
M A N N I N G

Elyse Kolker Gordon

SAMPLE CHAPTER

Universal development with React

www.itbook.store/books/9781617294396

https://itbook.store/books/9781617294396

Isomorphic Web Applications
Universal development with React

by Elyse Kolker Gordon

Sample Chapter 1

Copyright 2018 Manning Publications

www.itbook.store/books/9781617294396

https://itbook.store/books/9781617294396

brief contents
PART 1 FIRST STEPS .. 1

1 ■ Introduction to isomorphic web application architecture 3
2 ■ A sample isomorphic app 22

PART 2 ISOMORPHIC APP BASICS .. 51
3 ■ React overview 53
4 ■ Applying React 78
5 ■ Tools: webpack and Babel 96
6 ■ Redux 113

PART 3 ISOMORPHIC ARCHITECTURE 133
7 ■ Building the server 135
8 ■ Isomorphic view rendering 161
9 ■ Testing and debugging 184

10 ■ Handling server/browser differences 203
11 ■ Optimizing for production 222

PART 4 APPLYING ISOMORPHIC ARCHITECTURE WITH

 OTHER TOOLS ... 239
12 ■ Other frameworks: implementing isomorphic without React 241
13 ■ Where to go from here 269

www.itbook.store/books/9781617294396

https://itbook.store/books/9781617294396

www.itbook.store/bo
Part 1

First steps

Understanding what an isomorphic app is and why you’d want to build
one is an important first step in learning about isomorphic architecture. The
first part of this book explores the why and how of isomorphic apps with a bird’s-
eye view, giving you the context you need in order to comprehend the specific
implementation details presented in later sections.

 In chapter 1, you’ll learn all the reasons to build an isomorphic app. This
chapter also gives you an overview of the All Things Westies app you’ll build later
in the book. In chapter 2, you’ll work through building an example app with the
technologies used in the book: React, Node.js, webpack, and Babel. Instead of
covering all the small details, this chapter allows you to see how the pieces fit
together.

oks/9781617294396

https://itbook.store/books/9781617294396

2 CHAPTER

www.itbook

.store/books/9781617294396

https://itbook.store/books/9781617294396

www.itbook.store
Introduction to isomorphic
web application architecture
This book is intended for web developers looking to expand their architectural
toolset and better understand the options available for building web apps. If you’ve
ever built a single-page or server-rendered web app (say, with Ruby on Rails), you’ll
have an easier time following the content in this book. Ideally, you’re comfortable
with JavaScript, HTML, and CSS. If you’re new to web development, this book isn’t
for you.

This chapter covers
 Differentiating between isomorphic, server-side

rendered, and single-page apps

 Server rendering and the steps involved in transitioning
from a server-rendered to a single-page app experience

 Understanding the advantages and challenges of
isomorphic web apps

 Building isomorphic web apps with React’s virtual DOM

 Using Redux to handle the business logic and data flow

 Bundling modules with dependencies via webpack
3

/books/9781617294396

https://itbook.store/books/9781617294396

4 CHAPTER 1 Introduction to isomorphic web application architecture

www.itbook
 Historically, web apps and websites have come in two forms: server-rendered and
single-page apps (SPAs). Server-rendered apps handle each action the user takes by mak-
ing a new request to the server. In contrast SPAs handle loading the content and
responding to user interactions entirely in the browser. Isomorphic web apps are a com-
bination of these two approaches.

 This book aspires to take a complex application architecture and break it into
repeatable and understandable bits. By the end of this book, you’ll be able to create a
content site or an e-commerce web app with the following techniques:

 Render any page on the server by using React to achieve fast perceived perfor-
mance and fully render pages for search engine optimization (SEO) crawlers
(such as Googlebot).

 Choose not to render certain features on the server. Understand how to use the
React lifecycle to achieve this.

 Handle user sessions on both the server and the browser.
 Implement single-direction data flow with Redux, making prefetching data on

the server and rendering in the browser feasible.
 Use webpack and Babel to enable a modern JavaScript workflow.

1.1 Isomorphic web app overview
My team and I had a big problem: our SEO rendering system was brittle and eating up
valuable time. Instead of building new features, we were troubleshooting why Google-
bot was seeing a different version of our app from what our users were seeing. The sys-
tem was complex, involved a third-party provider, and wasn’t scaling well for our
needs, so we moved forward with a new type of app—an isomorphic one.

 An isomorphic app is a web app that blends a server-rendered web app with a single-
page application. On the one hand, we want to take advantage of fast perceived per-
formance and SEO-friendly rendering from the server. On the other hand, we want to
handle complex user actions in the browser (for example, opening a modal). We also
want to take advantage of the browser push history and XMLHttpRequest (XHR).
These technologies prevent us from making a server request on every interaction.

