
M A N N I N G

Elyse Kolker Gordon

SAMPLE CHAPTER

Universal development with React

www.itbook.store/books/9781617294396

https://itbook.store/books/9781617294396

Isomorphic Web Applications
Universal development with React

by Elyse Kolker Gordon

Sample Chapter 6

Copyright 2018 Manning Publications

www.itbook.store/books/9781617294396

https://itbook.store/books/9781617294396

brief contents
PART 1 FIRST STEPS .. 1

1 ■ Introduction to isomorphic web application architecture 3
2 ■ A sample isomorphic app 22

PART 2 ISOMORPHIC APP BASICS .. 51
3 ■ React overview 53
4 ■ Applying React 78
5 ■ Tools: webpack and Babel 96
6 ■ Redux 113

PART 3 ISOMORPHIC ARCHITECTURE 133
7 ■ Building the server 135
8 ■ Isomorphic view rendering 161
9 ■ Testing and debugging 184

10 ■ Handling server/browser differences 203
11 ■ Optimizing for production 222

PART 4 APPLYING ISOMORPHIC ARCHITECTURE WITH

 OTHER TOOLS ... 239
12 ■ Other frameworks: implementing isomorphic without React 241
13 ■ Where to go from here 269

www.itbook.store/books/9781617294396

https://itbook.store/books/9781617294396

www.itbook.store
Redux
Redux is a library that provides an architecture for writing your business logic. With
React apps, you can handle much of your application state within your root compo-
nents. But as your application grows, you end up with a complex set of callbacks
that need to be passed down to all the children in order to manage application
state updates. Redux provides an alternative for storing your application state by
doing the following:

 Dictating a clear line of communication between your view and your business
logic

This chapter covers
 Managing your application state with Redux

 Implementing Redux as an architecture pattern

 Managing your application state with actions

 Enforcing immutability with reducers

 Applying middleware for debugging and
asynchronous calls

 Using Redux with React
113

/books/9781617294396

https://itbook.store/books/9781617294396

114 CHAPTER 6 Redux

www.itbook
 Allowing your view to subscribe to the application state so it can update each
time the state updates

 Enforcing an immutable application state

DEFINITION Immutable objects are read-only. To update an immutable
object, you need to clone it. When you change an object in JavaScript, it
affects all references to that object. This means mutable changes can have
unintended side effects. By enforcing immutability in your store, you prevent
this from happening in your app.

6.1 Introduction to Redux
Redux dictates a single-directional flow of writing application state updates into a sin-
gle root store. The store can be a simple or a complex JavaScript object depending on
your app’s requirements. Redux handles wiring updates into the store. It also handles
any subscribers to the store and notifies them of updates to the store object.

DEFINITION The Redux store is a singleton (only one instance per app) object
that holds all your application state. The store can be passed into your view in
order to display and update your app.

Redux can be hooked up to any view, but it works especially well with React. React’s
top-down flow of props and state through nested components work well with Redux’s
single-direction state update flow.

NOTE React state isn’t the same as Redux application state! React state is
localized to each component in your app. It can be updated and affected
within the React lifecycle. It should be used infrequently but is often needed
in components that handle user input and sometimes in container compo-
nents. Chapter 3 explains React state in more detail.

6.1.1 Getting started with notifications example app

The code for this chapter can be found at https://github.com/isomorphic-dev-js/
chapter6-redux. All the code is provided on the master branch, or you can follow
along and build it yourself. To run the app:

$ npm install
$ npm start

Then the app will be running at http://localhost:3000.
 You’ll be building a notifications app that displays messages in three states (Error,

Warning, or Success). The idea is that the app receives updates from various paging
apps, continuous integration build tools, and other systems (think GitHub, TravisCI,
CircleCI, VictorOps, PagerDuty, and so forth). It then displays the notifications in the
appropriate shelf. The app also has a settings panel that can be updated and a debug
panel that lets you dispatch notifications for testing. Figure 6.1 shows the running
application.
.store/books/9781617294396

https://github.com/isomorphic-dev-js/chapter6-redux
https://github.com/isomorphic-dev-js/chapter6-redux
https://itbook.store/books/9781617294396

115Introduction to Redux

www.itbook.s

Figure 6.1 Notifications update app—send and receive notifications

The code has some React components and webpack already set up. I’m not going to
spend much time on these topics so you can stay focused on learning Redux. If you
want to review React, you can review chapters 3 and 4. For webpack, review chapter 5.

