use Git to push new versions of your code to all your
Things or to a selection of them. It also uses Docker containers to package and run
store/books/9781617294327

http://h30499.www3.hp.com/t5/Fortify-Application-Security/HP-Study-Reveals-70-Percent-of-Internet-of-Things-Devices/ba-p/6556284#.VIwyo6SsXfo
http://h30499.www3.hp.com/t5/Fortify-Application-Security/HP-Study-Reveals-70-Percent-of-Internet-of-Things-Devices/ba-p/6556284#.VIwyo6SsXfo
https://www.owasp.org/index.php/Main_Page
http://arstechnica.com/security/2016/01/how-to-search-the-internet-of-things-for-photos-of-sleeping-babies/
http://arstechnica.com/security/2016/01/how-to-search-the-internet-of-things-for-photos-of-sleeping-babies/
http://techcrunch.com/2015/10/24/why-iot-security-is-so-critical
https://en.wikipedia.org/wiki/Datagram_Transport_Layer_Security
http://www-935.ibm.com/services/us/gbs/thoughtleadership/internetofthings/
https://itbook.store/books/9781617294327

110 CHAPTER 9 Share: Securing and sharing web Things

www.itboo
9.5 Summary
 You must cover four basic principles to secure IoT systems: encrypted commu-

nication, server authentication, client authentication, and access control.
 Encrypted communication ensures attackers can’t read the content of mes-

sages. It uses encryption mechanisms based on symmetric or asymmetric keys.
 You should use TLS to encrypt messages on the web. TLS is based on asymmetric

keys: a public key and a private server key.
 Server authentication ensures attackers can’t pretend to be the server. On the

web, this is achieved by using SSL (TLS) certificates. The delivery of these certif-
icates is controlled through a chain of trust where only trusted parties called
certificate authorities can deliver certificates to identify web servers.

 Instead of buying certificates from a trusted third party, you can create self-
signed TLS certificates on a Raspberry Pi. The drawback is that web browsers
will flag the communication as unsecure because they don’t have the CA certifi-
cate in their trust store.

 You can achieve client authentication using simple API tokens. Tokens should
rotate on a regular basis and should be generated using crypto secure random
algorithms so that their sequence can’t be guessed.

 The OAuth protocol can be used to generate API tokens in a dynamic, standard,
and secure manner and is supported by many embedded Linux devices such as
the Raspberry Pi.

 The delegated authentication mechanism of OAuth relies on other OAuth pro-
viders to authenticate users and create API tokens. As an example, a user of a
Thing can be identified using Facebook via OAuth.

 You can implement access control for Things to reflect your social contacts by
creating an authentication proxy using OAuth for clients’ authentication and
contacts from social networks.

 Now that you’ve seen how to secure your web-connected Things so that their data
and services can be securely shared and accessed over the web, it’s time to move to the
final layer of the WoT architecture: Compose. In the next chapter, you’ll see how to
take all the components you learned about in this book and combine them to build a
whole new generation of web applications: physical mashups. Integrating real-time
data from numerous physical sources directly within web applications and services is
without doubt the future of the web. We want to make sure you have the tools you
need to get there in no time!

(continued)

several applications in isolation on embedded devices, which improves portability,
security, and stability. Finally, it works well with Node.js and the Pi and is free if you
have a small number of devices, so go ahead and try it.a

a https://resin.io
k.store/books/9781617294327

http://resin.io
https://itbook.store/books/9781617294327

111Summary

www.itbook.
Building the Web of Things is a hands-on guide that will
teach how to design and implement scalable, flexible,
and open IoT solutions using Web technologies. This
book focuses on providing the right balance of theory,
code samples and practical examples, to enable you
how to successfully connect all sorts of devices to the
Web and how to expose their services and data over
REST APIs. After you build a simple proof of concept
app, you'll learn a systematic methodology and system
architecture for connecting things to the Web, finding
other things, sharing data, and combining these com-
ponents to rapidly build distributed applications and

physical mashups. Each chapter will help you gain the knowledge and skills you'll
need to fully take advantage of a new generation of real-time, web-connected devices
and services and to be able to build scalable applications that merge the physical and
digital worlds.

 The Internet of Things (IoT) is a hot conversation topic. Analysts call it a disrup-
tive technology. Competing standards and technologies are appearing daily, and there
are no tangible signs of a single protocol that will enable all devices, services, and
applications to talk to each other seamlessly. Fortunately, there's a great universal IoT
application platform available now: the World Wide Web. Web standards and tools
provide the ideal substrate for connected devices and applications to exchange data,
and this vision is called the Web of Things.

What's inside

 Using Web technologies to sense and connect the real world
 Rapidly build a Web interface to control your Smart Home using a Raspberry Pi
 Use the real-time, programmable, social and semantic Web to build a Web API

for any device
 Build real-time physical mashups with JavaScript and node.js
 Learn how to integrate other protocols such as MQTT, CoAP or Bluetooth to

the Web
 Learn how to use a variety WoT and IoT platforms, tools, and protocols

Whether you're a seasoned developer, a system architect, or a curious amateur with
basic programming skills, this book will provide you with a complete toolbox to
become an active participant in the Web of Things revolution.
store/books/9781617294327

https://www.manning.com/books/building-the-web-of-things
https://www.manning.com/books/building-the-web-of-things
https://itbook.store/books/9781617294327

www.itbook.store

 As web applications increase in size and complexity, traditional data cen-
ters are moving much of their operations to cloud-based systems like Amazon
Web Services. These services provide stable computing resources that replace
physical servers, along with numerous services that can simplify application
development and operational management concerns such as scaling and secu-
rity. This chapter gives an overview of Amazon Web Services.

What Is
Amazon Web Services?
/books/9781617294327

https://itbook.store/books/9781617294327

www.itbook.
Chapter 1 from Amazon Web Services in Action by
Michael Wittig and Andreas Wittig

What is
 Amazon Web Services?
Amazon Web Services (AWS) is a platform of web services offering solutions for
computing, storing, and networking, at different layers of abstraction. You can use
these services to host web sites, run enterprise applications, and mine tremendous
amounts of data. The term web service means services can be controlled via a web
interface. The web interface can be used by machines or by humans via a graphical
user interface. The most prominent services are EC2, which offers virtual servers,
and S3, which offers storage capacity. Services on AWS work well together; you can
use them to replicate your existing on-premises setup or design a new setup from
scratch. Services are charged for on a pay-per-use pricing model.

This chapter covers
 Overview of Amazon Web Services

 Benefits of using Amazon Web Services

 Examples of what you can do with Amazon Web
Services

 Creating and setting up an Amazon Web Services
account
113

store/books/9781617294327

https://www.manning.com/books/amazon-web-services-in-action
https://itbook.store/books/9781617294327

114 CHAPTER 1 What is Amazon Web Services?

www.itboo
 As an AWS customer, you can choose among different data centers. AWS data cen-
ters are distributed in the United States, Europe, Asia, and South America. For exam-
ple, you can start a virtual server in Japan in the same way you can start a virtual server
in Ireland. This enables you to serve customers worldwide with a global infrastructure.

 The map in figure 1.1 shows the data centers available to all customers.

In more general terms, AWS is known as a cloud computing platform.1

1.1 What is cloud computing?
Almost every IT solution is labeled with the term cloud computing or just cloud nowa-
days. A buzzword may help to sell, but it’s hard to work with in a book.

 Cloud computing, or the cloud, is a metaphor for supply and consumption of IT
resources. The IT resources in the cloud aren’t directly visible to the user; there are
layers of abstraction in between. The level of abstraction offered by the cloud may vary
from virtual hardware to complex distributed systems. Resources are available on
demand in enormous quantities and paid for per use.

1 Bernard Golden, “Amazon Web Services (AWS) Hardware,” For Dummies, http://mng.bz/k6lT.

Which hardware powers AWS?
AWS keeps secret the hardware used in its data centers. The scale at which AWS
operates computing, networking, and storage hardware is tremendous. It probably
uses commodity components to save money compared to hardware that charges
extra for a brand name. Handling of hardware failure is built into real-world processes
and software.1

AWS also uses hardware especially developed for its use cases. A good example is
the Xeon E5-2666 v3 CPU from Intel. This CPU is optimized to power virtual servers
from the c4 family.

Germany
Ireland

Japan

Brazil
Australia

Singapore

U.S. East

U.S. West 1

U.S. West 2

Figure 1.1 AWS data center locations
k.store/books/9781617294327

http://mng.bz/k6lT
https://itbook.store/books/9781617294327

115What can you do with AWS?

www.itbook.
Here's a more official definition from the National Institute of Standards and Tech-
nology:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction.

 —The NIST Definition of Cloud Computing,
 National Institute of Standards and Technology

Clouds are often divided into the following types:

 Public —A cloud managed by an organization and open to use by the general
public

 Private —A cloud that virtualizes and shares the IT infrastructure within a single
organization

 Hybrid —A mixture of a public and a private cloud

AWS is a public cloud. Cloud computing services also have several classifications:

 Infrastructure as a service (IaaS) —Offers fundamental resources like computing,
storage, and networking capabilities, using virtual servers such as Amazon EC2,
Google Compute Engine, and Microsoft Azure virtual machines

 Platform as a service (PaaS) —Provides platforms to deploy custom applications to
the cloud, such as AWS Elastic Beanstalk, Google App Engine, and Heroku

 Software as a service (SaaS) —Combines infrastructure and software running in
the cloud, including office applications like Amazon WorkSpaces, Google Apps
for Work, and Microsoft Office 365

The AWS product portfolio contains IaaS, PaaS, and SaaS. Let’s take a more concrete
look at what you can do with AWS.

1.2 What can you do with AWS?
You can run any application on AWS by using one or a combination of services. The
examples in this section will give you an idea of what you can do with AWS.

1.2.1 Hosting a web shop

John is CIO of a medium-sized e-commerce business. His goal is to provide his custom-
ers with a fast and reliable web shop. He decided to host the web shop on-premises,
and three years ago he rented servers in a data center. A web server handles requests
from customers, and a database stores product information and orders. John is evalu-
ating how his company can take advantage of AWS by running the same setup on AWS,
as shown in figure 1.2.

store/books/9781617294327

https://itbook.store/books/9781617294327

116 CHAPTER 1 What is Amazon Web Services?

www.itboo
John realized that other options are available to improve his setup on AWS with addi-
tional services:

 The web shop consists of dynamic content (such as products and their prices)
and static content (such as the company logo). By splitting dynamic and static
content, John reduced the load for his web servers and improved performance
by delivering the static content over a content delivery network (CDN).

 John uses maintenance-free services including a database, an object store, and a
DNS system on AWS. This frees him from managing these parts of the system,
decreases operational costs, and improves quality.

 The application running the web shop can be installed on virtual servers. John
split the capacity of the old on-premises server into multiple smaller virtual serv-
ers at no extra cost. If one of these virtual servers fails, the load balancer will
send customer requests to the other virtual servers. This setup improves the web
shop’s reliability.

Figure 1.3 shows how John enhanced the web shop setup with AWS.
 John started a proof-of-concept project and found that his web application can be

transferred to AWS and that services are available to help improve his setup.

1.2.2 Running a Java EE application in your private network

Maureen is a senior system architect in a global corporation. She wants to move parts
of the business applications to AWS when the company’s data-center contract expires
in a few months, to reduce costs and gain flexibility. She found that it’s possible to run
enterprise applications on AWS.

DatabaseWeb server

Maintenance free

On-premises server

DatabaseWeb
server

Managed by you with updates,
monitoring, and so on

Internet

User

Figure 1.2 Running a web shop
on-premises vs. on AWS
k.store/books/9781617294327

https://itbook.store/books/9781617294327

117What can you do with AWS?

www.itbook.
To do so, she defines a virtual network in the cloud and connects it to the corporate
network through a virtual private network (VPN) connection. The company can con-
trol access and protect mission-critical data by using subnets and control traffic
between them with access-control lists. Maureen controls traffic to the internet using
Network Address Translation (NAT) and firewalls. She installs application servers on
virtual machines (VMs) to run the Java EE application. Maureen is also thinking about
storing data in a SQL database service (such as Oracle Database Enterprise Edition or
Microsoft SQL Server EE). Figure 1.4 illustrates Maureen’s architecture.

 Maureen has managed to connect the on-premises data center with a private net-
work on AWS. Her team has already started to move the first enterprise application to
the cloud.

1.2.3 Meeting legal and business data archival requirements

Greg is responsible for the IT infrastructure of a small law office. His primary goal is to
store and archive all data in a reliable and durable way. He operates a file server to
offer the possibility of sharing documents within the office. Storing all the data is a
challenge for him:

Database

Internet
User

Load balancer DNS CDN

Object store

Dynamic

Web server

Static

Maintenance free Managed by you with updates,
monitoring, and so on

Improve
reliability

Improve
performance

Decrease
maintenance
costs

Figure 1.3 Running a web shop on AWS with CDN for better performance, a load balancer for
high availability, and a managed database to decrease maintenance costs
store/books/9781617294327

https://itbook.store/books/9781617294327

118 CHAPTER 1 What is Amazon Web Services?

www.itboo
 He needs to back up all files to prevent the loss of critical data. To do so, Greg
copies the data from the file server to another network-attached storage, so he
had to buy the hardware for the file server twice. The file server and the backup
server are located close together, so he is failing to meet disaster-recovery
requirements to recover from a fire or a break-in.

 To meet legal and business data archival requirements, Greg needs to store data
for a long time. Storing data for 10 years or longer is tricky. Greg uses an expen-
sive archive solution to do so.

To save money and increase data security, Greg decided to use AWS. He transferred
data to a highly available object store. A storage gateway makes it unnecessary to buy
and operate network-attached storage and a backup on-premises. A virtual tape deck
takes over the task of archiving data for the required length of time. Figure 1.5 shows
how Greg implemented this use case on AWS and compares it to the on-premises
solution.

 Greg is fine with the new solution to store and archive data on AWS because he was
able to improve quality and he gained the possibility of scaling storage size.

SQL database

Private subnet
10.10.2.0/24

Internet

Private subnet
10.10.1.0/24

Private subnet
10.10.0.0/24

Virtual network
10.10.0.0/16

Java EE server

NAT
Internet
gateway

VPN
gatewayCorporate network

10.20.0.0/16

VPN

Figure 1.4 Running a Java EE application with enterprise networking on AWS
k.store/books/9781617294327

https://itbook.store/books/9781617294327

119What can you do with AWS?

www.itbook.
1.2.4 Implementing a fault-tolerant system architecture

Alexa is a software engineer working for a fast-growing startup. She knows that Mur-
phy’s Law applies to IT infrastructure: anything that can go wrong, will go wrong. Alexa
is working hard to build a fault-tolerant system to prevent outages from ruining the
business. She knows that there are two type of services on AWS: fault-tolerant services
and services that can be used in a fault-tolerant way. Alexa builds a system like the one
shown in figure 1.6 with a fault-tolerant architecture. The database service is offered
with replication and failover handling. Alexa uses virtual servers acting as web servers.
These virtual servers aren’t fault tolerant by default. But Alexa uses a load balancer and
can launch multiple servers in different data centers to achieve fault tolerance.

 So far, Alexa has protected the startup from major outages. Nevertheless, she and
her team are always planning for failure.

 You now have a broad idea of what you can do with AWS. Generally speaking, you
can host any application on AWS. The next section explains the nine most important
benefits AWS has to offer.

User UserUser

Network-attached
storage (NAS)

Tape deck

Backup Archive

Archive

Synchronize

Local company network

Virtual
tape drive

Object
store

NAS (backup)

Data storage in a single
location is a disaster risk.

With high-availability
services, no backup
is required.

User UserUser

Storage gateway

Local company network

Internet

Maintenance free Managed by you with updates,
monitoring, and so on

Figure 1.5 Backing up and archiving data on-premises and on AWS
store/books/9781617294327

https://itbook.store/books/9781617294327

120 CHAPTER 1 What is Amazon Web Services?

www.itboo
1.3 How you can benefit from using AWS
What’s the most important advantage of using AWS? Cost savings, you might say. But
saving money isn’t the only advantage. Let’s look at other ways you can benefit from
using AWS.

1.3.1 Innovative and fast-growing platform

In 2014, AWS announced more than 500 new services and features during its yearly
conference, re:Invent at Las Vegas. On top of that, new features and improvements
are released every week. You can transform these new services and features into inno-
vative solutions for your customers and thus achieve a competitive advantage.

 The number of attendees to the re:Invent conference grew from 9,000 in 2013
to 13,500 in 2014.1 AWS counts more than 1 million businesses and government agen-
cies among its customers, and in its Q1 2014 results discussion, the company said it
will continue to hire more talent to grow even further.2 You can expect even more new
features and services in the coming years.

1 Greg Bensinger, “Amazon Conference Showcases Another Side of the Retailer’s Business,” Digits, Nov. 12,
2014, http://mng.bz/hTBo.

2 “Amazon.com’s Management Discusses Q1 2014 Results - Earnings Call Transcript,” Seeking Alpha, April 24,
2014, http://mng.bz/60qX.

Data center A

Web server

Database
(master)

Load
balancer

Internet
User Data center B

Web server

Database
(standby)

Fault tolerant by default Fault tolerant usage possibleHighly available

Figure 1.6 Building a fault-tolerant system on AWS
k.store/books/9781617294327

http://mng.bz/hTBo
http://mng.bz/60qX
https://itbook.store/books/9781617294327

121How you can benefit from using AWS

www.itbook.
1.3.2 Services solve common problems

As you’ve learned, AWS is a platform of services. Common problems such as load bal-
ancing, queuing, sending email, and storing files are solved for you by services. You
don’t need to reinvent the wheel. It’s your job to pick the right services to build com-
plex systems. Then you can let AWS manage those services while you focus on your cus-
tomers.

1.3.3 Enabling automation

Because AWS has an API, you can automate everything: you can write code to create
networks, start virtual server clusters, or deploy a relational database. Automation
increases reliability and improves efficiency.

 The more dependencies your system has, the more complex it gets. A human can
quickly lose perspective, whereas a computer can cope with graphs of any size. You
should concentrate on tasks a human is good at—describing a system—while the com-
puter figures out how to resolve all those dependencies to create the system. Setting
up an environment in the cloud based on your blueprints can be automated with the
help of infrastructure as code, covered in chapter 4.

1.3.4 Flexible capacity (scalability)

Flexible capacity frees you from planning. You can scale from one server to thousands
of servers. Your storage can grow from gigabytes to petabytes. You no longer need to
predict your future capacity needs for the coming months and years.

 If you run a web shop, you have seasonal traffic patterns, as shown in figure 1.7.
Think about day versus night, and weekday versus weekend or holiday. Wouldn’t it be
nice if you could add capacity when traffic grows and remove capacity when traffic
shrinks? That’s exactly what flexible capacity is about. You can start new servers within
minutes and throw them away a few hours after that.

 The cloud has almost no capacity constraints. You no longer need to think about
rack space, switches, and power supplies—you can add as many servers as you like. If
your data volume grows, you can always add new storage capacity.

12am 6pm6am

S
ys

te
m

 lo
ad

S
ys

te
m

 lo
ad

Thursday SundayMonday

S
ys

te
m

 lo
ad

DecemberJanuary

Figure 1.7 Seasonal traffic patterns for a web shop
store/books/9781617294327

https://itbook.store/books/9781617294327

122 CHAPTER 1 What is Amazon Web Services?

www.itboo
Flexible capacity also means you can shut down unused systems. In one of our last
projects, the test environment only ran from 7:00 a.m. to 8:00 p.m. on weekdays,
allowing us to save 60%.