 To get started understanding all of this, you’re going to use an example web app
called All Things Westies (you’ll build this app later in the book, starting in chapter
4). On this site, you can find all kinds of products to buy for your Westie (West High-
land white terrier—a small, white dog). You can purchase dog supplies and buy prod-
ucts featuring Westies (socks, mugs, shirts, and so forth). If you’re not a pet owner,
you might find this example ridiculous. As a dog owner, even I thought it was over the
top. But it turns out that dog products such as mugs are a huge thing. If you don’t
believe me, search Google for “pug mugs.”

 Because this is an e-commerce app, we care about having good SEO. We also want
our customers to have a great experience with performance in the app. This makes it
an ideal use case for isomorphic architecture.
.store/books/9781617294396

https://itbook.store/books/9781617294396

5Isomorphic web app overview

www.itbook.s
1.1.1 Understanding how it works

Look at figure 1.1, which is a wireframe for the All Things Westies app. There’s a stan-
dard header with some main site navigation on the right. Below the header, the main
content areas promote products and the social media presence.

 The first time you come to the site, the app content is rendered on the server using
server-rendered techniques with Node.js. After being server-rendered, the content is
sent to the browser and displayed to the user. As the user navigates around the pages,
looking for a dog mug or supplies, each page is rendered by the JavaScript running in
the browser and using SPA techniques.

All Things Westies Products Cart Profile

Announcement

Sale!

Caption

Twitter Widget

Latest Products

Products are populated by
an API call. On the server,
the app fetches this data
before rendering the page.

The header is static and can
be rendered immediately
on the server and the
browser.

On the initial browser
load, the page will already
have the data. The browser
only has to render the DOM.

This Twitter widget can’t be loaded on the server,
so it won’t render immediately. But, it’s below the
fold, so most users won’t notice the load time.

Figure 1.1 A wireframe showing the homepage for All Things Westies, an isomorphic web app
tore/books/9781617294396

https://itbook.store/books/9781617294396

6 CHAPTER 1 Introduction to isomorphic web application architecture

www.itbook
The All Things Westies app relies on reusing as much code as possible between the
server and the browser. The app relies on JavaScript’s ability to run in multiple envi-
ronments: JavaScript runs in browsers and on the server via Node.js. Although Java-
Script can run in other environments as well (for example, on Internet of Things
devices and on mobile devices via React Native), the focus here is on web apps that
run in the browser.

 Many of the concepts in this book could be applied without writing all the code in
JavaScript. Historically, the complexity of running an isomorphic app without being
able to reuse code has been prohibitive. Although it’s possible to server-render your
site with Java or Ruby and then transition to a single-page app, it isn’t commonly done
because it requires duplicating large portions of code in two languages. That requires
more maintenance.

 To see this flow in action, look at figure 1.2. It shows how the code for All Things
Westies gets deployed to the server and the browser. The server code is packaged and
run on a Node.js web server, and the browser code is bundled into a file that’s later
downloaded in the browser. Because we take advantage of JavaScript running in both

Development

Production

Developers—you, in this
case—write code in the

local environment.

Babel, webpack, etcYour code is built for
each environment

The user requests a
page load of your app.

The browser
requests a page render

from the server.

Server

The server responds
with the rendered page.

Browser

User

The browser uses its version
of the code to create the SPA
for the user to interact with.

Figure 1.2 Isomorphic apps build and deploy the same JavaScript code to both environments.
.store/books/9781617294396

https://itbook.store/books/9781617294396

7Isomorphic web app overview

www.itbook.s
environments, the same code that runs in the browser and talks to our API or data
source also runs on the server to talk to our back end.

1.1.2 Building our stack

Building an app such as All Things Westies requires putting together several well-known
technologies. Many of the concepts in this book are executed with open source librar-
ies. Although you could build an isomorphic app using few or no libraries, I highly rec-
ommend taking advantage of the JavaScript communities’ efforts in this area.

TIP Make sure any libraries you include in an isomorphic app support run-
ning in both the server and browser environments. Check out chapter 10 for
what to watch for and how to handle differences in environments. If you
intend to use a library only on the server, you don’t need to check for browser
compatibility.

The HTML components that display the products (the view) will be built with React
(in chapter 12, you’ll explore how to use other popular frameworks, including Angu-
lar 2 and Ember, to implement isomorphic architecture). You’ll use a single-direction
data flow via Redux, the current community standard data management in React
apps. You’ll use webpack to compile the code that runs in the browser and to enable
running Node.js packages in the browser.

 On the server side, you’ll build a Node.js server using Express to handle routing.
You’ll take advantage of React’s ability to render on the server and use it to build up a
complete HTML response that can be served to the browser. Table 1.1 shows how all
these pieces fit together.

To make our application work everywhere, you’ll build in data prefetching for your
routes using React Router. You’ll also handle differences in environments by building
separate code entry points for the server and browser. If code can be run only in the
browser, you’ll gate the code or take advantage of the React lifecycle to ensure that
the code won’t run on the server. I introduce React in chapter 3 and the specifics of the
server logic in chapter 7.