 Also note that there’s an in-memory object on the Node server that backs up the
simple CRUD (create, read, update, delete) service for this project. If you were to
build this in the real world, you’d want to explore using a WebSocket connection and
connect a database. The “Send a notification” section of the interface allows you to
emulate the app receiving alerts from services without having to hook it up to any real
inputs.

6.1.2 Redux overview

In the first part of this chapter, we’ll walk through all the pieces of Redux that are
required to get updates flowing in your application. Figure 6.2 reviews Redux’s single-
direction update flow in the context of the notifications app and introduces you to the
three main parts of Redux:

 Actions—Implement business logic, things like updating settings or adding new
notifications to the list

 Reducers—Write state changes triggered by actions to the store
 Store—Current application state, holds the notification array and the values of

any settings for the app

Warning alert

Success alert

To emulate a real system,
the UI allows you to send
a new alert with this form.
This calls an action in Redux
that sends a post update to
the mock server and then
writes the response to the
store.

Error alert

The settings let you update
how often the system polls
for updates. Updating this
value is a synchronous
update to the Redux
store.
tore/books/9781617294396

https://itbook.store/books/9781617294396

116 CHAPTER 6 Redux

www.itbook

Figure 6.2 Redux single-direction flow from view

CONNECTING REACT AND REDUX

In the second part of this chapter, you’ll learn how to use the React Redux library to
connect your React view to your Redux application state. This includes using a top-level
component provided by the library called Provider that takes in the store and makes it
available to another component called connect. The connect component is a higher-
order component that wraps some components in your application. These wrapped
components are then able to receive store updates in the form of properties. The con-
nect component has React state, so your other components don’t need to have React
state! Figure 6.3 illustrates how these pieces fit into your application structure.

User

Action: updateRefreshDelay
Executes business logic including fetching
data asynchronously: for updating refresh
delay, the action creator takes in a value

in seconds and passes it to the
reducer via the action object.

View
Dispatches actions when user

interactions are detected.

Browser

After the store updates are done, Redux lets the
React view know that there’s a new state of
the application. The view then re-renders

with the updated values.

Reducer
Writes state changes to the store: in the

case of updateRefreshDelay, the reducer
returns a new store with the updated value

passed in through the action object.

Store
Holds the application state: at any given
time, this represents the latest updated
values. Once the reducer sets the new
refresh value, it will be the new state

of the application until another
update is made.

When the user clicks to
change a setting, such as the

refresh delay, an action is
triggered from the React

component.
.store/books/9781617294396

https://itbook.store/books/9781617294396

117Redux as an architecture pattern

www.itbook.s

Figure 6.3 Using React Redux’s Provider and connect components to hook up the React view with the
application state

6.2 Redux as an architecture pattern
Often, when building web applications, you use a Model-View-Controller (MVC) pat-
tern. Many common frameworks use this pattern. In this case, there’s a view, the
HTML of the application, a model that’s some sort of representation of application
state, and a controller that’s the interface that the user interacts with. The business
logic is also handled by the controller.

 Frameworks such as Angular 1 and Ember each have their own implementations of
MVC but historically have used two-way binding to handle the View-Controller part of

When the user clicks to
change a setting, such as the

refresh delay, an action is
triggered from the React

component.

User

Action: updateRefreshDelay
Executes business logic including fetching
data asynchronously: for updating refresh
delay, the action creator takes in a value

in seconds and passes it to the
reducer via the action object.

View
Dispatches actions when user

interactions are detected.

connect
Subscribes to the store

directly: propagates store
changes to child component.

Browser

After the store updates are done, Redux lets the
React view know that there’s a new state of
the application. The view then re-renders

with the updated values.

Reducer
Writes state changes to the store: in the

case of updateRefreshDelay, the reducer
returns a new store with the updated value

passed in through the action object.

Provider
A top-level container

component: provider takes
in the store and makes it
available for the connect

component. This generally
happens only once.

Store
Holds the application state: at any given
time, this represents the latest updated
values. Once the reducer sets the new
refresh value, it will be the new state

of the application until another
update is made.

The Store

Action: updateRefreshDelay
Executes business logic including fetching
data asynchronously: for updating refresh
delay, the action creator takes in a value

in seconds and passes it to the
reducer via the action object.

Reducer
Writes state changes to the store: in the

case of updateRefreshDelay, the reducer
returns a new store with the updated value

passed in through the action object.