1.3.5 Built for failure (reliability)

Most AWS services are fault-tolerant or highly available. If you use those services, you
get reliability for free. AWS supports you as you build systems in a reliable way. It pro-
vides everything you need to create your own fault-tolerant systems.

1.3.6 Reducing time to market

In AWS, you request a new virtual server, and a few minutes later that virtual server is
booted and ready to use. The same is true with any other AWS service available. You
can use them all on demand. This allows you to adapt your infrastructure to new
requirements very quickly.

 Your development process will be faster because of the shorter feedback loops. You
can eliminate constraints such as the number of test environments available; if you
need one more test environment, you can create it for a few hours.

1.3.7 Benefiting from economies of scale

At the time of writing, the charges for using AWS have been reduced 42 times since 2008:

 In December 2014, charges for outbound data transfer were lowered by up to 43%.
 In November 2014, charges for using the search service were lowered by 50%.
 In March 2014, charges for using a virtual server were lowered by up to 40%.

As of December 2014, AWS operated 1.4 million servers. All processes related to oper-
ations must be optimized to operate at that scale. The bigger AWS gets, the lower the
prices will be.

1.3.8 Worldwide

You can deploy your applications as close to your customers as possible. AWS has data
centers in the following locations:

 United States (northern Virginia, northern California, Oregon)
 Europe (Germany, Ireland)
 Asia (Japan, Singapore)
 Australia
 South America (Brazil)

With AWS, you can run your business all over the world.

1.3.9 Professional partner

AWS is compliant with the following:

 ISO 27001—A worldwide information security standard certified by an indepen-
dent and accredited certification body
k.store/books/9781617294327

https://itbook.store/books/9781617294327

123How much does it cost?

www.itbook.
 FedRAMP & DoD CSM —Ensures secure cloud computing for the U.S. Federal
Government and the U.S. Department of Defense

 PCI DSS Level 1 —A data security standard (DSS) for the payment card industry
(PCI) to protect cardholders data

 ISO 9001 —A standardized quality management approach used worldwide and
certified by an independent and accredited certification body

If you’re still not convinced that AWS is a professional partner, you should know that
Airbnb, Amazon, Intuit, NASA, Nasdaq, Netflix, SoundCloud, and many more are run-
ning serious workloads on AWS.

 The cost benefit is elaborated in more detail in the next section.

1.4 How much does it cost?
A bill from AWS is similar to an electric bill. Services are billed based on usage. You pay
for the hours a virtual server was running, the used storage from the object store (in
gigabytes), or the number of running load balancers. Services are invoiced on a
monthly basis. The pricing for each service is publicly available; if you want to calcu-
late the monthly cost of a planned setup, you can use the AWS Simple Monthly Calcu-
lator (http://aws.amazon.com/calculator).

1.4.1 Free Tier

You can use some AWS services for free during the first 12 months after you sign up.
The idea behind the Free Tier is to enable you to experiment with AWS and get some
experience. Here is what’s included in the Free Tier:

 750 hours (roughly a month) of a small virtual server running Linux or Win-
dows. This means you can run one virtual server the whole month or you can
run 750 virtual servers for one hour.

 750 hours (or roughly a month) of a load balancer.
 Object store with 5 GB of storage.
 Small database with 20 GB of storage, including backup.

If you exceed the limits of the Free Tier, you start paying for the resources you con-
sume without further notice. You’ll receive a bill at the end of the month. We’ll show
you how to monitor your costs before you begin using AWS. If your Free Tier ends
after one year, you pay for all resources you use.

 You get some additional benefits, as detailed at http://aws.amazon.com/free. This
book will use the Free Tier as much as possible and will clearly state when additional
resources are required that aren’t covered by the Free Tier.

1.4.2 Billing example

As mentioned earlier, you can be billed in several ways:

 Based on hours of usage —If you use a server for 61 minutes, that’s usually counted
as 2 hours.
store/books/9781617294327

http://aws.amazon.com/calculator
http://aws.amazon.com/free
https://itbook.store/books/9781617294327

124 CHAPTER 1 What is Amazon Web Services?

www.itboo
 Based on traffic —Traffic can be measured in gigabytes or in number of requests.
 Based on storage usage —Usage can be either provisioned capacity (for example,

50 GB volume no matter how much you use) or real usage (such as 2.3 GB used).

Remember the web shop example from section 1.2? Figure 1.8 shows the web shop
and adds information about how each part is billed.

Let’s assume your web shop started successfully in January, and you decided to run a
marketing campaign to increase sales for the next month. Lucky you: you were able to
increase the number of visitors of your web shop fivefold in February. As you already
know, you have to pay for AWS based on usage. Table 1.1 shows your bills for January
and February. The number of visitors increased from 100,000 to 500,000, and your
monthly bill increased from 142.37 USD to 538.09 USD, which is a 3.7-fold increase.
Because your web shop had to handle more traffic, you had to pay more for services,
such as the CDN, the web servers, and the database. Other services, like the storage of
static files, didn’t experience more usage, so the price stayed the same.

Database

Internet
User

Load balancer DNS CDN

Object
storage

Web server

Billed by storage usageBilled by hours of usage Billed by traffic

Dynamic Static

Figure 1.8 Web shop billing example
k.store/books/9781617294327

https://itbook.store/books/9781617294327

125Comparing alternatives

www.itbook.

 With AWS, you can achieve a linear relationship between traffic and costs. And
other opportunities await you with this pricing model.

1.4.3 Pay-per-use opportunities

The AWS pay-per-use pricing model creates new opportunities. You no longer need to
make upfront investments in infrastructure. You can start servers on demand and only
pay per hour of usage; and you can stop using those servers whenever you like and no
longer have to pay for them. You don’t need to make an upfront commitment regard-
ing how much storage you’ll use.

 A big server costs exactly as much as two smaller ones with the same capacity. Thus
you can divide your systems into smaller parts, because the cost is the same. This makes
fault tolerance affordable not only for big companies but also for smaller budgets.

1.5 Comparing alternatives
AWS isn’t the only cloud computing provider. Microsoft and Google have cloud offer-
ings as well.

 OpenStack is different because it’s open source and developed by more than 200
companies including IBM, HP, and Rackspace. Each of these companies uses Open-
Stack to operate its own cloud offerings, sometimes with closed source add-ons. You
could run your own cloud based on OpenStack, but you would lose most of the bene-
fits outlined in section 1.3.

 Comparing cloud providers isn’t easy, because open standards are mostly missing.
Functionality like virtual networks and message queuing are realized differently. If you

Table 1.1 How an AWS bill changes if the number of web shop visitors increases

Service January usage February usage February charge Increase

Visits to website 100,000 500,000

CDN 26 M requests +
25 GB traffic

131 M requests +
125 GB traffic

113.31 USD 90.64 USD

Static files 50 GB used 
storage

50 GB used 
storage

1.50 USD 0.00 USD

Load balancer 748 hours + 
50 GB traffic

748 hours + 
250 GB traffic

20.30 USD 1.60 USD

Web servers 1 server = 748
hours

4 servers = 2,992
hours

204.96 USD 153.72 USD

Database 
(748 hours)

Small server + 
20 GB storage

Large server + 
20 GB storage

170.66 USD 128.10 USD

Traffic (outgoing
traffic to internet)

51 GB 255 GB 22.86 USD 18.46 USD

DNS 2 M requests 10 M requests 4.50 USD 3.20 USD

Total cost 538.09 USD 395.72 USD
store/books/9781617294327

https://itbook.store/books/9781617294327

126 CHAPTER 1 What is Amazon Web Services?

www.itboo
know what features you need, you can compare the details and make your decision.
Otherwise, AWS is your best bet because the chances are highest that you’ll find a solu-
tion for your problem.

 Following are some common features of cloud providers:

 Virtual servers (Linux and Windows)
 Object store
 Load balancer
 Message queuing
 Graphical user interface
 Command-line interface

The more interesting question is, how do cloud providers differ? Table 1.2 compares
AWS, Azure, Google Cloud Platform, and OpenStack.

Table 1.2 Differences between AWS, Microsoft Azure, Google Cloud Platform, and OpenStack

AWS Azure
Google Cloud

Platform
OpenStack

Number of services Most Many Enough Few

Number of locations
(multiple data cen-
ters per location)

9 13 3 Yes (depends on the
OpenStack provider)

Compliance Common standards
(ISO 27001, HIPAA,
FedRAMP, SOC), IT
Grundschutz (Ger-
many), G-Cloud (UK)

Common standards
(ISO 27001, HIPAA,
FedRAMP, SOC), ISO
27018 (cloud pri-
vacy), G-Cloud (UK)

Common standards
(ISO 27001, HIPAA,
FedRAMP, SOC)

Yes (depends on the
OpenStack provider)

SDK languages Android, Browsers
(JavaScript), iOS,
Java, .NET, Node.js
(JavaScript), PHP,
Python, Ruby, Go

Android, iOS, Java,
.NET, Node.js (JavaS-
cript), PHP, Python,
Ruby

Java, Browsers
(JavaScript), .NET,
PHP, Python

-

Integration into
development 
process

Medium, not linked
to specific ecosys-
tems

High, linked to the
Microsoft ecosys-
tem (for example,
.NET development)

High, linked to the
Google ecosystem
(for example,
Android)

-

Block-level storage
(attached via net-
work)

Yes Yes (can be used by
multiple virtual serv-
ers simultaneously)

No Yes (can be used by
multiple virtual serv-
ers simultaneously)

Relational 
database

Yes (MySQL, Post-
greSQL, Oracle Data-
base, Microsoft SQL
Server)

Yes (Azure SQL Data-
base, Microsoft SQL
Server)

Yes (MySQL) Yes (depends on the
OpenStack provider)

NoSQL database Yes (proprietary) Yes (proprietary) Yes (proprietary) No

DNS Yes No Yes No
k.store/books/9781617294327

https://itbook.store/books/9781617294327

127Exploring AWS services

www.itbook.
In our opinion, AWS is the most mature cloud platform available at the moment.

1.6 Exploring AWS services
Hardware for computing, storing, and networking is the foundation of the AWS cloud.
AWS runs software services on top of the hardware to provide the cloud, as shown in
figure 1.9. A web interface, the API, acts as an interface between AWS services and your
applications.

 You can manage services by sending requests to the API manually via a GUI or pro-
grammatically via a SDK. To do so, you can use a tool like the Management Console, a
web-based user interface, or a command-line tool. Virtual servers have a peculiarity:
you can connect to virtual servers through SSH, for example, and gain administrator

Virtual network Yes Yes No Yes

Pub/sub messaging Yes (proprietary, JMS
library available)

Yes (proprietary) Yes (proprietary) No

Machine-learning
tools

Yes Yes Yes No

Deployment tools Yes Yes Yes No

On-premises data-
center integration

Yes Yes Yes No

Table 1.2 Differences between AWS, Microsoft Azure, Google Cloud Platform, and OpenStack (continued)

AWS Azure
Google Cloud

Platform
OpenStack

Administrator

Manage
services

Compute:
App:

Enterprise:
Deployment:

Storage:
Database:

Networking:

Virtual server
Queues, search
Directory service, mail
Access rights, monitoring
Object store, archiving
Relational, NoSQL
DNS, virtual network

Services

Compute

Software
Hardware

Storage
Network

API

Figure 1.9 The AWS cloud is composed of hardware and software services accessible via an API.
store/books/9781617294327

https://itbook.store/books/9781617294327

128 CHAPTER 1 What is Amazon Web Services?

www.itboo
access. This means you can install any software you like on a virtual server. Other ser-
vices, like the NoSQL database service, offer their features through an API and hide
everything that’s going on behind the scenes. Figure 1.10 shows an administrator
installing a custom PHP web application on a virtual server and managing dependent
services such as a NoSQL database used by the PHP web application.

 Users send HTTP requests to a virtual server. A web server is installed on this virtual
server along with a custom PHP web application. The web application needs to talk to
AWS services in order to answer HTTP requests from users. For example, the web
application needs to query data from a NoSQL database, store static files, and send
email. Communication between the web application and AWS services is handled by
the API, as figure 1.11 shows.

 The number of different services available can be scary at the outset. The following
categorization of AWS services will help you to find your way through the jungle:

 Compute services offer computing power and memory. You can start virtual serv-
ers and use them to run your applications.

 App services offer solutions for common use cases like message queues, topics,
and searching large amounts of data to integrate into your applications.

 Enterprise services offer independent solutions such as mail servers and directory
services.

Administrator

Manage
services

Install and configure
software remotely

API Services

Static file
storage

NoSQL
database

Sending
email

Virtual
server

Figure 1.10 Managing a custom application running on a virtual server and dependent services
k.store/books/9781617294327

https://itbook.store/books/9781617294327

129Exploring AWS services

www.itbook.
 Deployment and administration services work on top of the services mentioned so
far. They help you grant and revoke access to cloud resources, monitor your vir-
tual servers, and deploy applications.

 Storage is needed to collect, persist, and archive data. AWS offers different stor-
age options: an object store or a network-attached storage solution for use with
virtual servers.

 Database storage has some advantages over simple storage solutions when you
need to manage structured data. AWS offers solutions for relational and NoSQL
databases.

 Networking services are an elementary part of AWS. You can define private net-
works and use a well-integrated DNS.

Be aware that we cover only the most important categories and services here. Other
services are available, and you can also run your own applications on AWS.

 Now that we’ve looked at AWS services in detail, it’s time for you to learn how to
interact with those services.

Users

HTTP request

Virtual
server

API Services

Static file
storage

NoSQL
database

Sending
email

Figure 1.11 Handling an HTTP request with a custom web application using additional
AWS services
store/books/9781617294327

https://itbook.store/books/9781617294327

130 CHAPTER 1 What is Amazon Web Services?

www.itboo
1.7 Interacting with AWS
When you interact with AWS to configure or use services, you make calls to the API.
The API is the entry point to AWS, as figure 1.12 demonstrates.

 Next, we’ll give you an overview of the tools available to make calls to the AWS API.
You can compare the ability of these tools to automate your daily tasks.

1.7.1 Management Console

You can use the web-based Management Console to interact with AWS. You can manu-
ally control AWS with this convenient GUI, which runs in every modern web browser
(Chrome, Firefox, Safari 5, IE 9); see figure 1.13.

 If you’re experimenting with AWS, the Management Console is the best place to
start. It helps you to gain an overview of the different services and achieve success
quickly. The Management Console is also a good way to set up a cloud infrastructure
for development and testing.

1.7.2 Command-line interface

You can start a virtual server, create storage, and send email from the command line.
With the command-line interface (CLI), you can control everything on AWS; see figure
1.14.

API

Manual

Automation

Services

Web-based
management

Console

Blueprints

SDKs for Java,
Python, JavaScript,...

Command-
line interface

Figure 1.12 Tools to interact with the AWS API
k.store/books/9781617294327

https://itbook.store/books/9781617294327

131Interacting with AWS

www.itbook.
Figure 1.13 Management Console

Figure 1.14 Command-line interface
store/books/9781617294327

https://itbook.store/books/9781617294327

132 CHAPTER 1 What is Amazon Web Services?

www.itboo
The CLI is typically used to automate tasks on AWS. If you want to automate parts of
your infrastructure with the help of a continuous integration server like Jenkins, the
CLI is the right tool for the job. The CLI offers a convenient way to access the API and
combine multiple calls into a script.

 You can even begin to automate your infrastructure with scripts by chaining multi-
ple CLI calls together. The CLI is available for Windows, Mac, and Linux, and there’s
also a PowerShell version available.

1.7.3 SDKs

Sometimes you need to call AWS from within your application. With SDKs, you can use
your favorite programming language to integrate AWS into your application logic. AWS
provides SDKs for the following:

SDKs are typically used to integrate AWS services into applications. If you’re doing soft-
ware development and want to integrate an AWS service like a NoSQL database or a
push-notification service, an SDK is the right choice for the job. Some services, such as
queues and topics, must be used with an SDK in your application.

1.7.4 Blueprints

A blueprint is a description of your system containing all services and dependencies. The
blueprint doesn’t say anything about the necessary steps or the order to achieve the
described system. Figure 1.15 shows how a blueprint is transferred into a running system.

 Android  Node.js (JavaScript)

 Browsers (JavaScript)  PHP

 iOS  Python

 Java  Ruby

 .NET  Go

Database

Load balancer

Tool

CDN

Static files

Web servers

DNS
{
 infrastructure: {
 loadbalancer: {
 server: { ... }
 },
 cdn: { ... },
 database: { ... },
 dns: { ... },
 static: { ... }
 }
}

Figure 1.15 Infrastructure
automation with blueprints
k.store/books/9781617294327

https://itbook.store/books/9781617294327

133Creating an AWS account

www.itbook.
Consider using blueprints if you have to control many or complex environments.
Blueprints will help you to automate the configuration of your infrastructure in the
cloud. You can use blueprints to set up virtual networks and launch different servers
into that network, for example.

 A blueprint removes much of the burden from you because you no longer need to
worry about dependencies during system creation—the blueprint automates the
entire process. You’ll learn more about automating your infrastructure in chapter 4.

 It’s time to get started creating your AWS account and exploring AWS practice after
all that theory.

1.8 Creating an AWS account
Before you can start using AWS, you need to create an account. An AWS account is a
basket for all the resources you own. You can attach multiple users to an account if
multiple humans need access to the account; by default, your account will have one
root user. To create an account, you need the following:

 A telephone number to validate your identity
 A credit card to pay your bills

1.8.1 Signing up

The sign-up process consists of five steps:

1 Provide your login credentials.
2 Provide your contact information.
3 Provide your payment details.
4 Verify your identity.
5 Choose your support plan.

Point your favorite modern web browser to https://aws.amazon.com, and click the
Create a Free Account / Create an AWS Account button.

1. PROVIDING YOUR LOGIN CREDENTIALS

The Sign Up page, shown in figure 1.16, gives you two choices. You can either create
an account using your Amazon.com account or create an account from scratch. If you
create the account from scratch, follow along. Otherwise, skip to step 5.

 Fill in your email address, and select I Am a New User. Go on to the next step to cre-
ate your login credentials. We advise you to choose a strong password to prevent misuse

Using an old account?
You can use your existing AWS account while working on the examples in this book.
In this case, your usage may not be covered by the Free Tier, and you may have to
pay for your usage.

Also, if you created your existing AWS account before December 4, 2013, you should cre-
ate a new one: there are legacy issues that may cause trouble when you try our examples.
store/books/9781617294327

https://aws.amazon.com
https://itbook.store/books/9781617294327

134 CHAPTER 1 What is Amazon Web Services?

www.itboo
of your account. We suggest a password with 16 characters, numbers, and symbols. If
someone gets access to your account, they can destroy your systems or steal your data.

2. PROVIDING YOUR CONTACT INFORMATION

The next step, as shown in figure 1.17, is to provide your contact information. Fill in
all the required fields, and continue.

Figure 1.16 Creating an
AWS account: Sign Up page

Figure 1.17 Creating an
AWS account: providing
your contact information
k.store/books/9781617294327

https://itbook.store/books/9781617294327

135Creating an AWS account

www.itbook.
3. PROVIDE YOUR PAYMENT DETAILS

Now the screen shown in figure 1.18 asks for your payment information. AWS supports
MasterCard and Visa. You can set your preferred payment currency later, if you don’t
want to pay your bills in USD; supported currencies are EUR, GBP, CHF, AUD, and some
others.