Table 1.1 The technologies used in an isomorphic app and the environments they run in

Library (version) Server Browser Build tool

Node.js (6.9.2) ✓

Express (4.15.3) ✓

React (15.6.1) ✓ ✓

React Router (3.0.5) ✓ ✓

Redux (3.7.2) ✓ ✓

Babel (6.25.0) ✓ ✓ ✓

webpack (3.4.1) ✓ ✓
tore/books/9781617294396

https://itbook.store/books/9781617294396

8 CHAPTER 1 Introduction to isomorphic web application architecture

www.itbook
1.2 Architecture overview
Earlier in this chapter, I told you that an isomorphic application is the result of com-
bining a server-rendered application and a single-page application. To get a better
understanding of how to connect the concepts of a server-rendered application and a
single-page application, see figure 1.3. This figure shows all the steps involved in get-
ting an isomorphic app rendered and responding to user input, like a single-page
application, starting when the user enters the web address.

1.2.1 Understanding the application flow

Every web app session is initiated when a user navigates to the web app or types the
URL into the browser window. For allthingswesties.com, when a user clicks a link to
the app from an email or from searching on Google, the flow on the server goes
through the following steps (the numbers match those in figure 1.3):

1 The browser initiates the request.
2 The server receives the request.
3 The server determines what needs to be rendered.
4 The server gathers the data required for the part of our application being

requested. If the request is for allthingswesties.com/product/mugs, the app
requests the list of gift items for sale through the site. This list of mugs, along
with all the information to be displayed (names, descriptions, price, images), is
collected before moving on to the render step.

5 The server generates the HTML for our web page using the data collected for
the mugs page.

6 The server responds to the request for allthingswesties.com/product/mugs
with the fully built HTML.

The next part of the application cycle is the initial load in the browser. We differenti-
ate the first time the user loads the app from subsequent requests because several
things that will happen only once per session happen during this first load.

DEFINITION Initial load is the first time the user interacts with your website.
This means the first time the user clicks a link to your site in a Google search
or from social media, or types it directly into the web address bar.

The first load on the browser begins as soon as the HTML response from the server is
received and the DOM is able to be processed. At this point, single-page application
flow takes over, and the app responds to user input, browser events, and timers. The
user can add products to their cart, navigate around the site, and interact with forms.

7 The browser renders the markup received from the server.
8 The application is now able to respond to user input.
9 When the user adds an item to their cart, the code responds and runs any busi-

ness logic necessary.
10 If required, the browser talks to the back end to fetch data.
.store/books/9781617294396

https://itbook.store/books/9781617294396

9Architecture overview

www.itbook.s
11 React renders the components.
12 Updates are made, and any repaints are executed. For instance, the user’s cart

icon updates to show that an item has been added.
13 Each time the user interacts with the app, steps 9–12 repeat.

The user
requests to render

the All Things
Westies app.

A request for the
homepage is sent

to your server.

The server fetches
any required data

from your API, such
as products.

Server

Data store
or APIBrowser

User

User

Browser

The server
responds with the

fully rendered DOM
markup (as a string).

The user
clicks a button.

The page enters
into single-page

application (SPA)
flow. Updates are
initiated by events,

usually from
the user.

Data store
or API

The server
determines what
to render—in this

case, several product
components and
a placeholder for

the Twitter
widget.

Once the data
is received, the server

renders the components
with the data.

The DOM is parsed by
the browser. The initial

load of the page is
completed.The user
sees the home page!

Your server runs your app.
The entry point for your
server code lives here.

Your React code responds
to the button click and
updates your app code.

Your React
code fetches

any required data
from the API.

React code

The DOM is
updated and executes
a render and repaint
so the user sees the

latest app state.

When the data
responds, React

 kicks off a render.
The app waits until further input

or events are received. The cycle
then repeats from steps 9–12.

Figure 1.3 The isomorphic app flow from initial browser request to SPA cycle
tore/books/9781617294396

https://itbook.store/books/9781617294396

10 CHAPTER 1 Introduction to isomorphic web application architecture

www.itbook
1.2.2 Handling the server-side request

Now let’s take a closer look at what happens when the server receives the initial
request to render the page. Look at what part of the site renders on the server. Figure
1.4 is similar to figure 1.1, except that it doesn’t render the Twitter widget. The Twitter
widget is designed to be loaded in the browser, so it doesn’t render on the server.

Figure 1.4 The server-rendered version of the All Things Westies homepage

All Things Westies Products Cart Profile

Announcement

Sale!

Caption

Twitter Widget

Latest Products

Products are populated by
an API call. That data is then
used by the server to do the
initial page render.

The data fetched to populate
these views is also sent down
to the browser to be used on
the initial load.