Store
Holds the application state: at any given
time, this represents the latest updated
values. Once the reducer sets the new
refresh value, it will be the new state

of the application until another
update is made.

The Store
tore/books/9781617294396

https://itbook.store/books/9781617294396

118 CHAPTER 6 Redux

www.itbook
the framework. The flow of Angular 1 differs from the traditional MVC in that the
view is really a View-Controller (always the same as a container component, as we dis-
cussed in chapter 3). But the framework still tries to follow an MVC pattern. This leads
to confusing flows and hard-to-debug code.

 Let’s walk through what this would look like if we applied it to the app you’re
going to build in this chapter. Figure 6.4 shows how the application flow works in this
case.

Redux’s implementation has some overlap with MVC. I like to think of it as an evolu-
tion of MVC that works better for UI-based apps (as opposed to services/CRUD apps).
There are a few major differences:

 Redux insists on a single-directional data flow resulting in easier-to-follow code
and no side effects.

 There are no controllers. Rather, the views are also the controllers—called view-
controllers. In this case, the View-Controller is React. This fits into the browser
model well, where the view is rendered by the HTML and where user events are
handled by the DOM.

User
dismisses
an alert

Controller
handles input

View is
updated

Service
interaction

Service calls (async updates)

In Angular 1, the controller
would update the model,
which would trigger a
view update.

In Angular 1, the model update
might have additional side effects,
resulting in unpredictable
view updates.

The view can be updated from
the controller or the model,
making updates difficult to
reason about.

Model is
updated

Figure 6.4 Model-View-Controller (MVC) flow in Angular 1
.store/books/9781617294396

https://itbook.store/books/9781617294396

119Managing application state

www.itbook.s
 In Redux, there’s always only one single root store, which represents the appli-
cation state. That simplifies much of the logic, because views need to subscribe
only to the root store and then pay attention to the specific subtrees they’re
interested in.

Redux flow relies on the store to dispatch actions. The dispatch function is a hook
into the root store that allows you to trigger actions on the store. Sometimes you’ll be
triggering synchronous updates to the store and sometimes you’ll be triggering an
asynchronous call that will eventually update the store. Additionally, views are able to
subscribe to the store and be notified when an update is complete. Figure 6.5 illus-
trates this flow.

Redux implementation (the part of the code you’ll write) is made up of the store, the
actions, and the reducers. The store holds your application state. The actions take
care of your business logic. The reducers are called to update the store.

DEFINITION The store in Redux is the model of your application. It holds the
current state of your application. I’ll use store and state interchangeably to talk
about the model in Redux.

To recap, Redux provides a concrete pattern for managing your application’s state
that’s easy to use as a developer. It also makes reasoning about and debugging your
application straightforward.

6.3 Managing application state
The primary job of Redux is to allow your state (or model) and the view to communi-
cate. This is achieved by allowing the view to subscribe to state updates and trigger
updates on the state. Figure 6.6 shows this flow in the context of the sample app.

User
dismisses
an alert

Dispatch the
remove-alert action

The action is an object with at least
one property called type. In this case,
you’d also pass the ID of the object
being removed.

Update store
(remove alert)

Notify view of
updated alert list

{
 type: "REMOVE_ALERT",
 id: 1234,

}

Figure 6.5 Redux flow when initiated by a user action
tore/books/9781617294396

https://itbook.store/books/9781617294396

120 CHAPTER 6 Redux

www.itbook

Figure 6.6 The flow of information between the view and Redux

Redux state can be a plain JavaScript object. The store (which contains the state
object) has several methods that can be called on it. Here are the ones I’ll cover:

 dispatch(action)—Triggers an update on the store (step 1 in figure 6.6).
 getState()—Returns the current store object (listing 6.1 shows what this

looks like)
 subscribe()—Listens to changes on the store (step 2 in figure 6.6)

After actions are dispatched to the store, the state will match the code in the following
listing.

{
 notifications: {
 all: [
 {
 serviceId: 1,
 messageType: "success",
 message: "Code was pushed!"
 },
 {
 serviceId: 3,
 messageType: "error",
 message: "Service unavailable in region 1"
 },
 {
 serviceId: 2,
 messageType: "warning",

Listing 6.1 An example store object (application state)

Store (app state)

React component
(presentation)

React component
(presentation)

User input, such
as dismissing a

notification or creating
a new notification, triggers

an action that results
in a state update.

State updates
flow from the store

to the view.

View (React
container component)Action Action

Inside root store, you can set up
substores—this app has stores
for notifications and settings.