4. VERIFYING YOUR IDENTITY

The next step is to verify your identity. Figure 1.19 shows the first step of the process.

Figure 1.18 Creating an AWS account: providing your payment details
store/books/9781617294327

https://itbook.store/books/9781617294327

136 CHAPTER 1 What is Amazon Web Services?

www.itboo
After you complete the first part, you’ll receive a call from AWS. A robot voice will ask
you for your PIN, which will be like the one shown in figure 1.20. Your identity will be
verified, and you can continue with the last step.

Figure 1.19 Creating an AWS account: verifying your identity (1 of 2)

Figure 1.20 Creating an AWS account: verifying your identity (2 of 2)
k.store/books/9781617294327

https://itbook.store/books/9781617294327

137Creating an AWS account

www.itbook.
5. CHOOSING YOUR SUPPORT PLAN

The last step is to choose a support plan; see figure 1.21. In this case, select the Basic
plan, which is free. If you later create an AWS account for your business, we recom-
mend the Business support plan. You can even switch support plans later.

 High five! You’re done. Now you can log in to your account with the AWS Manage-
ment Console.

1.8.2 Signing In

You have an AWS account and are ready to sign in to the AWS Management Console at
https://console.aws.amazon.com. As mentioned earlier, the Management Console is
a web-based tool you can use to control AWS resources. The Management Console

Figure 1.21 Creating an AWS account: choosing your support plan
store/books/9781617294327

https://console.aws.amazon.com
https://itbook.store/books/9781617294327

138 CHAPTER 1 What is Amazon Web Services?

www.itboo
uses the AWS API to make most of the functionality available to you. Figure 1.22 shows
the Sign In page.

 Enter your login credentials and click Sign In Using Our Secure Server to see the
Management Console, shown in figure 1.23.

Figure 1.22 Sign in to the Management Console.

Figure 1.23 AWS Management Console
k.store/books/9781617294327

https://itbook.store/books/9781617294327

139Creating an AWS account

www.itbook.
The most important part is the navigation bar at the top; see figure 1.24. It consists of
six sections:

 AWS —Gives you a fast overview of all resources in your account.
 Services —Provides access to all AWS services.
 Custom section (Edit) —Click Edit and drag-and-drop important services here to

personalize the navigation bar.
 Your name —Lets you access billing information and your account, and also lets

you sign out.
 Your region —Lets you choose your region. You’ll learn about regions in section

3.5. You don’t need to change anything here now.
 Support —Gives you access to forums, documentation, and a ticket system.

Next, you’ll create a key pair so you can connect to your virtual servers.

1.8.3 Creating a key pair

To access a virtual server in AWS, you need a key pair consisting of a private key and a
public key. The public key will be uploaded to AWS and inserted into the virtual server.
The private key is yours; it’s like your password, but much more secure. Protect your
private key as if it’s a password. It’s your secret, so don’t lose it—you can’t retrieve it.

 To access a Linux server, you use the SSH protocol; you’ll authenticate with the
help of your key pair instead of a password during login. You access a Windows server
via Remote Desktop Protocol (RDP); you’ll need your key pair to decrypt the adminis-
trator password before you can log in.

 The following steps will guide you to the dashboard of the EC2 service, which offers
virtual servers, and where you can obtain a key pair:

1 Open the AWS Management Console at https://console.aws.amazon.com.
2 Click Services in the navigation bar, find the EC2 service, and click it.
3 Your browser shows the EC2 Management Console.

The EC2 Management Console, shown in figure 1.25, is split into three columns. The first
column is the EC2 navigation bar; because EC2 is one of the oldest services, it has many

Resource
overview

Jump to
a service

Quick access to services
(customizable)

Account and
billing

Region
selector

Help
section

Figure 1.24 AWS Management Console navigation bar
store/books/9781617294327

https://console.aws.amazon.com
https://itbook.store/books/9781617294327

140 CHAPTER 1 What is Amazon Web Services?

www.itboo
features that you can access via the navigation bar. The second column gives you a brief
overview of all your EC2 resources. The third column provides additional information.

 Follow these steps to create a new key pair:

1 Click Key Pairs in the navigation bar under Network & Security.
2 Click the Create Key Pair button on the page shown in figure 1.26.
3 Name the Key Pair mykey. If you choose another name, you must replace the

name in all the following examples!

During key-pair creation, you downloaded a file called mykey.pem. You must now pre-
pare that key for future use. Depending on your operating system, you may need to do
things differently, so please read the section that fits your OS.

Figure 1.25 EC2 Management Console

Using your own key pair
It’s also possible to upload the public key part from an existing key pair to AWS. Doing
so has two advantages:

 You can reuse an existing key pair.
 You can be sure that only you know the private key part of the key pair. If you use

the Create Key Pair button, AWS knows (at least briefly) your private key.

We decided against that approach in this case because it’s less convenient to imple-
ment in a book.
k.store/books/9781617294327

https://itbook.store/books/9781617294327

141Creating an AWS account

www.itbook.
LINUX AND MAC OS X
The only thing you need to do is change the access rights of mykey.pem so that only
you can read the file. To do so, run chmod 400 mykey.pem in the terminal. You’ll learn
about how to use your key when you need to log in to a virtual server for the first time
in this book.

WINDOWS

Windows doesn’t ship a SSH client, so you need to download the PuTTY installer for
Windows from http://mng.bz/A1bY and install PuTTY. PuTTY comes with a tool
called PuTTYgen that can convert the mykey.pem file into a mykey.ppk file, which
you’ll need:

1 Run the application PuTTYgen. The screen shown in figure 1.27 opens.
2 Select SSH-2 RSA under Type of Key to Generate.
3 Click Load.
4 Because PuTTYgen displays only *.pkk files, you need to switch the file exten-

sion of the File Name field to All Files.
5 Select the mykey.pem file, and click Open.
6 Confirm the dialog box.
7 Change Key Comment to mykey.
8 Click Save Private Key. Ignore the warning about saving the key without a pass-

phrase.

Your .pem file is now converted to the .pkk format needed by PuTTY. You’ll learn how to
use your key when you need to log in to a virtual server for the first time in this book.

Figure 1.26 EC2 Management Console key pairs
store/books/9781617294327

http://mng.bz/A1bY
https://itbook.store/books/9781617294327

142 CHAPTER 1 What is Amazon Web Services?

www.itboo
1.8.4 Creating a billing alarm

Before you use your AWS account in the next chapter, we advise you to create a billing
alarm. If you exceed the Free Tier, an email is sent to you. The book warns you when-
ever an example isn’t covered by the Free Tier. Please make sure that you carefully fol-
low the cleanup steps after each example. To make sure you haven’t missed something
during cleanup, please create a billing alarm as advised by AWS: http://mng.bz/M7Sj.

1.9 Summary
 Amazon Web Services (AWS) is a platform of web services offering solutions for

computing, storing, and networking that work well together.
 Cost savings aren’t the only benefit of using AWS. You’ll also profit from an

innovative and fast-growing platform with flexible capacity, fault-tolerant ser-
vices, and a worldwide infrastructure.

 Any use case can be implemented on AWS, whether it’s a widely used web appli-
cation or a specialized enterprise application with an advanced networking
setup.

Figure 1.27 PuTTYgen allows you to convert the downloaded .pem file into the .pkk
file format needed by PuTTY.
k.store/books/9781617294327

http://mng.bz/M7Sj
https://itbook.store/books/9781617294327

143Summary

www.itbook.
 You can interact with AWS in many different ways. You can control the different
services by using the web-based GUI; use code to manage AWS programmatically
from the command line or SDKs; or use blueprints to set up, modify, or delete
your infrastructure on AWS.

 Pay-per-use is the pricing model for AWS services. Computing power, storage,
and networking services are billed similarly to electricity.

 Creating an AWS account is easy. Now you know how to set up a key pair so you
can log in to virtual servers for later use.

store/books/9781617294327

https://itbook.store/books/9781617294327

144 CHAPTER 1 What is Amazon Web Services?

www.itboo
Physical data centers require lots of equipment and
take time and resources to manage. If you need a data
center, but don’t want to build your own, Amazon Web
Services may be your solution. Whether you’re analyz-
ing real-time data, building software as a service, or
running an e-commerce site, AWS offers you a reliable
cloud-based platform with services that scale.

 Amazon Web Services in Action introduces you to com-
puting, storing, and networking in the AWS cloud. The
book will teach you about the most important services
on AWS. You will also learn about best practices regard-
ing security, high availability and scalability.You'll start

with a broad overview of cloud computing and AWS and learn how to spin-up servers
manually and from the command line. You'll learn how to automate your infrastruc-
ture by programmatically calling the AWS API to control every part of AWS. You will
be introduced to the concept of Infrastructure as Code with the help of AWS Cloud-
Formation.You will learn about different approaches to deploy applications on AWS.
You'll also learn how to secure your infrastructure by isolating networks, controlling
traffic and managing access to AWS resources. Next, you'll learn options and tech-
niques for storing your data. You will experience how to integrate AWS services into
your own applications by the use of SDKs. Finally, this book teaches you how to design
for high availability, fault tolerance, and scalability.

What's inside

 Overview of AWS cloud concepts and best practices
 Manage servers on EC2 for cost-effectiveness
 Infrastructure automation with Infrastructure as Code (AWS CloudFormation)
 Deploy applications on AWS
 Store data on AWS: SQL, NoSQL, object storage and block storage
 Integrate Amazon's pre-built services
 Architect highly available and fault tolerant systems

Written for developers and DevOps engineers moving distributed applications to the
AWS platform.
k.store/books/9781617294327

https://www.manning.com/books/amazon-web-services-in-action
https://www.manning.com/books/amazon-web-services-in-action
https://itbook.store/books/9781617294327

www.itbook.store

 As exciting and interesting as the new approaches to web development
and security are, most developers also have to consider how to manage existing
systems based on older technologies. This chapter covers SAML, WS-Trust, and
other protocols and approaches that are now considered legacy systems. We felt
it was important to provide a historical context to help you see how far things
have come in the last 7 years.

Implementing
 Security as a Service
/books/9781617294327

http://manning.com/ebooks/soasecimpl/
http://manning.com/ebooks/soasecimpl/
https://itbook.store/books/9781617294327

www.itbook.
Chapter 8 from SOA Security by Ramarao
Kanneganti and Prasad A. Chodavarapu

Implementing
 security as a service
In part II, you saw some of the technological building blocks needed to implement
security for web services: authentication, encryption, and signatures. If you are
going to secure only a few simple services, what you have learned up to this point
should hold you in good stead. For example, if you are an application developer
simply seeking to secure the services offered by your back-end modules to your
front-end modules, you already know enough to get your work done.

 If you are developing or implementing an enterprise-class SOA security solu-
tion, there are a few more fundamental pieces that are needed to develop full-
fledged frameworks, strategies, and architectures.1 In particular, we must address

This chapter covers
 SAMLAssertions

 OpenSAML

 WS-Trust and SAML protocol

1 Kerberos, described in chapter 5, can by itself provide the basis for an enterprise-class security framework.
The use of Kerberos across trust domains (enterprises, or even divisions within enterprises) is rare. We
need alternate security mechanisms that scale within and beyond an enterprise.
146

store/books/9781617294327

mailto:chap@manning.com
mailto:chap@manning.com
http://manning.com/saml/actionns
http://manning.com/saml/actionns
http://manning.com/saml/actionns
mailto:chap@manning.com
mailto:chap@manning.com
http://manning.com/
http://../
http://../
https://www.manning.com/books/soa-security
https://itbook.store/books/9781617294327

147

www.itbook.
the security management issues that we described in the first chapter. To recap, enter-
prise SOA security solutions need to address the following concerns:

 Ease of development Are there ways we can reduce or eliminate the burden of
security enforcement from developers of services and service consumers? If we
can find such ways, the cost of developing a new service or service consumer
can be brought down.

 Manageability How can we ensure consistent enforcement of security policies
in all services and service consumers deployed within an enterprise? If a security
decision is taken to allow access to a specific resource, how do we trace it to a
security policy? Enterprise SOA security solutions need to provide easy-to-use
mechanisms to answer these questions.1

 Interoperability How can we ensure interoperability between different security
solutions if standards allow different options for good reasons?

In other words, enterprise SOA security solutions need to take the costs of develop-
ment and management into account and ensure interoperability. In this chapter and
the next we will show you how to do so.

 In this chapter, we will present the idea of security as a service. To understand this
idea, consider the following: One way of securing services is to implement security for
each of them. Since the security is not dependent on the actual service, there will be
many common elements in different implementations of security. If this were normal
application development, we would extract this commonality into a library. For the
reasons we explained in the first chapter, in SOA it is natural to extract security into a
service, so that it can be used by any technology and platform.

 Thankfully, there are standards that are developed specifically for addressing this
need. These include WS-Addressing, SAML assertions, the SAML protocol, WS-Trust,
and AON. Of these, we introduced WS-Addressing in chapter 3. We will describe
SAML assertions, the SAML protocol, and WS-Trust in this chapter. AON will be
described in appendix E. With the help of these standards, you will learn how to
develop security as a separate service so that it can be used for SOA security.

 We will start this chapter by introducing the idea of security as a service and how it
is useful in securing SOA. Subsequently, we will introduce you to standards that allow
security to be used as a service. We will present several use cases to understand how
these standards can be used. Finally, we will show you how to implement a security ser-
vice that uses these standards.

1 These questions are significant for other reasons as well. Regulations (such as the Sarbanes-Oxley Act
in the U.S.) and corporate governance policies require mechanisms that guarantee consistent enforce-
ment of security policies.
store/books/9781617294327

mailto:chap@manning.com
mailto:chap@manning.com
mailto:chap@manning.com
mailto:chap@manning.com
mailto:chap@manning.com
mailto:chap@manning.com
mailto:chap@manning.com
mailto:chap@manning.com
http://manning.com/saml/attrns
http://manning.com/saml/attrns
mailto:chap@manning.com
mailto:chap@manning.com
mailto:chap@manning.com
https://itbook.store/books/9781617294327

148 CHAPTER 8 Implementing security as a service

www.itboo
8.1 Security as a service
In the first chapter, we discussed basic security issues. As shown in table 8.1, we’ve
already addressed them except protection against attacks and privacy. Since we will
refer to these technologies later in this chapter, let’s summarize.

If all you have are a few simple services, you can build one or more of these mecha-
nisms into each of the service and service consumer implementations. Figure 8.1
depicts this approach.

 This approach to securing services is simple to implement. The standard protocols
and established practices in security are sufficient to deliver this solution. Conse-
quently, it is easy to understand and develop. In fact, most enterprise applications are
built this way even today.
But what if you need to secure a large number of services, as would be the case in any
enterprise? Would you still use the same approach?

 Consider what happens if you need to secure a large number of services. If we go by
the approach shown in figure 8.1, we have to replicate the security enforcement
machinery across all services and service consumers. Worse still, if security require-
ments differ for each application (for example, some services may have stricter security
controls than others) then the security machinery in each will end up looking similar
with subtle differences, leading to high maintenance costs. In addition, this simple
design approach does not lend itself to more advanced use cases. What if a service
needs to contact other services when processing a message? It would need to transfer
the entire security context to all the service providers, which can be complex.

 If you are planning on building an enterprise-class framework for securing a large
number of services, you will want to explore ways of shifting at least some of the secu-
rity enforcement burden from services and service consumers to a shared security ser-

Table 8.1 Review of security technologies described in earlier chapters

Requirement Technology choices See chapter

Making and verifying
identity claims

Username and password 4

Username and password digest 4

Kerberos 5

Digital signatures 7

Authentication using JAAS against a variety of repositories 4

Protecting data
confidentiality

Point-to-point secure transport with SSL 6

Selective encryption with shared secrets, PKI, or Kerberos 5 and 6

Verifying data integrity
and nonrepudiation

Point-to-point secure transport with SSL 6

Selective signing with PKI or Kerberos 5, 6, and 7
k.store/books/9781617294327

https://itbook.store/books/9781617294327

149Security as a service

www.itbook.
vice. A shared security service will help you enforce security policies consistently across
all services. Figure 8.2 illustrates this approach.

 One may argue that separation of security as a shared service is not really neces-
sary to ensure reuse of security machinery; one can always offer the security imple-
mentations as libraries that all services and service consumers can reuse. Even
though a security service does offer a superior reuse mechanism—one that is inde-
pendent of programming languages and platforms—note that reuse is not the
main reason why we are considering implementing security as a shared service.
What we are really seeking to address is the challenge of deploying, managing, and
evolving security enforcement mechanisms across a large number of services. A
security service can be centrally managed and modified quickly to meet rapidly
changing business needs. Security machinery reused via libraries cannot provide
the same benefit.

Figure 8.1 Security implemented as part of each service and service consumer. Each service
implements its own security, which is invoked as a part of service consumer and provider. For instance,
the consumer may add username and password information and the provider may validate them and
grant access
store/books/9781617294327

https://itbook.store/books/9781617294327

150 CHAPTER 8 Implementing security as a service

www.itboo
 It’s one thing to make a case for a shared security service and another thing to
implement it. We have to see how we can pull it off. For example, we need to fig-
ure out how services and service consumers invoke the security service, how the
credentials are communicated, and so on.

 We’ll discuss the technical feasibility of a security service next. Before we do
that, a note on terminology is in order. For reasons that will soon become obvious,
we will hereafter stick to the terms source endpoint and destination endpoint instead of
using terms such as service/service consumer, client/server, and sender/receiver.

Figure 8.2 Security implemented as a separate service to offload most of the security enforcement
burden from services and service consumers. Note that services and service consumers may still handle
some security tasks. For example, they may have to understand how to use the security service.
k.store/books/9781617294327

mailto:chap@manning.com
mailto:chap@manning.com
https://itbook.store/books/9781617294327

151Security as a service

www.itbook.
8.1.1 Is a security service technically feasible?

Implementing security as a service is a lot more technically challenging than enforc-
ing security at the endpoints. For it to be technically feasible,1 we need to address the
following questions:

 Who invokes the security service? The issue of who invokes the security service
seems simple: Whoever needs it will invoke it. What is not obvious is who is sup-
posed to need it. We can say that the source endpoint needs to obtain a security
clearance before contacting the destination endpoint. Or, we can say that the
destination endpoint needs to validate the credentials submitted by the source
endpoint. These choices mean that the security service needs to support differ-
ent kinds of use cases. For example, a source may simply be interested in get-
ting a service ticket or a destination endpoint may be interested in
authenticating and authorizing a request.

 How is the security context communicated to the destination endpoint? Endpoints are
often interested in the results of security enforcement. For example, a destina-
tion endpoint might be interested in knowing the authenticated identity of the
caller. Another endpoint might need more than just the identity; it might be
interested in knowing the privileges granted to the caller. As you can see, the
result of security enforcement is a context that needs to be communicated to
the destination endpoint. What constitutes the context varies based on the
needs of the endpoint.

 What is the interface for the security service? Given the diverse set of use cases and
security technologies a security service should provide, it is not easy to come up
with an interface that serves all needs. For example, a security service should be
able to validate identity claims made using username tokens, X.509 certificates,
and Kerberos tickets. Not only that, the interface should allow for securing the
communication with the security service itself!

These issues are addressed by various standards, which we will introduce next. Once
we understand these standards, it will become clear that a security service is indeed a
technically feasible idea.