The header is static
and can be rendered
on the server

This has two advantages:
1. The browser doesn’t need
 to make data requests on
 the first load.
2. There’s a single source
 of truth for the data to
 be used for the server
 and browser renders.

This Twitter widget can’t be loaded on the server
(many third-party plugins aren’t designed for an
isomorphic environment). Instead, the component
shows a loading state.
.store/books/9781617294396

https://itbook.store/books/9781617294396

11Architecture overview

www.itbook.s
The server does three important things. First, it fetches the data required for the view.
Then it takes that data and uses it to render the DOM. Finally, it attaches that data to
the DOM so the browser can read in the app state. Figure 1.5 shows the flow on the
server.

Figure 1.5 App flow for the initial server render

Let’s step through the flow:

1 The server receives a request.
2 The server fetches the required data for that request. This can be from either a

persistent data store such as a MySQL or NoSQL database or from an external
API.

3 After the data is received, the server can build the HTML. It generates the
markup with React’s virtual DOM via React’s renderToString method.

4 The server injects the data from step 2 into your HTML so the browser can
access it later.

5 The server responds to the request with your fully built HTML.

1.2.3 Rendering in the browser

Now let’s look more closely at what happens in the browser. Figure 1.6 shows the flow
in the browser, from the point the browser receives the HTML to the point it boot-
straps the app:

1 The browser starts to render the mugs page immediately because the HTML
sent by the server is fully formed with all the content you generated on the

Request
from the
browser

Data

The server
handles the
request and
fetches the

data

Server

Data store
or API

Browser

Once the data is
fetched, the server
renders the markup

Response
with HTML

The initial state
of the application
(the fetched data)

is attached to
the response
tore/books/9781617294396

https://itbook.store/books/9781617294396

12 CHAPTER 1 Introduction to isomorphic web application architecture

www.itbook
server. This includes the header and the footer of your app along with the list of
mugs for purchase. The app won’t respond to user input yet. Things like adding a mug
to the cart or viewing the detail page for a specific mug won’t work.

2 When the browser reaches the JavaScript entry for our application, the applica-
tion bootstraps.

3 The virtual DOM is re-created in React. Because the server sent down the app
state, this virtual DOM is identical to the current DOM.

4 Nothing happens! React finds no differences between the DOM and the virtual
DOM it built (the virtual DOM is explained in depth in chapter 3). The user is
already being shown the list of mugs in the browser. The application can now
respond to user input, such as adding a mug to the cart.

This is when the single-page application flow kicks in again. This is the most straight-
forward part. It handles user events, makes XHR calls, and updates the application as
needed.

1.3 Advantages of isomorphic app architecture
At this point, you may be thinking this sounds complicated. You may be wondering
why this approach to building a web app would ever be worth it. There are several
compelling reasons to go down this path:

 Simplified and improved SEO—bots and crawlers can read all the data on page
load.

 Performance gains in user-perceived performance.
 Maintenance gains.
 Improved accessibility because the user can view the app without JavaScript.

Isomorphic app architecture also has challenges and trade-offs. There’s increased
complexity in managing and deploying code running in multiple environments.
Debugging and testing are more complicated. Server-rendered HTML via Node.js and
React can be slow for views that have many components. For example, a page that dis-
plays many items for sale might quickly end up with hundreds of React components.
As this number increases, the speed at which React can build these components on
the server declines. First, I’ll cover the benefits of building an isomorphic app. Let’s
start by discussing SEO.

Parse HTML

Render HTML Execute JavaScript Bootstrap app

Figure 1.6 Browser
render and bootstrap—
between steps 1 and 4,
the app won’t respond to
user input.
.store/books/9781617294396

https://itbook.store/books/9781617294396

13Advantages of isomorphic app architecture

www.itbook.s
1.3.1 SEO benefits

Our example app, All Things Westies, is an e-commerce site, so to be successful it
needs shoppers! And it needs good SEO to maximize the number of people who
come to the app from search engines. Single-page applications are difficult for search-
engine bots to crawl because they don’t load the data for the app until after the Java-
Script has run in the browser. Isomorphic apps also need to bootstrap after JavaScript
is run, but because their content is rendered by the server, neither users nor bots have
to wait for the application to bootstrap in order to see the content of the site.

DEFINITION Bootstrapping an application means running the code required to
get everything set up. This code is run only once on the initial load of the
application and is run from the entry point of the browser application.

On the All Things Westies app, you want to make sure all the SEO-relevant content is
fetched on the server so you don’t rely on the SEO crawlers to try to render your page.
Crawlers (both searchbots such as Google or Bing and sharebots such as Facebook)
either can’t run all this code or don’t want to wait long enough for this code to run. For
example, Google will try to run JavaScript but penalizes sites that take too long for the
content to load. That can be seen in the warning shown in figure 1.7. This warning
shows up when you enter a URL for a single-page application into the Google Page-
Speed Insights tool.