The all array holds active
notifications for your app.
.store/books/9781617294396

https://itbook.store/books/9781617294396

121Managing application state

www.itbook.s
 message: "Warning: build is taking a long time"
 }
]
 }
 settings: {
 refresh: 30
 }
}

Redux provides a way to initialize the state (store). It manages the flow of updates to
the store and notifies subscribers (the view). To configure the store in your app, you
need to create your reducers and then initialize the store with them. The following
listing shows how this works; you can find this code in src/init-redux.es6 in the repo.

import { createStore, combineReducers } from 'redux';
import notifications from './notifications-reducer';
import settings from './settings-reducer';

export default function (){
 const reducer = combineReducers({
 notifications,
 settings
 });
 return createStore(reducer)
}

If you aren’t using Redux with React (later in the chapter you’ll learn how to use
redux-react to wire the two libraries together), you need to subscribe to store updates
manually. The subscribe function works like a standard JavaScript event handler.
You pass in a function that gets called every time a store update occurs. But the store
doesn’t pass its state to the update handler function; instead, you call getState() to
access the current state. The following listing shows an example of this code, which
you can find in main.jsx.

const store = initRedux();

store.subscribe(() => {
 console.log("Store updated", store.getState());
 // do something here
});

Next you’ll write a reducer and learn about maintaining immutability in Redux.

Listing 6.2 Initialize Redux—src/init-redux.es6

Listing 6.3 Subscribe to store, without React Redux—src/main.jsx

Inside root store, you can set up
substores—this app has stores
for notifications and settings.

The refresh property lets
the user set the rate of
long polling for updates.

Import helper
methods from Redux.

Import app reducers.

Export function that can be called
from other modules (makes it reusable

so it can be called from browser and
server in isomorphic app).

Call combineReducers helper
method from Redux; builds map of
reducers from multiple reducers.

Call createStore, pass in combined
reducers—here you’ll have

store.notifications and store.settings.

Initialize store (see listing 6.2).

Call the subscribe()
method on the store
and pass in a function
to handle updates.

Log the current state of the
store by calling getState().
tore/books/9781617294396

https://itbook.store/books/9781617294396

122 CHAPTER 6 Redux

www.itbook
6.3.1 Reducers: updating the state

Reducers have a special name, but when broken down, they’re pure functions. Each
reducer takes in the store and an action and returns a new, modified store. Figure 6.7
shows the functional nature of a reducer function.

Figure 6.7 The input and output flow of a pure reducer function

The reducers in the notifications application are the wiring between the actions and
the store. They’re the only part of your code that should ever write updates to the
store. Any other code that writes to the store is an antipattern. The following listing
shows the reducer function for settings.

import {
 UPDATE_REFRESH_DELAY
} from ‘./settings-action-creators’;

export default function settings(state = {}, action) {
 switch (action.type) {
 case UPDATE_REFRESH_DELAY:
 return {
 ...state,
 refresh: action.time
 })
 default:
 return state
 }
}

There are two important points to understand about reducers:

 Reducers must always be pure functions—They take in values, use those values to
create a new store, and then return a store.

 Reducers must enforce the immutable nature of the store—The store received by the
function must be cloned if it needs to be updated.

Listing 6.4 Settings reducers—src/settings-state

Store (input)

fn(store, action)

Action (input)

New store

Each reducer takes two inputs:
a store object and an action object.

The reducer function returns a copy of
the store, updated based on the action.

Include the string
constant for the action. Function definition—each reducer

takes two parameters, the store
state and action. If the state doesn’t

exist, default it to empty object.

Use switch statement to declare your
reducer logic—always determine which case
to run based on value of action.type.

When the refresh value is updated, use
the spread operator to copy and create
new store to maintain immutability.

If no case matches, still return the store
because this is a pure function.
.store/books/9781617294396

https://itbook.store/books/9781617294396

123Managing application state

www.itbook.s
Both concepts prevent unintended side effects. The next sections explain pure func-
tions and immutability.

PURE FUNCTIONS

One of the most important parts of writing reducers is making sure the function stays
pure (no side effects). Pure functions take in arguments that are used to calculate the
return value—they don’t use any state or do work on state. Code without side effects
has many benefits, including being more testable and easier to understand and pre-
venting hard-to-debug issues. Let’s take a look at an example of a function with side
effects and then compare it to a pure function. The following listing shows the differ-
ence between a pure and not pure function.