8.1.2 Standards for implementing security as a service

A number of standards and technologies need to be brought together when imple-
menting security as a service. We have already introduced some of these technologies
in previous chapters. We will introduce the rest here. Table 8.2 lists all of these stan-
dards and technologies and provides a pointer to the chapter and section that
describes each of them.

1 We are not discussing the practical issues in migrating from endpoint-enforced security to a security service.
We will discuss them in chapter 10.
store/books/9781617294327

mailto:chap@manning.com
mailto:chap@manning.com
https://itbook.store/books/9781617294327

152 CHAPTER 8 Implementing security as a service

www.itboo
Before we look at SAML, WS-Trust, and the SAML protocol, it helps to look at the pos-
sible use cases for a security service. The use case analysis in the next section will help
you understand the technical issues in implementing security as a service. This under-
standing will in turn help you appreciate the motivations behind each of the stan-
dards and technologies we listed in table 8.2.

8.2 Analyzing possible uses of a security service
To understand how to create a security service, we have to first understand how it can
be used. The possible uses of a security service can be classified into the following five
use cases based on how the security service is invoked.

1 Destination endpoint invokes security service out-of-band
2 Source endpoint invokes security service out-of-band
3 Both endpoints invoke security service out-of-band
4 Messages are explicitly routed via the security service by the source endpoint or

by a previous intermediary in the message path
5 A smart network device automatically routes messages via the security service

 In this section, we will analyze each of these use cases. We will describe the scenario,
identify the standards and technologies that can help in the implementation, and eval-
uate the pros and cons of invoking the security service as described. This exercise will
help us identify the different pieces of the technology puzzle needed to create a secu-
rity service.

 Let’s start our discussion with a use case in which the destination endpoint invokes
the security service out-of-band.

Table 8.2 Standards and technologies that make implementation of a security service technically
feasible

Standard/Technology Description Described in

WS-Addressing Standardizes SOAP headers for preserving destination
endpoint information when routing a message via the
security service

3.5

Application-Oriented
Networking (AON)

Technology that enables the network to understand
application-level messages and even become a security
service provider

3.5 and
appendix E

Security Assertion
Markup Language
(SAML)

Provides the syntax for conveying the findings of a security
service

8.3

WS-Trust Describes interfaces for a security service that can issue,
validate, renew, and cancel security tokens such as SAML
assertions and Kerberos tickets

8.5.1

SAML protocol Describes interfaces for a security service that returns its
findings as SAML

8.5.2
k.store/books/9781617294327

https://itbook.store/books/9781617294327

153Analyzing possible uses of a security service

www.itbook.
8.2.1 Use case 1: Destination endpoint invokes security service out-of-band

In all the examples we have shown so far, with the exception of in chapter 5 where we
discussed Kerberos, the destination endpoint bears the burden of security enforce-
ment. So, the most natural candidate for invoking the security service is the destina-
tion endpoint itself. Instead of calling different library functions for executing
security-related logic, the destination endpoint can invoke the security service. Let’s
call this use case 1.

 In this use case, the source endpoint is not at all aware of the security service. The
source endpoint simply invokes the destination endpoint, which in turn invokes the
security service. As the security service is not in the message path, the security service is
said to be invoked out-of-band. Figure 8.3 depicts this.

You will recognize that this use case is quite commonly found if you look at an LDAP
server as a security service. An LDAP server provides authentication as a service to
server applications that wish to authenticate users contacting them. It also often pro-
vides server applications with the information necessary to make authorization deci-
sions, but leaves the final authorization decision to the applications themselves.

 The security service we wish to implement needs to provide significantly more func-
tionality than a traditional LDAP server. For example, the security service may need to
decide which resources the authenticated source endpoint is allowed to access and for
how long. That is, the security service may need to provide authorization functionality,
too.

 The security service may also need to provide the destination endpoint with addi-
tional details about the source endpoint that the security service gets to know when
doing authentication. For example, the security service may get to know the source
endpoint’s location and preferences during authentication. The destination endpoint
may need such information for its business logic, consequently the security service will
need to communicate this to the destination endpoint.

 Furthermore, as we want to provide the security service even over unsecured net-
works, all communication with the security service needs to be protected. Otherwise, a
man in the middle may be able compromise security.

Figure 8.3 The destination endpoint invokes the security service out-of-band. The burden of security is
moved to a separate service. Still, the destination endpoint (that is, the service provider) must invoke
it explicitly.
store/books/9781617294327

http://www.oasis-open.org/committees/
http://www.oasis-open.org/committees/
https://itbook.store/books/9781617294327

154 CHAPTER 8 Implementing security as a service

www.itboo
RELEVANT STANDARDS AND TECHNOLOGIES

Of the standards and technologies described in table 8.2, the following are relevant in
this use case:

 SAML The security service can express its findings to the destination endpoint
in the form of standard SAML assertions.

 WS-Trust and/or the SAML protocol These standards specify how the security ser-
vice can be invoked.

WS-Addressing and AON are not relevant in this use case, as messages are not routed
via the security service.

PROS AND CONS

There are several advantages to the destination endpoint invoking the security service.
It is only a small step from the way we have been implementing security. Source end-
points need not even know about the existence of the security service, and need not
understand how to interact with one.

 The big disadvantage is that every destination endpoint needs to know how to inter-
act with the security service. Furthermore, every destination endpoint is forced to
spend time and effort obtaining the security decision. As the number of service
requests increases, the load on the destination endpoint increases.

 From the perspective of source endpoints, too, this use case has problems. The
source endpoints are forced to reveal their credentials to the destination endpoint.
This allows destination endpoints to steal and reuse the source’s credentials for con-
tacting other services. (We discussed this service-provider abuse in chapter 5.)

 The obvious alternative to the destination endpoint invoking the security service is
to leave that burden to the source endpoint. Let’s discuss that possibility next.

8.2.2 Use case 2: Source endpoint invokes security service out-of-band

In this use case, the source endpoint invokes the security service to get a security
token that it in turn submits to the destination endpoint. At the destination endpoint,
the security token is examined and appropriate action is taken. Figure 8.4 illustrates
this use case.

Figure 8.4 The source endpoint invokes the security service out-of-band. Just as before, security is
handled by the separate security service. The burden of invoking it falls to the source endpoint; i.e. the
consumer. Since the result should be accepted by the destination endpoint, the security service needs
to implement standards such as SAML.
k.store/books/9781617294327

https://itbook.store/books/9781617294327

155Analyzing possible uses of a security service

www.itbook.
 Kerberos operates in a similar fashion. There, too, the client gets a token—a service
ticket—which is submitted to the service. The ticket can carry the complete security con-
text in encrypted and signed form. Refer to chapter 5 for an introduction to Kerberos.

RELEVANT STANDARDS AND TECHNOLOGIES

Of the standards and technologies described in table 8.2, the following are relevant in
this use case.

 SAML The security token returned by the security service can take the form of
a standard SAML assertion.

 WS-Trust and/or the SAML protocol These standards specify how the security ser-
vice can be invoked.

As in use case 1, WS-Addressing and AON are not relevant, as messages are not routed
via the security service

PROS AND CONS

This use case has a clear advantage over the previous one: It spreads the burden of
invoking the security service over the source endpoints. So, this use case scales better
than the previous one. In addition, this solution does not reveal the security creden-
tials to the destination endpoint. This prevents the destination endpoint owner from
repurposing the submitted credentials to access a different service.

 But there are some disadvantages with this use case. Any source endpoint wishing to
use the destination endpoint needs to invoke the security service. This increases the pro-
gramming complexity on the part of the clients, reducing the usability of the service.

 In addition, the entire security context that the destination endpoint needs should
be available in the ticket. Since the source endpoint cannot be sure what information is
required, it will have to carry all the potentially required information in the ticket. This
can get bulky as more and more attributes are added to the security context.

 One way to take care of the problem of having to carry the entire security context
(rather than just the necessary data) to the destination endpoint is to let both end-
points talk to the security service. That possibility is use case 3, which we discuss next.

8.2.3 Use case 3: Both endpoints invoke security service out-of-band

In this scenario, the source endpoint talks to the security service and obtains a security
token that provides a partial security context, enough to provide most common infor-
mation required by any service. If a destination endpoint receives a security token and
requires further information about the source endpoint, it will turn to the security ser-
vice to obtain that information. Figure 8.5 illustrates this possibility.

RELEVANT STANDARDS AND TECHNOLOGIES

Of the standards and technologies described in table 8.2, the following are relevant in
this use case.
store/books/9781617294327

https://itbook.store/books/9781617294327

156 CHAPTER 8 Implementing security as a service

www.itboo
 SAML The security token returned by the security service to the source end-
point can take the form of a standard SAML assertion. Similarly, when the desti-
nation endpoint queries the security service for more information on a source
endpoint, the security service’s response can be in the form of a standard SAML
assertion.

 WS-Trust and/or the SAML protocol These standards specify how the security ser-
vice can be invoked.

As in use cases 1 and 2, WS-Addressing and AON are not relevant, as messages
are not routed via the security service.

PROS AND CONS

While this use case solves a technical problem, it imposes an additional programming
burden on both endpoints. This is a general solution that is suitable for several situa-
tions.

 All the use cases we outlined so far share an essential characteristic: the security
service is invoked out-of-band (that is, the security service lies outside the message
path). Let us now consider a radically different possibility. The source endpoint (or a
previous intermediary1 in the message path) can submit the message to a security ser-
vice rather than the destination endpoint.

8.2.4 Use case 4: Security service as an explicit intermediary

As we described in chapter 3, SOAP allows intermediaries—nodes other than the
source and destination endpoints—to see and act on a message. In this use case, we
consider implementing a security service as an intermediary in the message path.

1 Intermediaries in the SOAP message path are discussed in section 3.5.

Figure 8.5 Both endpoints invoke the security service out-of-band. As always, security functionality is
encapsulated by the security service. Unlike before, both the source and destination endpoints invoke
the service, which generates and validates the security tokens.
k.store/books/9781617294327

https://itbook.store/books/9781617294327

157Analyzing possible uses of a security service

www.itbook.
 Figure 8.6 illustrates this idea. The source endpoint (or a previous intermediary in
the message path) submits the message to the security service. Upon making the neces-
sary checks, the security service in turn forwards the message to the intended recipient.

As the message is being explicitly routed via the security service by the source end-
point (or a previous intermediary in the message path), we say that the security service
is acting as an explicit intermediary.

RELEVANT STANDARDS AND TECHNOLOGIES

Of the standards and technologies described in table 8.2, the following are relevant
in this use case.

 WS-Addressing As the security service intermediary needs to forward the mes-
sage to the destination endpoint, the source endpoint needs to communicate
the real destination endpoint’s address to the security service. This need is ful-
filled by WS-Addressing.

 SAML The security service can express its findings in the form of standard
SAML assertions.

WS-Trust and the SAML protocol are not relevant in this use case, as the source end-
point does not invoke the security service separately; instead, the source endpoint sim-
ply routes its messages via the security service. A security service implemented as an
intermediary will accept arbitrary messages, as it will have to process messages
intended for any destination endpoint.

 AON is not relevant here unless the security service is hosted on a network device
(as opposed to a server).

PROS AND CONS

The upside is that the security service gets to see the entirety of the messages and not
just the source endpoint’s credentials. This allows the security service to offer more
functionality than was possible in use cases 1, 2, and 3. For example, the security ser-
vice can scan the messages to look for attacks that target common vulnerabilities in
destination endpoints. We will discuss some of the common vulnerabilties in web ser-
vices in chapter 10.

Figure 8.6 Security service implemented as an explicitly addressed intermediary in the message path.
Unlike in previous cases, no endpoint has to invoke the security service. The message is handed off by
the source endpoint to the security service, which in turn relays the message to the destination
endpoint, after enforcing security.
store/books/9781617294327

https://itbook.store/books/9781617294327

158 CHAPTER 8 Implementing security as a service

www.itboo
 The downside is that every source endpoint will have to explicitly route messages
through the security service. That means increased complexity and dependence on the
details of the security service invocation. At the destination endpoint, the situation is
not bad unless we want to have two-way messaging. In request-response type scenarios
that require both requests as well as responses to be processed by the security service,
both endpoints need to be aware of the security service and route messages through it.

 There is one additional complexity. As the security service intermediary needs to
forward the message to the destination endpoint, the source endpoint needs to com-
municate the real destination endpoint’s address to the security service. WSAddressing,
introduced in chapter 3, can be used for this purpose.

8.2.5 Use case 5: Security service as an implicit intermediary

Our issue with explicit routing is increased programming complexity. If we transpar-
ently route the messages via a security service, we get all the benefits of explicit rout-
ing without programming it in each of the endpoints. It looks like figure 8.7.

 Transparent routing is not possible without support from infrastructure such as net-
work devices. If we can program the network devices to force the traffic through a secu-
rity service, we can make security decisions based on the messages.

RELEVANT STANDARDS AND TECHNOLOGIES

Of the standards and technologies described in table 8.2, the following are relevant in
this use case.

 WS-Addressing Just as in use case 4, if the security service intermediary is to for-
ward the message to the destination endpoint after it examines a message, it
needs to know the real destination endpoint’s address. WS-Addressing helps in
this.

 SAML The security service can express its findings in the form of standard
SAML assertions.

Figure 8.7 Security service implemented as an intermediary in the message path with the help of a
network device. It is similar to the earlier case depicted in figure 8.6. The difference here is that the
addition of the security service to the message path is done by a network device, without any endpoint
knowing about it.
k.store/books/9781617294327

https://itbook.store/books/9781617294327

159Conveying the findings of a security service: SAML

www.itbook.
 AON This technology enables network devices to understand applicationlevel
context and make decisions on whether to route an application-level message
via the security service. Furthermore, the network can itself act as the security
service, as you will see when we describe AON in appendix E.

Just as for the previous use case, WS-Trust and the SAML protocol are not relevant, as
the security service is not invoked explicitly.

PROS AND CONS

The big upside, compared to the previous use case, is that endpoints need not be bur-
dened with the task of routing messages via the security service. The downside is also
obvious: We need AON devices in order to implement this use case.

 This completes our use case analysis for a security service. At the start of this chap-
ter, when considering the idea of security as a separate service (see section 8.1.1), we
identified three main technical questions we need to answer. Here are those three
questions once again.

1 Who invokes the security service?
2 How is the security context communicated to the destination endpoint?
3 What is the interface for the security service?

We answered the first question by identifying five possible ways in which a security ser-
vice may be invoked. Let’s now shift our focus to the second and third questions. The
next two sections (8.3 and 8.4) will show how to address the second question using
SAML, a language that allows a security service to express its findings. In section 8.6,
we will address the third question.

8.3 Conveying the findings of a security service: SAML
In chapters 3-7, you have already seen one way of decoupling security logic from busi-
ness logic, albeit not in the form of a separate security service. In the examples shown
in previous chapters, all the logic of security enforcement is owned by JAX-RPC han-
dlers that are separate from the JAX-RPC service endpoints that provide business logic
for services. Saving the findings of security handlers in a JAXRPC MessageContext is a
common technique that we have repeatedly used in these examples.

 For instance, JAASAuthenticationHandler in example 2 (depicted in figure 4.2)
saved the authenticated Subject instance in MessageContext because, even though we
decoupled the security logic from the business logic, the business logic still depends on
some of the findings of the security service.

 For example, the BrokerageService in our examples needed to know the identity
of the user who is placing an order. It may not just be the user identity that the business
logic depends on. Information on the groups the user belongs to, the user’s prefer-
ences, and the user’s location may also be needed. All of this information may become
available to the security service when it authenticates a user.
store/books/9781617294327

http://schemas.xmlsoap.org/ws/2005/02/trust/Issue
https://itbook.store/books/9781617294327

160 CHAPTER 8 Implementing security as a service

Con
unde

this as

www.itboo
 The entity that manages security—be it a security-related JAX-RPC handler or a
security service—needs to communicate some of its findings (collectively referred to
as the security context) to the service endpoint and any other node in the message path
that lies downstream of the security service.

 When we decoupled security logic from business logic using a JAX-RPC handler, we
could convey the findings of the security handler using MessageContext, an in-mem-
ory data structure, as the JAX-RPC handler ran in the same process1 as the service end-
point. The same technique cannot be used when we move the security logic out of the
service endpoint process into a separate security service process. We need an alterna-
tive technique that does not rely on inmemory structures.

 SAML fulfills this need by providing a language for expressing the findings (or
assertions) of the security service. In this section, we will introduce SAML and its usage
in web services security. In particular, we will describe:

 The structure of a SAML assertion
 Three standard types of statements you can make within a SAML assertion
 The techniques used to protect SAML assertions from forgery, tampering, and

replay

In section 8.5, we will also show you the code for a sample security service that uses
OpenSAML, an open source library for producing SAML assertions.

 Let us first look at the basics of SAML assertions.

8.3.1 SAML assertion basics

As the name suggests, SAML provides a markup language for representing security
assertions. These assertions are created by the entity responsible for security enforce-
ment (such as a security service) to convey its findings to other entities that depend
on those findings. In this section, we will show you the structure of a SAML Assertion
element.

 Listing 8.1 is an example that shows the structure of a SAML Assertion element.

<Assertion xmlns="urn:oasis:names:tc:SAML:1.0:assertion"
 MajorVersion="1" MinorVersion="1"
 AssertionID="MySAMLAssertion1"
 Issuer="http://manning.com/xmlns/samples/soasecimpl/cop"
 IssueInstant="2005-09-19T18:07:08.419Z">
 <Conditions
 NotBefore="2005-09-19T18:07:08.419Z"
 NotOnOrAfter="2005-09-19T18:12:08.419Z"/>
 ...
</Assertion>

1 By process, we mean a running instance of a program. Different parts of the same process can exchange data by
simply writing to and reading from the same in-memory location. Data exchange between different processes
on the same machine or different machines is lot more complicated and requires a data exchange standard.

Listing 8.1 A sample SAML assertion

Indicates SAML
version

Identifier for this assertionB
URI identifying
assertion issuerCTime at which

this assertion
was issuedD

ditions
r which
sertion
is valid E One or more statements (not shown here)f
k.store/books/9781617294327

https://itbook.store/books/9781617294327

161Conveying the findings of a security service: SAML

www.itbook.
 A SAML assertion must always have an identifier B and must always say who is mak-
ing the assertion C and when the assertion is made D. A SAML assertion may also
explicitly state the Conditions E under which it is valid. For instance, in the previous
listing, the assertion specifies the time period during which it is valid.

 The assertion in listing 8.1 did not say much. That is because we skipped the state-
ments F that make up the meat of the Assertion. SAML defines three standard state-
ments you can make within an Assertion:

 Authentication statement
 Attribute statement
 Authorization decision statement

 We will describe each of these in the following sections, with the help of examples.

8.3.2 AuthenticationStatement: Asserting authentication results

An example of a simple assertion could be user authentication. After a security service
authenticates a user, if it wants to provide that information to endpoints (and any
downstream node in the message path), it can use this assertion. Listing 8.2 shows
how an assertion can say who was authenticated, how, and when.

<Assertion ...>
...

<AuthenticationStatement

 AuthenticationInstant="2005-09-19T18:07:08.379Z"
AuthenticationMethod="...:SAML:1.0:am:password">

 <Subject>
 <NameIdentifier
 NameQualifier="manning.com"
 Format="...:SAML:1.1:nameid-format:emailAddress">
 chap@manning.com
 </NameIdentifier>
</Subject>
</AuthenticationStatement>

...
</Assertion>

In this listing, the issuer of the assertion is stating that a user identified by the email
address chap@manning.com has been authenticated using a password-based authenti-
cation scheme. We are skipping detailed descriptions of AuthenticationStatement
(and other statements we discuss in this section), as you can easily decipher the details
from the listing. You can refer to the SAML specification (cited in the “Suggestions for
further reading” section at the end of this chapter) for complete descriptions.