Google warns you when your
app doesn’t show all of the
content immediately.

Google will give you a hint as
to how much of the content is
rendered with the original HTML
response from the server.

Google also takes
screenshots to help
you see any issues.

Figure 1.7 Google PageSpeed Insights presents a warning for a single-page application. The
application makes too many AJAX calls to fetch visible content after the initial load of the page.
tore/books/9781617294396

https://itbook.store/books/9781617294396

14 CHAPTER 1 Introduction to isomorphic web application architecture

www.itbook
If you don’t deal with this warning, you may end up with a lower ranking and fewer
customers. Also, there’s no guarantee that any page content that relies on API calls
will be run by the crawler. Whole services have popped into existence to solve this
problem for single-page apps. Dev teams pour time into developing systems to crawl
and prerender their pages. They then redirect bots to these prerendered pages. These
systems are complex and brittle to maintain.

 Personally, I can’t wait for the day when crawlers and bots will be able to get to all
our content regardless of when the data is fetched (on the server or in the browser).
Until that day, server-rendering the initial content gives a big advantage over single-
page application rendering. This is especially true for above-the-fold content and any
other content that has SEO benefits.

DEFINITION Above-the-fold is a term that comes from the newspaper business. It
refers to all the content that shows on the front page when a newspaper is
folded in half and sitting on a newsstand. For web apps, this term is used to
refer to all the content that’s in the viewable area of a user’s screen when the
app loads. To see below-the-fold content, the user must scroll.

In addition to SEO crawlers, many social sites and apps that allow inline website pre-
views (for example, Facebook, Twitter, Slack, or WhatsApp), also use bots that don’t
run JavaScript. These sites assume that all content that’s available to build a social card
or inline preview will be available on the server-rendered page. Isomorphic apps are
ideal for handling the social bot use case.

 At the beginning of this section, I mentioned that both bots and users don’t need
to wait for the isomorphic application to bootstrap to see the dynamic content.
Another way to say that is that the perceived performance of isomorphic web apps is
fast. The next section describes this in detail.

1.3.2 Performance benefits

Users want to see the content of All Things Westies right away. Otherwise, they’ll get
impatient and leave before seeing all the products and information being offered.

Google PageSpeed Insights tool
Google’s PageSpeed Insights tool helps measure how your page is doing on a scale
of 0 to 100. You get a score for both speed-related issues (size of images, size of
JavaScript, magnification, round trips made, and so forth) and UI (size of click areas,
for example). Test it on your web app at https://developers.google.com/speed/
pagespeed/insights.

Google also has the Lighthouse tool (available as a Chrome extension or command-
line tool), which will run an in-depth analysis of pages on your site. It makes recom-
mendations on everything from performance, to using service workers to allow offline
use, to improved accessibility for screen readers. You can learn more about Light-
house at https://developers.google.com/web/tools/lighthouse/.
.store/books/9781617294396

https://developers.google.com/web/tools/lighthouse/
https://developers.google.com/speed/pagespeed/
https://developers.google.com/speed/pagespeed/
https://itbook.store/books/9781617294396

15Advantages of isomorphic app architecture

www.itbook.s
Loading an SPA can be a slow experience for a user (especially on mobile phones).
Even though the browser may connect quickly to your application, it takes time to run
the startup code and fetch the content, which leaves the user waiting. In the best-case
scenario, SPAs display loading indicators and messaging for the user. In the worst-case
scenario, there’s no visual feedback, and the user is left wondering whether anything
is happening.

 Figure 1.8 shows what All Things Westies would look like during the initial render-
ing if it were a single-page application. Instead of seeing all content immediately,
you’d see loading spinners in all of the content areas.

 A server-rendered page displays its content (all the HTML, images, CSS, and data
for your site) to the user as soon as the browser receives and renders the HTML. This
leads to content being seen by the user several seconds faster than in an SPA.

All Things Westies Products Cart Profile

Sale!

Twitter Widget

Latest Products

These content areas will show
loading spinners on first load in
a traditional SPA architecture.

The header is static and doesn’t
require any data to be fetched.
It will display immediately.

Figure 1.8 In a single-page app version of All Things Westies, spinners would be shown during the
first load instead of the real content.
tore/books/9781617294396

https://itbook.store/books/9781617294396

16 CHAPTER 1 Introduction to isomorphic web application architecture

www.itbook
Although the site still requires JavaScript to be loaded and executed before user inter-
actions can take place, this fast load allows the user to start visually processing your
content quickly. This is called perceived performance. The app content is presented to
the user quickly. The user isn’t aware that JavaScript is being run in the background.

 When this process is executed well, the user will never know that the JavaScript
loaded after the view rendered. For all practical purposes, your user has a great expe-
rience because they believe the app loaded fast. This greatly reduces the need for
loading spinners or other waiting states on the first load of the app. This leads to hap-
pier users. Figure 1.9 demonstrates the differences between SPA and isomorphic apps.