// side effect
let result;
function add(a, b) {
 result = a + b;
}

add(1, 2);
console.log(result); // logs 3

// functional – no side effects
function add(a, b) {
 return a + b;
}

console.log(add(1,2); // logs 3

ENFORCING THE IMMUTABLE STORE

Another way to keep your code easy to understand and debug is to make sure the app
state (or the store) is always immutable. The risk of not enforcing immutability is that
you end up with issues that are difficult to track down and caused by changes in other
parts of your code. By creating a new object each time, you ensure that other code
won’t accidentally change the whole app state.

 You need to pay attention to a few things in order to enforce immutability in your
store. Let’s start with how to make sure your objects stay immutable, as shown in the
following listing.

// mutation: bad
function addNotification(item, key, state) {
 return state[key] = item;
}

//immutable: good
function addNotification(item, key, state) {

Listing 6.5 Pure function example

Listing 6.6 Mutating vs. immutable object

Function doesn’t return anything,
but updates the value of result.

When add is called in this case, you can log the
result to see what happened (global state).

In this function, result
of add is returned.

This time log result of calling
add function—there’s no state.

Function
declaration that
takes three
params: item,
key, and state

In the bad example, item is
inserted directly into the state
object, then the state is returned.
tore/books/9781617294396

https://itbook.store/books/9781617294396

124 CHAPTER 6 Redux

www.itbook
 return {
 ...state,
 key: item
 }
}

Here, you can see that the immutable way of returning the store object involves the
JavaScript function spread operator. You create a new object by spreading the old
object and then adding any new or updated keys. The new keys will overwrite the old.
But if you have a deeply nested object, you need to build the full object here or use a
helper library to manage deeply nested keys.

 Similarly, arrays need to be kept immutable. With arrays, pushing directly into the
array is a mutation, so it’s necessary to create a new array instead. The following listing
demonstrates the wrong and the right way to do this.

// bad: mutating the original array
function addItem(item) {
 return itemsArray.push(item)
}

// good: creating a new array
function addItem(item) {
 return [...itemsArray, item]
}

6.3.2 Actions: triggering state updates

Actions are the only way to trigger an update to your application state in a Redux
application. This is important to ensure that your app enforces the single-direction
flow. (It’s technically possible to update the store directly, but you should never do
that). Only reducers triggered by actions should update the state.

 Because actions are synchronous by default, any update that needs to be made can
happen quickly. In fact, the dispatcher itself is completely synchronous. By default,
Redux supports only synchronous actions. (Later in this chapter, you’ll learn to use
middleware with Redux in order to allow asynchronous actions.)

TIP You can’t dispatch an action from a reducer. That breaks the single-
directional flow of Redux and could lead to unwanted side effects. Don’t
worry, Redux won’t let you do it, but it’s important to avoid thinking about
updates in that way.

The simplest action is an object with one property called type:

{ type: 'UPDATE' }

Actions will often be objects that contain data to be updated in the store in addition to
the type property. Because most actions in your application will be reused by more

Listing 6.7 Immutable arrays

In the good example, the object is cloned using spread operator,
which takes state that was passed in and creates the object
with its keys. Then the new copied object is returned.

Pushes item into array, returns
original array—this is a mutation.

Shows immutable way: return brand-new array
with items from original array and new item; uses
spread operator to push items into an array.
.store/books/9781617294396

https://itbook.store/books/9781617294396

125Applying middleware to Redux

www.itbook.s
than one view, it’s recommended to create reusable functions called action creators that
return the action you want to dispatch.

 Action creator files are also a good place to define your string constants for
actions. This reduces errors by ensuring that the action creator dispatches the same
action type value the reducer is looking for. This can also lead to gains in developer
speed in some IDEs if you have static type checking or similar features enabled.

 You can see these two concepts in the next listing. This code can be found in the
repo as well. The listing shows an action for updating the time interval for the long
polling functionality of the app.

export const UPDATE_REFRESH_DELAY

➥ = ‘UPDATE_REFRESH_DELAY’;

export function updateRefreshDelay(time) {
 return {
 type: UPDATE_REFRESH_DELAY,
 time: time
 }
}

You can use the const in the first line from the reducer to ensure that the action cre-
ator and the reducer point at the same value. To dispatch this update to the store, all
you have to do is call dispatch on store and pass in the action. Because you’re
using an action creator, you call the action creator and pass the result into dispatch:

store.dispatch(updateRefreshDelay(5));

The reducer will then be triggered, and the store will be updated.
 Next, you’ll learn how to set up Redux with middleware so you can include addi-

tional functionality such as making asynchronous calls.