Listing 8.2 A sample SAML assertion making an authentication statement

Statement about
authentication
done by issuer

Time when
authentication
took place

Mechanism used for
authentication

Information on the
authenticated
subject
store/books/9781617294327

https://itbook.store/books/9781617294327

162 CHAPTER 8 Implementing security as a service

www.itboo
 Consider the example of a security service. When invoked, implicitly or explicitly, it
can validate the username and password. When it does, it can use SAML to assert the
identity of the user. It can assert even more information, such as the groups the user
belongs to, the user’s preferences, and the user’s location. All this information is part
of the security context for a user, which is needed by services to authorize users and
customize information for them.

 Let us next look at how the security service can assert user’s attributes. :

8.3.3 AttributeStatement: Asserting user attributes

As we mentioned, we need to assert various attributes about the user to reduce the
burden of security information on the consumer. An endpoint can use such informa-
tion to make access control decisions or simply customize its behavior. Listing 8.3
shows how an assertion can state attributes of a subject, in this case, the groups the
user belongs to:

<Assertion ...>
...

<AttributeStatement>
 <Subject>
 <NameIdentifier
 NameQualifier="manning.com"
 Format="...:SAML:1.1:nameid-format:emailAddress">
 chap@manning.com
 </NameIdentifier>
</Subject>
 <Attribute
 AttributeName="memberOf"
 AttributeNamespace="http://manning.com/saml/attrns">

 <AttributeValue>authors</AttributeValue>
 <AttributeValue>soasecimpl</AttributeValue>

 </Attribute>
</AttributeStatement>

...
</Assertion>

In this sample, the assertion is stating that the subject, chap@manning.com, is a mem-
berOf two groups named authors and soasecimpl. An AttributeStatement can
provide values for any number of a subject’s attributes. We have only showed one in
this listing.

 In addition to asserting a user’s identity and attributes, a security service may also
have the responsibility of asserting which actions a user is allowed to carry out and
which he isn’t. Next, let us see how SAML makes that possible.

Listing 8.3 A sample SAML assertion making an attribute statement


A statement about the
attributes of a subject

Identity 
of the subject

Namespace qualified
name of an attribute

One or more values of the
attribute
k.store/books/9781617294327

https://itbook.store/books/9781617294327

163Conveying the findings of a security service: SAML

www.itbook.
8.3.4 AuthorizationDecisionStatement: Asserting authorization decisions

The security service may convey the kind of access granted to the subject for various
resources using AuthorizationDecisionStatements. Listing 8.4 shows an example.

<Assertion ...>
 ...

 <AuthorizationDecisionStatement
 Resource="http://manning.com/ebooks/soasecimpl/"
 Decision="Permit">

 <Subject>
 <NameIdentifier
 NameQualifier="manning.com"
 Format="...:SAML:1.1:nameid-format:emailAddress">
 chap@manning.com
 </NameIdentifier>
 </Subject>

 <Action Namespace="http://manning.com/saml/actionns">
 Annotate
 </Action>
 ...
 </AuthorizationDecisionStatement>

 ...
</Assertion>

The assertion in this example states that the user, chap@manning.com D, is permitted
C to Annotate E the resource identified by the URI, http://manning.com/ebo-
oks/soasecimpl/ B.

 An AuthorizationDecisionStatement can record the authorization Decision for
more than one Action on a Resource. We have only showed one in this listing.

 As you can see from these examples, SAML allows a security service to communicate
its findings using three kinds of statements.

1 Authentication statements to indicate that the identity of the caller has been
verified by the security service.

2 Attribute statements to indicate the caller’s attributes, such as the list of
groups/roles the caller belongs to.

3 Authorization decision statements to indicate the actions the caller is allowed to
carry out on one or more resources.

At the start of this section, we explained how the decoupling of security logic into a
separate security service necessitates a mechanism such as SAML to communicate the
findings of the security service to the service endpoint and other nodes in the SOAP
message path. There is one more repercussion of moving security logic out into a sep-

Listing 8.4 A sample SAML assertion making an authorization decision statement

Statement about
an authorization
decision

Identity of the
access-controlled
resource

B

The authorization
decisionC

Identity 
of the subject

D

Action for which the
decision is given

E

store/books/9781617294327

https://itbook.store/books/9781617294327

164 CHAPTER 8 Implementing security as a service

www.itboo
arate security service. All communication between the security service and the service
endpoint now needs to be secured just like any other data on the wire. In other words,
SAML assertions are as vulnerable to forgery, tampering, and replay attacks as any
other data on the wire. Appendix D describes in detail various techniques you can use
to secure a SAML assertion against these vulnerabilities.

 There’s much more to SAML than what we covered here. An important aspect in
the context of a security service is the SAML protocol that specifies an interface for
explicitly invoking a security service. We will discuss it in section 8.5.2.

 SAML answers a very important question for implementing security as a service:
How does the security service communicate its findings (and do so securely) to the ser-
vice endpoint? You now understand the answer to this question. Let us solidify that
understanding by looking at the implementation for a sample security service that uses
SAML. Once we do that, we will return to address other challenges in the implementa-
tion of a shared security service:.

8.4 Example implementation using OpenSAML
In this chapter, we are discussing the idea of offering security as a service. So far, you
have seen the different use cases for a security service and how the findings of a secu-
rity service can be represented using SAML.

 We are now in a position to implement one of the use cases identified in section 8.2.
WS-Addressing, described in chapter 3, and SAML, described in the previous section,
are all you need to implement use case 4. In this section, we will show you a sample
implementation of this use case.

 In the sample implementation shown here, we will create and parse WSAddressing–
defined XML elements using W3C DOM/SAAJ APIs—just as we created and parsed,
for example, UsernameToken in chapter 3. On the other hand, when it comes to creat-
ing and parsing SAML-defined elements, we will use a higher-level API provided by
OpenSAML, like we used the Apache XML Security library in chapters 6 and 7 to cre-
ate and parse elements defined by the XML Encryption and XML Signature standards.

 Figure 8.8 shows the components involved in the example and the data exchanges
between them. The source endpoint explicitly routes the request to a security service
that authenticates requests based on WS-Security UsernameToken. If the authentication
is successful, the security service adds its findings as SAML assertions and forwards the
message to the destination endpoint that is identified by the WS-Addressing headers in
the message. We will use the brokerage service you have seen in the examples through-
out this book as the destination endpoint.

 Even though this example will only illustrate a security service that authenticates
usernames and passwords, you can easily extend it using the code shown in previous
three chapters to use other authentication schemes, encryption, and signatures.
Table 8.3 provides the instructions to set up and run the example.1

1 One or more known issues in Apache Axis 1.x prevent this example from running successfully. See appendix
A for a description of these issues.
k.store/books/9781617294327

https://itbook.store/books/9781617294327

165Example implementation using OpenSAML

www.itbook.
 You should now see the execution of web service calls as captured by tcpmon. You
will see two requests, one to /axis/services/proxy and one to /axis/ser-

vices/example6. The first of these is the request from the client endpoint to the secu-
rity service, and the second is the request forwarded by security service to the
brokerage service.

 We will walk through the code that implements the client-side, the security service,
and the server side to help you see how all the components come together. Let’s tackle
the client-side code first.

8.4.1 Client-side implementation

Take a look at figure 8.8 to figure out what we need to do on the client-side. You will
recognize that you already know how to do half the job—adding UsernameToken to
the request. You have seen the code for this chapter 4. The other half of the job is to
add the WS-Addressing headers to the request and route the request via the security
service. Here we will describe the code for this other half of the functionality.

Table 8.3 Steps to run example 6, which illustrates a shared security service

Step Action How to

1 Set up your
environment.

If you have not already set up the environment required to run the exam-
ples in this book, please refer to chapter 2 to do so. ant deploy
installs all the examples.

2 Set up JAAS
configuration.

As the security service will be performing authentication via JAAS, cus-
tomize the JAAS configuration file, set up the JAVA_OPTS environment vari-
able, and restart Tomcat as described by steps 2, 3, and 4 (respectively)
in table 4.1.

3 If it is not already
running, start
TCP monitor.

Run ant tcpmon so that you can observe the conversation. Check
the “XML Format” check box to allow tcpmon to format shown requests
and responses.

4 Run the
example.

Run ant demo –Dexample.id=6. You should be able to view the
request-response messages as they are captured in the tcpmon console.

Figure 8.8 Overview of the example used to illustrate the concept of a centralized security service. The message
is routed from the client-side to the server-side via the security service. Notice that the username and password
token is replaced by the SAML assertion as the message is processed by the security service.
store/books/9781617294327

https://itbook.store/books/9781617294327

166 CHAPTER 8 Implementing security as a service

www.itboo
 Figure 8.9 zooms into the full details of the client-side implementation.
 In addition to the ClientSideWSSecurityHandler that you saw in chapter 4, you

can see that we use an additional handler named AddressingHandler in this example.
There’s a little more going on here than just the addition of this new handler. There
are two additional tasks we are carrying out in this code compared to what you saw in
chapter 4. These tasks are:

1 Routing the request to the security service rather than the service endpoint.
2 Preserving the endpoint address using a WS-Addressing header entry. Let’s dive

into the implementation details for each of these tasks separately.

ROUTING A REQUEST VIA THE SECURITY SERVICE

There is no standard way to reroute a request in a JAX-RPC client. In chapter 2, we
saw that JAX-RPC provides a client three different ways of invoking a web service. A cli-
ent can use a pregenerated stub, a dynamic proxy, or the JAX-RPC dynamic invoca-
tion interface. In all three cases, JAX-RPC does not provide a standard way to
explicitly route a request via an intermediary. In the example shown in figure 8.8, we

Figure 8.9 Details of client-side implementation in example 6. The client side adds two pieces of information
using handlers: the address and the username and password.
k.store/books/9781617294327

https://itbook.store/books/9781617294327

167Example implementation using OpenSAML

www.itbook.
pregenerated a stub using Apache Axis’s WSDL2Java tool and replaced the endpoint
address in one of the generated files, BrokerageServiceLocator.java, to trick Axis
into explicitly routing the request to the security service instead of the target end-
point. This kind of a hack may or may not be possible in other web services engines.
In such cases, you will have to configure your network to route the request implicitly
to the security service.

ADDING A WS-ADDRESSING HEADER ENTRY

Preserving the endpoint address using a WS-Addressing header is accomplished using
a JAX-RPC handler named AddressingHandler. As shown in figure 8.9, the client sets
up the destination endpoint address and SOAP Action URI values in message context.
The AddressingHandler reads these values from the message context and creates WS-
Addressing headers, wsa:To and wsa:Action. The code required to do this is similar
to the code you saw in chapter 3 for ClientSideWSSecurityHandler. Instead of user-
name and password, we have the destination endpoint address and SOAP action URI;
and instead of a Security header with a UsernameToken element in it, we have To and
Action headers to create. Given that you have seen this pattern before, we will skip
line-by-line explanation of AddressingHandler here. See example6/AddressingHan-
dler in the example code base if you wish to review the code.

 That’s all there really is to the client-side implementation. Let us now take a look at
the code in the sample security service.

8.4.2 Security service implementation

The functionality of the security service in this example can be divided into three
parts:

1 Authenticating the request by verifying the username/password provided by
the client.

2 Creating a SAML authentication statement and adding it to the WS-Security
header.

3 Forwarding the message to the endpoint.

You are already familiar with the code needed to accomplish the first of these three
parts—WSSecurityUsernameHandler and JAASAuthenticationHandler described in
chapter 4. What you have yet to see is the code for the second and third parts, which
we will describe here.

 Figure 8.10 zooms into the full implementation details of the sample security ser-
vice.
In addition to the WSSecurityUsernameHandler you have already seen in chapter 4,
observe that we have two new components—SAMLCreationHandler and ProxySer-
vice—that you have not seen before. These two components are responsible for cre-
ating SAML assertions and forwarding the request to the service endpoint. We will
describe the code that goes into each of these components next. Let’s start with the
code in the SAMLCreationHandler.
store/books/9781617294327

https://itbook.store/books/9781617294327

168 CHAPTER 8 Implementing security as a service

www.itboo
Figure 8.10 Details of the security service implementation. The security service has a JAASAuthenticationHandler
to validate the username and password and a SAMLCreationHandler to add the SAML assertion to the message.
The proxy service is used to forward the message to the server side.
k.store/books/9781617294327

https://itbook.store/books/9781617294327

169Example implementation using OpenSAML

www.itbook.
CREATING SAML STATEMENTS AND ASSERTIONS: SAMLCREATIONHANDLER

Code in a SAMLCreationHandler is very much like the code in client-side JAX-RPC
handlers such as ClientSideWSSecurityHandler, which you have seen before. The
authenticated subject information placed in the message context by JAASAuthentica-
tionHandler is used by the SAMLCreationHandler to create a SAML assertion with an
AuthenticationStatement in it. Instead of creating a SAML assertion and its contents
using low-level DOM APIs, we will use OpenSAML, an open-source library for creating
and consuming SAML.

String username = (String) messageContext.getProperty
 (Constants.USERNAME_MSG_CONTEXT_PROPERTY);
if (username == null) {
 throw new RuntimeException
 ("Username cannot be null if authentication succeeded");
}

String authenticationMethod = (String)
 messageContext.getProperty
 (Constants.AUTHENTICATION_METHOD_MSG_CONTEXT_PROPERTY);

SAMLSubject samlSubject = new SAMLSubject();
samlSubject.setNameIdentifier
 (new SAMLNameIdentifier
 (username,
 null, //optional name qualifier - can be used to
 //indicate the domain username belongs to
 null //optional format URI to indicate name
 //format. e.g., is the name a email
 //address? or a X.509 subject name? or
 //or a windows domain name?
));

SAMLAuthenticationStatement authStmt =
 new SAMLAuthenticationStatement();
authStmt.setSubject(samlSubject);
Calendar instant = Calendar.getInstance();
authStmt.setAuthInstant(instant.getTime());
authStmt.setAuthMethod(authenticationMethod);

SAMLAssertion samlAssertion = new SAMLAssertion();
samlAssertion.addStatement(authStmt);
samlAssertion.setIssuer(faultActor);

samlAssertion.setIssueInstant(instant.getTime());
samlAssertion.setNotBefore(instant.getTime());
instant.add(Calendar.SECOND,validityInterval);
samlAssertion.setNotOnOrAfter(instant.getTime());

Listing 8.5 Code snippet from SAMLCreationHandler

Looks up
authenticated
username

Looks up authentication
method

Creates a
SAML
subject

Creates an
AuthenticationStatement


Creates a SAML assertion

Sets validity interval
for the assertion
store/books/9781617294327

https://itbook.store/books/9781617294327

170 CHAPTER 8 Implementing security as a service

www.itboo
SOAPHeaderElement wsaToElement =
 Utils.getHeaderByNameAndActor
 (soapEnvelope,
 Constants.WS_ADDRESSING_TO_QNAME,
 null, //no specific roles
 true); //use headers targeted at ultimate dest
if (wsaToElement == null) {
 throw new RuntimeException("To Address not found");
}
String toAddress = wsaToElement.getValue();

SAMLAudienceRestrictionCondition audienceCondition =
 new SAMLAudienceRestrictionCondition();
audienceCondition.addAudience(toAddress);
samlAssertion.addCondition(audienceCondition);

securityElement.appendChild
 (soapPart.importNode(samlAssertion.toDOM(), true));

The net effect of this code is to produce a SAML assertion element with an Authenti-
cationStatement (like in listing 8.2), a validation period (like in listing 8.1), and an
AudienceRestrictionCondition (like in listing 8.5).

 This completes the description of the code in SAMLCreationHandler. We will not
show the code for securing the assertion using encryption and signatures, as you have
already seen in chapters 6 and 7 (respectively) example code for implementing encryp-
tion and signatures.

 Referring back to figure 8.10, there is only one component in the example security
service that you have yet to understand: ProxyService. Let’s look at that next.

FORWARDING THE MESSAGE TO THE ENDPOINT: PROXYSERVICE

The last component of the security service needs to forward the message to the next
hop along the message path. In this example, the destination endpoint is the next
hop. As we implemented the security service using JAX-RPC handlers in Axis, the last
component is a web service implemented in Axis. We have named the web service
ProxyService, as it simply forwards requests to the destination endpoint and routes
responses back to the client.

 The ProxyService is quite different from the BrokerageService you have seen in
all the examples until now. We implemented BrokerageService as an RPC-style service
in Axis. We cannot do the same for ProxyService, as the service does not explicitly
provide operations that a client can invoke. In ProxyService, we simply forward the
entirety of the SOAP request message to the destination endpoint and return the
resulting response message to the client. We implement ProxyService as a message-style
service in Axis. A message-style service deals directly with the request and response
SOAP messages instead of relying on Axis to parse SOAP messages into Java objects on
the way in and serialize Java objects into SOAP messages on the way out.

Looks up To
address from 
WS-Addressing
header

Adds AudienceRestriction-
Condition to assertion

Adds the assertion to 
WS-Security header
k.store/books/9781617294327

https://itbook.store/books/9781617294327

171Example implementation using OpenSAML

www.itbook.
 In the rest of this section, we will show you how to implement ProxyService as a
message-style service in Axis. We will first explain how you can declare a message-style
service in Axis. We will then show you the code that goes into ProxyService.

 To declare ProxyService as a message-style service in Axis, we need to first cre-ate
a WSDD file by hand. We did not do this for BrokerageService because its WSDD was
generated by the WSDL2java tool. If we are deploying the BrokerageService and
ProxyService in the same Axis instance, we can simply edit the WSDD file generated
for the former and add the following service description to it; otherwise, we can clone
the WSDD file generated for the former and replace the service description as shown
in listing 8.6.

<service name="proxy" style="message">
 <handlerInfoChain>
 <handlerInfo classname="...example6.WSSecurityUsernameHandler">
 <parameter name="usernameTokenMandatory" value="false"/>
 </handlerInfo>
 <handlerInfo classname="...example6.JAASAuthenticationHandler">
 <parameter name="jaasAppName" value="soasecimpl"/>
 </handlerInfo>
 <handlerInfo classname="...example6.SAMLCreationHandler"/>
 <role soapActorName=".../soasecimpl/cop"/>
 </handlerInfoChain>
 <parameter name="className" value="...example6.ProxyService"/>
 <parameter name="allowedMethods" value="relayInAxis"/>
</service>

Now that we know how to declare ProxyService as a message-style service in Axis, let’s
shift our focus to the code in ProxyService. Axis requires methods that provide a
message-style service to have one of the signatures shown in listing 8.7.

public Element [] method(Element [] bodies);
public SOAPBodyElement [] method (SOAPBodyElement [] bodies);
public Document method(Document body);
public void method(SOAPEnvelope req, SOAPEnvelope resp);

In our declaration of ProxyService (see listing 8.6), we only named one method for
ProxyService, and that is relayInAxis. None of the four method signatures allowed
by Axis are ideal for this method, as all we want to do is forward the request message
to the destination endpoint and return the response we receive from the endpoint to
the caller of the ProxyService. We do not act on the message in any particular way.

 The fourth signature is the one that comes closest to our needs. Even though it pro-
vides access to the request and response envelopes, it is not an ideal fit for our needs
for the following two reasons.