Figure 1.9 Comparison of when the user sees the content of a web app. An isomorphic app displays its
content much sooner than a single-page app.

Now I’ll walk you through the single-page app and isomorphic scenarios in detail. You
can see these flows in figure 1.9 as well.

 First, look at example 1. Imagine going to our example web app and being shown
a blank screen for six seconds. What would you do? How likely are you to get frus-
trated and give up on using that web app? If you were looking to buy a pair of
Westie socks, you’d be inclined to give up on All Things Westies and take your busi-
ness elsewhere.

 Now imagine that the web app still took six seconds to load (as in example 2), but
this time it showed you a basic structure (a loading spinner) to let you know that the
web app is doing something but you can’t interact with it yet, just as in figure 1.8 previ-
ously. Are you willing to wait for this site to load?

 Finally, let’s imagine that when you come to All Things Westies, you see the content
in under two seconds, as shown in example 3. This flow matches that of figure 1.1 at the
beginning of the chapter. This time, your brain starts processing the information as

User initializes
web app Blank screen Execute JS/

Fetch async data Show content Page load
complete

Example 1: Single-page app—no loading feedback

User initializes
web app Loading spinner Execute JS/

Fetch async data Show content Page load
complete

Example 2: Single-page app—loading feedback

User initializes
web app

Execute JS/
Fetch async dataShow content Page load

complete

Example 3: Isomorphic app
.store/books/9781617294396

https://itbook.store/books/9781617294396

17Advantages of isomorphic app architecture

www.itbook.s
soon as it’s displayed. You don’t feel like you had to wait. In the background, the app is
still loading and working to get everything set up, but you don’t have to wait for this to
finish before being able to see the content.

 Notice that the app is able to show content much earlier in the page-load flow.
Although the page-load time as measured by performance metrics will be the same in
all three approaches, the user perceives the performance of an isomorphic app to be
much faster.

1.3.3 No JavaScript? No problem!

Another user-facing benefit of isomorphic app architecture is that you can serve por-
tions of your site without requiring JavaScript. Users who can’t or don’t want to run
JavaScript can still benefit from using your site when it’s built isomorphically. Because
you serve a complete page to the browser, users can at least see your content despite
not being able to interact with the app.

 This allows you to use progressive enhancement to better provide for users across a
spectrum of browsers and devices. Although it may be unlikely to encounter a user
with no JavaScript running, there are other good reasons for loading a full page from
the server. For example, if you support older browsers or devices, isomorphic apps are
good tools for providing the best experience possible across a multitude of browser/
device/OS combinations.

 We’ve covered the user-facing benefit of isomorphic apps. Next we’ll look at the
developer benefits that come with this architecture.

1.3.4 Maintenance and developer benefits

When building an isomorphic app, most of the code can be run on both the server
and the browser. If you want to render a view, you need to write your code only once.
If you want to have helper functions for a common task in the app, you need to write
this logic only once, and it’ll run in both places.

 This is an advantage over apps that have server-side code written in one language
and browser code written in JavaScript. Developers can keep their focus without hav-
ing to switch between languages. Builds, environment management, and dependen-
cies are all simplified, which makes your overall workflow cleaner.

 This isn’t to say that building isomorphic apps is easy. Writing everything in one
language comes with its own set of problems.

1.3.5 Challenges and trade-offs

Choosing to build an app with isomorphic web architecture isn’t without trade-offs. For
one, it requires a new way of thinking, which takes time to adjust to. The good news is
that’s what you’ll learn in this book. Some of the challenges include the following:

 Handling the differences between Node.js and the browser
 Debugging and testing complexity
 Managing performance on the server
tore/books/9781617294396

https://itbook.store/books/9781617294396

18 CHAPTER 1 Introduction to isomorphic web application architecture

www.itbook
HANDLING THE DIFFERENCES BETWEEN THE SERVER AND THE BROWSER

Node.js has no concept of a window or document. The browser doesn’t know about
Node.js environment variables and has no idea what a request or response object is.
Both environments know about cookies, but they handle them in different ways. In
chapter 10, you’ll look at strategies for dealing with these environment tensions.

DEBUGGING AND TESTING COMPLEXITY

All your code needs to be tested twice: loaded directly off the server and as part of the
single-page flow. Debugging requires mastery of both browser and server debugging
tools and knowing whether a bug is happening on the server, on the browser, or in
both environments. Additionally, a thorough unit-testing strategy is needed, where
tests are written and run in the appropriate environments. Server-only code should be
tested in Node.js, but shared code should be tested in all the environments where it’ll
eventually be run.

MANAGING PERFORMANCE ON THE SERVER

Performance on the server also presents a challenge as the React-provided render-
ToString method is slow to execute on complex pages with many components. In
chapter 11, I’ll show you how to optimize your code as much as possible without
breaking React best practices. We’ll also discuss caching as a tool to minimize issues
with server performance.