6.4 Applying middleware to Redux
Redux includes a helper method that lets you extend the default functionality of the
dispatcher. For every middleware you apply to the dispatcher, it adds a function to the
chain of calls that will happen before the final default dispatch behavior. Here’s a sim-
plified example of what that looks like:

middleware1(dispatchedAction).middleware2(dispatchedAction).middleware3(dispa
tchedAction).dispatch(dispatchedAction)

This allows you to add functionality for debugging and making asynchronous calls.
First, let’s look at how you add debugging.

Listing 6.8 Synchronous actions—src/settings-action-creators.es6

Setting type value to a
constant reduces errors

Action creator function
declaration takes one
parameter called time.

Returned action has two
properties—type property
is required and its value is
always a string.

The time property is added to the
action so that the value can be used by
the view when it updates—each action
will have different data properties.
tore/books/9781617294396

https://itbook.store/books/9781617294396

126 CHAPTER 6 Redux

www.itbook
6.4.1 Middleware basics: debugging

It’s possible to add improved debugging with middleware. One example of this is the
Redux Logger library. This library helps you see the state changes clearly in the con-
sole. Figure 6.8 shows sample action logs.

Figure 6.8 Redux Logger console output

You add middleware when you instantiate your store. The following listing shows how
to do that. The code can also be found in the repo.

export default function () {
 const reducer = combineReducers({…});
 let middleware = [logger];
 return compose(
 applyMiddleware(...middleware)
)(createStore)(reducer);
}

When you run the app, you’ll see the logging in the console; this is helpful for
debugging.

6.4.2 Handling asynchronous actions

Earlier in the chapter, you dispatched actions by writing functions that return an
action object. As stated previously, we call those functions action creators. Asynchro-
nous action creators apply the same principles, but instead of immediately returning the
object, they wait for something to happen (for example, a network call to complete)
and then return the action object.

 To do that, you need access to the dispatch object inside your action creator
function. This requires another middleware library, called Redux Thunk. To use the
middleware, you need to add it to the middleware array in init-redux.es6 (refer to list-
ing 6.9). It’s already in the code in the repo.

 Then to take advantage of this middleware, you write an action creator that looks
like this:

export const UPDATE_ACTION = 'UPDATE_ACTION';

export function actionCreator() {

Listing 6.9 Setting up middleware—src/init-redux.es6

Create middleware array so you can
pass an arbitrary number of middleware
and easily control the order.

Call compose and pass in
the store so the middleware
will be applied to store.Call applyMiddleware on

middleware array to set up
middleware properly.
.store/books/9781617294396

https://itbook.store/books/9781617294396

127Using Redux with React components

t

www.itbook.s
 return dispatch => {
 return dispatch({
 type: UPDATE_ACTION
 })
 }
}

By adding the Thunk middleware, you can now access the dispatch function on the
store inside your action creator (all the middleware does is provide the dispatch
parameter to your returned function). Note that you also need to export your action
creator and the corresponding const for the action. This is identical to earlier in the
chapter, when you created a synchronous action creator.

 In the notifications app, you need three asynchronous actions: adding a notifica-
tion, fetching the notifications, and deleting a notification. The following listing
shows the Fetch Notifications action creator. The code can be found in the repo along
with other action creators.

import request from 'isomorphic-fetch';

export const FETCH_NOTIFICATIONS

➥ = 'FETCH_NOTIFICATIONS';

export function fetchNotifications() {
 return dispatch => {
 let headers = new Headers({
 "Content-Type": "application/json",
 });
 return fetch(
 'http://localhost:3000/notifications',
 { headers: headers }
)
 .then((response)=>{
 return response.json().then(data => {
 return dispatch({
 type: FETCH_NOTIFICATIONS,
 notifications: data
 })
 })
 })
 }
}

Now that you’ve seen how the Redux reducers and actions work, let’s go over how to
hook up React and Redux.

6.5 Using Redux with React components
In a React app, the actions are typically dispatched from components. To have access
to the store in a component, you need to wire up your React components to Redux. I
recommend using the react-redux library, which is provided by the author of Redux as

Listing 6.10 Asynchronous action creators—src/action-creators.es6

Use isomorphic fetch so both server
and browser can handle the fetch call.

Const for
action type

The action creator returns a function
instead of an object. Thunk middleware
calls this function and injects the
dispatch method from store.