Listing 8.6 Deployment descriptor for the ProxyService

Listing 8.7 Four possible signatures for methods that implement a message-style
service in Axis
store/books/9781617294327

https://itbook.store/books/9781617294327

172 CHAPTER 8 Implementing security as a service

www.itboo
1 There can be lot more in a SOAP message than just a SOAP envelope. You saw
in chapter 7 that a SOAP message can have any number of attachments.

2 Depending on the transport used, there may be special transport-level headers
that need to be set. In our example, HTTP is the transport and we need to set
an HTTP header named SOAPAction for the destination endpoint to correctly
process the request.

What we really need is the ability to access the request SOAPMessage instance and set
the response SOAPMessage instance as opposed to just getting access to request and
response SOAPEnvelope instances. This is what we ended up doing for implementing
the relayInAxis method:

 Adopt the fourth signature shown in listing 8.7 but do not rely on the request
and response envelopes provided as arguments.

 Get access to the request message from the message context (the JAX-RPC
SOAPMessageContext API provides this facility).

 Relay the request message to the service endpoint using the JAXM API.
 Take the response message returned by the JAXM call and relay it back to the cli-

ent endpoint by setting it as the response message in ProxyService. The JAX-
RPC SOAPMessageContext API does not provide a method for setting the res-
ponse message. We use a Axis-specific MessageContext method call in this step.

To separate out the axis-specific and portable code, most of the logic in these steps is
implemented in a different method named relay. The relayInAxis method simply
invokes the relay method and takes care of Axis-specific logic. Both the methods are
shown in listing 8.8.

public void relayInAxis
 (SOAPEnvelope requestEnv, SOAPEnvelope responseEnv) {

 SOAPMessage requestMessage = messageContext.getMessage();
 SOAPMessage relayResponseMessage = relay(requestMessage);

 ((org.apache.axis.MessageContext)messageContext).
 setResponseMessage
 ((org.apache.axis.Message)relayResponseMessage);
}

public SOAPMessage relay(SOAPMessage relayMessage) {
 logger.debug("received a request to relay");

 try {
 //look up the destination address and SOAPAction
 //from the WS-Addressing headers in the request

 //... this portion of code not shown ...

Listing 8.8 Code snippet from the ProxyService implementation
k.store/books/9781617294327

https://itbook.store/books/9781617294327

173Example implementation using OpenSAML

www.itbook.
 //=== now, call the target service ===

 SOAPConnection connToDestination =
 SOAPConnectionFactory.newInstance().
 createConnection();
 URLEndpoint destinationEndpoint =
 new URLEndpoint(toAddress);
 relayMessage.getMimeHeaders().setHeader
 (Constants.HTTP_SOAP_ACTION_HEADER, action);

 return connToDestination.call
 (relayMessage, destinationEndpoint);
 } catch (Exception e) {
 throw createSOAPFault(e);
 }
}

How did the ProxyService know where to forward the request message? The destina-
tion endpoint information is available in the WS-Addressing headers created by the
AddressingHandler on the client-side. The code required to extract the destination
address and action from WS-Addressing headers is quite similar to the code you have
seen in chapters 3-7 to extract security tokens from WS-Security headers. We will skip
reviewing that portion of the code here.

 This discussion completes the security service implementation. Let us move on to
discuss the code on the server-side.

8.4.3 Server-side implementation

Figure 8.11 zooms into the server-side implementation.
 The server-side implementation in this example needs a handler that can consume

the SAML AuthenticationStatement provided by the security service and set the user-
name in message context for the benefit of BrokerageService.
The security service in this example does not encrypt/sign SAML assertions, but as
that is to be expected in general, we extend the ServerSideWSSecurityHandler you
saw in chapter 7 and add to it the code for processing a SAML assertion. The resulting
handler code invokes the processSAMLAssertion method shown in listing 8.9 when-
ever it encounters a SAML assertion in the WS-Security header.

private void processSAMLAssertion
 (Element samlAssertionElement,
 SOAPMessageContext soapContext, String faultActor) {
 logger.debug("Processing SAML Assertion");
 try {
 SAMLAssertion samlAssertion =
 new SAMLAssertion(samlAssertionElement);
 Iterator samlStatementsIter =
 samlAssertion.getStatements();
 while(samlStatementsIter.hasNext()){

Listing 8.9 Code to process a SAML assertion with an authentication statement and
set the authenticated subject information in message context
store/books/9781617294327

https://itbook.store/books/9781617294327

174 CHAPTER 8 Implementing security as a service

www.itboo
 Object stmt = samlStatementsIter.next();
 if (stmt instanceof SAMLAuthenticationStatement) {
 SAMLAuthenticationStatement authStmt =
 (SAMLAuthenticationStatement) stmt;
 soapContext.setProperty
 (Constants.USERNAME_MSG_CONTEXT_PROPERTY,
 authStmt.getSubject().
 getNameIdentifier().getName());
 break;
 }
 }
 } catch (Exception e) {
 createFaultInContextAndThrow
 (soapContext,
 Constants.SOAP_SERVER_FAULT_CODE,
 "Error processing SAML: ",
 faultActor, e);
 }
}

This code is self-explanatory so we will not explain it line-by-line. Observe that this
code sets the authenticated subject information (username in this example) in the
message context, just as the JAASAthenticationHandler did in chapter 4. This is so

Figure 8.11 Details of server-side implementation. The server-side handler needs to understand and
validate the assertion, and finally extract the username and password from the message.
k.store/books/9781617294327

https://itbook.store/books/9781617294327

175Standards for security service interfaces

www.itbook.
that the BrokerageService can use the authenticated user’s identity in its business
logic. The BrokerageService code remains unchanged from what you have seen in
previous examples. So, we will not show it here.

 This completes our example to illustrate the use of SAML in a security service. At
the start of this chapter, when we introduced the idea of a shared security service, three
important questions came up:

1 Who invokes the security service?
2 How is security context communicated to the destination endpoint?
3 What is the interface for the security service?

We answered the first of these questions in section 8.2 by identifying five different use
cases for a security service. We introduced SAML to answer the second question. We
will proceed to the third question next.

8.5 Standards for security service interfaces
In section 8.2, we discussed different possibilities for how to invoke of a security ser-
vice. In three out of the five use cases we discussed, the security service is explicitly
invoked by the sender, the receiver, or both. What interface should a security service
provide for such explicit invocations? Is there a standard interface security service
consumers can rely on?

 The answer depends on the functionality you want from the security service. WS-
Trust and the SAML protocol (not the same as SAML assertions) are two standards that
specify an explicitly invokable interface for a security service. In this section, we will
introduce you to both of these standards. But before we do that, we should tell you
what to expect and what not to expect from these standards (see callout).

NOTE What to expect and what not to expect from an interface for a security service
In this chapter, you have already seen an example of a security service. We
showed you a sample security service that functions as an intermediary to
authenticate SOAP requests. We also mentioned that our sample security ser-
vice can be easily extended to provide additional functionality such as encryp-
tion/decryption and creation/verification of digital signatures. Knowing this,
you may now have certain expectations about the functionality a security ser-
vice can provide. Note that we have only shown you so far what a security ser-
vice can do as an intermediary. Not all functionality that a security service can
offer as an intermediary may make sense for a security service that is invoked
explicitly. For example, while authentication and authorization are often dele-
gated to a security service using explicit invocation, the same cannot be said of
encryption/decryption and creation/verification of signatures. Retransmitting
all or substantial amounts of large messages to a security service in order to
encrypt/decrypt/sign/verify signatures is, in general, not considered scalable.

This understanding of the difference in scope between a security service that
is offered as an intermediary and one that is offered for explicit invocation will
help you appreciate why the interfaces standardized by WS-Trust and the SAML
protocol cater to certain kinds of security needs and not to other needs.
store/books/9781617294327

https://itbook.store/books/9781617294327

176 CHAPTER 8 Implementing security as a service

www.itboo
 We will now briefly introduce you to the interfaces standardized by WS-Trust and
the SAML protocol. Let’s start with WS-Trust.

8.5.1 WS-Trust

WS-Trust1 describes interfaces for a security service that can issue, validate, renew, and
cancel security tokens. In our case, the security tokens we are dealing with are SAML
assertions. As you recall, SAML provides only the language to express the security
information. Without help of a standard such as WS-Trust, we cannot issue, validate,
renew, or cancel any security token.

 WS-Trust describes a service called a security token service (STS) that issues security
tokens. The interface for the STS is designed to meet the requirements of a wide vari-
ety of situations. Here, we describe four commonly encountered scenarios:

1 The client requests a token to access a web service from STS A web service client can
request that STS issue a security token that can be used to access a web service.
When making the request to STS, the client can use WSSecurity or transport-
layer mechanisms to identify itself. The security token issued by STS in this case
can serve as proof of identity, a confirmation of privilege, or even as a key that
can be used to encrypt and/or sign messages. For example, the returned token
can be a SAML assertion or a Kerberos ticket or a key.

2 The intermediary invokes STS to do authentication/authorization An intermediary
such as a web services gateway can intercept requests and invoke STS to check
the identity claims made by the client and, optionally, authorize them. If the cli-
ent claims are authenticated, STS can issue a security token (such as a SAML
assertion) to convey its findings to the intermediary that invoked it or to the
destination web service.

3 The service endpoint invokes STS to do authentication/authorization A web service
endpoint can itself refer a caller’s security claims to the STS and obtain a state-
ment of findings as a security token.

4 The intermediary/target service invokes STS to exchange one security token for another
This is a combination of scenario 1 with scenario 2 or scenario 3. A web service
client can submit a security token provided by one STS to an intermediary/tar-
get service that in turn consults a different STS. The net effect is that one secu-
rity token is exchanged for another token that the end service understands and
accepts.

As you can see, STS needs a generic interface that can serve different types of security
tokens in different kinds of situations. STS’s designers met this challenge by coming up
with a generic request-response protocol. In this section, we will describe this protocol
first at a high level. Subsequently, we will explain the structure of the request and
response messages with examples. The examples will be restricted to illustrating the issu-

1 WS-Trust is expected to become more popular as it forms the basis for CardSpace (formerly “InfoCard”),
Microsoft’s replacement for Passport.
k.store/books/9781617294327

https://itbook.store/books/9781617294327

177Standards for security service interfaces

www.itbook.
ance of a new security token. Once you follow these examples, you can look up the WS-
Trust specification and easily understand the interfaces for token validation, renewal,
and cancellation, which are needed for security service to be invoked by other services.

 Let’s get started with a high-level overview of the STS interface standardized by WS-
Trust.

STS INTERFACE

As we described before, WS-Trust defines a standard interface for security services that
issue security tokens. Any security service that supports this standard interface is
referred to as an STS. Figure 8.12 illustrates the interaction between an STS and a
party that seeks to procure a security token from the STS.

 The party that seeks to obtain a security token from the STS may be an endpoint
(client/server) or an intermediary. In all cases, the party requesting the security token
sends a SOAP message containing a RequestSecurityToken (RST) elementto the STS.
If the STS is satisfied that the caller qualifies for the security token it is requesting, the
STS then responds with a SOAP message containing an RSTR element; if not, it
responds with a SOAP fault.

 So, the actual details of the STS interface are all in the RST and RSTR elements. We
will describe them next, starting with RST first.

REQUESTSECURITYTOKEN (RST)
Before taking a deep dive into the makeup of a RST element, let’s look at the big pic-
ture. A party requesting a security token from the STS needs to do things in its
request:

1 Describe the kind of security token it is requesting. For example, the requestor
needs to say whether it wants a Kerberos ticket or a SAML assertion.

2 Prove that it is qualified to get the security token it is requesting. This may sim-
ply mean authenticating with the STS using valid credentials.

The first is what an RST element facilitates. The second can be accomplished via WS-
Security, using the authentication techniques you learned in chapter 4 (password-
based auth), chapter 5 (Kerberos), and chapters 6 and 7 (PKI-based auth). Listing
8.10 emphasizes this division of responsibilities between the RST element defined by
WS-Trust and the Security header entry defined by WS-Security.

Figure 8.12 Security token service interface defined by WS-Trust: a request for a security
token (RST) is met with an RST response (RSTR).
store/books/9781617294327

https://itbook.store/books/9781617294327

178 CHAPTER 8 Implementing security as a service

www.itboo
<soapenv:Envelope ...>
 <soapenv:Header>
 <wsse:Security soapenv:actor="...">
 ...
 </wsse:Security>
 </soapenv:Header>

 <soapenv:Body>
 <wst:RequestSecurityToken xmlns:wst="...">
 ...
 </wst:RequestSecurityToken>
 </soapenv:Body>
</soapenv:Envelope>

Now that you understand the context in which an RST element is used, let’s look
deeper into the makeup of an RST. Listing 8.11 shows an example RST element.

<wst:RequestSecurityToken xmlns:wst="...">
 <wst:TokenType>
 .../wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1
 </wst:TokenType>

 <wst:RequestType>
 http://schemas.xmlsoap.org/ws/2005/02/trust/Issue
 </wst:RequestType>

 <wsp:AppliesTo xmlns:wsp="...">
 <wsa:EndpointReference xmlns:wsa="..."
 xmlns:impl=".../samples/soasecimpl">
 <wsa:Address>
 .../axis/services/example6
 </wsa:Address>
 <wsa:PortType>
 impl:Brokerage
 </wsa:PortType>
 <wsa:ServiceName>
 impl:BrokerageService
 </wsa:ServiceName>
 </wsa:EndpointReference>
 </wsp:AppliesTo>

 <wst:Claims Dialect="...">...</wst:Claims>

 <wst:Entropy>
 ...
 </wst:Entropy>

 <wst:Lifetime>
 <wsu:Created>2006-03-16T02:17:41</wsu:Created>
 <wsu:Expires>2006-03-16T02:22:41</wsu:Expires>
 </wst:Lifetime>
</wst:RequestSecurityToken>

Listing 8.10 Structure of a request to an STS

Listing 8.11 Example of an RST element

WS-Security header
with caller’s claims

RST describing the requested
security token

Type of requested
security token

B

Indicates 
request goal

C

Service the caller
wishes to invoke
using issued token

D

Info on claims needed
in the requested
security tokenEAn optional

cryptographic key
F

Suggested validity period
for the returned key

G

k.store/books/9781617294327

https://itbook.store/books/9781617294327

179Standards for security service interfaces

www.itbook.
Let’s walk through the content of the RST element in this example to further under-
stand what goes into an RST.

 The TokenType element B indicates the type of security token the caller desires
from the STS. Token types are identified using URIs laid down in WS-Security Token
Profiles (standards describing the use of a token in WS-Security). In this example, the
caller is asking STS to return a SAML 1.1 assertion using the URI reserved by WS-Secu-
rity’s SAML Token Profile.

 The RequestType element C indicates what the request is for: token issuance, vali-
dation, renewal, or cancellation. In this example, the caller is requesting that STS issue
a new token by using the URI shown as the RequestType.

 The AppliesTo element D provides a reference to the service the caller wishes to
contact using the issued security token. This allows the STS to use its knowledge of the
target service provider’s policies and determine the type of token to issue. The Token-
Type element B we seen earlier is optional if the AppliesTo is specified, and vice versa.
Both can be specified as well, but in that case, STS is free to override the TokenType
requested, as it probably has better knowledge of service policies than the caller. We
should point out here the use of elements defined by WS-PolicyAttachment and WS-
Addressing, as indicated by the namespace prefixes wsp and wsa, respectively. The
AppliesTo element is defined by WS-PolicyAttachment. We will discuss policy-related
standards in the next chapter. The EndpointReference element is defined by WS-
Addressing as a standard mechanism for referring to a service endpoint. In this exam-
ple, we are relying on the endpoint address, port type, and service name defined in the
service WSDL to create a reference to the service.

 The caller asked for a SAML 1.1 assertion in this example, but it didn’t indicate the
kinds of statements it wants the STS to make, did it? Should the STS issue an Authori-
zationStatement along with an AuthenticationStatement? Should it add an Attri-
buteStatement as well? The STS might infer the answers to these questions based on
its knowledge of the service provider’s policies (assuming the target service is identified
using the AppliesTo element, as in this example). Or, the caller can explicitly request
from the STS specific kinds of statements using the Claims element E. WS-Trust relies
on WS-SecurityPolicy to provide syntax for specifying the needed claims. We will discuss
WS-SecurityPolicy in the next chapter.

 The optional Entropy element F allows the caller to provide a cryptographic key
to the STS. We will describe the motivation behind this when describing the STS
response.

 The optional Lifetime element G can be used by the caller to suggest a length of
time for which the returned security token should be valid. The STS may disregard the
timeframe suggested by the caller.

 In summary, the RST element helps callers of STS to specify the kind of security
token they want, the claims they want in the token, and how long they want to use the
returned token. All this information is needed by STS to provide a suitable token for
the caller. Let’s now take a look at what the STS returns in response to an RST.
store/books/9781617294327

https://itbook.store/books/9781617294327

180 CHAPTER 8 Implementing security as a service

www.itboo
REQUESTSECURITYTOKENRESPONSE (RSTR)
You saw in figure 8.12 that an STS returns an RSTR in response to an RST if the caller
is found to be eligible for the requested security token. Before we get into the details
of what an RSTR contains, it helps to discuss a few important considerations that went
into RSTR’s design.

 Security tokens can have a lot of information in them. Authentication and authori-
zation statements, information on attributes of the caller, dynamically generated cryp-
tography keys, and signatures to guarantee the integrity of all these items may all be
part of a security token. Given this wide range of possibilities, nobody other than the
STS and the service for which the security token is intended should assume that they
can look into the security token and understand it.

 At the same time, there are a few things that callers often need to know about the
security token issued by STS. For example, the caller may need to know the type of
token returned and its expiry time. If the token returned by the STS provides a dynam-
ically generated key that the caller can use to encrypt the service request, the caller will
need a copy of the key in order to do the encryption. In addition, the caller will need
the ability to tell the service, “I am encrypting my request message using the key pro-
vided to me by STS.” In other words, the caller needs the ability to refer to the token
returned by STS.

 STS needs to provide a lot more than just an opaque security token in RSTR. The
example response shown in listing 8.12 will help you understand how WSTrust accom-
plishes this.

<wst:RequestSecurityTokenResponse>
 <wst:TokenType>
 .../wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1
 </wst:TokenType>

 <wst:RequestedSecurityToken>
 <!-- an encrypted and signed SAML assertion -->
 </wst:RequestedSecurityToken>

 <wsp:AppliesTo>...</wsp:AppliesTo>

 <wst:RequestedAttachedReference>
 <wsse:SecurityTokenReference
 wsu:Id="MySAMLAssertion1Ref1">
 <wsse:KeyIdentifier
 ValueType="...#SAMLAssertionID">
 MySAMLAssertion1
 </wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>
 </wst:RequestedAttachedReference>

Listing 8.12 Example of an RSTR element

Issued security
token type

B

Issued token, possibly
encrypted and signed

C

Reference to service for
which the token is issuedD

Reference to use if
the issued token is
in the same doc

E

k.store/books/9781617294327

https://itbook.store/books/9781617294327

181Standards for security service interfaces

www.itbook.
 <wst:RequestedUnattachedReference>
 <wsse:SecurityTokenReference
 wsu:Id="MySAMLAssertion1Ref2">
 <saml:AuthorityBinding
 Binding="...:SAML:1.0:bindings:SOAP-binding"
 Location="http://..."
 AuthorityKind="samlp:AssertionIdReference"/>
 <wsse:KeyIdentifier
 ValueType="...#SAMLAssertionID">
 MySAMLAssertion1
 </wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>
 </wst:RequestedUnattachedReference>

 <!--
 <wst:RequestedProofToken>...</wst:RequestedProofToken>
 <wst:Entropy>...</wst:Entropy>
 -->
 <wst:Lifetime>
 <wsu:Created>2006-03-16T02:17:41</wsu:Created>
 <wsu:Expires>2006-03-16T02:22:41</wsu:Expires>
 </wst:Lifetime>
</wst:RequestSecurityTokenResponse>

Just as we did when discussing an RST example, let’s now walk through each of the
child elements in the example RSTR to further understand what goes into a RSTR ele-
ment.