 At this point, you understand the benefits and trade-offs that come with isomor-
phic app architecture. Next let’s take an in-depth look at how to execute an isomor-
phic app.

1.4 Building the view with React
React is one of the pieces that makes building an isomorphic web app possible. React is
a library, open sourced by Facebook, for creating user interfaces (the view layer in
your app). React makes it easy to express your views via HTML and JavaScript. It pro-
vides a simple API that’s easy to get up and running but that’s designed to be compos-
able in order to facilitate building user interfaces quickly and efficiently. Like many
other view libraries and implementations, React provides a template language (JSX)
and hooks into commonly used parts of the DOM and JavaScript.

 React also takes advantage of functional concepts by adhering to single-direction
data flows from the top-level component down to its children. What makes it appeal-
ing for isomorphic apps is how it uses a virtual DOM to manage changes and updates
to the application.

 React isn’t a framework like Angular or Ember. It only provides the code you use to
write your view components. It can fit easily into a Model-View-Controller (MVC) style
architecture as the view. But there’s a recommended way to build complex React apps,
which is covered throughout the book.

 The virtual DOM is a representation of the browser DOM written with JavaScript. At
its core, React is composed of React elements. Since React introduced the virtual DOM
to the web community, this idea has started to show up in many major libraries and
frameworks. Some people are even writing their own virtual DOM implementations.
.store/books/9781617294396

https://itbook.store/books/9781617294396

19Business logic and model: Redux

www.itbook.s
Like the browser DOM, the virtual DOM is a tree comprising a root node and its child
nodes. After the virtual DOM is created, React compares the virtual tree to the current
tree and calculates the updates it needs to make to the browser DOM. If nothing has
changed, no update is made. If changes have occurred, React updates only the parts
of the browser’s DOM that have changed. Figure 1.10 shows what happens at this
point. On the left, the virtual DOM has been updated to remove the right subtree with
the <div> tag whose children are an tag and an <a> tag. This results in these
same children being removed from the browser DOM.

 React uses JavaScript to represent DOM nodes. In JavaScript, this is written as follows:

let myDiv = React.createElement('div');

When a React render occurs, each component returns a series of React elements.
Together they form the virtual DOM, a JavaScript representation of the DOM tree.

 Because the virtual DOM is a JavaScript representation of the browser DOM and
isn’t dependent on browser-provided objects such as the window and document
(although certain code paths may depend on these items), it can be rendered on the
server. But rendering a DOM on the server wouldn’t work. Instead, React provides a way
to output the rendered DOM as a string (ReactDOM.renderToString). This string
can be used to build a complete HTML page that’s served from your server to the user.

1.5 Business logic and model: Redux
In real-world web apps, you need a way to manage the data flow. Redux provides an
application state implementation that works nicely with React. It’s important to note
that you don’t have to use Redux with React, or vice versa, but their concepts mesh
well because they both use functional programming ideas. Using Redux and React
together is also a community best practice.

div

lili aimg

ul div

li

Virtual DOM

1. React builds and maintains a version of the DOM.
 Each time a render happens, the virtual DOM gets
 updated. Then React diffs the virtual
 DOM and the browser DOM.

2. After React sees a change between
 the virtual DOM and the browser DOM,
 it makes updates to the browser DOM.

3. React makes changes only to parts of the DOM
 tree that changed, leaving the rest of the DOM
 untouched. This process is much faster than
 traditional DOM manipulation.

div

lili

ul

li

Browser DOM

Figure 1.10 Comparing the DOM trees: the virtual DOM changes are compared to the browser DOM.
Then React intelligently updates the browser DOM tree based on the calculated diff.
tore/books/9781617294396

https://itbook.store/books/9781617294396

20 CHAPTER 1 Introduction to isomorphic web application architecture

www.itbook
 Like React, Redux follows a single-direction flow of data. Redux holds the state of
your app in its store, providing a single source of truth for your application. To update
this store, actions (JavaScript objects that represent a discrete change of app state) are
dispatched from the views. These actions, in turn, trigger reducers. Reducers are pure
functions (a function with no side effects) that take in a change and return a new
store after responding to the change. Figure 1.11 shows this flow.

Figure 1.11 The view (React) uses Redux to update the app state when the user takes an action. Redux
then lets the view know when it should update based on the new app state.

The key thing to remember about Redux is that only reducers can update the store.
All other components can only read from the store. Additionally, the store is immuta-
ble. This is enforced via the reducers. I cover this again in chapter 2 and do a full
Redux explanation in chapter 6.

 The ability to transfer state between server and browser is important in an isomor-
phic app. Redux’s store provides top-level state. By relying on a single root object to
hold your application state, you can easily serialize your state on the server and send it
down to the browser to be deserialized. Chapter 7 covers this topic in more detail. The
final piece of the app is the build tool. The next section gives an overview of webpack.