Create
headers
o talk to
the API.

Call fetch with
URL and options.

Promise
handler Get JSON out of the response—

because this is also a promise,
add second promise handler.

After you have data,
dispatch the action.
tore/books/9781617294396

https://itbook.store/books/9781617294396

128 CHAPTER 6 Redux

www.itbook
the official bindings for React. It implements all the code necessary to subscribe to
and receive updates from the Redux store.

 There are two distinct parts to this. One is a top-level root component called Pro-
vider. The other is a higher-order component (HOC) called connect.

6.5.1 Wrapping your app with provider

First, you need to pass the store into your app. You want to pass it down as a React
prop. Remember, React components have a property called props. The props object
is created by passing down values from the parent React component to its children.
This object is immutable and can be changed only from the parent component.

 Because you also want to be able to subscribe to the store, you should use the Pro-
vider component that comes with React Redux. This React component acts as the root
of your application and makes the store available to the connect HOC. The following
listing shows how to do this.

import React from 'react';
import ReactDOM from 'react-dom';
import App from './components/app.jsx';
import { Provider } from 'react-redux';
import initRedux from './init-redux.es6';
require('./style.css');

const initialState = window.__INITIAL_STATE;
const store = initRedux(initialState);

store.subscribe(() => {
 console.log("Store updated", store.getState());
 // if not using React, do something here
});

ReactDOM.render(
 <Provider store={store}><App /></Provider>,
 document.getElementById('react-content')
);

Now you have access to the store in your components. But you need to do a couple
more things to completely connect your app to Redux.

6.5.2 Subscribing to the store from React

The second part of getting store updates is wrapping your container components in
the connect HOC. This component handles subscribing to the store for you. It holds
all the React state that’s necessary to pass down properties to its child component.

 The connect HOC also provides helper methods that make it easier to map the
store to properties and easier to call actions from the view. Wrapping a component
with connect and then exporting it for use in your app looks like this:

export default connect(mapStateToProps, mapDispatchToProps)(Component);

Listing 6.11 Connecting Redux to React —src/main.jsx

The component takes in
the store and properly
passes it to its children.

Render the App component
inside Provider so it’ll have
access to store and pass in store
to Provider component.
.store/books/9781617294396

https://itbook.store/books/9781617294396

129Using Redux with React components

www.itbook.s
The functions mapStateToProps and mapDispatchToProps are the two helper
callbacks that connect runs. The first one, mapStateToProps, is run every time an
update occurs to the store. Inside of it, you’ll define what items from the store should
be mapped to React props. The following listing shows this in action.

class App extends React.Component {

 componentDidMount() {}

 getSystemNotifications(id) {
 let items = [];
 if (this.props.all) {
 this.props.all.forEach((item, index)=>{
 if (item.serviceId == id) {
 let classes = classnames("ui", "message", item.messageType);
 items.push(
 <div className={classes} key={index}>
 <i
 className="close icon"
 onClick={
 this.dismiss.bind(this, index)
 }>
 </i>
 <p>
 {item.message}
 </p>
 </div>
)
 }
 })
 }
 return items;
 }

 render() {}
}

function mapStateToProps(state) {
 let { all } = state.notifications;
 let { refresh } = state.settings;
 return {
 all,
 refresh
 }
}

function mapDispatchToProps(dispatch) {}

export default connect(
 mapStateToProps,
 mapDispatchToProps
)(App)

Listing 6.12 Connect React to Redux—src/components/app.jsx

Component accesses
notifications directly
on props.

Using notifications array,
you build an array of

notification items.

The function tells connect to pull
specific keys out of the store and
put them directly on props.

Pull out relevant items (notifications and refresh);
refresh is required by the child component.

Return just the keys the
component needs instead
of the whole store.

Pass mapStateToProps into the
connect function; it will be
called during render cycle.
tore/books/9781617294396

https://itbook.store/books/9781617294396

130 CHAPTER 6 Redux

www.itbook
With mapDispatchToProps, you’re making actions available to be dispatched
directly from the component's properties. Normally, you’d need to fully write out
dispatch(actionCreator()) every time you wanted to initiate an action. This
helper method lets you use JavaScript’s bind to automatically dispatch actions when
they’re called from the view. The following listing shows how this works. Note that
React Redux provides another helper method to automate the bind code.

import React from 'react';
import { connect } from 'react-redux';
import { bindActionCreators } from 'redux';
import * as actionCreators from '../action-creators';
import * as settingsActionCreators