 The TokenType element B indicates the type of token issued. In this example, the
token issued is a SAML 1.1 assertion.

 The RequestedSecurityToken element c contains the issued token, possibly
encrypted and signed to secure it from every party other than the service endpoint for
which the token is issued.

 The AppliesTo element d provides a reference to the service endpoint for which
the token is issued, in case the caller asked for a service-specific token.

 The RequestedAttachedReference element e provides a reference to the issued
token (SAML assertion in this example) for use in documents carrying the issued
token.

 The RequestedUnattachedReference f element provides a reference to the
issued token for use in any document. In this example, the reference provides the
identifier of an assertion that can be retrieved from a SAML authority. Attributes on
the SAMLAuthorityBinding element describe the protocol, location, and query to use
when contacting the SAML authority. You will see more details on the SAML protocol
in the next section.

 The RequestedProofToken element g provides a token the caller can use to prove
possession of the token issued by the STS. (Note that this and the Entropy element are
commented out, as they are not needed in this example. We are only showing them
here for the sake of completeness.) This element becomes useful when STS wants to

Reference to use if
the issued token is
not in the same doc

F

A token caller can
use to prove
possession of the
issued token

G

A random key generated and
used by the STS to create GH

Validity period for
issued token

i

store/books/9781617294327

https://itbook.store/books/9781617294327

182 CHAPTER 8 Implementing security as a service

www.itboo
provide the caller and the target service with two different copies of a dynamically gen-
erated cryptographic key, each encrypted differently.

 You have seen the Entropy element h in the RST, and we promised to explain its
significance when we got here. Callers who want to ensure that the STS is generating
cryptographic keys randomly enough can do so by providing a random key that they
themselves generate. When a caller provides STS with entropy, STS has three choices.

1 Adopt the caller provided key as is. In this case, RSTR will not have Requested-
ProofToken and entropy elements.

2 Discard the caller-provided key and generate its own. In this case, Requested-
ProofToken is used to convey the generated key.

3 Combine the caller-provided key with another key STS generates itself. In this
case, the key generated by STS is communicated using the entropy element in
RSTR and the computation used to combine the keys is indicated by a
<wst:ComputedKey>AlgorithmURI</wst:ComputedKey> under Requested-

ProofToken.

The Lifetime element i specifies the period of validity for the issued token.
 You now understand the STS interface provided by WS-Trust for requesting issue of

new tokens. With this understanding, you can easily follow the interfaces described in
the WS-Trust specification for validating, renewing, and canceling security tokens. You
should certainly read the WS-Trust spec now if you need a complete understanding of
the standard for your work. See the “Suggestions for further reading” section at the
end of the chapter for a link to the specification.

 So far you’ve seen how WS-Trust can help a security service provide security tokens
to callers. If a security service implements WS-Trust, then its callers can request using
RST and get a response in RSTR. These interfaces are independent of any security
token. For our purpose, the only security tokens we are interested in are SAML asser-
tions. Is there a simpler protocol if we restrict our security tokens only to SAML asser-
tions? It turns out that there is one such protocol, aptly named the SAML protocol,
which we will describe next.

8.5.2 SAML protocol

If all we are interested in issuing, validating, renewing, and canceling SAML assertions
then SAML protocol is much simpler than WS-Trust. It is often employed in SSO solu-
tions for web applications. Here we will show how it can be used over SOAP.

 Like WS-Trust, the SAML protocol proposes a request-response protocol. In this
section, we will describe this protocol with the help of simple examples. Let us first take
a look at how a request is made in SAML protocol.
k.store/books/9781617294327

https://itbook.store/books/9781617294327

183Standards for security service interfaces

www.itbook.
MAKING A REQUEST

The structure of a request is simple enough to understand through an example. Here
is an example request querying the security service to see if the named subject is per-
mitted to execute the identified resource.

<soapenv:Envelope ...>
 <soapenv:Header>
 <wsse:Security soapenv:actor="...">
 ...
 </wsse:Security>
 </soapenv:Header>

 <soapenv:Body>
 <samlp:Request ...>
 <samlp:AuthorizationDecisionQuery>
 <saml:Subject>
 <saml:NameIdentifier
 NameQualifier="manning.com"
 Format="...:nameid-format:emailAddress">
 chap@manning.com
 </saml:NameIdentifier>
 </saml:Subject>
 </samlp:AuthorizationDecisionQuery>
 </samlp:Request>
 </soapenv:Body>
</soapenv:Envelope>

This example is quite straightforward. The caller submits his credentials using the WS-
Security header entry and requests that the security service return a SAML assertion
with an AuthorizationDecisionStatement (see listing 8.4) for the subject identified
in the query.

 Let’s now look at an example response to understand how a security service sup-
porting the SAML protocol can respond to requests.

RECEIVING A RESPONSE

The response, just like the request, constitutes the body of a SOAP message. We will
skip showing the SOAP envelope, header, and body elements here.

<samlp:Response>

 <samlp:Status>
 <samlp:StatusCode Value="samlp:Success"/>
 </samlp:Status>

Listing 8.13 Example of a request using SAML protocol over SOAP

Listing 8.14 Example of a response from a security service supporting the SAML
protocol

WS-Security header with
caller’s security claims

Request element defined
by SAML protocol

Authorization
query for the
named subject

Indication of the request’s
success or failure
store/books/9781617294327

https://itbook.store/books/9781617294327

184 CHAPTER 8 Implementing security as a service

www.itboo
 <saml:Assertion ...>
 <samlp:AuthorizationDecisionStatement
 Resource=".../axis/services/example6"
 Decision="Permit">

 <saml:Subject>
 <saml:NameIdentifier
 NameQualifier="manning.com"
 Format="...:nameid-format:emailAddress">
 chap@manning.com
 </saml:NameIdentifier>
 </saml:Subject>

 <saml:Action
 Namespace="...:SAML:1.0:action:rwedc">
 Execute
 </saml:Action>

 </samlp:AuthorizationDecisionStatement>
 </saml:Assertion>
</samlp:Response>

As you can see from this example, the security service first states whether the request
succeeded or failed, and if it succeeded, returns one or more assertions. For a com-
plete list of status codes, refer to the SAML specification cited in the “Suggestions for
further reading” section at the end of this chapter.

 Let’s recap what you have learned in this section. Implementing security as a service
can usher in multiple benefits, but there are a few challenges that need to be tackled to
make it possible. One of the key challenges is to define a standard interface that a secu-
rity service can offer to callers. In this section, we saw two standards, WS-Trust and
SAML protocol that address this challenge.

8.6 Summary
Up until this chapter, we focused on addressing one security aspect at a time. We did
this deliberately to help you understand each of the fundamental building blocks of
SOA security. Now that you understand all the fundamental building blocks, we have
shifted our focus in this chapter toward figuring out the best way to assemble those
building blocks to provide complete solutions that are maintainable, manageable,
scalable, and auditable.

 The most obvious way to add security to services and service consumers is to build
the security logic into every service and every consumer. Such an approach leads to
manageability and maintainability problems. So, we considered a different approach:
implementing security as a service.

 We then looked at some use cases for a security service and figured we need a
few more standards and technologies to be in place if we are succeed in imple-
menting security as a service. In particular we showed the need for:

Returned SAML
assertion
k.store/books/9781617294327

https://itbook.store/books/9781617294327

185Suggestions for further reading

www.itbook.
1 Standards/technologies that enable the use of intermediaries, such as a security
service

2 Standard ways to communicate the findings of a security service
3 Standard interfaces for invoking security services

In chapter 3, we introduced WS-Addressing and SOAP processing rules for intermedi-
aries to fulfill the first of these three needs. In this chapter, we introduced SAML for
the second and WS-Trust/SAML protocol for the third. We also showed you a working
example of a security service intermediary using Apache Axis, OpenSAML, and
JAXM. If you followed these examples, you can see how we can implement a security
service that can issue SAML assertions that can be used by service consumers and pro-
viders. Such a service is manageable, scalable, maintainable, and auditable.

 A technology that we have often referred to in this chapter, AON, is described in
appendix E. AON technology allows the network to be a provider of security services.

 Another appendix that adds to the material in this chapter is appendix D, where we
describe how to secure SAML assertions against forgery, tampering, and replay.

 While the idea of security as a service is indeed technically feasible as you have seen
in this chapter, its adoption in the real world is not often easy. Factoring out all the
security logic that has been hard-wired into endpoints is impractical. A hybrid
approach is needed to realize the benefits of a security service as much as possible,
even while accommodating legacy endpoints that take upon themselves the task of
security enforcement. We will discuss this topic further in chapter 10.

 Several times in this chapter, we made references to the manageability of security
solutions. One approach that promises to greatly enhance manageability of SOA secu-
rity solutions is declarative security or policy-based security. In the next chapter, we will
introduce you to the standards that support such an approach.

8.7 Suggestions for further reading
 The SAML specifications are available at http://www.oasis-open.org/committe-

es/ tc_home.php?wg_abbrev=security. In particular, the SAML 1.1 specification
described in this book is available at http://www.oasis-open.org/committe-
es/download.php/3400/oasis-sstc-saml-1.1-pdf-xsd.zip.

 The WS-Security SAML Token Profile 1.1 is available at http://www.oasis-open.
org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf.

 The WS-Trust specification was developed by an ad hoc industry group. It is
available at http://specs.xmlsoap.org/ws/2005/02/trust/WS-Trust.pdf as an
initial public release dated February 2005.

 OpenSAML libraries and documentation are available from http://www. opens-
aml.org/. The version used in this book is 1.1b.

 Windows CardSpace (formerly “InfoCard”), Microsoft’s new digital identity
“meta” system based on WS-Trust, WS-SecurityPolicy, and WS-MetadataEx-
change, is described at http://download.microsoft.com/download/6/c/3/6c-
3c2ba2-e5f0-4fe3be7f-c5dcb86af6de/infocard-guide-beta2-published.pdf.
store/books/9781617294327

https://itbook.store/books/9781617294327

186 CHAPTER 8 Implementing security as a service

www.itboo
Anyone seeking to implement SOA Security is forced to
dig through a maze of inter-dependent specifications
and API docs that assume a lot of prior security knowl-
edge on the part of readers. Getting started on a proj-
ect is proving to be a huge challenge to practitioners.
 SOA Security seeks to change that. It provides a bottom-
up understanding of security techniques appropriate
for use in SOA without assuming any prior familiarity
with security topics.

 Unlike most other books about SOA that merely
describe the standards, this book helps readers learn
through action, by walking them through sample code

that illustrates how real life problems can be solved using the techniques and best prac-
tices described in the standards. It simplifies things: where standards usually discuss
many possible variations of each security technique, this book focuses on the 20% of
variations that are used 80% of the time. This keeps the material covered useful for all
readers except the most advanced.

What's inside

 Why SOA Security is different from ordinary computer security, with real life
examples from popular domains such as finance, logistics, and Government

 How things work with open source tools and code examples as well as proprie-
tary tools.

 How to implement and architect security in enterprises that use SOA. Covers
WS-Security, XML Encryption, XML Signatures, and SAML.
k.store/books/9781617294327

https://www.manning.com/books/soa-security
https://www.manning.com/books/soa-security
https://itbook.store/books/9781617294327

 index

www.itbook.
Symbols

/opt/webapp directory, Docker setup 44
$.get function 45
$resource object 66–69

A

Accept header 51, 56
access control decision 162
access control, with REST and API tokens 92–94
access token 3, 99

defined 13
invalid 14
presenting 11

account, AWS, creating. See AWS (Amazon Web
Services)

ACLs (access control lists) 104–106
action, performing in a browser 24
Add Exception option 89
AddressingHandler, additional handler 166
AddressingHandler, JAX-RPC handler 167
Akamai 91
Amazon Web Services. See AWS
AmplifyJS 49
AngularJS, $resource object 66–69
AON (Application-Oriented Networking)

and security service as an implicit
intermediary 159

described 152
AON technology

and the network as a provider of security
services 185

Apache XML Security library 164

API (application programming interface)
access control with API tokens 92–94
designing 28–31
understanding the back-end functionality 

43–45
API call 29

application function and 38
curl command and 32

API platform, updating and 41
API providers, multiple 28
API system, illustration of interactions with 29
apiToken key 93
application developer, and simple service

security 146
application role, OAuth 96
application/json type 51
AppliesTo element 179, 181
arbitrary messages 157
Assertion element 160
asymmetric encryption 84
attacks, browser-based 7
Attribute statement, SAML assertions 162–163
attributes, assertion of 162
/auth/facebook 104
authentication 161

methods, variety of 7
social Web of Things authentication

proxy 98–108
creating Facebook application 101–102
implementing access control lists 104–106
implementing Facebook authentication

strategy 103–104
Passport.js 102–103
proxying resources of Things 106–108
successful 164
187

store/books/9781617294327

https://itbook.store/books/9781617294327

188 INDEX

www.itboo
Authentication statement 161–162
SAML assertions 163

authority, delegated by resource owner 3
authorization 92

code grant 3, 9, 15
decisions

final 153
LDAP server and 153

OAuth transaction and 3
proxy 99–101
server

and authorization decision storage 8
and resource owner redirection 8
defined 13
how to find 5
issuing a token and 10
user required for authorization 6

Authorization decision statement 163–164
Authorization header 10, 94
authorization server role, OAuth 96
AWS (Amazon Web Services)

account creation
choosing support plan 137
contact information 134
creating key pair 139–142
login credentials 133–134
payment details 135
signing in 137–139
verifying identity 135–136

advantages of
automation capabilities 121
cost 122
fast-growing platform 120
platform of services 121
reducing time to market 122
reliability 122
scalability 121–122
standards compliance 122–123
worldwide deployments 122

alternatives to 125–127
as cloud computing platform 114–115
costs

billing example 123–125
Free Tier 123
overview 123
pay-per-use pricing model 125

services overview 127–129
tools for

blueprints 132–133
CLI 130–132
Management Console 130
SDKs 132

uses for
data archiving 117–118
fault-tolerant systems 119
running Java EE applications 116–117
running web shop 115–116

Axis, method signatures allowed by 171
Azure 126–127

B

Backbone.js, data models in 55
back-channel communication 16–17
bearer token 11
bluebird library 64
blueprints, overview 132–133
body 25, 27
boot2docker, installing the system via Docker

and 43
Bootstrap framework 45
braces, curly 30–31, 37
brackets, square 37
BrokerageServiceLocator.java, generated file 167
browser 31–32

and accepting any type of responses 32
and information about the call 35
calls and standard 31
catch() method and 63
configured to show web traffic 39
intermediary 17
resource owner redirection 6

business logic, and information needed by the
destination endpoint 153

C

CA (certificate authority) 89–90
caCert.pem file 88
calculator for monthly costs 123
callbacks, processing server results using 57–58
caller, and information nedeed for 180
caller-provided key 182
catch() method. See browser
CDN (content delivery network) 116
centralized security service, illustration of the

concept 165
certificate authority. See CA
chaining asynchronous calls

in sequence 62
promises 61–62

channel communications, monitoring and
manipulation of 6

Charles, HTTP sniffer 36
k.store/books/9781617294327

https://itbook.store/books/9781617294327

189INDEX

www.itbook.
Chrome browser 32
Chrome Developer Tools, monitoring the traffic

and 45
Cisco 91
Claims element 179
CLI (command-line interface), overview 130–132
client

defined 12
statically configured 5

client application
authorization of 7
interaction between API and 23, 37
simple, and benefit form emergent

techniques 7
users and sharing credentials 7

client-side implementation 165–167
ClientSideWSSecurityHandler 166
cloud computing, overview 114–115
code

extracting the destination address and action
from WS-Addressing headers 173

separating axis-specific and portable 172
code query parameter 9–10
compute services 128
config/acl.json file 104
Confirm Security Exception option 89
content delivery network. See CDN
content negotiation 51
Content-type header 51, 56
continuation-passing style 57
cost. See AWS (Amazon Web Services)
Create method 29
credentials, validating a client’s 10
CRUD (create, read, update, and delete) 55

actions 25
crypto.randomBytes() function 93
cryptographic certificates, authentication process

and 7
curl command 32–35

and exploring a system 37
example of 33
specifying methods on the command line 33

D

data archiving 117–118
data centers

hardware used 114
locations of 114, 122

data security standard. See DSS

databases, defined 129
debugging 40
Deferred object 64
delegated authentication step 98
Delete button 39
DELETE method 52, 75
deployment, worldwide support 122
destination endpoint 150

and security decision 154
as the next hop along the message path 170
credentials and 154
credentials validation 151
invoking the security service 153

pros and cons 154
security context 155

communicated to 151
developers, API and 28
digital signatures 148
Docker container 44

determining IP address of 43
installing 43

docker run command 44
DOM APIs, low-level, and creating SAML

assertions 169
DSS (data security standard) 123
Duck DNS 91
dynamic proxy, and invoking a web service 166

E

EC2 (Elastic Compute Cloud) service
defined 113
See also virtual machines

ECMAScript 63–64
Elastic Compute Cloud service. See EC2 service
encryption 84
endpoint, forwarding the message to 167
enterprise services 128
enterprise-class framework 148
entity bodies, HTTP communication

mechanism 16
Entropy element 179, 182
ERR_CERT_AUTHORITY_INVALID 89
error handling, for promises 63–64
expiry time, token and 180
explicit intermediary, security service as. 