1.6 Building the app: webpack
Webpack is a powerful build tool that makes packaging code into a single bundle easy.
It has a plugin system in the form of loaders, allowing simple access to tools such as
Babel for ES6 compiling or Less/Sass/PostCSS compiling. It also lets you package
Node.js module code (npm packages) into the bundle that will be run in the browser.

DEFINITION There are many names for current and future JavaScript versions
(ES6, ES2015, ES2016, ES7, ES Next). To keep things consistent, I refer to
modern JavaScript that’s not yet 100% adopted in browsers as ES6.

The user
clicks a button

The view’s event
handler dispatches

an action.

Actions contain
a type that always
maps to a reducer.

The view is notified of the store update.

The store gets updated
by the reducer.

User

Action dispatched:
app state change

required

Reducer triggered:
the action type

determines what
happens.

Update store

Browser
.store/books/9781617294396

https://itbook.store/books/9781617294396

21Summary

www.itbook.s
This is key for our isomorphic app. By using webpack, you can bundle all your depen-
dencies together and take advantage of the ecosystem of libraries available via npm,
the Node package manager. This allows you to share nearly all the code in your app
with both environments—the browser and the server.

NOTE You won’t use webpack for our Node.js code. That’s unnecessary, as
you can write most ES6 code on Node.js, and Node.js can already take advan-
tage of environment variables and npm packages.

Webpack also lets you use environment variables inside your bundled code. This is
important for our isomorphic app. Although you want to share as much code between
environments as possible, some code from the browser can’t run on the server, and vice
versa. On a Node.js server, you can take advantage of an environment variable like this:

if (NODE_ENV.IS_BROWSER) { // execute code }

But this code won’t run in the browser because it has no concept of Node.js
environment variables. You can use webpack to inject a NODE_ENV object into your
webpacked code, so this code can run in both environments. Chapter 5 covers this
concept in depth.

Summary
In this chapter, you learned that isomorphic web apps are the result of combining
server-rendered HTML pages with single-page application architecture. Doing so has
several advantages but does require learning a new way of thinking about web app
architecture. The next chapter presents a high-level overview of an isomorphic
application.

 Isomorphic web apps blend server-side architecture and single-page app archi-
tecture to provide a better overall experience for users. This leads to improved
perceived performance, simplified SEO, and developer benefits.

 Being able to run JavaScript on the server (Node.js) and in the browser allows
you to write code once and deploy it to both environments. React’s virtual DOM
lets you render HTML on the server.

 Redux helps you manage application state and easily serialize this state to be
sent from the server to the browser.

 By building your app with webpack, you can use Node.js code in the browser
and flag code to run only in the browser.
tore/books/9781617294396

https://itbook.store/books/9781617294396

Elyse Kolker Gordon

B
uild secure web apps that perform beautifully with high,
low, or no bandwidth. Isomorphic web apps employ a
pattern that exploits the full stack, storing data locally

and minimizing server hits. They render fl awlessly, maximize
SEO, and offer opportunities to share code and libraries
between client and server.

Isomorphic Web Applications teaches you to build production-
quality web apps using isomorphic architecture. You’ll learn
to create and render views for both server and browser,
optimize local storage, streamline server interactions, and
handle data serialization. Designed for working developers,
this book offers examples in relevant frameworks like React,
Redux, Angular, Ember, and webpack. You’ll also explore
unique debugging and testing techniques and master
specifi c SEO skills.

What’s Inside
● Controlling browser and server user sessions
● Combining server-rendered and SPA architectures
● Building best-practice React applications
● Debugging and testing

To benefi t from this book, readers need to know JavaScript,
HTML5, and a framework of their choice, including React
and Angular.

Elyse Kolker Gordon runs the growth engineering team at
Strava. Previously, she was director of web engineering at Vevo,
where she regularly solved challenges with isomorphic apps.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/isomorphic-web-applications

$39.99 / Can $56.99 [INCLUDING eBOOK]

Isomorphic Web Applications

JAVASCRIPT/WEB DEVELOPMENT

M A N N I N G

“A practical guide to
performant and modern

 JavaScript applications.”
—Bojan Djurkovic, Cvent

“Clear and powerful.
If you need just one
 resource, this is it.”
—Peter Perlepes, Growth

“Thorough and methodical
coverage for novice users, with
handy insights and many ‘aha’
moments for advanced users.

Highly recommended.”
—Devang Paliwal, Synapse

“An essential guide for
anyone developing modern
JavaScript applications.”—Mike Jensen, UrbanStems

See first page

www.itbook.store/books/9781617294396

https://itbook.store/books/9781617294396

	Gordon-front-SC
	SCBrief-1
	SC-Ch-01
	Gordon-back