➥ from '../settings-action-creators';

import CreateNotification from './create-notification';
import Settings from './settings';
import classnames from 'classnames';

let intervalId;

class App extends React.Component {
 //...component implementation code

 componentDidMount() {
 intervalId = setInterval(() => {
 this.props.notificationActions.
 ➥ fetchNotifications();
 }, this.props.refresh * 1000);
 }
}

function mapDispatchToProps(dispatch) {
 return {
 notificationActions:
 ➥ bindActionCreators(actionCreators, dispatch),
 settingsActions:

 ➥ bindActionCreators(settingsActionCreators, dispatch)
 }
}

export default connect(null, mapDispatchToProps)(App)

After you’ve wired up your container component (App) to connect it to Redux, all you
have to do is pass the properties into the children. Then the child components can see
any state you mapped to props and call any actions you’ve bound to dispatch.

Listing 6.13 Connect React to Redux—src/components/app.jsx

Connect is the higher-order function
provided by React Redux. It subscribes to
the store and passes the updated store down
as props into the connected component.

bindActionCreators is a helper
method that takes in an action or an

object with actions and creates a
function that, when called,

dispatches the requested action.

Import action creators
so you can call actions
in your component.

Call the fetchNotifications action
on a regular interval; actions are
passed down as props by connect.

Function passed into connect so
connect component can pass down
bound actions as properties—
prevents having to call dispatch every
time you want to call an action.

Call connect, passing in mapDispatchToProps and then
passing in the component you want to connect to Redux
.store/books/9781617294396

https://itbook.store/books/9781617294396

131Summary

www.itbook.s
Summary
In this chapter, you learned how Redux works, including how to implement unidirec-
tional data flow, maintain an immutable store, and connect React with Redux.

 Redux implements an architecture pattern that’s an evolution of the traditional
MVC pattern.

 The single-directional flow of Redux, where the view dispatches actions and
subscribes to store updates, makes reasoning about the system simpler for
developers.

 The store, or state, of your application is a single root object that holds all the
information for your view.

 Reducers are pure functions that make changes to the store. They never mutate
the store and instead use immutable patterns to make updates to the store.

 Actions are used to trigger updates to the store.
 Middleware allows debugging tools and asynchronous actions to be used in

Redux.
 Connecting React and Redux requires additional functionality provided by the

React Redux library, which includes a higher-order component that subscribes
to the store for its child component.

tore/books/9781617294396

https://itbook.store/books/9781617294396

Elyse Kolker Gordon

B
uild secure web apps that perform beautifully with high,
low, or no bandwidth. Isomorphic web apps employ a
pattern that exploits the full stack, storing data locally

and minimizing server hits. They render fl awlessly, maximize
SEO, and offer opportunities to share code and libraries
between client and server.

Isomorphic Web Applications teaches you to build production-
quality web apps using isomorphic architecture. You’ll learn
to create and render views for both server and browser,
optimize local storage, streamline server interactions, and
handle data serialization. Designed for working developers,
this book offers examples in relevant frameworks like React,
Redux, Angular, Ember, and webpack. You’ll also explore
unique debugging and testing techniques and master
specifi c SEO skills.

What’s Inside
● Controlling browser and server user sessions
● Combining server-rendered and SPA architectures
● Building best-practice React applications
● Debugging and testing

To benefi t from this book, readers need to know JavaScript,
HTML5, and a framework of their choice, including React
and Angular.

Elyse Kolker Gordon runs the growth engineering team at
Strava. Previously, she was director of web engineering at Vevo,
where she regularly solved challenges with isomorphic apps.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/isomorphic-web-applications

$39.99 / Can $56.99 [INCLUDING eBOOK]

Isomorphic Web Applications

JAVASCRIPT/WEB DEVELOPMENT

M A N N I N G

“A practical guide to
performant and modern

 JavaScript applications.”
—Bojan Djurkovic, Cvent

“Clear and powerful.
If you need just one
 resource, this is it.”
—Peter Perlepes, Growth

“Thorough and methodical
coverage for novice users, with
handy insights and many ‘aha’
moments for advanced users.

Highly recommended.”
—Devang Paliwal, Synapse

“An essential guide for
anyone developing modern
JavaScript applications.”—Mike Jensen, UrbanStems

See first page

www.itbook.store/books/9781617294396

https://itbook.store/books/9781617294396

	Gordon-front-SC
	SCBrief-6
	SC-Ch-06
	Gordon-back