See security service
explicit routing issue 158
exploits object 82
store/books/9781617294327

https://itbook.store/books/9781617294327

190 INDEX

www.itboo
F

Facebook application
authentication strategy implementation 

103–104
creating 101–102

Facebook Graph API explorer tool 105
fault-tolerance, AWS use cases 119
Fiddler, HTTP sniffer 36
Fiddler, proxy system 6
findings

communicated to the service endpoint 160
language for expressing 160

Fireburg plugin, browser inspection tool 6
formatting, and the content of response 28
framework files 39
Free Tier 123
front channel mechanism, web and native

applications and 19
front-channel communication 17–19
fulfilled state 59

G

Generating a 2048 bit RSA private key message 87
GeoTrust 90
GET call, browser and 31
GET method 52
GET request 29
Git, installing the system via 44
Google 95
Google Cloud Platform 126–127
Graph API explorer tool, Facebook 105

H

hardware 114
header 24, 32

HTTP communication mechanism 16
Heartbleed 85
HTTP

basics 24–27
communication, indirect 17–18
connections

back channel and direct 16
separating between different 10

headers 51
interactions 27
methods 51–52
request 24–26

status code and 26

server response, typical 26
traffic 35

HTTP sniffers 35–37
exploring the code and 44
specific traffic exploration 42
watching traffic 39

HTTP transaction 45
described 24
details 35
request 27
viewing 6

HTTPS, enabling with TLS 87–91
HTTPScoop

downside of using 35
example of using 35
list of calls on the screen 39
POST request/response 42

HyperText Transfer Protocol. See HTTP basics

I

I Understand The Risk option 89
IaaS (infrastructure as a service) 115
identification 92
identifier, and SAML assertion 161
in-browser JavaScript application, as an OAuth

client 12
infrastructure as a service. See IaaS
interface, generic 176
intermediary

and invoking STS to do authentication/
authorization 176

explicit 156
implicit 158
previous, and messages 152

intermediary/target service, and invoking
STS 176

internal policy, and overriding the end user’s
decision 8

internet media types 51
Internet of Things project 82
Internet Security Research Group 91
IoT attacks 82

J

JAAS configuration, setup 165
Java EE applications 116–117
JavaScript Object Notation (JSON). See JSON,

markup language
JAX-RPC

client, rerouting a request 166
k.store/books/9781617294327

https://itbook.store/books/9781617294327

191INDEX

www.itbook.
dynamic invocation interface, and invoking a
web service 166

handler 160
and the logic of security enforcement 159

jQuery
Deferred object 64
jqXHR objects 58
using as utility library 49

JSON, markup language 28, 37
JSON.parse() function 53
JSON.stringify() function 52

K

Kerberos 148
and providing the basis for an enterprise-class

security framework 146
tickets 151

key pair for SSH, creating 139–142

L

LDAP server, as a security service 153
Lets Encrypt project 91
Lifetime element 179, 182
LinkedIn 95
Linux

curl command and 33
Docker and 43
key file permissions 141

localhost, and OAuth authorization 3
log data 44
login cookie, Facebook 107
login.html page 104

M

Mac OS X, key file permissions 141
Macintosh, curl command and 33
malicious interceptor 83
manageability/maintainability issues 184
Management Console

overview 130
signing in 137

mapping, API calls and 38
masterSecret 86
message context, getting access to the request

message from 172
message path, invoking the security service 153
message URL http

//docker_ip_address/ 44
//docs.docker.com/userguide/dockerlinks/ 44

//download.microsoft.com/download/6/c/3/
6c3c2ba2-e5f0-4fe3be7f-c5dcb86af6de/
infocard-guide-beta2-published.pdf 185

//irresistibleapis.com/demo 38
//localhost 44
//manning.com/ebooks/soasecimpl/ 163
//www.manning.com/books/oauth-2-in-

action 1
//specs.xmlsoap.org/ws/2005/02/trust/WS-

Trust.pdf 185
//www. opensaml.org/ 185
//www.charlesproxy.com 36
//www.oasis-open.org/committees/

download.php/3400/oasis-sstc-saml-1.1-
pdf-xsd.zip 185

//www.wireshark.org 36
method

combining methods with URLs 30
described 24

/middleware/auth.js file 105
MIME (Multipurpose Internet Mail Extensions)

types 51
Mozilla 91
multiple independent machines, and OAuth 3
MV* frameworks

creating server requests
using data model 55–56
using data source objects 56–57
using XMLHttpRequest object 54–55

processing server results with callbacks 57–58
processing server results with promises

accessing results 60–61
chaining asynchronous calls in sequence 62
chaining promises 61–62
overview 58–59
promise error handling 63–64
promise states 59–60

REST and 66
My Apps section, Facebook 101

N

NAT (Network Address Translation) 116
native applications, OAuth and 19
network devices

application level context 159
transparent routing and 158

new service, and the cost of development 147
ng-click 70
node authProxy.js 107
node wot.js 89, 107
Node.js 24
node-http-proxy 107–108
store/books/9781617294327

https://itbook.store/books/9781617294327

192 INDEX

www.itboo
node-oauth2-server 97, 108
non-bearer token 11
non-HTTP channels 16
Not authorized for this resource! error 107
npm install http-proxy 107
npm install passport 102
npm install passport-facebook 102

O

OAuth
process, different deployments of 3
scope, and client application 7
system

actors 12–13
components 13–16
interaction between actors and

components 16
transaction 3

OAuth 1.0/2.0, refresh tokens and. See refresh
tokens

OAuth 2.0 protocol
components responsible for different parts

of 12
flow 16
overview 2–3

OAuth Bearer token 10
OpenID Connect protocol 5, 19
OpenSAML, open source library 160
OpenSSL library 87
OpenStack 125–127
-out caCert.pem 87
out-of-band, invoking the security service 

153–154
OWASP (Open Web Application Security

Project) 82

P

PaaS (platform as a service) 115
Passport.js 102–103
passport-twitter or passport-linkedin 103
PCI (payment card industry) 123
pending state 59
Pi, enabling HTTPS and WSS with TLS on 87–91
platform as a service. See PaaS
POODLE 85
POST action 25, 29

adding new item and 41
POST method 52
pregenerated stub, and invoking a web

service 166

preMasterSecret 86
private key 85
privateKey.pem file 88
process, defined 160
processSAMLAssertion method, invoking 173
Promise/A+ standard 64
promises

accessing results 60–61
chaining asynchronous calls in sequence 62
chaining promises 61–62
overview 58–59
promise error handling 63–64
promise states 59–60

protected resource
defined 13
OAuth transaction and 3
presenting token to 11

proxied access step 98
proxying resources of Things 106–108
ProxyService

as a message style service in Axis 170
declaration of 171
forwarding the message to the endpoint 

170–173
request message 172
response message 172

public key 85
PUT action, vs. POST action 41
PUT method 52
PUT request 40
PuTTY 141–142

Q

Q library 64
query parameter, HTTP communication

mechanism 16

R

RDP (Remote Desktop Protocol) 139
read action 24
Read method 29
redirect_uri 19
refresh token 14–15

down-scoping clients’ access 15
similarity with access token 14

Register As A Developer option, Facebook 101
rejected state 59
relay method 172
relayInAxis method 172
reliability 122
k.store/books/9781617294327

https://itbook.store/books/9781617294327

193INDEX

www.itbook.
Remote Desktop Protocol. See RDP
Representational State Transfer (REST)-style API.

See REST API
request, routing via the security service 166–167
Request/Response tab, HTTPScoop and 36
RequestedAttachedReference element 181
RequestedProofToken element 181
RequestedSecurityToken element 181
RequestedUnattachedReference element 181
request-response protocol 182
requests, server

using data model 55–56
using data source objects 56–57
using XMLHttpRequest object 54–55

RequestSecurityToken (RST) 177–179
RequestSecurityTokenResponse (RSTR) 180–182
RequestType element 179
resource

as a noun 27
existing, changing the title of 41

resource owner
defined 13
OAuth transaction and 3
redirection to the authorization server 3, 5

resource owner role, OAuth 96
resource server role, OAuth 96
/resources/auth.json file 93
REST (Representational State Transfer)

access control with 92–94
defined 64
MV* frameworks and 66
resource concept 65
shopping cart project

$resource object 66–69
adding items to cart 69–71
removing items from cart 75–76
updating cart 73–75
viewing cart 71–73

statelessness 65–66
uniform interface between components 65
unique identifiers 65

REST API 27
RESTful API 45
reuse mechanism 149
roles, OAuth 96–97
RST element

and specifying the kind of security token 179
division of responsibilities between Security

header entry and 177
RSVP.js library 64

S

S3 (Simple Storage Service), 113
SaaS (software as a service) 115
SAML (Security Assertion Markup Language)

and conveying the findings of a security
service 159–160

and destination endpoint invoking the security
service 154

and security service as an explicit
intermediary 157

and security service as an implicit
intermediary 158

authentication statement, creating 167
described 152, 160
protocol 147, 182–184

and destination endpoint invoking the
security service 154

described 152
specification 184

SAML assertion 147, 163–164
and security token 155
and vulnerability to forgery 164
as security tokens 176
basics 160–161
standard statements 161

SAMLAuthorityBinding element 181
SAMLCreationHandler, and creating SAML

statements and assertions 169
SAML-defined element 164
scaling, advantages of AWS 121–122
scope 13–14
SDKs (software development kits), overview 132
Secure Sockets Layer. See SSL
security 82–91

access control with REST and API tokens 
92–94

clearance 151
context 160
encryption 84
implementation 167–173
functionality 156
handler, saving the findings of 159
logic

building, and adding security to services 184
decoupling from business logic 159, 163

machinery 149
management issues 147
OAuth web authorization framework 95–97
requirements, different for each

application 148
technologies, summarized 148
store/books/9781617294327

https://itbook.store/books/9781617294327

194 INDEX

www.itboo
TLS (Transport Layer Security)
enabling HTTPS and WSS with, on Pi 87–91
overview 85–87

security as a service 147
a few simple services example 148
example implementation using

OpenSAML 164–175
securing a large number of services 148
security separation and 149
shared security service 148
simple design approach 148
standards for implementing 151

security assertions. See SAML assertion, basics
security enforcement burden 147–148

destination endpoint and 153
example of shifting 150

security service
and access granted to the subject 163
and different ways of invoking 152
as an explicit intermediary 156–158

pros and cons 157
as an implicit intermediary 158–159

pros and cons 159
centrally managed and quickly modified 149
hybrid approach 185
illustration of shared 165
interface of 151
intermediary and for explicit invocation,

difference in scope 175
invoked by both endpoints out-of-band 155

pros and cons 156
relevant standards and technologies 155

invoked by the sender, receiver, or both 175
message forwarding 157
possible uses analysis 152
providing additional details 153
standard interface and desired functionality

of 175
technical feasibility, invoking issue 151

security service interfaces, standards for 175–184
security token 154–155, 176

a wide range of information in 180
and describing the kind of 177
and TokenType element 179
authentication process and 7

server communication
converting data 52–53
creating requests

using data model 55–56
using data source objects 56–57
using XMLHttpRequest object 54–55

data types 50–51
general discussion 48–50

HTTP methods 51–52
processing results with callbacks 57–58
processing results with promises

accessing results 60–61
chaining asynchronous calls in sequence 62
chaining promises 61–62
overview 58–59
promise error handling 63–64
promise states 59–60

REST
defined 64
MV* frameworks and 66
resource concept 65
statelessness 65–66
uniform interface between components 65
unique identifiers 65

shopping cart project
$resource object 66–69
adding items to cart 69–71
removing items from cart 75–76
server requirements 50
updating cart 73–75
viewing cart 71–73

/servers/websocket.js file 94
server-based authentication 92
/servers/http.js file 94
server-side implementation 173–175
ServerSideWSSecurityHandler, extension of 173
service endpoint

and invoking STS to do authentication/
authorization 176

and WS-Addressing as a standard mechanism
for referring to 179

JAX-RPC 159
services, securing large number of 148
sha256 hashing algorithm 87
Share layer 81
Shellshock 85
shopping cart example

$resource object 66–69
adding items to cart 69–71
removing items from cart 75–76
server requirements 50
updating cart 73–75
viewing cart 71–73

simple API 23
simple services, securing a few 146
Skip Quick Start option, Facebook 102
SOA security solution

and enchancing manageability 185
ease of development 147
enterprise-class 146
k.store/books/9781617294327

https://itbook.store/books/9781617294327

195INDEX

www.itbook.
interoperability 147
manageability 147

SOAP, and intermediaries 156
social Web of Things authentication proxy 

98–108
creating Facebook application 101–102
implementing access control lists 104–106
implementing Facebook authentication

strategy 103–104
Passport.js 102–103
proxying resources of Things 106–108

software as a service. See SaaS
software development kits. See SDKs
source endpoint 150

invoking the security service 154
pros and cons 155
relevant standards and technologies 155

Kerberos 155
not aware of the security service 153

SSL (Secure Sockets Layer) 85
certificates 87

SSL/TLS authentication 85
SSL/TLS encryption 85
SSL/TLS handshake 86
standards compliance 122–123
state parameter 9
static/index.html file 44
status code, responses and 26
storage, 129
strategy 102
STS interface 177
Symantec 90
symmetric encryption 84

T

/temp resource 99
Thawte 90
then() method 60, 62
Thing proxy trust step 98
third-party trusted service 95
TLS (Transport Layer Security) 85

enabling HTTPS and WSS with, on Pi 87–91
overview 85–87

token
defined 3
endpoint 9, 16
getting and using 20
in OAuth transaction 3
new access 10
refresh 11
type, WS-Security Token Profiles and 179
validation of 13

token-based authentication 92, 94
TokenType element 181
token_type field 10
tools

blueprints 132–133
CLI 130–132
Management Console 130
SDKs 132

traffic, developer tools for inspecting in a
browser 31

transparent routing 158
trust chain 87

U

UMA protocol 5
Unix-based systems, curl command and 33
unsecured networks, security service and 153
Update method 29
URL

as the unique identifier for the resource 26–27
creating using $resource object 67–68

use cases
data archiving 117–118
fault-tolerant systems 119
running Java EE applications 116–117
running web shop 115–116

username/password pair, authentication process
and 7

username/password verification 167
UsernameToken, adding to the request 165
/utils/utils.js file 93

V

VBox, virtualization system 43
verbs, HTTP 51
virtual machines. See VMs
VMs (virtual machines) 117
VPN (Virtual Private Network) 116
vulnerabilities 82

W

web application, as an OAuth client 12
Web Server Software. See WSS
web services, building blocks for security

implementation 146
when library 64
Windows, SSH client on 141–142
WinJS library 64
Wireshark, HTTP sniffer 36
store/books/9781617294327

https://itbook.store/books/9781617294327

196 INDEX

www.itboo
Wireshark, network packet capture program 6
wot-server.js file 88
wot-server-secure.js file 88
wsa:Action, WS-Addressing header 167
wsa:To, WS-Addressing header 167
WS-Addressing 147

adding header entry 167
and security service as an explicit

intermediary 157
and security service as an implicit

intermediary 158
described 152

WSDD file, creating by hand 171
WS-PolicyAttachment, and the use of

elements 179
WSS (Web Server Software) 87–91
WS-Security/transport-layer mechanisms 176

WS-SecurityPolicy 179
WS-Trust 147, 176–177

and destination endpoint invoking the security
service 154

described 152
security token service interface defined by 177

X

X.509 certificates 151
x509 data format 87
XHR (XMLHttpRequest) object 48

Y

Yaler 91
k.store/books/9781617294327

https://itbook.store/books/9781617294327

	contents
	introduction
	The OAuth Dance
	The OAuth Dance
	2.1 Overview of the OAuth 2.0 protocol: getting and using tokens
	2.2 Following an OAuth authorization grant in detail
	2.3 OAuth's actors: clients, authorization servers, resource owners, and protected resources
	2.4 OAuth Components: Tokens, scopes, and authorization grants
	2.4.1 Access tokens
	2.4.2 Scopes
	2.4.3 Refresh tokens
	2.4.4 Authorization grants

	2.5 Interactions between OAuth's actors and components: back channel, front channel, and endpoints
	2.5.1 Back-channel Communication
	2.5.2 Front-channel Communication

	2.6 Summary
	What's inside

	Working with Web APIs
	CO Chapter Title - Working with web APIs
	2.1 HTTP basics
	2.1.1 HTTP request
	2.1.2 HTTP response
	2.1.3 HTTP interactions

	2.2 The Toppings API
	2.3 Designing the API
	2.4 Using a web API
	2.4.1 Browser
	2.4.2 Command line (curl)
	2.4.3 HTTP sniffers

	2.5 Interaction between the API and client
	2.6 Install your own API and front end
	2.6.1 Installing the system via Docker
	2.6.2 Installing the system via Git
	2.6.3 Exploring the code

	2.7 Summary
	What's inside

	Communicating with the Server
	Communicating with the server
	Understanding the project requirements
	7.2 Exploring the communication process
	7.2.1 Choosing a data type
	7.2.2 Using a supported HTTP request method
	7.2.3 Converting the data

	7.3 Using MV* frameworks
	7.3.1 Generating requests
	7.3.2 Processing results with callbacks
	7.3.3 Processing results with promises
	7.3.4 Promise error handling

	7.4 Consuming RESTful web services
	7.4.1 What is REST?
	7.4.2 REST principles
	7.4.3 How MV* frameworks help us be RESTful

	7.5 Project details
	7.5.1 Configuring REST calls
	7.5.2 Adding product items to the cart
	.7.5.3 Viewing the cart
	7.5.4 Updating the cart
	.7.5.5 Removing products from the cart

	7.6 Chapter challenge
	7.7 Summary
	What’s inside

	Sharing and Securing Web Things
	Share: Securing and sharing web Things
	9.1 Securing Things
	9.1.1 Encryption 101
	9.1.2 Web security with TLS: the S of HTTPS!
	9.1.3 Enabling HTTPS and WSS with TLS on your Pi

	9.2 Authentication and access control
	9.2.1 Access control with REST and API tokens
	9.2.2 OAuth: a web authorization framework

	9.3 The Social Web of Things
	9.3.1 A Social Web of Things authentication proxy
	9.3.2 Implementing a Social WoT authentication proxy

	9.4 Beyond the book
	9.5 Summary
	What's inside

	What Is Amazon Web Services?
	What is Amazon Web Services?
	1.1 What is cloud computing?
	1.2 What can you do with AWS?
	1.2.1 Hosting a web shop
	1.2.2 Running a Java EE application in your private network
	1.2.3 Meeting legal and business data archival requirements
	1.2.4 Implementing a fault-tolerant system architecture

	1.3 How you can benefit from using AWS
	1.3.1 Innovative and fast-growing platform
	1.3.2 Services solve common problems
	1.3.3 Enabling automation
	1.3.4 Flexible capacity (scalability)
	1.3.5 Built for failure (reliability)
	1.3.6 Reducing time to market
	1.3.7 Benefiting from economies of scale
	1.3.8 Worldwide
	1.3.9 Professional partner

	1.4 How much does it cost?
	1.4.1 Free Tier
	1.4.2 Billing example
	1.4.3 Pay-per-use opportunities

	1.5 Comparing alternatives
	1.6 Exploring AWS services
	1.7 Interacting with AWS
	1.7.1 Management Console
	1.7.2 Command-line interface
	1.7.3 SDKs
	1.7.4 Blueprints

	1.8 Creating an AWS account
	1.8.1 Signing up
	1.8.2 Signing In
	1.8.3 Creating a key pair
	1.8.4 Creating a billing alarm

	1.9 Summary
	What's inside

	Implementing Security as a Service
	Implementing security as a service
	8.1 Security as a service
	8.1.1 Is a security service technically feasible?
	8.1.2 Standards for implementing security as a service

	8.2 Analyzing possible uses of a security service
	8.2.1 Use case 1: Destination endpoint invokes security service out-of-band
	8.2.2 Use case 2: Source endpoint invokes security service out-of-band
	8.2.3 Use case 3: Both endpoints invoke security service out-of-band
	8.2.4 Use case 4: Security service as an explicit intermediary
	8.2.5 Use case 5: Security service as an implicit intermediary

	8.3 Conveying the findings of a security service: SAML
	8.3.1 SAML assertion basics
	8.3.2 AuthenticationStatement: Asserting authentication results
	8.3.3 AttributeStatement: Asserting user attributes
	8.3.4 AuthorizationDecisionStatement: Asserting authorization decisions

	8.4 Example implementation using OpenSAML
	8.4.1 Client-side implementation
	8.4.2 Security service implementation
	8.4.3 Server-side implementation

	8.5 Standards for security service interfaces
	8.5.1 WS-Trust
	8.5.2 SAML protocol

	8.6 Summary
	8.7 Suggestions for further reading
	What's inside

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	OAuth 2 in Action
	Building the Web of Things
	Irresistible APIs: Designing web APIs that developers will love
	SPA Design and Architecture: Understanding single-page web applications
	Amazon Web Services in Action
	SOA Security

